MAX1556A [MAXIM]

16μA IQ, 1.2A PWM Step-Down DC-DC Converters; 16レ一个智商, 1.2A PWM降压型DC- DC转换器
MAX1556A
型号: MAX1556A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
16レ一个智商, 1.2A PWM降压型DC- DC转换器

转换器
文件: 总12页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3336; Rev 2; 6/10  
16µA I , 1.2A PWM  
Q
Step-Down DC-DC Converters  
6/MAX157  
General Description  
Features  
The MAX1556/MAX1556A/MAX1557 are low-operating-  
current (16µA), fixed-frequency step-down regulators.  
High efficiency, low-quiescent operating current, low  
dropout, and minimal (27µA) quiescent current in  
dropout make these converters ideal for powering  
portable devices from 1-cell Li-ion or 3-cell alkaline/NiMH  
batteries. The MAX1556 delivers up to 1.2A; has pin-  
selectable 1.8V, 2.5V, and 3.3V outputs; and is also  
adjustable. The MAX1557 delivers up to 600mA; has pin-  
selectable 1V, 1.3V, and 1.5V outputs; and is also  
adjustable.  
o Up to 97% Efficiency  
o 95% Efficiency at 1mA Load Current  
o Low 16µA Quiescent Current  
o 1MHz PWM Switching  
o Tiny 3.3µH Inductor  
o Selectable 3.3V, 2.5V, 1.8V, 1.5V, 1.3V, 1.2V, 1.0V,  
and Adjustable Output  
o 1.2A Guaranteed Output Current  
(MAX1556/MAX1556A)  
The MAX1556/MAX1556A/MAX1557 contain a low-on-  
resistance internal MOSFET switch and synchronous  
rectifier to maximize efficiency and dropout perfor-  
mance while minimizing external component count. A  
proprietary topology offers the benefits of a high fixed-  
frequency operation while still providing excellent effi-  
ciency at both light and full loads. A 1MHz PWM  
switching frequency keeps components small. Both  
devices also feature an adjustable soft-start to minimize  
battery transient loading.  
o Voltage Positioning Optimizes Load-Transient  
Response  
o Low 27µA Quiescent Current in Dropout  
o Low 0.1µA Shutdown Current  
o No External Schottky Diode Required  
o Analog Soft-Start with Zero Overshoot Current  
o Small, 10-Pin, 3mm x 3mm TDFN Package  
The MAX1556/MAX1556A/MAX1557 are available in a  
tiny 10-pin TDFN (3mm x 3mm) package.  
Ordering Information  
TOP  
MARK  
Applications  
PART  
TEMP RANGE PIN-PACKAGE  
PDAs and Palmtop Computers  
Cell Phones and Smart Phones  
Digital Cameras and Camcorders  
Portable MP3 and DVD Players  
Hand-Held Instruments  
MAX1556ETB+  
-40°C to +85°C 10 TDFN-EP*  
ACQ  
AUJ  
ACR  
MAX1556AETB+ -40°C to +85°C 10 TDFN-EP*  
MAX1557ETB+ -40°C to +85°C 10 TDFN-EP*  
*EP = Exposed paddle.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Typical Operating Circuit  
Pin Configuration  
OUTPUT  
0.75V TO V  
TOP VIEW  
INPUT  
2.6V TO 5.5V  
IN  
INP  
LX  
MAX1556  
MAX1556A  
MAX1557  
1
2
3
4
5
IN  
10 D1  
GND  
SS  
INP  
LX  
9
8
7
6
IN  
PGND  
MAX1556  
MAX1556A  
MAX1557  
D1  
D2  
VOLTAGE  
SELECT  
PGND  
D2  
OUT  
SHDN  
OUT  
SS  
ON  
OFF  
SHDN  
GND  
TDFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
ABSOLUTE MAXIMUM RATINGS  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
IN, INP, OUT, D2, SHDN to GND ..........................-0.3V to +6.0V  
SS, D1 to GND.............................................-0.3V to (V + 0.3V)  
IN  
PGND to GND .......................................................-0.3V to +0.3V  
LX Current (Note 1)........................................................... 2.25A  
Output Short-Circuit Duration.....................................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin TDFN (derate 24.4mW/°C above +70°C) .......1951mW  
Note 1: LX has internal clamp diodes to GND and IN. Applications that forward bias these diodes should take care not to exceed  
the IC’s package power-dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
= 3.6V, T = - 40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
SHDN A A  
(V = V  
IN  
= V  
INP  
PARAMETER  
Input Voltage  
CONDITIONS  
MIN  
2.6  
TYP  
MAX  
5.5  
2.55  
25  
UNITS  
V
V
Undervoltage-Lockout Threshold  
V
rising and falling, 35mV hysteresis (typ)  
2.20  
2.35  
16  
IN  
No switching, D1 = D2 = GND  
Dropout  
Quiescent Supply Current  
µA  
27  
42  
T
= +25°C  
= +85°C  
0.1  
0.1  
1
A
A
Shutdown Supply Current  
Output Voltage Range  
SHDN = GND  
µA  
V
T
0.75  
-0.25  
-0.75  
-1.5  
V
IN  
No load  
+0.75  
0
+1.75  
+0.75  
0
300mA load  
T
A
= 0°C to +85°C  
600mA load  
-0.75  
-2.25  
-2.25  
(Note 2)  
6/MAX157  
1200mA load, MAX1556  
1200mA load, MAX1556A  
No load  
-2.75  
-1.25  
Output Accuracy  
%
-0.75  
-1.5  
+2.25  
+1.5  
+0.50  
-1.0  
300mA load  
T
A
= -40°C to +85°C  
(Note 2)  
600mA load  
-2.25  
-4.0  
1200mA load, MAX1556  
MAX1556/MAX1556A  
MAX1557  
1200  
600  
Maximum Output Current  
OUT Bias Current  
mA  
µA  
T
T
= +25°C  
= +85°C  
0.01  
0.01  
3
0.1  
A
D1 = D2 = GND  
MAX1556/MAX1557  
A
For preset output voltages  
D1 = D2 = GND, No load  
= 0.75V at  
4.5  
-0.50  
-1.2  
+0.75  
0
+1.75  
+1.2  
V
OUT  
300mA load  
300mA (typ),  
= 0°C to +85°C  
600mA load  
-1.75  
-3.25  
-1.25  
-1.75  
-2.75  
-4.25  
-0.75  
-2.25  
+0.25  
-1.25  
+2.25  
+1.50  
+0.25  
-1.00  
T
A
MAX1556/MAX1557  
1200mA load, MAX1556 only  
No load  
FB Threshold Accuracy  
%
D1 = D2 = GND,  
V
= 0.75V  
OUT  
300mA load  
at 300mA (typ),  
= -40°C to +85°C  
600mA load  
T
A
1200mA load, MAX1556 only  
MAX1556/MAX1557  
2
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
6/MAX157  
ELECTRICAL CHARACTERISTICS (continued)  
= 3.6V, T = - 40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
SHDN A A  
(V = V  
IN  
= V  
INP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 2.6V to 3.6V  
-0.37  
MAX1556,  
IN  
D1 = IN, D2 = GND;  
MAX1556A  
D1 = D2 = IN  
V
= 3.6V to 5.5V  
0.33  
IN  
Line Regulation  
%
V
V
V
V
V
V
= 2.6V to 3.6V  
= 3.6V to 5.5V  
= 3.6V  
-0.1  
0.09  
0.19  
0.23  
0.35  
0.42  
0.27  
0.33  
1.8  
IN  
IN  
IN  
IN  
IN  
IN  
MAX1557,  
D1 = IN, D2 = GND  
0.35  
0.7  
MAX1556/MAX1556A  
MAX1557  
= 2.6V  
p-Channel On-Resistance  
n-Channel On-Resistance  
= 3.6V  
= 2.6V  
V
V
= 3.6V  
= 2.6V  
0.48  
IN  
IN  
A
MAX1556/MAX1556A  
MAX1557  
1.5  
0.8  
2.1  
1.2  
p-Channel Current-Limit  
Threshold  
1.0  
n-Channel Zero Crossing  
Threshold  
20  
35  
45  
mA  
MAX1556/MAX1556A  
MAX1557  
1.8  
1.0  
10  
RMS LX Output Current  
LX Leakage Current  
A
RMS  
T
= +25°C  
= +85°C  
0.1  
0.1  
A
V
= 5.5V, LX =  
IN  
µA  
GND or IN  
T
A
Maximum Duty Cycle  
100  
%
%
Minimum Duty Cycle  
0
Internal Oscillator Frequency  
SS Output Impedance  
0.9  
1
200  
90  
1.1  
300  
200  
MHz  
kΩ  
V / I for I = 2µA  
130  
SS SS  
SS  
SS Discharge Resistance  
Thermal-Shutdown Threshold  
SHDN = GND, 1mA sink current  
+160  
15  
°C  
Thermal-Shutdown Hysteresis  
LOGIC INPUTS (D1, D2, SHDN)  
Input-Voltage High  
°C  
2.6V V 5.5V  
1.4  
V
V
IN  
Input-Voltage Low  
0.4  
1
T
T
= +25°C  
= +85°C  
0.1  
0.1  
A
Input Leakage  
µA  
A
Note 1: All units are 100% production tested at T = +25°C. Limits over the operating range are guaranteed by design.  
A
Note 2: For the MAX1556, 3.3V output accuracy is specified with a 4.2V input.  
_______________________________________________________________________________________  
3
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Typical Operating Characteristics  
(V = V  
IN  
= 3.6V, D1 = D2 = SHDN = IN, Circuits of Figures 2 and 3, T = +25°C, unless otherwise noted.)  
INP  
A
EFFICIENCY vs. LOAD CURRENT  
WITH 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
WITH 2.5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
WITH 1.8V OUTPUT  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
V
= 5V  
IN  
V
= 4.2V  
IN  
V = 5V  
IN  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
V
= 5V  
IN  
V
= 3V  
IN  
V
= 2.6V  
IN  
V
= 3.6V  
IN  
V
= 2.6V  
V
= 3V  
IN  
IN  
40  
0.1  
1
10  
100  
1000  
10,000  
0.1  
1
10  
100  
1000 10,000  
0.1  
1
10  
100  
1000 10,000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
WITH 1.0V OUTPUT (MAX1557)  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
WITH 600mA LOAD  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.789  
1.788  
1.787  
1.786  
1.785  
1.784  
1.783  
1.782  
1.781  
1.780  
1.779  
100  
90  
80  
70  
60  
50  
T
= -45°C  
A
V
= 5V  
IN  
V
= 3.6V  
IN  
T
= -40°C  
A
T
= +25°C  
T
= +25°C  
V
= 3V  
A
A
IN  
6/MAX157  
V
= 2.6V  
IN  
T
= +85°C  
A
T
= +85°C  
A
40  
0
200  
400  
600  
800 1000 1200  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
WITH NO LOAD  
SUPPLY CURRENT vs. INPUT VOLTAGE  
HEAVY-LOAD SWITCHING WAVEFORMS  
MAX1556/7 toc09  
1.812  
1.811  
1.810  
1.809  
1.808  
1.807  
1.806  
20  
18  
16  
14  
12  
10  
8
I
= 750mA  
LOAD  
V
OUT  
AC-COUPLED  
10mV/div  
T
= -40°C  
A
T
= +25°C  
A
V
LX  
2V/div  
0
6
T
= +85°C  
A
I
LX  
1.805  
1.804  
1.803  
4
500mA/div  
0
2
0
400ns  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
2
3
4
5
6
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
4
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
6/MAX157  
Typical Operating Characteristics (continued)  
(V = V  
IN  
= 3.6V, D1 = D2 = SHDN = IN, Circuits of Figures 2 and 3, T = +25°C, unless otherwise noted.)  
A
INP  
EXTERNAL FEEDBACK  
SWITCHING WAVEFORMS  
LIGHT-LOAD SWITCHING WAVEFORMS  
SOFT-START/SHUTDOWN WAVEFORMS  
MAX1556/7 toc10b  
MAX1556/7 toc10  
MAX1556/7 toc11  
5V/div  
0
V
SHDN  
20mV/div  
V
OUT  
AC-COUPLED  
V
1V/div  
0
OUT  
V
2V/div  
0
C
R
= 470pF  
LX  
LX  
SS  
= 4Ω  
LOAD  
V
2V/div  
LX  
LX  
500mA/div  
0
I
LX  
0
200mA/div  
0
200mA/div  
0
I
500mA/div  
0
I
I
IN  
V
= 5V, V  
= 3.3V, I  
= 500mA  
IN  
OUT  
OUT  
2µs/div  
4µs/div  
100µs/div  
LOAD TRANSIENT  
SOFT-START RAMP TIME vs. C  
SS  
MAX1556/7 toc13  
10  
50mV/div  
AC-COUPLED  
V
OUT  
1
500mA/div  
0
I
OUT  
I
= 20mA  
OUTMIN  
0.1  
20µs/div  
0
500  
1000  
1500  
(pF)  
2000  
2500  
C
SS  
LOAD TRANSIENT  
LINE TRANSIENT  
BODE PLOT  
MAX1556/7 toc14  
MAX1556/7 toc15  
MAX1556/7 toc16  
40  
30  
240  
210  
180  
150  
120  
90  
4V  
V
20  
IN  
50mV/div  
AC-COUPLED  
3.5V  
V
OUT  
10  
0
-10  
-20  
-30  
-40  
10mV/div  
AC-COUPLED  
V
OUT  
0dB  
PHASE MARGIN = 53°  
60  
30  
500mA/div  
0
200mA/div  
0
0
I
I
OUT  
LX  
-50  
C
-60  
-30  
-60  
I
= 180mA  
= 22µF, R  
= 4Ω  
OUTMIN  
OUT  
LOAD  
20µs/div  
40µs/div  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Pin Description  
PIN  
1
NAME  
IN  
FUNCTION  
Supply Voltage Input. Connect to a 2.6V to 5.5V source.  
Ground. Connect to PGND.  
2
GND  
Soft-Start Control. Connect a 1000pF capacitor (C ) from SS to GND to eliminate input-current  
SS  
overshoot during startup. C is required for normal operation of the MAX1556/MAX1557. For greater  
SS  
3
SS  
than 22µF total output capacitance, increase C to C  
SS  
/ 22,000 for soft-start. SS is internally  
OUT  
discharged through 200to GND in shutdown.  
Output Sense Input. Connect to the output of the regulator. D1 and D2 select the desired output  
voltage through an internal feedback resistor-divider. The internal feedback resistor-divider remains  
connected in shutdown.  
4
5
OUT  
Shutdown Input. Drive SHDN low to enable low-power shutdown mode. Drive high or connect to IN  
for normal operation.  
SHDN  
6
7
D2  
OUT Voltage-Select Input. See Table 1.  
Power Ground. Connect to GND.  
PGND  
Inductor Connection. Connected to the drains of the internal power MOSFETs. High impedance in  
shutdown mode.  
8
LX  
Supply Voltage, High-Current Input. Connect to a 2.6V to 5.5V source. Bypass with a 10µF ceramic  
capacitor to PGND.  
9
INP  
D1  
EP  
10  
OUT Voltage-Select Input. See Table 1.  
Exposed Paddle. Connect to ground plane. EP also functions as a heatsink. Solder to circuit-board  
ground plane to maximize thermal dissipation.  
Control Scheme  
Table 1. Output-Voltage-Select Truth Table  
During PWM operation the converters use a fixed-fre-  
quency, current-mode control scheme. The heart of the  
current-mode PWM controller is an open-loop, multiple-  
input comparator that compares the error-amp voltage  
feedback signal against the sum of the amplified cur-  
rent-sense signal and the slope-compensation ramp. At  
the beginning of each clock cycle, the internal high-side  
p-channel MOSFET turns on until the PWM comparator  
trips. During this time the current in the inductor ramps  
up, sourcing current to the output and storing energy in  
the inductor’s magnetic field. When the p-channel turns  
off, the internal low-side n-channel MOSFET turns on.  
Now the inductor releases the stored energy while the  
current ramps down, still providing current to the output.  
The output capacitor stores charge when the inductor  
current exceeds the load and discharges when the  
inductor current is lower than the load. Under overload  
conditions, when the inductor current exceeds the cur-  
rent limit, the high-side MOSFET is turned off and the  
low-side MOSFET remains on until the next clock cycle.  
6/MAX157  
MAX1556  
MAX1556A  
MAX1557  
D1  
D2  
V
OUT  
V
OUT  
V
OUT  
Adjustable  
Adjustable  
(V = 0.75)  
FB  
from 0.75V to  
(V = 0.75)  
FB  
from 0.75V to  
0
0
3.3V  
V
V
IN  
IN  
0
1
1
1
0
1
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
2.5V  
1.5V  
1.3V  
1.0V  
A zero represents D_ being driven low or connected to GND.  
A 1 represents D_ being driven high or connected to IN.  
Detailed Description  
The MAX1556/MAX1557 synchronous step-down con-  
verters deliver a guaranteed 1.2A/600mA at output volt-  
ages from 0.75V to V . They use a 1MHz PWM  
IN  
current-mode control scheme with internal compensation,  
allowing for tiny external components and a fast transient  
response. At light loads the MAX1556/MAX1557 automat-  
ically switch to pulse-skipping mode to keep the quies-  
cent supply current as low as 16µA. Figures 2 and 3  
show the typical application circuits.  
6
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
6/MAX157  
SHORT-CIRCUIT  
PROTECTION  
CLOCK  
1MHz  
IN  
BIAS  
SHDN  
CURRENT-LIMIT  
COMPARATOR  
INP  
V
CS  
CURRENT  
SENSE  
PWM  
AUTO SKIP  
CONTROL  
0.675V  
PWM  
COMPARATOR  
LX  
SLOPE  
COMP  
PGND  
SKIP-OVER  
ENTER SKIP/  
SR OFF  
ZERO-CROSS  
DETECT  
ERROR  
AMPLIFIER  
OUT  
GND  
REFERENCE  
1.25V  
D1  
D2  
OUTPUT  
VOLTAGE  
SELECTOR  
MAX1556  
MAX1556A  
MAX1557  
SS  
Figure 1. Functional Diagram  
OUTPUT  
OUTPUT  
L1  
3.3µH  
L2  
4.7µH  
0.75V TO V  
0.75V TO V  
INPUT  
IN  
INPUT  
2.6V TO 5.5V  
IN  
2.6V TO 5.5V  
1.2A  
600mA  
INP  
IN  
LX  
INP  
LX  
C1  
10µF  
C4  
10µF  
R1  
100Ω  
C5  
22µF  
C2  
22µF  
MAX1556  
MAX1556A  
MAX1557  
PGND  
IN  
PGND  
C4  
0.47µF  
D1  
D2  
D1  
D2  
VOLTAGE  
SELECT  
VOLTAGE  
SELECT  
OUT  
SS  
OUT  
SS  
ON  
ON  
C6  
1000pF  
C3  
1000pF  
OFF  
SHDN  
SHDN  
OFF  
GND  
GND  
Figure 2. MAX1556 Typical Application Circuit  
Figure 3. MAX1557 Typical Application Circuit  
_______________________________________________________________________________________  
7
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
As the load current decreases, the converters enter a  
pulse-skip mode in which the PWM comparator is dis-  
abled. At light loads, efficency is enhanced by a  
pulse-skip mode in which switching occurs only as  
needed to service the load. Quiescent current in skip  
mode is typically 16µA. See the Light-Load Switching  
Waveforms and Load Transient graphs in the Typical  
Operating Characteristics.  
1.0  
0.5  
0
V
= 3.6V  
IN  
V
= 5.5V  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
IN  
V
= 2.6V  
IN  
Load-Transient Response/  
Voltage Positioning  
The MAX1556/MAX1556A/MAX1557 match the load  
regulation to the voltage droop seen during transients.  
This is sometimes called voltage positioning. The load  
line used to achieve this behavior is shown in Figures 4  
and 5. There is minimal overshoot when the load is  
removed and minimal voltage drop during a transition  
400  
600  
800 1000  
0
200  
1200  
LOAD CURRENT (mA)  
Figure 4. MAX1556 Voltage-Positioning Load Line  
from light load to full load. Additionally, the MAX1556,  
MAX1556A, and MAX1557 use a wide-bandwidth feed-  
back loop to respond more quickly to a load transient  
than regulators using conventional integrating feedback  
loops (see Load Transient in the Typical Operating  
Characteristics).  
1.0  
0.8  
0.6  
0.4  
The MAX1556/MAX1556A/MAX1557 use of a wide-band  
control loop and voltage positioning allows superior  
load-transient response by minimizing the amplitude  
and duration of overshoot and undershoot in response  
to load transients. Other DC-DC converters, with high  
gain- control loops, use external compensation to main-  
tain tight DC load regulation but still allow large voltage  
droops of 5% or greater for several hundreds of  
microseconds during transients. For example, if the  
load is a CPU running at 600MHz, then a dip lasting  
100µs corresponds to 60,000 CPU clock cycles.  
V
= 3.6V  
IN  
0.2  
0
V
= 5.5V  
IN  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
IN  
= 2.6V  
6/MAX157  
0
200  
400  
600  
LOAD CURRENT (mA)  
Voltage positioning on the MAX1556/MAX1556A/  
MAX1557 allows up to 2.25% (typ) of load-regulation  
voltage shift but has no further transient droop. Thus,  
during load transients, the voltage delivered to the CPU  
remains within spec more effectively than with other  
regulators that might have tighter initial DC accuracy. In  
summary, a 2.25% load regulation with no transient  
droop is much better than a converter with 0.5% load  
regulation and 5% or more of voltage droop during load  
transients. Load-transient variation can be seen only  
with an oscilloscope (see the Typical Operating  
Characteristics), while DC load regulation read by a  
voltmeter does not show how the power supply reacts  
to load transients.  
Figure 5. MAX1557 Voltage-Positioning Load Line  
MOSFET is always on. This is particularly useful in  
battery-powered applications with a 3.3V output. The sys-  
tem and load might operate normally down to 3V or less.  
The MAX1556/MAX1556A/MAX1557 allow the output to  
follow the input battery voltage as it drops below the regu-  
lation voltage. The quiescent current in this state rises  
minimally to only 27µA (typ), which aids in extending bat-  
tery life. This dropout/100% duty-cycle operation achieves  
long battery life by taking full advantage of the entire bat-  
tery range.  
The input voltage required to maintain regulation is a  
function of the output voltage and the load. The differ-  
ence between this minimum input voltage and the out-  
put voltage is called the dropout voltage. The dropout  
voltage is therefore a function of the on-resistance of  
Dropout/100% Duty-Cycle Operation  
The MAX1556/MAX1556A/MAX1557 function with a low  
input-to-output voltage difference by operating at 100%  
duty cycle. In this state, the high-side p-channel  
the internal p-channel MOSFET (R  
inductor resistance (DCR).  
) and the  
DS(ON)P  
8
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
6/MAX157  
Table 2. Inductor Selection  
MANUFACTURER  
Taiyo Yuden  
Taiyo Yuden  
TOKO  
PART  
LMNP04SB3R3N  
LMNP04SB4R7N  
D52LC  
VALUE (µH)  
DCR (m)  
36  
I
(mA)  
SIZE (mm)  
5 x 5 x 2.0  
SHIELDED  
Yes  
SAT  
3.3  
4.7  
3.5  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1300  
50  
1200  
1340  
1140  
1200  
1200*  
790  
5 x 5 x 2.0  
Yes  
73  
5 x 5 x 2.0  
Yes  
TOKO  
D52LC  
87  
5 x 5 x 2.0  
Yes  
Sumida  
CDRH3D16  
D412F  
50  
3.8 x 3.8 x 1.8  
4.8 x 4.8 x 1.2  
2.5 x 3.2 x 2.0  
3.0 x 3.2 x 1.7  
2.8 x 3.2 x 1.5  
Yes  
TOKO  
100*  
97  
Yes  
Murata  
LQH32CN  
CXL180  
No  
Sumitomo  
Sumitomo  
70*  
1000*  
800*  
No  
CXLD140  
100*  
No  
*Estimated based upon similar-valued prototype inductors.  
V
= I  
x (R  
+ DCR)  
Thermal Shutdown  
DROPOUT  
OUT  
DS(ON)P  
As soon as the junction temperature of the  
MAX1556/MAX1556A/MAX1557 exceeds +160°C, the  
ICs go into thermal shutdown. In this mode the internal  
p-channel switch and the internal n-channel synchro-  
nous rectifier are turned off. The device resumes nor-  
mal operation when the junction temperature falls  
below +145°C.  
R
is given in the Electrical Characteristics. DCR  
DS(ON)P  
for a few recommended inductors is listed in Table 2.  
Soft-Start  
The MAX1556/MAX1556A/MAX1557 use soft-start to  
eliminate inrush current during startup, reducing tran-  
sients at the input source. Soft-start is particularly use-  
ful for higher-impedance input sources such as Li+ and  
alkaline cells. Connect the required soft-start capacitor  
from SS to GND. For most applications using a 22µF  
output capacitor, connect a 1000pF capacitor from SS  
to GND. If a larger output capacitor is used, then use  
the following formula to find the value of the soft-start  
capacitor:  
Applications Information  
The MAX1556/MAX1556A/MAX1557 are optimized for  
use with small external components. The correct selec-  
tion of inductors and input and output capacitors  
ensures high efficiency, low output ripple, and fast tran-  
sient response.  
C
22000  
OUT  
Adjusting the Output Voltage  
The MAX1556/MAX1556A/MAX1557 offer preset output  
voltages of 1.0V, 1.2V, 1.3V, 1.5V, 1.8V, 2.5V, and 3.3V  
as well as an adjustable output using external resistors.  
Whenever possible, the preset outputs (set by D1 and  
D2) should be used. With external resistor feedback,  
noise coupling to FB can cause alternate LX pulse to  
terminate early resulting in an inductor current wave-  
form with alternate large and small current pulses. See  
the External Feedback Switching Waveforms graph in  
Typical Operating Characteristics section). Note that  
external feedback and the alternating large-small pulse  
waveform do not impact loop stability and have no  
harmful effect on regulation or reliability.  
C
=
SS  
Soft-start is implemented by exponentially ramping up  
the output voltage from 0 to V with a time con-  
OUT(NOM)  
stant equal to C  
times 200k(see the Typical  
SS  
Operating Characteristics). Assuming three time con-  
stants to full output voltage, use the following formula to  
calculate the soft-start time:  
3
t
= 600 x 10 x C  
SS  
SS  
Shutdown Mode  
Connecting SHDN to GND or logic low places the  
MAX1556/MAX1556A/MAX1557 in shutdown mode and  
reduces supply current to 0.1µA. In shutdown, the con-  
trol circuitry and the internal p-channel and n-channel  
MOSFETs turn off and LX becomes high impedance.  
Connect SHDN to IN or logic high for normal operation.  
The adjustable output is selected when D1 = D2 = 0  
and an external resistor-divider is used to set the output  
voltage (see Figure 6). The MAX1556/MAX1557 have a  
defined line- and load-regulation slope. The load regu-  
lation is for both preset and adjustable outputs and is  
described in the Electrical Characteristics table and  
Figures 4 and 5. The impact of the line-regulation slope  
_______________________________________________________________________________________  
9
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
can be reduced by applying a correction factor to the  
feedback resistor equation.  
OUTPUT  
R2  
First, calculate the correction factor, k, by plugging the  
desired output voltage into the following formula:  
ERROR  
AMPLIFIER  
OUT  
V
0.75V  
3.6V  
2  
OUTPUT  
k = 1.06 x 10 V x  
R3  
REFERENCE  
1.25V  
k represents the shift in the operating point at the feed-  
back node (OUT).  
Select the lower feedback resistor, R3, to be 35.7kto  
ensure stability and solve for R2:  
0.75V k  
R3  
R3+R2  
=
V
(
)
OUTPUT  
SS  
Inductor Selection  
Figure 6. Adjustable Output Voltage  
A 4.7µH inductor with a saturation current of at least  
800mA is recommended for the MAX1557 full-load  
(600mA) application. For the MAX1556/MAX1556A appli-  
cation with 1.2A full load, use a 3.3µH inductor with at  
least 1.34A saturation current. For lower full-load cur-  
rents the inductor current rating can be reduced. For  
maximum efficiency, the inductor’s resistance (DCR)  
should be as low as possible. Please note that the core  
material differs among different manufacturers and  
inductor types and has an impact on the efficiency. See  
Table 2 for recommended inductors and manufacturers.  
most applications. The input capacitor can be increased  
for better input filtering.  
IN Input Filter  
In all MAX1557 applications, connect INP directly to IN  
and bypass INP as described in the Input Capacitor  
section. No additional bypass capacitor is required at  
IN. For applications using the MAX1556 and  
MAX1556A, an RC filter between INP and IN keeps  
power-supply noise from entering the IC. Connect a  
100resistor between INP and IN, and connect a  
0.47µF capacitor from IN to GND.  
6/MAX157  
Capacitor Selection  
Ceramic input and output capacitors are recommend-  
ed for most applications. For best stability over a wide  
temperature range, use capacitors with an X5R or bet-  
ter dielectric due to their small size, low ESR, and low  
temperature coefficients.  
Soft-Start Capacitor  
The soft-start capacitor, C , is required for proper  
SS  
operation of the MAX1556/MAX1556A/MAX1557. The  
recommended value of C  
is discussed in the Soft-  
SS  
Start section. Soft-start times for various soft-start  
capacitors are shown in the Typical Operating  
Characteristics.  
Output Capacitor  
The output capacitor C  
is required to keep the out-  
OUT  
put voltage ripple small and to ensure regulation loop  
stability. C must have low impedance at the switch-  
ing frequency. A 22µF ceramic output capacitor is rec-  
ommended for most applications. If a larger output  
capacitor is used, then paralleling smaller capacitors is  
suggested to keep the effective impedance of the  
capacitor low at the switching frequency.  
OUT  
PCB Layout and Routing  
Due to fast-switching waveforms and high-current  
paths, careful PCB layout is required. An evaluation kit  
(MAX1556EVKIT) is available to speed design.  
When laying out a board, minimize trace lengths  
between the IC, the inductor, the input capacitor, and  
the output capacitor. Keep these traces short, direct,  
and wide. Keep noisy traces, such as the LX node  
trace, away from OUT. The input bypass capacitors  
should be placed as close as possible to the IC.  
Connect GND to the exposed paddle and star PGND  
and GND together at the output capacitor. The ground  
connections of the input and output capacitors should  
be as close together as possible.  
Input Capacitor  
Due to the pulsating nature of the input current in a buck  
converter, a low-ESR input capacitor at INP is required  
for input voltage filtering and to minimize interference  
with other circuits. The impedance of the input capacitor  
should be kept very low at the switching frequen-  
cy. A minimum value of 10µF is recommended at INP for  
C
INP  
10 ______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
6/MAX157  
Chip Information  
Package Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
10 TDFN  
T1033-1  
21-0137  
90-0003  
______________________________________________________________________________________ 11  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
7/04  
3/08  
Initial release  
Adding MAX1556A as a new version  
1–12  
Added soldering temperature, added TOC for external feedback switching  
waveforms, and added paragraph discussing noise coupling when using  
external feedback resistors  
1, 2, 5, 6, 9,  
10, 11  
2
6/10  
6/MAX157  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1556AETB

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX1556AETB+

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556AETB+T

Switching Regulator/Controller, Current-mode, 1100kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX1556ETB

16レA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556ETB+

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556ETB+T

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10
MAXIM

MAX1556ETB-T

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX1556ETB/V+

Switching Regulator, Current-mode, 1.2A, 1100kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX1556ETB/V+T

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556EVKIT

MAX1556 Evaluation Kit
MAXIM

MAX1556_1

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556_10

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM