MAX145BEPA [MAXIM]

+2.7V, Low-Power, 2-Channel, 108ksps, Serial 12-Bit ADCs in 8-Pin レMAX; + 2.7V ,低功耗, 2通道, 108ksps ,串行12位ADC ,采用8引脚μMAX封装
MAX145BEPA
型号: MAX145BEPA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+2.7V, Low-Power, 2-Channel, 108ksps, Serial 12-Bit ADCs in 8-Pin レMAX
+ 2.7V ,低功耗, 2通道, 108ksps ,串行12位ADC ,采用8引脚μMAX封装

文件: 总16页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1387; Rev 0; 11/98  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX144/MAX145 low-p owe r, 12-b it a na log -to-  
digital converters (ADCs) are available in 8-pin µMAX  
and DIP packages. Both devices operate with a single  
+2.7V to +5.25V supply and feature a 7.4µs succes-  
sive-approximation ADC, automatic power-down, fast  
wake-up (2.5µs), an on-chip clock, and a high-speed,  
3-wire serial interface.  
Single-Supply Operation (+2.7V to +5.25V)  
Two Single-Ended Channels (MAX144)  
One Pseudo-Differential Channel (MAX145)  
Low Power  
0.9mA (108ksps, +3V Supply)  
100µA (10ksps, +3V Supply)  
10µA (1ksps, +3V Supply)  
0.2µA (Power-Down Mode)  
Power consumption is only 3.2mW (V = +3.6V) at the  
DD  
maximum sampling rate of 108ksps. At slower through-  
p ut ra te s , the a utoma tic s hutd own (0.2µA) furthe r  
reduces power consumption.  
Internal Track/Hold  
The MAX144 provides 2-channel, single-ended opera-  
108ksps Sampling Rate  
tion and accepts input signals from 0 to V  
. The  
REF  
SPI/QSPI/MICROWIRE-Compatible 3-Wire  
MAX145 accepts pseudo-differential inputs ranging  
from 0 to V . An e xte rna l c loc k a c c e s s e s d a ta -  
Serial Interface  
REF  
throug h the 3-wire s e ria l inte rfa c e , whic h is SPI™,  
QSPI™, and MICROWIRE™-compatible.  
Space-Saving 8-Pin µMAX Package  
Pin-Compatible 10-Bit Versions Available  
Excellent dynamic performance and low power, com-  
bined with ease of use and small package size, make  
these converters ideal for battery-powered and data-  
a c q uis ition a p p lic a tions , or for othe r c irc uits with  
demanding power-consumption and space require-  
me nts . For p in-c omp a tib le 10-b it ADCs , s e e the  
MAX157 and MAX159.  
Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX144ACUA 0°C to +70°C 8 µMAX  
±0.5  
±1  
MAX144BCUA 0°C to +70°C 8 µMAX  
Ap p lic a t io n s  
Instrumentation  
MAX144ACPA  
MAX144BCPA  
MAX144BC/D  
0°C to +70°C 8 Plastic DIP  
0°C to +70°C 8 Plastic DIP  
0°C to +70°C Dice*  
±0.5  
±1  
Battery-Powered Systems  
Portable Data Logging  
±1  
Test Equipment  
MAX144AEUA -40°C to +85°C  
MAX144BEUA -40°C to +85°C  
MAX144AEPA -40°C to +85°C  
MAX144BEPA -40°C to +85°C  
8 µMAX  
±0.5  
±1  
Isolated Data Acquisition  
Process-Control Monitoring  
Medical Instruments  
System Supervision  
8 µMAX  
8 Plastic DIP  
8 Plastic DIP  
±0.5  
±1  
MAX144AMJA -55°C to +125°C 8 CERDIP**  
MAX144BMJA -55°C to +125°C 8 CERDIP**  
MAX145ACUA 0°C to +70°C 8 µMAX  
MAX145BCUA 0°C to +70°C 8 µMAX  
±0.5  
±1  
P in Co n fig u ra t io n  
±0.5  
±1  
TOP VIEW  
MAX145ACPA  
MAX145BCPA  
MAX145BC/D  
0°C to +70°C 8 Plastic DIP  
0°C to +70°C 8 Plastic DIP  
0°C to +70°C Dice*  
±0.5  
±1  
V
1
2
3
4
8
7
6
5
SCLK  
DOUT  
CS/SHDN  
REF  
DD  
CH0 (CH+)  
CH1 (CH-)  
GND  
±1  
MAX144  
MAX145  
MAX145AEUA -40°C to +85°C  
MAX145BEUA -40°C to +85°C  
MAX145AEPA -40°C to +85°C  
MAX145BEPA -40°C to +85°C  
8 µMAX  
±0.5  
±1  
8 µMAX  
8 Plastic DIP  
8 Plastic DIP  
±0.5  
±1  
( ) ARE FOR MAX145 ONLY  
µMAX/DIP  
MAX145AMJA -55°C to +125°C 8 CERDIP**  
MAX145BMJA -55°C to +125°C 8 CERDIP**  
±0.5  
±1  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
*Dice are specified at T = +25°C, DC parameters only.  
A
**Contact factory for availability.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................-0.3V to +6V  
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
CERDIP (derate 8.00mW/°C above +70°C) ............... 640mW  
DD  
CH0, CH1 (CH+, CH-) to GND ................. -0.3V to (V + 0.3V)  
DD  
REF to GND .............................................. -0.3V to (V + 0.3V)  
Operating Temperature Ranges (T )  
DD  
A
Digital Inputs to GND. ............................................. -0.3V to +6V  
MAX144/MAX145_C_A .......................................0°C to +70°C  
MAX144/MAX145_E_A. ...................................-40°C to +85°C  
MAX144/MAX145_M_A ................................ -55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DOUT to GND............................................ -0.3V to (V + 0.3V)  
DD  
DOUT Sink Current ........................................................... 25mA  
Continuous Power Dissipation (T = +70°C)  
A
µMAX (derate 4.1mW/°C above +70°C) .................... 330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +5.25V, V  
= 2.5V, 0.1µF c a p a c itor a t REF, f  
= 2.17MHz, 16 c loc ks /c onve rs ion c yc le (108ks p s ),  
DD  
REF  
SCLK  
CH- = GND for MAX145, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
/MAX145  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
RES  
INL  
Bits  
MAX14_A  
MAX14_B  
±0.5  
±1  
Relative Accuracy (Note 2)  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
±0.75  
±3  
LSB  
LSB  
Gain Error (Note 3)  
Gain Temperature Coefficient  
±3  
LSB  
±0.8  
ppm/°C  
Channel-to-Channel Offset  
Matching  
±0.05  
LSB  
LSB  
Channel-to-Channel Gain  
Matching  
±0.05  
DYNAMIC SPECIFICATIONS (f  
= 10kHz, V = 2.5Vp-p, 108ksps, f  
SCLK  
= 2.17MHz, CH- = GND for MAX145)  
70  
IN(sine-wave)  
IN  
Signal-to-Noise Plus  
Distortion Ratio  
SINAD  
dB  
dB  
Total Harmonic Distortion  
(including 5th-order harmonic)  
THD  
-80  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
Full-Power Bandwidth  
SFDR  
80  
dB  
dB  
f
= 65kHz, V = 2.5Vp-p (Note 4)  
-85  
2.25  
1.0  
IN  
IN  
-3dB rolloff  
MHz  
MHz  
CONVERSION RATE  
External clock, f  
16 clocks/conversion cycle  
= 2.17MHz,  
SCLK  
7.4  
Conversion Time (Note 5)  
t
µs  
CONV  
Internal clock  
5
7
T/H Acquisition Time  
Aperture Delay  
Aperture Jitter  
t
2.5  
µs  
ns  
ps  
ACQ  
25  
<50  
External clock mode  
0.1  
0
2.17  
5
Serial Clock Frequency  
f
MHz  
SCLK  
Internal clock mode, for data transfer only  
2
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +2.7V to +5.25V, V  
= 2.5V, 0.1µF c a p a c itor a t REF, f  
= 2.17MHz, 16 c loc ks /c onve rs ion c yc le (108ks p s ),  
REF  
SCLK  
CH- = GND for MAX145, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUTS  
Analog Input Voltage Range  
(Note 6)  
V
IN  
0
V
REF  
V
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V = 0 to V  
±0.01  
16  
±1  
µA  
pF  
IN  
DD  
C
IN  
EXTERNAL REFERENCE  
0
V
DD  
+ 50mV  
Input Voltage Range (Note 7)  
V
REF  
V
Input Current  
V
REF  
= 2.5V  
100  
25  
140  
µA  
kΩ  
µA  
Input Resistance  
18  
Shutdown REF Input Current  
0.01  
10  
DIGITAL INPUTS (CS/SHDN) AND OUTPUT (DOUT)  
V
3.6V  
2.0  
3.0  
DD  
Input High Voltage  
V
IH  
V
V
DD  
> 3.6V  
Input Low Voltage  
Input Hysteresis  
V
0.8  
V
V
IL  
V
HYS  
0.2  
0.5  
Input Leakage Current  
Input Capacitance  
I
IN  
V
= 0 or V  
DD  
±1  
15  
µA  
pF  
IN  
C
(Note 8)  
= 5mA  
IN  
I
0.4  
SINK  
Output Low Voltage  
Output High Voltage  
V
OL  
V
V
I
= 16mA  
SINK  
V
OH  
I
= 0.5mA  
V
DD  
- 0.5  
SOURCE  
Three-State Output Leakage  
Current  
±10  
15  
µA  
pF  
CS/SHDN = V  
DD  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
C
OUT  
CS/SHDN = V (Note 8)  
DD  
V
DD  
2.7  
5.25  
2.0  
5
V
Operating mode  
0.9  
0.2  
mA  
µA  
Positive Supply Current  
I
DD  
Shutdown, CS/SHDN = GND  
Power-Supply Rejection  
(Note 9)  
V
V
REF  
= 2.7V to 5.25V,  
= 2.5V, full-scale input  
DD  
PSR  
±0.15  
mV  
_______________________________________________________________________________________  
3
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
TIMING CHARACTERISTICS (Figure 7)  
(V  
= +2.7V to +5.25V, V  
= 2.5V, 0.1µF c a p a c itor a t REF, f  
= 2.17MHz, 16 c loc ks /c onve rs ion c yc le (108ks p s ),  
DD  
REF  
SCLK  
CH- = GND for MAX145, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
Wake-Up Time (Note 10)  
t
2.5  
WAKE  
t
C
C
C
= 100pF  
120  
120  
120  
2.17  
5
ns  
CS/SHDN Fall to Output Enable  
CS/SHDN Rise to Output Disable  
SCLK Fall to Output Data Valid  
DV  
L
L
L
t
= 100pF, Figure 1  
= 100pF, Figure 1  
ns  
TR  
t
20  
0.1  
0
ns  
DO  
External clock  
SCLK Clock Frequency  
f
MHz  
SCLK  
Internal clock, SCLK for data transfer only  
External clock  
215  
SCLK Pulse Width High  
t
ns  
CH  
Internal clock, SCLK for data transfer only  
(Note 8)  
50  
215  
50  
External clock  
/MAX145  
SCLK Pulse Width Low  
t
ns  
CL  
Internal clock, SCLK for data transfer only  
(Note 8)  
t
60  
60  
ns  
ns  
SCLK to CS/SHDN Setup  
CS/SHDN Pulse Width  
SCLKS  
t
CS  
Note 1: Tested at V = +2.7V.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after full-scale range has been  
calibrated.  
Note 3: Offset nulled.  
Note 4: On” channel is grounded; sine wave applied to “off” channel (MAX144 only).  
Note 5: Conversion time is defined as the number of clock cycles times the clock period; clock has 50% duty cycle.  
Note 6: The common-mode range for the analog inputs is from GND to V (MAX145 only).  
DD  
Note 7: ADC performance is limited by the converters noise floor, typically 300µVp-p.  
Note 8: Guaranteed by design. Not subject to production testing.  
Note 9: Measured as V  
- V  
.
FS(2.7V)  
FS(5.25V)  
Note 10: SCLK must remain stable during this time.  
4
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
= 2.5V, 0.1µF at REF, f = 2.17MHz, 16 clocks/conversion cycle (108ksps), CH- = GND for MAX145, T = +25°C,  
SCLK A  
(V = +3.0V, V  
DD  
REF  
unless otherwise noted.)  
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs.  
SAMPLING RATE  
10,000  
1000  
100  
10  
1500  
1250  
1000  
750  
1500  
1300  
1100  
900  
V
= V  
V
= V  
DD  
DD REF  
REF  
V
= V  
DD  
REF  
C = 20pF  
R = ∞  
L
L
R = ∞  
L
CODE = 101010100000  
C = 50pF  
L
C = 50pF  
L
CODE = 101010100000  
CODE = 101010100000  
700  
1
500  
500  
0.1  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0.1  
1
10  
100  
1k  
10k 100k  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SAMPLING RATE (sps)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
1.0  
V
= V  
DD  
REF  
V
= V  
DD  
REF  
0.8  
0.6  
0.4  
0.2  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
GAIN ERROR  
GAIN ERROR  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
vs. TEMPERATURE  
vs. TEMPERATURE  
0.5  
0.5  
1.0  
0.4  
0.3  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-60 -35 -10 15 40 65 90 115 140  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-60 -35 -10 15 40 65 90 115 140  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DD  
_______________________________________________________________________________________  
5
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +3.0V, V  
= 2.5V, 0.1µF at REF, f  
= 2.17MHz, 16 clocks/conversion cycle (108ksps), CH- = GND for MAX145, T = +25°C,  
DD  
REF  
SCLK A  
unless otherwise noted.)  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
0.20  
0.15  
0.10  
0.05  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.05  
-0.10  
-0.15  
-0.20  
/MAX145  
-60 -35 -10 15 40 65 90 115 140  
TEMPERATURE (°C)  
0
1024  
2048  
3072  
4096  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
OUTPUT CODE  
V
DD  
EFFECTIVE NUMBER OF BITS  
vs. FREQUENCY  
FFT PLOT  
20  
0
12.0  
V
= +2.7V  
= 10kHz  
DD  
V
DD  
= +2.7V  
f
IN  
f
= 108ksps  
SAMPLE  
11.8  
11.6  
11.4  
11.2  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
11.0  
0
27  
FREQUENCY (kHz)  
54  
1
10  
100  
FREQUENCY (kHz)  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
2
3
4
V
Positive Supply Voltage, +2.7V to +5.25V  
DD  
CH0 (CH+)  
CH1 (CH-)  
GND  
Analog Input: MAX144 = single-ended (CH0); MAX145 = differential (CH+)  
Analog Input: MAX144 = single-ended (CH1); MAX145 = differential (CH-)  
Analog and Digital Ground  
External Reference Voltage Input. Sets the analog voltage range. Bypass with a 100nF capacitor close to  
the device.  
5
6
REF  
Active-Low Chip-Select Input/Active-High Shutdown Input. Pulling CS/SHDN high puts the device into  
shutdown with a maximum current of 5µA.  
CS/SHDN  
Serial Data Output. Data changes state at SCLK’s falling edge. High impedance when CS/SHDN  
is high.  
7
8
DOUT  
SCLK  
Serial Clock Input. DOUT changes on the falling edge of SCLK.  
6
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
V
DD  
DOUT  
6k  
DOUT  
6k  
C
L
C
L
GND  
a) HIGH-Z TO V , V TO V , AND V TO HIGH-Z  
GND  
b) HIGH-Z TO V , V TO V , AND V TO HIGH-Z  
0H 0L  
0H  
OH  
0L 0H  
0L  
OL  
Figure 1. Load Circuits for Enable and Disable Time  
_______________De t a ile d De s c rip t io n  
CS/SHDN  
SCLK  
The MAX144/MAX145 a na log -to-d ig ita l c onve rte rs  
(ADCs) use a successive-approximation conversion  
(SAR) te c hniq ue a nd on-c hip tra c k-a nd -hold (T/H)  
structure to convert an analog signal to a serial 12-bit  
digital output data stream.  
INTERNAL  
CLOCK  
DOUT  
CONTROL  
LOGIC  
OUTPUT  
REGISTER  
This flexible serial interface provides easy interface to  
microprocessors (µPs). Figure 2 shows a simplified  
functional diagram of the internal architecture for both  
the MAX144 (2 channels, single-ended) and the MAX145  
(1 channel, pseudo-differential).  
CH0  
(CH+)  
SCLK  
ANALOG  
INPUT  
12-BIT  
SAR  
ADC  
T/H  
IN  
OUT  
MAX144  
MAX145  
CH1  
(CH-)  
MUX  
(2 CHANNEL)  
REF  
( ) ARE FOR MAX145  
An a lo g In p u t s : S in g le -En d e d (MAX1 4 4 )  
a n d P s e u d o -Diffe re n t ia l (MAX1 4 5 )  
Figure 2. Simplified Functional Diagram  
The sampling architecture of the ADCs analog com-  
parator is illustrated in the equivalent input circuit of  
Figure 3. In single-ended mode (MAX144), both chan-  
nels CH0 and CH1 are referred to GND and can be  
connected to two different signal sources. Following the  
power-on reset, the ADC is set to convert CH0. After  
CH0 has been converted, CH1 will be converted and  
the c onve rs ions will c ontinue to a lte rna te b e twe e n  
channels. Channel switching is performed by toggling  
the CS/SHDN pin. Conversions can be performed on  
the same channel by toggling CS/SHDN twice between  
conversions. If only one channel is required, CH0 and  
CH1 may be connected together; however, the output  
d a ta will s till c onta in the c ha nne l id e ntific a tion b it  
(before the MSB).  
12-BIT CAPACITIVE DAC  
REF  
MAX144  
MAX145  
CH0  
(CH+)  
C
16pF  
HOLD  
INPUT  
MUX  
COMPARATOR  
TO SAR  
ZERO  
CH1  
(CH-)  
R
IN  
9kΩ  
C
SWITCH  
TRACK  
HOLD  
T/H  
GND  
CONTROL LOGIC  
( ) ARE FOR MAX145  
SINGLE-ENDED MODE: CH0, CH1 = IN+; GND = IN-  
DIFFERENTIAL-ENDED MODE: CH+ = IN+; CH- = IN-  
For the MAX145, the input channels form a single differ-  
ential channel pair (CH+, CH-). This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side IN- must remain stable  
within ± 0.5LSB (± 0.1LSB for op timum re s ults ) with  
respect to GND during a conversion. To accomplish  
this, connect a 0.1µF capacitor from IN- to GND.  
Figure 3. Analog Input Channel Structure  
clock mode) or from when CS/SHDN falls to the first  
falling edge of SCLK (internal clock mode). At the end  
of the acquisition interval, the T/H switch opens, retain-  
ing charge on C  
as a sample of the signal at IN+.  
HOLD  
During the acquisition interval, the channel selected as  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
negative input (IN-). This unbalances node ZERO at the  
comparators positive input.  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
HOLD  
acquisition interval spans from when CS/SHDN falls to  
the falling edge of the second clock cycle (external  
_______________________________________________________________________________________  
7
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
The c a p a c itive d ig ita l-to-a na log c onve rte r (DAC)  
adjusts during the remainder of the conversion cycle  
to restore node ZERO to 0V within the limits of 12-bit  
resolution. This action is equivalent to transferring a  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Tog e the r with the inp ut imp e d a nc e , this c a p a c itor  
forms an RC filter, limiting the ADCs signal bandwidth.  
16pF · [(V ) - (V )] charge from C to the bina-  
ry-weighted capacitive DAC, which in turn forms a digi-  
tal representation of the analog input signal.  
IN+  
IN-  
HOLD  
In p u t Ba n d w id t h  
The MAX144/MAX145 T/H s ta g e offe rs a 2.25MHz  
small-signal and a 1MHz full-power bandwidth, which  
make it possible to use the parts for digitizing high-  
speed transients and measuring periodic signals with  
b a nd wid ths e xc e e d ing the ADCs s a mp ling ra te b y  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended. Most  
aliasing problems can be fixed easily with an external  
resistor and a capacitor. However, if DC precision is  
required, it is usually best to choose a continuous or  
s witc he d -c a p a c itor filte r, s uc h a s the MAX7410/  
MAX7414 (Figure 4). Their Butterworth characteristic  
generally provides the best compromise (with regard to  
rolloff and attenuation) in filter configurations, is easy to  
design, and provides a maximally flat passband response.  
Tra c k /Ho ld (T/H)  
The ADCs T/H stage enters its tracking mode on the  
fa lling e d g e of CS/SHDN. For the MAX144 (s ing le -  
ended inputs), IN- is connected to GND and the con-  
verter samples the positive (“+) input. For the MAX145  
(pseudo-differential inputs), IN- connects to the nega-  
tive input (-”) and the difference of [(V ) - (V )] is  
IN+  
IN-  
sampled. At the end of the conversion, the positive  
input connects back to IN+ and C  
input signal.  
charges to the  
HOLD  
/MAX145  
The time required for the T/H stage to acquire an input  
signal is a function of how fast its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
An a lo g In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog input  
t
, is the maximum time the device takes to acquire  
ACQ  
the signal, and is also the minimum time required for  
the signal to be acquired. Calculate this with the follow-  
ing equation:  
to V  
and GND, allow each input channel to swing  
DD  
within GND - 300mV to V + 300mV without damage.  
DD  
However, for accurate conversions, both inputs must not  
t
= 9(R + R )C  
S IN IN  
exceed V + 50mV or be less than GND - 50mV.  
ACQ  
DD  
where R is the source impedance of the input signal,  
If an off-channel analog input voltage exceeds the  
supplies, limit the input current to 4mA.  
S
R
IN  
(9k) is the input resistance, and C (16pF) is the  
IN  
input capacitance of the ADC. Source impedances  
below 1khave no significant impact on the AC perfor-  
mance of the MAX144/MAX145.  
V
DD  
1
4
5
V
DD  
7
V
DD  
2
EXTERNAL  
REFERENCE  
0.1µF  
CH0  
SHDN  
REF  
470**  
5
8
OUT  
CLK  
MAX7410  
MAX7414  
MAX144  
GND  
2
3
8
7
6
IN  
CH1  
DOUT  
f = 15kHz  
C
0.01µF**  
CS/SHDN  
SCLK  
µP/µC  
COM  
OS  
GND  
1
6
3
4
0.01µF  
1.5MHz  
OSCILLATOR  
**USED TO ATTENUATE SWITCHED-CAPACITOR FILTER CLOCK NOISE  
Figure 4. Analog Input with Anti-Aliasing Filter Structure  
8
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
External Clock (f  
= 100kHz to 2.17MHz)  
S e le c t in g Clo c k Mo d e  
To s ta rt the c onve rs ion p roc e s s on the MAX144/  
MAX145, p ull CS/SHDN low. At CS/SHDNs fa lling  
edge, the part wakes up and the internal T/H enters  
tra c k mod e . In a d d ition, the s ta te of SCLK a t  
CS/SHDNs falling edge selects internal (SCLK = high)  
or external (SCLK = low) clock mode.  
SCLK  
The external clock mode (Figure 6) is selected by tran-  
sitioning CS/SHDN from high to low while SCLK is low.  
The external clock signal not only shifts data out, but  
also drives the analog-to-digital conversion. The input  
is sampled and conversion begins on the falling edge  
of the second clock pulse. Conversion must be com-  
pleted within 140µs to prevent degradation in the con-  
version results caused by droop on the T/H capacitors.  
External clock mode provides the best throughput for  
clock frequencies between 100kHz and 2.17MHz.  
Internal Clock (f  
< 100kHz or f  
> 2.17MHz)  
SCLK  
SCLK  
In internal clock mode, the MAX144/MAX145 run from  
an internal, laser-trimmed oscillator to within 20% of the  
2MHz specified clock rate. This releases the system  
microprocessor from running the SAR conversion clock  
and allows the conversion results to be read back at  
the processors convenience, at any clock rate from 0  
to 5MHz. Operating the MAX144/MAX145 in internal  
clock mode is necessary for serial interfaces operating  
with clock frequencies lower than 100kHz or greater  
than 2.17MHz. Select internal clock mode (Figure 5), by  
hold ing SCLK hig h d uring a hig h/low tra ns ition of  
CS/SHDN. The first SCLK falling edge samples the data  
and initiates a conversion using the integrated on-chip  
oscillator. After the conversion, the oscillator shuts off  
and DOUT goes high, signaling the end of conversion  
(EOC). Data can then be read out with SCLK.  
Ou t p u t Da t a Fo rm a t  
Table 1 illustrates the 16-bit, serial data stream output  
format for both the MAX144 and MAX145. The first  
three bits are always logic high (including the EOC bit  
for internal clock mode), followed by the channel identi-  
fication (CHID = 0 for CH0, CHID = 1 for CH1, CHID = 1  
for the MAX145), and then 12 bits of data in MSB-first  
format. After the last bit has been read out, additional  
SCLK pulses will clock out trailing zeros. DOUT transi-  
tions on the falling edge of SCLK. The output remains  
high-impedance when CS/SHDN is high.  
ACTIVE POWER ACTIVE  
DOWN  
t
CS  
t
t
CONV  
WAKE  
(t  
)
ACQ  
CS/SHDN  
SCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
HIGH-Z  
HIGH-Z  
EOC  
1
1
CHID MSB D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
SAMPLING INSTANT  
Figure 5. Internal Clock Mode Timing  
ACTIVE POWER ACTIVE  
DOWN  
ACTIVE POWER  
DOWN  
SAMPLING INSTANT  
t
CS  
t
WAKE  
(t  
)
ACQ  
CS/SHDN  
SCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
HIGH-Z  
HIGH-Z  
CHID MSB D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
Figure 6. External Clock Mode Timing  
_______________________________________________________________________________________  
9
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
Table 1. Serial Output Data Stream for Internal and External Clock Mode  
SCLK CYCLE  
DOUT (Internal Clock)  
DOUT (External Clock)  
1
EOC  
1
2
1
1
3
1
1
4
5
6
7
8
9
10  
D6  
D6  
11  
D5  
D5  
12  
D4  
D4  
13  
D3  
D3  
14  
D2  
D2  
15  
D1  
D1  
16  
D0  
D0  
CHID D11 D10 D9  
CHID D11 D10 D9  
D8  
D8  
D7  
D7  
Ex t e rn a l Re fe re n c e  
Effe c t ive Nu m b e r o f Bit s (ENOB)  
An external reference is required for both the MAX144  
and the MAX145. At REF, the DC input resistance is a  
minimum of 18k. During a conversion, a reference  
must be able to deliver 250µA of DC load current and  
have an output impedance of 10or less. Use a 0.1µF  
bypass capacitor for best performance. The reference  
ENOB indicates the global accuracy of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADCs error consists only of quantization noise. With an  
input range equal to the full-scale range of the ADC, the  
effective number of bits can be calculated as follows:  
ENOB = (SINAD - 1.76) / 6.02  
input structure allows a voltage range of 0 to V  
+
DD  
50mV, although noise levels will decrease effective res-  
olution at lower reference voltages.  
To t a l Ha rm o n ic Dis t o rt io n (THD)  
THD is the ratio of the RMS sum of the first five harmon-  
ics of the input signal to the fundamental itself. This is  
expressed as:  
/MAX145  
Au t o m a t ic P o w e r-Do w n Mo d e  
Whe ne ve r the MAX144/MAX145 a re not s e le c te d  
(CS/SHDN = V ), the p a rts e nte r the ir s hutd own  
DD  
2
2
2
2
V
2
+ V + V + V  
3 4 5  
mode. In shutdown all internal circuitry turns off, reduc-  
ing supply current to typically less than 0.2µA. With an  
external reference stable to within 1LSB, the wake-up  
time is 2.5µs. If the external reference is not stable with-  
in 1LSB, the wake-up time must be increased to allow  
the reference to stabilize.  
THD = 20 log  
V
1
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
5
__________Ap p lic a t io n s In fo rm a t io n  
harmonics.  
S ig n a l-t o -No is e Ra t io (S NR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
error only and results directly from the ADCs resolution  
(N bits):  
S p u rio u s -Fre e Dyn a m ic Ra n g e (S FDR)  
SFDR is the ratio of RMS amplitude of the fundamental  
(maximum signal component) to the RMS value of the  
next largest spurious component, excluding DC offset.  
Co n n e c t io n t o S t a n d a rd In t e rfa c e s  
The MAX144/MAX145 interface is fully compatible with  
SPI, QSPI, and MICROWIRE standard serial interfaces.  
If a serial interface is available, establish the CPUs seri-  
al interface as master so that the CPU generates the  
serial clock for the MAX144/MAX145. Select a clock fre-  
quency from 100kHz to 2.17MHz (external clock mode).  
SNR  
= (6.02 · N + 1.76)dB  
(MAX)  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. Therefore, SNR is computed by taking the ratio of  
the RMS signal to the RMS noise which includes all  
spectral components minus the fundamental, the first  
five harmonics, and the DC offset.  
1) Use a general-purpose I/O line on the CPU to pull  
CS/SHDN low while SCLK is low.  
2) Wait for the minimum wake-up time (t  
fied before activating SCLK.  
) speci-  
WAKE  
S ig n a l-t o -No is e P lu s Dis t o rt io n (S INAD)  
SINAD is the ratio of the fundamental input frequencys  
RMS amplitude to RMS equivalent of all other ADC out-  
put signals:  
3) Activate SCLK for a minimum of 16 clock cycles.  
The serial data stream of three leading ones, the  
channel identification, and the MSB of the digitized  
input signal begin at the first falling clock edge.  
DOUT transitions on SCLK’s falling edge and is  
available in MSB-first format. Observe the SCLK to  
Signal  
RMS  
SINAD(dB) = 20 log  
(Noise + Distortion)  
RMS  
10 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
DOUT valid timing characteristic. Data should be  
clocked into the µP on SCLKs rising edge.  
padded with three leading ones and the channel identi-  
fication before the MSB. If the serial clock hasnt been  
id le d a fte r the la s t LSB a nd CS/SHDN is ke p t low,  
DOUT sends trailing zeros.  
4) Pull CS/SHDN high at or after the 16th falling clock  
edge. If CS/SHDN remains low, trailing zeros will be  
clocked out after the LSB.  
SPI and MICROWIRE Interface  
When using SPI (Figure 8a) or MICROWIRE (Figure 8b)  
interfaces, set CPOL = 0 and CPHA = 0. Conversion  
begins with a falling edge on CS/SHDN (Figure 8c).  
Two consecutive 8-bit readings are necessary to obtain  
the entire 12-bit result from the ADC. DOUT data transi-  
tions on the serial clocks falling edge and is clocked  
into the µP on SCLKs rising edge. The first 8-bit data  
stream contains three leading ones, the channel identi-  
5) With CS/SHDN high, wait at least 60ns (t ) before  
CS  
starting a new conversion by pulling CS/SHDN low.  
A conversion can be aborted by pulling CS/SHDN  
high before the conversion ends; wait at least 60ns  
before starting a new conversion.  
Data can be output in two 8-bit sequences or continu-  
ously. The bytes will contain the result of the conversion  
• • •  
CS/SHDN  
t
t
CH  
t
CS  
SCLKS  
t
CL  
SCLK  
• • •  
t
DV  
t
DO  
t
TR  
HIGH-2  
HIGH-2  
DOUT  
• • •  
Figure 7. Detailed Serial-Interface Timing Sequence  
I/O  
SCK  
CS/SHDN  
SCLK  
I/O  
SK  
SI  
CS/SHDN  
SCLK  
MISO  
DOUT  
DOUT  
SPI  
MICROWIRE  
V
DD  
MAX144  
MAX145  
MAX144  
MAX145  
SS  
8b. MICROWIRE Connections  
Figure 8a. SPI Connections  
1ST BYTE READ  
2ND BYTE READ  
12 13  
1
2
3
4
5
6
7
8
9
10  
11  
14  
15  
16  
SCLK  
CS/SHDN  
HIGH-Z  
CHID D11 D10 D9  
SAMPLING INSTANT MSB  
*WHEN CS/SHDN IS HIGH, DOUT = HIGH-Z  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
DOUT*  
Figure 8c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
______________________________________________________________________________________ 11  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
fication, and the first four data bits starting with the  
MSB. The s e c ond 8-b it d a ta s tre a m c onta ins the  
remaining bits, D7 through D0.  
PIC16 with SSP Module and PIC17 Interface  
The MAX144/MAX145 are compatible with a PIC16/  
PIC17 controller (µC), using the synchronous serial-port  
(SSP) module.  
QSPI Interface  
Using the high-speed QSPI interface with CPOL = 0  
and CPHA = 0, the MAX144/MAX145 support a maxi-  
To establish SPI communication, connect the controller  
as shown in Figure 10a and configure the PIC16/PIC17  
as system master by initializing its synchronous serial-  
port control register (SSPCON) and synchronous serial-  
port status register (SSPSTAT) to the bit patterns shown  
in Tables 2 and 3.  
mum f  
of 2.17MHz. The QSPI circuit in Figure 9a  
SCLK  
can be programmed to perform a conversion on each  
of the two channels for the MAX144. Figure 9b shows  
the QSPI interface timing.  
In SPI mode, the PIC16/PIC17 µCs allow 8 bits of data  
to be synchronously transmitted and received simulta-  
neously. Two consecutive 8-bit readings (Figure 10b)  
are necessary to obtain the entire 12-bit result from the  
ADC. DOUT data transitions on the serial clocks falling  
edge and is clocked into the µC on SCLKs rising edge.  
The first 8-bit data stream contains three leading ones,  
the channel identification, and the first four data bits  
starting with the MSB. The second 8-bit data stream  
contains the remaining bits, D7 through D0.  
CS  
SCK  
CS/SHDN  
SCLK  
MISO  
DOUT  
QSPI  
V
DD  
/MAX145  
MAX144  
MAX145  
SS  
Figure 9a. QSPI Connections  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS/SHDN  
HIGH-Z  
CHID D11 D10 D9  
SAMPLING INSTANT MSB  
*WHEN CS/SHDN IS HIGH, DOUT = HIGH-Z  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
DOUT  
Figure 9b. QSPI Interface Timing Sequence (CPOL = CPHA = 0)  
Table 2. Detailed SSPCON Register Contents  
MAX144/MAX145  
CONTROL BIT  
SYNCHRONOUS SERIAL-PORT CONTROL REGISTER (SSPCON)  
SETTINGS  
WCOL  
BIT7  
BIT6  
X
X
Write Collision Detection Bit  
SSPOV  
Receive Overflow Detect Bit  
Synchronous Serial-Port Enable Bit.  
SSPEN  
BIT5  
1
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO and SCI pins as serial port pins.  
CKP  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial-Port Mode Select Bit. Sets SPI master mode and selects  
f
= f  
/ 16.  
CLK  
OSC  
X = Dont care  
12 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
Table 3. Detailed SSPSTAT Register Contents  
MAX144/MAX145  
SETTINGS  
CONTROL BIT  
SYNCHRONOUS SERIAL-PORT STATUS REGISTER (SSPSTAT)  
SPI Data Input Sample Phase. Input data is sampled at the middle of the data output  
time.  
SMP  
BIT7  
0
CKE  
D/A  
P
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
1
SPI Clock Edge Select Bit. Data will be transmitted on the rising edge of the serial clock.  
X
X
X
X
X
X
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
X = Dont care  
(analog and digital). For lowest-noise operation, ensure  
the ground return to the star grounds power supply is  
low impedance and as short as possible. Route digital  
signals far away from sensitive analog and reference  
inputs.  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For b e s t p e rforma nc e , us e p rinte d c irc uit b oa rd s  
(PCBs). Wire-wrap configurations are not recommend-  
ed, since the layout should ensure proper separation of  
analog and digital traces. Run analog and digital lines  
anti-parallel to each other, and dont lay out digital sig-  
nal paths underneath the ADC package. Use separate  
analog and digital PCB ground sections with only one  
star-point (Figure 11) connecting the two ground systems  
High-frequency noise in the power supply V  
could  
DD  
influence the proper operation of the ADCs fast com-  
parator. Bypass V to the star ground with a network  
DD  
of two parallel capacitors (0.1µF and 1µF) located as  
close as possible to the power supply pin of MAX144/  
MAX145. Minimize capacitor lead length for best sup-  
ply-noise re je c tion a nd a d d a n a tte nua tion re sistor  
(10) if the power supply is extremely noisy.  
V
DD  
V
DD  
SCLK  
DOUT  
SCK  
SDI  
I/O  
CS/SHDN  
MAX144  
MAX145  
PIC16/17  
GND  
GND  
Figure 10a. SPI Interface Connection for a PIC16/PIC17  
Controller  
1ST BYTE READ  
2ND BYTE READ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS/SHDN  
HIGH-Z  
CHID D11 D10 D9  
SAMPLING INSTANT MSB  
*WHEN CS/SHDN IS HIGH, DOUT = HIGH-Z  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
DOUT*  
Figure 10b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3–SSPM0 = 0001)  
______________________________________________________________________________________ 13  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
POWER SUPPLIES  
+3V  
+3V  
GND  
R* = 10Ω  
1µF  
0.1µF  
GND  
V
DD  
+3V DGND  
DIGITAL  
CIRCUITRY  
MAX144  
MAX145  
* OPTIONAL FILTER RESISTOR  
/MAX145  
Figure 11. Power-Supply Bypassing and Grounding  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2,058  
SUBSTRATE CONNECTED TO GND  
14 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
/MAX145  
P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l, 1 0 8 k s p s ,  
S e ria l 1 2 -Bit ADCs in 8 -P in µMAX  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
/MAX145  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX145BEPA+

ADC, Successive Approximation, 12-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PDIP8, 0.300 INCH, PLASTIC, MS-001AB, DIP-8
MAXIM

MAX145BEUA

+2.7V, Low-Power, 2-Channel, 108ksps, Serial 12-Bit ADCs in 8-Pin レMAX
MAXIM

MAX145BEUA+

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX145BMJA

+2.7V, Low-Power, 2-Channel, 108ksps, Serial 12-Bit ADCs in 8-Pin レMAX
MAXIM

MAX146

Improved.Dual.High-Speed Analog Switches[DG401/DG403/DG405/DG401AK/DG401AK/883B/DG401C/D/DG401CJ/DG401CY/DG401CY-T/DG401DJ/DG401DK/DG401DY/DG401DY-T/DG403AK/DG403AK/883B/DG403C/D/DG403CJ/DG403CY/DG403CY-T/DG403DJ/DG403DK/DG403DY/DG403DY-T/5962-8976301M2C/5962-8976301MEA/DG405AK/DG405AK/883B/DG405AZ/883B/DG405C/D/DG405CJ/DG405CY/DG405CY-T/DG405DJ/DG405DK/DG405DY/DG405DY-T/5962-89961012C/5962-8996101EA ]
MAXIM

MAX1460

Low-Power, 16-Bit Smart ADC
MAXIM

MAX14600

USB Host Charger Identification/Adapter Emulators
MAXIM

MAX14600ET

USB Host Charger Identification/Adapter Emulators Greater User Flexibility
MAXIM

MAX14600ETA T

USB Host Charger Identification/Adapter Emulators
MAXIM

MAX14600ETA+

暂无描述
MAXIM

MAX14600ETA+T

USB Host Charger Identification/Adapter Emulators
MAXIM

MAX14600ETAT

USB Host Charger Identification/Adapter Emulators Greater User Flexibility
MAXIM