MAX1234ETI [MAXIM]

【15kV ESD-Protected Touch-Screen Controllers Include DAC and Keypad Controller; ± 15kV ESD保护触摸屏控制器,包含DAC及键盘控制器
MAX1234ETI
型号: MAX1234ETI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

【15kV ESD-Protected Touch-Screen Controllers Include DAC and Keypad Controller
± 15kV ESD保护触摸屏控制器,包含DAC及键盘控制器

控制器
文件: 总45页 (文件大小:1103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2512; Rev 3; 8/05  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
General Description  
Features  
The MAX1233/MAX1234 are complete PDA controllers in  
5mm × 5mm, 28-pin QFN and TQFN packages. They fea-  
ture a 12-bit analog-to-digital converter (ADC), low on-  
resistance switches for driving resistive touch screens, an  
internal +1.0V/+2.5V or external reference, 2°C accu-  
rate, on-chip temperature sensor, direct +6V battery mon-  
itor, keypad controller, 8-bit digital-to-analog converter  
(DAC), and a synchronous serial interface. Each of the  
keypad controllers’ eight row and column inputs can be  
reconfigured as general-purpose parallel I/O pins (GPIO).  
All analog inputs are fully ESD protected, eliminating the  
need for external TransZorbdevices.  
ESD-Protected Analog Inputs  
15kV IEC 1000-4-2 Air-Gap Discharge  
8kV IEC 1000-4-2 Contact Discharge  
Single-Supply Operation  
+2.7V to +3.6V (MAX1233)  
+4.75V to +5.25V (MAX1234)  
4-Wire Touch-Screen Interface  
Internal +1.0V/+2.5V Reference or External  
Reference (+1.0V to AV  
)
DD  
SPI/QSPI/MICROWIRE-Compatible 10MHz  
Serial Interface  
The MAX1233/MAX1234 offer programmable resolution  
and sampling rates. Interrupts from the devices alert the  
host processor when data is ready, when the screen is  
touched, or a key press is detected. Software-  
configurable scan control and internal timers give the user  
flexibility without burdening the host processor. These  
devices consume only 260µA at the maximum sampling  
rate of 50ksps. Supply current falls to below 50µA for  
sampling rates of 10ksps. The MAX1233/MAX1234 are  
guaranteed over the -40°C to +85°C temperature range.  
12-Bit, 50ksps ADC Measures  
Resistive Touch-Screen Position and Pressure  
Two Auxiliary Analog Inputs  
Two Battery Voltages (0.5V to 6V)  
On-Chip Temperature  
8-Bit DAC for LCD Bias Control  
4 × 4 Keypad Programmable Controller Offers Up  
to Eight GPIO Pins  
Automatic Detection of Screen Touch, Key Press,  
Applications  
and End of Conversion  
Personal Digital Assistants  
Programmable 8-, 10-, 12-Bit Resolution  
Programmable Conversion Rates  
AutoShutdownBetween Conversions  
Pagers  
Touch-Screen Monitors  
Cellular Phones  
Low Power  
MP3 Players  
260µA at 50ksps  
50µA at 10ksps  
6µA at 1ksps  
Portable Instruments  
Point-of-Sale Terminals  
0.3µA Shutdown Current  
-in Configuration  
28-Pin 5mm × 5mm QFN and TQFN Packages  
TOP VIEW  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
DV  
AV  
1
2
3
4
5
6
7
21 C4  
20 C3  
19 C2  
18 C1  
17 R1  
16 R2  
15 R3  
DD  
MAX1233EGI  
MAX1233ETI  
MAX1234EGI  
MAX1234ETI  
-40°C to +85°C 28 QFN (5mm x 5mm)  
-40°C to +85°C 28 TQFN (5mm x 5mm)  
-40°C to +85°C 28 QFN (5mm x 5mm)  
-40°C to +85°C 28 TQFN (5mm x 5mm)  
DD  
*X+  
*Y+  
*X-  
MAX1233  
MAX1234  
*Y-  
GND  
TransZorb is a trademark of General Semiconductor Industries, Inc.  
SPI and QSPI are trademarks of Motorola, Inc.  
QFN/TQFN  
MICROWIRE is a trademark of National Semiconductor Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
*PIN INCLUDES 8kV/15kV ESD PROTECTION.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
ABSOLUTE MAXIMUM RATINGS  
AV  
DV  
to GND............................................................-0.3V to +6V  
All Other Pins..................................................................... 2.5kV  
Maximum Current into Any Pin............................................50mA  
DD  
DD  
to AV .......................................................-0.3V to +0.3V  
DD  
Digital Inputs/Outputs to GND.................-0.3V to (DV + 0.3V)  
X+, Y+, X-, Y-, AUX1, AUX2,  
Continuous Power Dissipation (T = +70°C)  
DD  
A
28-Pin QFN (derate 28.5mW/°C above +70°C) .................2W  
28-Pin TQFN (derate 28.5mW/°C above +70°C) ...............2W  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
and REF to GND ..................................-0.3V to (AV + 0.3V)  
DD  
BAT1, BAT2 to GND.................................................-0.3V to +6V  
Maximum ESD per IEC 1000-4-2 (per MIL STD-883 HBM)  
X+, X-, Y+, Y-, AUX1, AUX2, BAT1, BAT2...................... 15kV  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(DV  
= AV  
= +2.7V to +3.6V (MAX1233), DV  
= AV  
= +4.75V to +5.25V (MAX1234), external reference V  
= 2.5V  
REF  
DD  
DD  
DD  
DD  
(MAX1233), V  
= 4.096V (MAX1234); f  
= 10MHz, f  
= 50ksps, 12-bit mode, 0.1µF capacitor at REF, T = -40°C to  
REF  
SCLK  
SAMPLE A  
+85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG-TO-DIGITAL CONVERTER  
DC ACCURACY (Note 1)  
Resolution  
Software-programmable 8/10/12 bit  
12  
2
Bits  
Bits  
No Missing Codes  
11  
12-bit mode  
0.8  
0.5  
0.8  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
LSB  
LSB  
LSB  
10-bit and 8-bit modes  
12-bit mode  
2
DNL  
10-bit and 8-bit modes  
12-bit mode  
4
10-bit and 8-bit modes  
12-bit mode  
4
Gain Error (Note 3)  
10-bit mode  
LSB  
8-bit mode  
12-bit mode  
Total Unadjusted Error  
TUE  
LSB  
10-bit and 8-bit modes  
1
Offset Temperature Coefficient  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
0.4  
0.4  
0.1  
ppm/°C  
ppm/°C  
LSB  
Channel-to-Channel Gain  
Matching  
0.1  
50  
LSB  
Noise  
Including internal V  
µV  
RMS  
REF  
MAX1233  
AV = DV  
0.4  
= +2.7V to +3.6V  
= +5V 5%  
DD  
DD  
DD  
Full-scale  
input  
Power-Supply Rejection  
PSR  
mV  
MAX1234  
0.3  
AV  
= DV  
DD  
DYNAMIC SPECIFICATIONS (1kHz SINE WAVE, V = 2.5V  
FOR MAX1233, V = 4.096V FOR MAX1234, 50ksps,  
P-P  
IN  
P-P  
IN  
f
= 10MHz)  
SCLK  
Signal-to-Noise Plus Distortion  
SINAD  
69  
dB  
2
_______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to +3.6V (MAX1233), DV  
= AV  
= +4.75V to +5.25V (MAX1234), external reference V  
= 2.5V  
REF  
DD  
DD  
DD  
DD  
(MAX1233), V  
= 4.096V (MAX1234); f  
= 10MHz, f  
= 50ksps, 12-bit mode, 0.1µF capacitor at REF, T = -40°C to  
REF  
SCLK  
SAMPLE A  
+85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Internal Oscillator Frequency  
Aperture Delay  
SYMBOL  
THD  
CONDITIONS  
MIN  
TYP  
-84  
84  
MAX  
UNITS  
dB  
SFDR  
dB  
-3dB point  
0.5  
50  
MHz  
kHz  
SINAD > 67dB  
8
11.5  
70  
MHz  
ns  
30  
Aperture Jitter  
<50  
ps  
Maximum Serial Clock Frequency  
Duty Cycle  
f
10  
30  
MHz  
%
SCLK  
AUXILIARY ANALOG INPUTS (AUX1, AUX2)  
Input Voltage Range  
0
V
V
REF  
1
Channel not selected or conversion  
stopped  
Input Leakage Current  
0.1  
34  
µA  
pF  
Input Capacitance  
BATTERY MONITOR INPUTS (BAT1, BAT2)  
Input Voltage Range  
0.5  
6.0  
V
Sampling battery  
Battery monitor OFF  
Internal reference  
10  
1
kΩ  
GΩ  
%
Input Impedance  
Accuracy  
-3  
+3  
TEMPERATURE MEASUREMENT  
Temperature Range  
-40  
+85  
°C  
°C  
Differential method (Note 4)  
1.6  
0.3  
3
Resolution  
Single measurement method (Note 5)  
Differential method (Note 4)  
Accuracy  
°C  
Single measurement method (Note 5)  
2
INTERNAL ADC REFERENCE  
2.5V mode, T = +25°C  
2.470  
0.980  
2.500  
1.000  
60  
2.530  
1.020  
A
V
Reference Output Voltage  
V
REF  
1.0V mode, T = +25°C  
A
Output Tempco  
TCV  
ppm/°C  
REF  
Reference Output Impedance  
Reference Short-Circuit Current  
Normal operation  
250  
18  
mA  
EXTERNAL ADC REFERENCE (INTERNAL REFERENCE DISABLED, REFERENCE APPLIED TO REF)  
Reference Input Voltage Range  
Input Impedance  
(Note 6)  
1.0  
V
V
DD  
CS = GND or V  
1
GΩ  
DD  
V
V
= +2.5V at 50ksps (MAX1233)  
= +4.096V at 50ksps (MAX1234)  
5
10  
15  
REF  
REF  
Input Current  
µA  
8
Shutdown/between conversions  
0.1  
_______________________________________________________________________________________  
3
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to +3.6V (MAX1233), DV  
= AV  
= +4.75V to +5.25V (MAX1234), external reference V  
= 2.5V  
REF  
DD  
DD  
DD  
DD  
(MAX1233), V  
= 4.096V (MAX1234); f  
= 10MHz, f  
= 50ksps, 12-bit mode, 0.1µF capacitor at REF, T = -40°C to  
SAMPLE A  
REF  
SCLK  
+85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL-TO-ANALOG CONVERTER  
DC ACCURACY  
Resolution  
8
Bits  
LSB  
LSB  
mV  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
INL  
(Note 7)  
1.0  
1.0  
25  
DNL  
No missing codes  
(Note 8)  
V
1
1
OS  
Offset Error Temperature  
Coefficient  
ppm/°C  
%
Full-Scale Error  
Code = 255, no load  
Code = 255, no load  
5
Full-Scale Error Temperature  
Coefficient  
10  
ppm/°C  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate  
Output Settling Time  
Glitch Impulse  
Positive and negative  
0.5LSB; 50kand 50pF load (Note 9)  
Code 127 to 128  
0.4  
20  
40  
50  
V/µs  
µs  
nV/s  
µs  
Wake-Up Time  
From shutdown  
DAC OUTPUT  
0.85  
0.9  
0.95  
Internal DAC Reference  
V
(Note 10)  
V
REFDAC  
AV  
AV  
AV  
DD  
DD  
DD  
Code = 255; 0 to 100µA  
Code = 0; 0 to 100µA  
Power-down mode  
TOUCH-SCREEN CONTROLLER  
Y+, X+  
0.5  
Output Load Regulation  
Output Resistance  
LSB  
0.5  
1.0  
MΩ  
7
9
On-Resistance  
Y-, X-  
Touch-Detection Internal Pullup  
Resistance  
X+ to AV  
1
MΩ  
DD  
KEYPAD CONTROLLER  
C4, C3, C2, C1 (Note 11)  
R4, R3, R2, R1 (Note 11)  
DIGITAL INTERFACE  
Pullup Resistance  
0.5  
16  
kΩ  
kΩ  
Pulldown Resistance  
DIGITAL INPUTS (SCLK, CS, DIN, R_, C_)  
0.3  
DV  
Input Voltage Low  
V
V
IL  
DD  
0.7  
DV  
Input Voltage High  
V
I
V
IH  
DD  
Input Leakage Current  
0.1  
1
µA  
L
4
_______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to +3.6V (MAX1233), DV  
= AV  
= +4.75V to +5.25V (MAX1234), external reference V  
= 2.5V  
REF  
DD  
DD  
DD  
DD  
(MAX1233), V  
= 4.096V (MAX1234); f  
= 10MHz, f  
= 50ksps, 12-bit mode, 0.1µF capacitor at REF, T = -40°C to  
SAMPLE A  
REF  
SCLK  
+85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
Input Capacitance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
15  
pF  
IN  
DIGITAL OUTPUT (DOUT)  
I
I
= 2mA  
= 4mA  
0.4  
0.8  
SINK  
SINK  
Output Voltage Low  
V
V
V
OL  
DV  
0.5  
-
-
DD  
Output Voltage High  
V
I
= 1.5mA  
SOURCE  
OH  
DIGITAL OUTPUT (BUSY, PENIRQ, KEYIRQ, R_, C_)  
Output Voltage Low  
V
I
= 0.2mA  
0.4  
V
V
OL  
SINK  
DV  
0.5  
DD  
Output Voltage High  
V
I
= 0.2mA  
OH  
SOURCE  
POWER REQUIREMENTS  
MAX1233  
2.7  
3
3.6  
5.25  
5
AV  
DV  
/
DD  
Supply Voltage (Note 12)  
V
DD  
MAX1234  
4.75  
5
Idle; all blocks shut down  
0.5  
150  
150  
670  
Only ADC on; f = 20ksps  
SAMPLE  
500  
230  
900  
Analog and Digital Supply  
Current  
I
+
AVDD  
µA  
I
DVDD  
Only DAC on; no load  
Only internal reference on  
TIMING CHARACTERISTICS  
SCLK Clock Period  
t
100  
40  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
SCLK Fall to DOUT Valid  
CS Fall to DOUT Enabled  
CS Rise to DOUT Disabled  
CS Fall to SCLK Rise  
t
CH  
t
t
CL  
DS  
DH  
t
t
C
C
C
= 50pF  
= 50pF  
= 50pF  
40  
45  
40  
DOV  
LOAD  
LOAD  
LOAD  
t
DV  
t
DOD  
t
40  
0
CSS  
CSH  
GPO  
CSW  
CS Fall to SCLK Ignored  
SCLK Rise to R_/C_ Data Valid  
CS Pulse Width High  
t
t
C
= 50pF (Note 13)  
230  
LOAD  
t
40  
Note 1: Tested at DV  
= AV  
= +2.7V (MAX1233), DV  
= AV  
= +5V (MAX1234).  
DD  
DD  
DD  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the offset and gain errors  
have been removed.  
Note 3: Offset nulled.  
Note 4: Difference between TEMP1 and TEMP2; temperature in °K = (V  
Note 5: Temperature coefficient is -2.1mV/°C. Determine absolute temperature by extrapolating from a calibrated value.  
- V  
) × 2680°K/V. No calibration is necessary.  
TEMP1  
TEMP2  
Note 6: ADC performance is limited by the conversion noise floor, typically 300µV . An external reference below 2.5V can  
P-P  
compromise the ADC performance.  
Note 7: Guaranteed from code 5 to 255.  
_______________________________________________________________________________________  
5
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to +3.6V (MAX1233), DV  
= AV  
= +4.75V to +5.25V (MAX1234), external reference V  
= 2.5V  
REF  
DD  
DD  
DD  
DD  
(MAX1233), V  
= 4.096V (MAX1234); f  
= 10MHz, f  
= 50ksps, 12-bit mode, 0.1µF capacitor at REF, T = -40°C to  
SAMPLE A  
REF  
SCLK  
+85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
Note 8: The offset value extrapolated from the range over which the INL is guaranteed.  
Note 9: Output settling time is measured by stepping from code 5 to 255, and from code 255 to 5.  
Note 10: Actual output voltage at full scale is 255/256 × V  
.
REFDAC  
Note 11: Resistance is open when configured as GPIO or in shutdown.  
Note 12: AV and DV should not differ by more than 300mV.  
DD  
DD  
Note 13: When configured as GPIO.  
Timing Diagram  
CS  
t
CSW  
t
CSH  
t
t
CP  
t
CSH  
t
CH  
CSS  
t
t
CL  
CSS  
SCLK  
t
DH  
t
DS  
DIN  
t
t
DOD  
DOV  
t
DV  
DOUT  
R_/C_  
NOTE: TIMING NOT TO SCALE.  
t
GPO  
6
_______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Typical Operating Characteristics  
(AV  
= DV  
= 3V (MAX1233) or 5V (MAX1234), external V  
= +2.5V (MAX1233), external V  
= +4.096V (MAX1234), f  
SCLK  
=
DD  
DD  
REF  
REF  
10MHz (50% duty cycle), f  
= 20ksps, C = 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD A  
SAMPLE  
SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
INTERNAL OSCILLATOR FREQUENCY  
vs. ANALOG SUPPLY VOLTAGE  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
MAX1233/MAX1234  
0
0
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40  
-20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
AV (V)  
DD  
TEMPERATURE (°C)  
AV (V)  
DD  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
TEMP1 DIODE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
TEMP1 DIODE VOLTAGE  
vs. TEMPERATURE  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
0.70  
0.68  
0.66  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
MAX1234, AV = +5.0V  
DD  
MAX1233, AV = +3.0V  
DD  
-40 -20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40 -25 -10  
5
20 35 50 65 80  
TEMPERATURE (°C)  
AV (V)  
DD  
TEMPERATURE (°C)  
TEMP2 DIODE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
TEMP2 DIODE VOLTAGE  
vs. TEMPERATURE  
0.80  
0.75  
0.70  
0.65  
0.60  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40 -25 -10  
5
20 35 50 65 80  
AV (V)  
DD  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1233) or 5V (MAX1234), external V  
= +2.5V (MAX1233), external V  
= +4.096V (MAX1234), f  
=
DD  
DD  
REF  
REF  
SCLK  
10MHz (50% duty cycle), f  
= 20ksps, C = 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD A  
SAMPLE  
ADC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.0  
0
500 1000 1500 2000 2500 3000 3500 4000  
OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000  
OUTPUT CODE  
ADC OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC OFFSET ERROR vs. TEMPERATURE  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.0  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40  
-20  
0
20  
40  
60  
80  
AV (V)  
DD  
TEMPERATURE (°C)  
ADC GAIN ERROR  
vs. TEMPERATURE  
ADC GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
2.7  
-40  
-20  
0
20  
40  
60  
80  
3.2  
3.7  
4.2  
4.7  
5.2  
TEMPERATURE (°C)  
AV (V)  
DD  
8
_______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1233) or 5V (MAX1234), external V  
= +2.5V (MAX1233), external V  
= +4.096V (MAX1234), f  
SCLK  
=
DD  
DD  
REF  
REF  
10MHz (50% duty cycle), f  
= 20ksps, C = 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD A  
SAMPLE  
ADC SUPPLY CURRENT  
vs. SAMPLING RATE  
ADC EXTERNAL REFERENCE INPUT  
CURRENT vs. SAMPLING RATE  
1000  
100  
10  
8
MAX1233  
= +2.5V  
V
REF  
6
4
2
0
1
0.1  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
f
(Hz)  
SAMPLE  
f
(Hz)  
SAMPLE  
ADC SUPPLY CURRENT  
vs. TEMPERATURE  
ADC SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
140  
120  
100  
80  
250  
200  
150  
100  
50  
AV = +3V  
DD  
EXTERNAL REF  
f
= 20ksps  
SAMPLE  
60  
40  
20  
0
0
-40  
-20  
0
20  
40  
60  
80  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TEMPERATURE (°C)  
AV (V)  
DD  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
DAC INTEGRAL NONLINEARITY vs. CODE  
0.075  
0.050  
0.025  
0
0.075  
0.050  
0.025  
0
-0.025  
-0.050  
-0.075  
-0.025  
-0.500  
-0.075  
-0.100  
-0.100  
0
50  
100  
150  
200  
250  
300  
250  
150  
0
50  
100  
200  
300  
OUTPUT CODE  
CODE  
_______________________________________________________________________________________  
9
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1233) or 5V (MAX1234), external V  
= +2.5V (MAX1233), external V  
= +4.096V (MAX1234), f  
=
DD  
DD  
REF  
REF  
SCLK  
10MHz (50% duty cycle), f  
= 20ksps, C = 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD A  
SAMPLE  
DAC FULL-SCALE ERROR  
vs. ANALOG SUPPLY VOLTAGE  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
MAX1233/34 toc21  
MAX1233/34 toc22  
0.75  
0.50  
0.25  
0
1.2  
0.8  
0.4  
0
1.2  
0.8  
0.4  
0
0.75  
0.50  
0.25  
0
-0.25  
-0.50  
-0.4  
-0.8  
-0.4  
-0.8  
-0.25  
-0.50  
-0.75  
-1.2  
5.5  
-1.2  
-0.75  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-40  
-20  
0
20  
40  
60  
80  
AV (V)  
DD  
TEMPERATURE (°C)  
DAC SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
DAC SUPPLY CURRENT  
vs. TEMPERATURE  
250  
200  
150  
100  
50  
200  
175  
150  
125  
100  
75  
50  
25  
0
0
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40  
-20  
0
20  
40  
60  
80  
AV (V)  
DD  
TEMPERATURE (°C)  
ADC REFERENCE VOLTAGE  
vs. TEMPERATURE  
ADC REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
MAX1233/34 toc26  
MAX1233/34 toc25  
2.60  
2.55  
2.50  
2.45  
2.40  
1.250  
1.125  
1.000  
0.875  
0.750  
2.550  
2.525  
2.500  
2.475  
2.450  
1.020  
1.010  
1.000  
0.990  
0.980  
V
= 1.0V  
REF  
REF  
V
= 1.0V  
= 2.5V  
REF  
V
REF  
V
= 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
AV (V)  
DD  
10 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1233) or 5V (MAX1234), external V  
= +2.5V (MAX1233), external V  
= +4.096V (MAX1234), f  
=
DD  
DD  
REF  
REF  
SCLK  
10MHz (50% duty cycle), f  
= 20ksps, C = 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD A  
SAMPLE  
ADC REFERENCE SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
REFERENCE SUPPLY CURRENT  
vs. TEMPERATURE  
750  
700  
650  
600  
750  
700  
650  
600  
550  
550  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
-40 -25 -10  
5
20 35 50 65 80  
AV (V)  
DD  
TEMPERATURE (°C)  
-in Description  
PIN  
NAME  
FUNCTION  
Positive Digital Supply Voltage, +2.7V to +3.6V for MAX1233, +4.75V to +5.25V for MAX1234. Bypass  
with a 0.1µF capacitor. Must be within 300mV of AV  
1
DV  
DD  
DD  
.
DD  
Positive Analog Supply Voltage, +2.7V to +3.6V for MAX1233, +4.75V to +5.25V for MAX1234.  
2
AV  
Bypass with a 0.1µF capacitor. Must be within 300mV of DV  
.
DD  
3*  
4*  
X+  
X+ Position Input  
Y+  
X-  
Y+ Position Input  
5*  
X- Position Input  
6*  
Y-  
Y- Position Input  
7
GND  
BAT1  
BAT2  
AUX1  
AUX2  
Analog and Digital Ground  
8*  
Battery Monitoring Input 1. Measures battery voltages up to 6V.  
Battery Monitoring Input 2. Measures battery voltages up to 6V.  
Auxiliary Analog Input 1 to ADC. Measures analog voltages from zero to V  
Auxiliary Analog Input 2 to ADC. Measures analog voltages from zero to V  
9*  
10*  
11*  
.
REF  
.
REF  
Voltage Reference Output/Input. Reference voltage for analog-to-digital conversion. In internal  
reference mode, the reference buffer provides a 2.5V or 1.0V nominal output. In external reference  
mode, apply a reference voltage between 1.0V and AV . Bypass REF to GND with a 0.1µF  
DD  
12  
REF  
capacitor in the external reference mode only.  
13  
14  
15  
16  
17  
18  
DACOUT  
R4  
DAC Voltage Output; 0.9 × AV  
Full Scale  
DD  
Keypad Row 4. Can be reconfigured as GPIO3.  
Keypad Row 3. Can be reconfigured as GPIO2.  
Keypad Row 2. Can be reconfigured as GPIO1.  
Keypad Row 1. Can be reconfigured as GPIO0.  
Keypad Column 1. Can be reconfigured as GPIO4.  
R3  
R2  
R1  
C1  
______________________________________________________________________________________ 11  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
-in Description (continued)  
PIN  
19  
20  
21  
22  
23  
24  
NAME  
C2  
FUNCTION  
Keypad Column 2. Can be reconfigured as GPIO5.  
C3  
Keypad Column 3. Can be reconfigured as GPIO6.  
C4  
Keypad Column 4. Can be reconfigured as GPIO7.  
KEYIRQ  
PENIRQ  
DOUT  
Active-Low Keypad Interrupt. KEYIRQ is low when a key press is detected.  
Active-Low Pen Touch Interrupt. PENIRQ is low when a screen touch is detected.  
Serial Data Output. Data is clocked out at SCLK falling edge. High impedance when CS is high.  
Active-Low Busy Output. BUSY goes low and stays low during each functional operation. The host  
controller should wait until BUSY is high again before using the serial interface.  
25  
26  
27  
BUSY  
DIN  
Serial Data Input. Data is clocked in on the rising edge of SCLK.  
Serial Clock Input. Clocks data in and out of the serial interface and sets the conversion speed (duty  
cycle must be 30% to 70%).  
SCLK  
Active-Low Chip Select. Data is not clocked into DIN unless CS is low. When CS is high, DOUT is  
high impedance.  
28  
CS  
*ESD protected: 8kꢀ Contact, 15kꢀ Air.  
open or floating. The point where the touch screen is  
pressed brings the two resistive layers in contact and  
creates a voltage-divider at that point. The data convert-  
er senses the voltage at the point of contact through the  
X+ input and digitizes it.  
Detailed Description  
The MAX1233/MAX1234 are 4-wire touch-screen con-  
trollers. Figure 1 shows the functional diagram of the  
MAX1233/MAX1234. Each device includes a 12-bit sam-  
pling ADC, 8-bit voltage output DAC, keypad scanner  
that can also be configured as a GPIO, internal clock,  
reference, temperature sensor, two battery monitor  
inputs, two auxiliary analog inputs, SPI/QSPI/  
MICROWIRE-compatible serial interface, and low on-  
resistance switches for driving touch screens.  
12ꢂBit ADC  
Analog Inputs  
Figure 3 shows a block diagram of the ADC’s analog  
input section including the input multiplexer, the differen-  
tial input, and the differential reference. The input multi-  
plexer switches between X+, X-, Y+, Y-, AUX1, AUX2,  
BAT1, BAT2, and the internal temperature sensor.  
The 16-bit register inside the MAX1233/MAX1234  
allows for easy control and stores results that can be  
read at any time. The BUSY output indicates that a  
functional operation is in progress. The PENIRQ and  
KEYIRQ outputs, respectively, indicate that a screen  
touch or a key press has occurred.  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed. The acquisition time (t  
) is the maximum  
ACQ  
TouchꢂEcreen Operation  
The 4-wire touch-screen controller works by creating a  
voltage gradient across the vertical or horizontal resis-  
tive touch screen connected to the analog inputs of the  
MAX1233/MAX1234, as shown in Figure 2. The voltage  
across the touch-screen panels is applied through inter-  
nal MOSFET switches that connect each resistive layer  
time the device takes to acquire the input signal to 12-  
bit accuracy. Configure t by writing to the ADC  
ACQ  
control register. See Table 1 for the maximum input sig-  
nal source impedance (R  
during acquisition.  
) for complete settling  
SOURCE  
Accommodate higher source impedances by placing a  
0.1µF capacitor between the analog input and GND.  
to AV  
and ground. For example, to measure the Y  
DD  
position when a pointing device presses on the touch  
screen, the Y+ and Y- drivers are turned on, connecting  
Input Bandwidth  
The ADC’s input-tracking circuitry has a 0.5MHz small-  
signal bandwidth. To avoid high-frequency signals  
being aliased into the frequency band of interest, anti-  
alias filtering is recommended.  
one side of the vertical resistive layer to AV  
and the  
DD  
other side to ground. The horizontal resistive layer func-  
tions as a sense line. One side of this resistive layer gets  
connected to the X+ input, while the other side is left  
12 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
C1 C2 C3 C4 R1 R2  
R3 R4  
KEYPAD CONTROLLER  
AND GPIO  
OSCILLATOR  
MAX1233  
MAX1234  
REGISTERS AND  
SCAN STATE  
CONTROL  
TEMP  
SENSOR  
DOUT  
SCLK  
DIN  
*X+  
*X-  
X/Y SWITCHES  
SERIAL  
DATA  
I/O  
*Y+  
*Y-  
MUX  
CS  
12-BIT  
ADC  
PENIRQ  
KEYIRQ  
*BAT1  
*BAT2  
BATTERY MONITOR  
BATTERY MONITOR  
BUSY  
*AUX1  
*AUX2  
INTERNAL  
REFERENCE  
2.5V/1.0V  
REF  
8-BIT  
DAC  
DACOUT  
REF  
DAC  
*ESD PROTECTED  
Figure 1. Block Diagram  
Table 1. Maximum Input Source  
Impedance  
+AV  
DD  
FORCE LINE  
MAXIMUM R  
COMPLETE SETTLING  
DURING ACQUISITION (k)  
FOR  
SOURCE  
ACQUISITION RESOLUTION  
Y+  
X+  
Y-  
TIME (µs)  
(BITS)  
1.5  
1.5  
1.5  
5.0  
5.0  
5.0  
95  
8
2.6  
2.0  
1.5  
23  
10  
12  
8
SENSE LINE  
+REF  
-REF  
+IN  
-IN  
SENSE  
LINE  
10  
12  
8
19  
15  
560  
470  
400  
FORCE LINE  
95  
10  
12  
GND  
95  
Figure 2. Touch-Screen Measurement  
______________________________________________________________________________________ 13  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
+AV  
DD  
V
REF  
TEMP2  
TEMP1  
MAX1233  
MAX1234  
X+  
X-  
REF ON/OFF  
+REF  
Y+  
Y-  
+IN  
-IN  
CONVERTER  
2.5V/1.0V  
REFERENCE  
-
REF  
7.5k  
7.5kΩ  
V
V
BAT1  
BAT2  
2.5kΩ  
2.5kΩ  
BATTERY  
ON  
BATTERY  
ON  
AUX1  
AUX2  
GND  
Figure 3. Simplified Diagram of Analog Input Section  
Analog Input Protection  
to 8kV, using the Contact-Discharge method and  
15kV using the Air-Gap method specified in IEC-  
1000-4-2.  
Internal protection diodes that clamp the analog input  
to AV  
and GND allow the analog input pins to swing  
DD  
from GND - 0.3V to AV  
+ 0.3V without damage.  
DD  
Reference for ADC  
Analog inputs must not exceed AV  
by more than  
DD  
Internal Reference  
The MAX1233/MAX1234 offer an internal voltage refer-  
ence for the ADC that can be set to +1.0V or +2.5V. The  
MAX1233/MAX1234 typically use the internal reference  
for battery monitoring, temperature measurement, and for  
50mV or be lower than GND by more than 50mV for  
accurate conversions. If an off-channel analog input  
voltage exceeds the supplies, limit the input current to  
50mA. All analog inputs are also fully ESD protected  
14 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
ment, temperature measurement, or auxiliary input  
measurement is written to the ADC control register, the  
device powers on the internal reference, waits for the  
internal reference to settle, completes the requested  
+1.25V  
BANDGAP  
scan, and powers down the internal reference. The ref-  
erence power delay depends upon the ADC resolution  
REF PIN  
3R  
2R  
2x  
selected (see Table 8). Do not bypass REF with an  
external capacitor when performing scans in auto  
power-down mode.  
OPTIONAL  
Full-Power Mode (RES1 = 0, RES0 = 1)  
In the full-power mode, the RES1 bit is set LOW and  
RES0 bit is set HIGH. In this mode, the device is pow-  
ered up and the internal ADC reference is always ON.  
The MAX1233/MAX1234 internal reference remains fully  
powered after completing a scan.  
Figure 4. Block Diagram of the Internal Reference  
Internal Cloc5  
The MAX1233/MAX1234 operate from an internal oscil-  
lator, which is accurate to within 20% of the 10MHz  
specified clock rate. The internal oscillator controls the  
timing of the acquisition, conversion, touch-screen set-  
tling, reference power-up, and keypad debounce times.  
measurement of the auxiliary inputs. Figure 4 shows the  
on-chip reference circuitry of the MAX1233/MAX1234.  
Set the internal reference voltage by writing to the RFV  
bits in the ADC control register (see Tables 4, 5, and 12).  
The MAX1233/MAX1234 can accept an external refer-  
ence connected to REF for ADC conversion.  
8ꢂBit DAC  
The MAX1233/MAX1234 have a voltage-output, true 8-bit  
monotonic DAC with less than 1LSB integral nonlinearity  
error and less than 1LSB differential nonlinearity error. It  
requires a supply current of only 150µA (typ) and pro-  
vides a buffered voltage output. The DAC is at midscale  
code at power-up and remains there until a new code is  
written to the DAC register. During shutdown, the DAC’s  
output is pulled to ground with a 1Mload.  
The internal DAC can be used in various system applica-  
tions such as LCD/TFT-bias control, automatic tuning  
(VCO), power amplifier bias control, programmable  
threshold levels, and automatic gain control (AGC).  
External Reference  
The MAX1233/MAX1234 can accept an external refer-  
ence connected to the REF pin for ADC conversions.  
The internal reference should be disabled (RES1 = 1)  
when using an external reference. At a conversion rate  
of 50ksps, an external reference at REF must deliver up  
to 15µA of load current and have 50or less output  
impedance. If the external reference has high output  
impedance or is noisy, bypass it close to the REF pin  
with a 0.1µF capacitor.  
Selecting Internal or External Reference  
Set the type of reference being used by programming  
the ADC control register. To select the internal refer-  
ence, clock zeros into bits [A/D3:A/D0] and a zero to bit  
RES1, as shown in the Control Registers section. To  
change to external reference mode, clock zeros into  
bits [A/D3:A/D0] and a one to bit RES1. See Table 13  
for more information about selecting an internal or  
external reference for the ADC.  
The 8-bit DAC in the MAX1233/MAX1234 employs a  
current-steering topology as shown in Figure 5. At the  
core of this DAC is a reference voltage-to-current con-  
verter (V/I) that generates a reference current. This cur-  
rent is mirrored to 255 equally weighted current  
sources. DAC switches control the outputs of these cur-  
rent mirrors so that only the desired fraction of the total  
current-mirror currents is steered to the DAC output.  
The current is then converted to a voltage across a  
resistor, and the output amplifier buffers this voltage.  
Reference -ower Modes  
Auto Power-Down Mode (RES1 = RES0 = 0)  
The MAX1233/MAX1234 are in auto power-down mode  
at initial power-up. Set the RES1 and RES0 bits to zero  
to use the MAX1233/MAX1234 in the auto power-down  
mode. In this mode, the internal reference is normally  
off. When a command to perform a battery measure-  
DAC Output Voltage  
The 8-bit DAC code is binary unipolar with 1LSB =  
(V  
/256). The DAC has a full-scale output voltage of  
REF  
(0.9 × AV  
- 1LSB).  
DD  
______________________________________________________________________________________ 15  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
+AV  
DD  
V
REF  
1MΩ  
SW255  
SW1  
SW2  
S1  
TOUCH-SCREEN  
DETECTOR  
PENIRQ  
TOUCH  
OUT  
X+  
Y+  
SCREEN  
Figure 5. DAC Current-Steering Topology  
X-  
Y-  
Output Buffer  
The DAC voltage output is an internally buffered unity-  
gain follower that slews at up to 0.4V/µs. The output  
can swing from zero to full scale. With a 1/4FS to 3/4FS  
output transition, the amplifier output typically settles to  
1/2LSB in less than 5µs when loaded with 10kin par-  
allel with 50pF. The buffer amplifier is stable with any  
combination of resistive loads >10kand capacitive  
loads <50pF.  
S2  
Power-On Reset  
All registers of the MAX1233/MAX1234 power up at a  
default zero state, except the DAC data register, which  
is set to 10000000, so the output is at midscale.  
Figure 6. Touch-Screen Detection Block Diagram  
shown in Figure 6. When the screen is touched, the X+  
pin is pulled to GND through the touch screen and a  
touch is detected.  
Keypad Controller and G-IO  
The keypad controller is designed to interface a matrix-  
type 4 rows × 4 columns (16 keys or fewer) keypad to a  
host controller. The KEY control register controls keypad  
interrupt, keypad scan, and keypad debounce times.  
The KeyMask and ColumnMask registers enable mask-  
ing of a particular key or an entire column of the keypad  
when they are not in use. The MAX1233/MAX1234 offer  
two keypad data registers. KPData1 is the pending reg-  
ister. KPData2 holds keypad scan results of only the  
unmasked keys. If 12 or fewer keys are being monitored,  
one or more of the row/column pins of the  
MAX1233/MAX1234 can be software programmed as  
GPIO pins.  
When the 1Mpullup resistor is first connected, the X+  
pin can be floating near ground. To prevent false touch  
detection in this case, the X+ pin is precharged high for  
0.1µs using the 7PMOS driver before touch detection  
begins.  
Keyꢂ-ress Detection  
Key-press detection can be enabled or disabled by  
writing to the keypad control register as shown in Table  
17. Key-press detection is disabled at initial power-up.  
Once key-press detection is enabled, the C_ pins are  
internally connected to DV  
and the R_ pins are inter-  
DD  
nally pulled to GND through a 16kresistor. When a  
key is pressed, the associated row pin is pulled to  
DV  
and the key press is detected. Figure 7 shows  
DD  
TouchꢂEcreen Detection  
Touch-screen detection can be enabled or disabled by  
writing to the ADC control register as shown in Table 4.  
Touch-screen detection is disabled at initial power-up.  
Once touch-screen detection is enabled, the Y- driver  
is on and the Y- pin is connected to GND. The X+ pin is  
the key-press detection circuitry.  
Interrupts  
PEN Interrupt Request (PENIRQ)  
The PENIRQ output can be used to alert the host con-  
troller of a screen touch. The PENIRQ output is normally  
high and goes low after a screen touch is detected.  
internally pulled to AV  
through a 1Mresistor as  
DD  
16 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
SIMPLIFIED KEYPAD CIRCUITRY  
DRIVERS PULL HIGH  
OR GO THREE-STATE  
C1  
C2  
C3  
C4  
R1  
R2  
R3  
R4  
TO KEYPAD  
WAKEUP AND  
DEBOUNCE  
LOGIC  
KEYPAD  
Figure 7. Key-Press Detection Circuitry  
X+  
X+  
PENIRQ  
PENIRQ  
BUSY  
BUSY  
CS  
CS  
DATA  
READ  
DIN  
DATA  
READ  
DOUT  
TOUCH-  
SCREEN  
DATA  
DOUT  
TOUCH-  
SCREEN  
DATA  
Figure 8a. Timing Diagram for Touch-Initiated Screen Scan  
Figure 8b. Timing Diagram for Host-Initiated Screen Scan  
______________________________________________________________________________________ 17  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
PENIRQ returns high only after a touch-screen scan is  
completed. PENIRQ does not go low again until one of  
R_  
the touch-screen data registers is read. Figures 8a and  
8b show the timing diagrams for the PENIRQ pin.  
KEYIRQ  
Keypad Interrupt Request (KEYIRQ)  
The KEYIRQ output can be used to alert the host con-  
troller of a key press. The KEYIRQ output is normally  
high and goes low after a key press is detected.  
BUSY  
KEYIRQ returns high only after a key-press scan is  
completed. KEYIRQ does not go low again until one of  
the key-press data registers is read. Figures 9a and 9b  
CS  
show the timing diagrams for the KEYIRQ pin.  
DATA  
READ  
Busy Indicator (BUSY)  
BUSY informs the host processor that a scan is in  
progress. BUSY is normally high and goes low and  
stays low during each functional operation. The host  
controller should wait until BUSY is high again before  
using the serial interface.  
DOUT  
TOUCH-  
SCREEN  
DATA  
Figure 9a. Timing Diagram for Key-Press-Initiated Debounce  
Scan  
Digital Interface  
The MAX1233/MAX1234 interface to the host controller  
through a standard 3-wire serial interface at up to  
10MHz. DIN and CS are the digital inputs to the  
MAX1233/MAX1234. DOUT is the serial data output.  
Data is clocked out at the SCLK falling edge and is high  
impedance when CS is high. PENIRQ and KEYIRQ com-  
municate interrupts from the touch-screen and keypad  
controllers to the host processor when a screen touch or  
a key press is detected. BUSY informs the host proces-  
sor that a scan is in progress. In addition to these digital  
I/Os, the row and column pins of the keypad controller  
can be programmed as GPIO pins.  
R_  
KEYIRQ  
BUSY  
CS  
DATA  
READ  
DIN  
Communications Protocol  
The MAX1233/MAX1234 are controlled by reading from  
and writing to registers through the 3-wire serial inter-  
face. These registers are addressed through a 16-bit  
command that is sent prior to the data. The command  
is shown in Table 2.  
DOUT  
TOUCH-  
SCREEN  
DATA  
Figure 9b. Timing Diagram for Host-Initiated Keypad  
Debounce Scan  
The first 16 bits after the falling edge of CS contain the  
command word. The command word begins with an  
R/W bit, which specifies the direction of data flow on  
the serial bus. Bits 14 through 7 are reserved for future  
use. Bit 6 specifies the page of memory in which the  
desired register is located. The last 6 bits specify the  
address of the desired register. The next 16 bits of data  
are read from or written to the address specified in the  
command word. After 32 clock cycles, the interface  
automatically increments its address pointer and con-  
tinues reading or writing until the rising edge of CS, or  
until it reaches the end of the page.  
Table 2. Command Word Format  
BIT15  
MSB  
BIT0  
BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
RES RES RES RES RES RES  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
LSB  
RES PAGE ADD5 ADD4 ADD3 ADD2 ADD1 ADD0  
R/W  
RES  
18 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Table 3. Register Summary for MAX1233/MAX1234  
ADDR  
(HEX)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
REGISTER  
PAGE  
BIT15  
BIT14  
BIT13 BIT12 BIT11  
BIT10  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
NAME  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
Y
Z1  
Z2  
KPD  
BAT1  
BAT2  
AUX1  
0
0
0
0
K15  
0
0
0
0
0
0
0
0
0
0
GPD7  
K1_15  
K2_15  
0
0
0
0
0
0
0
0
0
0
0
0
0
RES  
0
0
0
0
K14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X11  
Y11  
X10  
Y10  
X9  
Y9  
X8  
Y8  
X7  
Y7  
X6  
Y6  
X5  
Y5  
X4  
Y4  
X3  
Y3  
X2  
Y2  
X1  
Y1  
X0  
Y0  
0
0
0
0
Z1_11 Z1_10 Z1_9  
Z2_11 Z2_10 Z2_9  
Z1_8 Z1_7 Z1_6 Z1_5 Z1_4 Z1_3 Z1_2 Z1_1 Z1_0  
Z2_8 Z2_7 Z2_6 Z2_5 Z2_4 Z2_3 Z2_2 Z2_1 Z2_0  
K8  
K13  
0
0
0
0
K12  
0
0
0
0
K11  
K10  
K9  
K7  
K6  
K5  
K4  
K3  
K2  
K1  
K0  
B1_11 B1_10 B1_9 B1_8 B1_7 B1_6 B1_5 B1_4 B1_3 B1_2 B1_1 B1_0  
B2_11 B2_10 B2_9 B2_8 B2_7 B2_6 B2_5 B2_4 B2_3 B2_2 B2_1 B2_0  
A1_11 A1_10 A1_9 A1_8 A1_7 A1_6 A1_5 A1_4 A1_3 A1_2 A1_1 A1_0  
A2_11 A2_10 A2_9 A2_8 A2_7 A2_6 A2_5 A2_4 A2_3 A2_2 A2_1 A2_0  
AUX2  
TEMP1  
TEMP2  
DAC  
Reserved  
Reserved  
Reserved  
GPIO  
KPData1  
KPData2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ADC  
0
0
0
0
T1_11 T1_10 T1_9  
T2_11 T2_10 T2_9  
T1_8 T1_7 T1_6 T1_5 T1_4 T1_3 T1_2 T1_1 T1_0  
T2_8 T2_7 T2_6 T2_5 T2_4 T2_3 T2_2 T2_1 T2_0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPD6  
GPD5 GPD4 GPD3 GPD2 GPD1 GPD0  
K1_14 K1_1 K1_1 K1_11 K1_10 K1_9 K1_8 K1_7 K1_6 K1_5 K1_4 K1_3 K1_2 K1_1 K1_0  
K2_14 K2_1 K2_1 K2_11 K2_10 K2_9 K2_8 K2_7 K2_6 K2_5 K2_4 K2_3 K2_2 K2_1 K2_0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RES  
ST1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RES  
ST0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RES  
RFV  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RES  
ADSTS  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
RES  
PENSTS  
A/D3 A/D2 A/D1 A/D0 RES1 RES0 AVG1 AVG2 CNR1 CNR0 ST2  
KEY  
DAC  
KEYSTS1 KEYSTS0 DBN2 DBN1 DBN0 HLD2 HLD1 HLD0  
DAPD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PU6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PU2  
0
0
0
0
0
0
0
0
0
0
0
0
PU1  
0
0
0
0
0
0
0
0
0
0
0
0
PU0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PU7  
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
GPIO  
Pullup  
0
0
0
PU5  
PU4  
PU3  
1
1
1
0F  
10  
11  
GPIO  
GP7  
KM15  
CM4  
GP6  
KM14  
CM3  
GP5  
GP4  
GP3  
GP2  
GP1  
GP0  
KM8  
0
OE7  
KM7  
0
OE6  
KM6  
0
OE5  
KM5  
0
OE4  
KM4  
0
OE3  
KM3  
0
OE2  
KM2  
0
OE1  
KM1  
0
OE0  
KM0  
0
KPKeyMask  
KPColumn  
Mask  
KM13 KM12 KM11 KM10 KM9  
CM2 CM1  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
______________________________________________________________________________________ 19  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
In order to read the entire first page of memory, for  
example, the host processor must send the  
Memory Map  
The MAX1233/MAX1234s’ internal memory is divided  
into two pages—one for data and one for control, each  
of which contains thirty-two 16-bit registers.  
MAX1233/MAX1234 the command 0x8000 . The  
H
MAX1233/MAX1234 then begin clocking out 16-bit data  
starting with the X-data register. In order to write to the  
second page of memory, the host processor sends the  
Control Registers  
Table 3 provides a summary of all registers and bit  
locations of the MAX1233/MAX1234.  
MAX1233/MAX1234 the command 0x0040 . The suc-  
H
ceeding data is then written in 16-bit words beginning  
with the ADC control register. Figures 10a and 10b show  
a complete write and read operation, respectively,  
between the processor and the MAX1233/MAX1234.  
ADC Control Register  
The ADC measures touch position, touch pressure, bat-  
tery voltage, auxiliary analog inputs, and temperature.  
The ADC control register determines which input is  
selected and converted. Tables 4 and 5 show the for-  
mat and bit descriptions for the ADC control register.  
SCLK  
WRITE OPERATION  
CS  
D0  
D0  
DIN  
D15  
D15  
D15 IS READ/WRITE BIT  
LOW FOR WRITE  
D15–D0 COMMAND WORD  
D15–D0 DATA WORD  
THREE-  
STATE  
DOUT  
THREE-  
STATE  
TIMING NOT TO SCALE.  
Figure 10a. Timing Diagram of Write Operation  
SCLK  
READ OPERATION  
CS  
DIN  
D15 D14  
D0  
D15–D0 COMMAND  
WORD  
DOUT  
THREE-STATE  
D0  
D15  
D15  
D0  
THREE-STATE  
DATA WORD  
DATA WORD  
Figure 10b. Timing Diagram of Read Operation  
Table 4. ADC Control Register  
BIT15  
BIT14 BIT13 BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0  
ST1 ST0 RFV  
PENSTS ADSTS A/D3 A/D2 A/D1 A/D0 RES1 RES0 AVG1 AVG0 CNR1 CNR0 ST2  
20 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Bits 14-15: Pen Interrupt Status and  
ADC Status Bits  
Bits 6-7: Converter Averaging Control  
These bits specify the number of data averages the  
converter performs. Table 9 shows how to program for  
the desired number of averages. When averaging is  
used, ADSTS and BUSY indicate the converter is busy  
until all conversions needed for the averaging finish.  
These bits are identical, regardless of read or write.  
These bits are used to control or monitor ADC scans.  
Bits 10-13: ADC Scan Select  
These bits control which input to convert and which con-  
verter mode is used. The bits are identical regardless of a  
read or write. See Table 7 for details about using these bits.  
Bits 4-5: ADC Conversion Rate Control  
These bits specify the internal conversion rate, which  
the ADC uses to perform a single conversion, as shown  
in Table 10. Lowering the conversion rate also reduces  
power consumption. These bits are identical, regard-  
less of read or write.  
Bits 8-9: ADC Resolution Control  
These bits specify the ADC resolution and are identical  
regardless of read or write. Table 8 shows how to use  
these bits to set the resolution.  
Table 5. ADC Control Register Bit Descriptions  
BIT  
NAME  
PENSTS  
ADSTS  
A/D3  
DESCRIPTION  
15 (MSB)  
Read: pen interrupt status; Write: sets interrupt initiated touch-screen scans  
14  
Read: ADC status; Write: stops ADC  
Selects ADC scan functions  
13  
12  
A/D2  
Selects ADC scan functions  
11  
A/D1  
Selects ADC scan functions  
10  
A/D0  
Selects ADC scan functions  
9
RES1  
RES0  
AVG1  
AVG0  
CNR1  
CNR0  
ST2  
Controls ADC resolution  
8
Controls ADC resolution  
7
Controls ADC result averaging  
Controls ADC result averaging  
Controls ADC conversion rate  
Controls ADC conversion rate  
Controls touch-screen settling wait time  
Controls touch-screen settling wait time  
Controls touch-screen settling wait time  
Chooses 1.0V or 2.5V reference  
6
5
4
3
2
1
ST1  
ST0  
0 (LSB)  
RFV  
Table 6. ADSTS Bit Operation  
PENSTS  
ADSTS  
READ FUNCTION  
WRITE FUNCTION  
Performs one scan and waits to detect a screen touch. Upon  
detection, issues an interrupt and waits until told to scan by the  
host controller.  
No screen touch detected;  
scan or conversion in progress  
0
0
Screen touch detected;  
scan or conversion in progress detection, issues an interrupt and performs a scan.  
Stops any ongoing scan and waits to detect a screen touch. Upon  
1
0
1
0
1
1
Stops any ongoing scan and waits to detect a screen touch. Upon  
detection, issues an interrupt and waits until told to scan by the  
host controller.  
No screen touch detected;  
data available  
Screen touch detected;  
data available  
Stops any ongoing scan and powers down the screen touch  
detection circuit. No screen touches are detected in this mode.  
______________________________________________________________________________________ 21  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Table 7. ADC Scan Select (Touch Screen, Battery, Auxiliary Channels, and Temperature)  
A/D3 A/D2 A/D1 A/D0  
FUNCTION  
Configures the ADC reference as selected by RES [1:0] bits as shown in Table 13. No measurement  
is performed.  
0
0
0
0
0
0
0
0
1
0
1
0
Measures X/Y touch position and returns results to the X and Y data registers.  
Measures X/Y touch position and Z1/ Z2 touch pressure and returns results to the X, Y, Z1, and Z2  
data registers.  
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
Measures X touch position and returns results to the X data register.  
Measures Y touch position and returns results to the Y data register.  
Measures Z1/Z2 touch pressure and returns results to the Z1 and Z2 data register.  
Measures Battery Input 1 and returns results to the BAT1 data register.  
Measures Battery Input 2 and returns results to the BAT2 data register.  
Measures Auxiliary Input 1 and returns results to the AUX1 data register.  
Measures Auxiliary Input 2 and returns results to the AUX2 data register.  
Measures temperature (single ended) and returns results to the TEMP1 data register.  
Measures Battery Input 1, Battery Input 2, Auxiliary Input 1, Auxiliary Input 2, and temperature  
(differential), and returns results to the appropriate data registers.  
1
0
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Measures temperature (differential) and returns results to the TEMP1 and TEMP2 data registers.  
Turns on Y+, Y- drivers. No measurement is performed.  
Turns on X+, X- drivers. No measurement is performed.  
Turns on Y+, X- drivers. No measurement is performed.  
Table 10. ADC Conversion Rate Control  
Table 8. ADC Resolution Control  
CNR1 CNR0  
FUNCTION  
INTERNALLY TIMED  
REFERENCE POWER-UP  
DELAY* (µs)  
ADC  
RESOLUTION  
RES1 RES0  
3.5µs/sample  
0
0
1
1
0
1
0
1
(1.5µs acquisition, 2µs conversion)  
0
0
1
1
0
1
0
1
8 bit  
8 bit  
31  
31  
37  
44  
3.5µs/sample  
(1.5µs acquisition, 2µs conversion)  
10 bit  
12 bit  
10µs/sample  
(5µs acquisition, 5µs conversion)  
*Applicable only for temperature, battery, or auxiliary  
measurements in auto power-up reference mode.  
100µs/sample  
(95µs acquisition, 5µs conversion)  
Table 9. ADC Averaging Control  
AVG1 AVG0  
FUNCTION  
No data averages (default)  
4 data averages  
0
0
1
1
0
1
0
1
8 data averages  
16 data averages  
22 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Bits 1-3: Touch-Screen Settling Time Control  
These bits specify the time delay from pen-touch detec-  
tion to a conversion start. This allows the selection of the  
appropriate settling time for the touch screen being used.  
Table 11 shows how to set the settling time. These bits  
are identical, regardless of read or write.  
Internal ADC Reference Power-Down Control  
The ADC control register controls the power setting of  
the internal ADC reference. Zeros must be written to  
bits A/D3–A/D0 to control internal reference power-up  
followed by the appropriate logic at the RES1 and  
RES0 bits. Table 13 shows the internal ADC reference  
power-down control.  
Bit 0: ADC Internal Reference Voltage Control  
This bit selects the ADC internal reference voltage,  
either +1.0V or +2.5V. This bit is identical, regardless of  
read or write. The reference control bit is shown in  
Table 12.  
DAC Control Register  
The MSB in this control register determines the power-  
down control of the on-board DAC. Table 14 shows the  
DAC control register. Writing a zero to bit 15 (DAPD)  
powers up the DAC, while writing a 1 powers down the  
DAC. Table 15 describes the DAC control register con-  
tents, while Table 16 shows the DAC power-down bit.  
Keypad Control Registers  
The keypad control register, keypad mask register, and  
keypad column mask control register control the key-  
pad scanner in the MAX1233/MAX1234. The keypad  
control register (Table 17) controls scanning and  
debouncing, while the keypad mask register (Table 22)  
and the keypad column mask control register (Table 24),  
Table 11. Touch-Screen Settling Time  
Control*  
ST2  
0
ST1  
0
ST0  
0
SETTLING TIME  
Settling time: 0µs  
0
0
1
Settling time: 100µs  
Settling time: 500µs  
Settling time: 1ms  
Settling time: 5ms  
Settling time: 10ms  
Settling time: 50ms  
Settling time: 100ms  
0
1
0
0
1
1
Table 15. DAC Control Register  
Descriptions  
1
0
0
1
0
1
BIT  
NAME  
DAPD  
0
DESCRIPTION  
DAC powered down  
Reserved  
1
1
0
15 (MSB)  
[14:0]  
1
1
1
*Applicable only for X, Y, Z1, and Z2 measurements.  
Table 12. ADC Reference Control Bit  
Table 16. DAC Power-Down Bit  
RFV  
FUNCTION  
+1.0V reference  
+2.5V reference  
DAPC  
FUNCTION  
0
1
0
1
DAC powered up  
DAC powered down  
Table 13. Internal ADC Reference Auto Power-Up Control  
ADC REFERENCE  
RES1  
RES0  
ADC REFERENCE POWER MODE  
SOURCE  
Power up, wait for reference to settle, and power down again for each  
temperature, battery, or auxiliary scan (auto power-up mode)  
0
0
Internal  
0
1
1
1
0
1
Internal  
External  
External  
Always powered up  
Always powered down  
Always powered down  
Table 14. DAC Control Register  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
DAPD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
______________________________________________________________________________________ 23  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Table 17. Keypad Control Register  
BIT15  
BIT14  
BIT13 BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0  
HLD HLD  
KEYSTS1 KEYSTS0 DBN2 DBN1 DBN0 HLD2  
0
0
0
0
0
0
0
0
Table 18. Keypad Control Register Description  
BIT  
NAME  
KEYSTS1  
KEYSTS0  
DBN2  
DBN1  
DBN0  
HLD2  
DESCRIPTION  
15 (MSB)  
Read: keypad interrupt status; Write: set interrupt initiated keypad scans  
Read: keypad scan status; Write: stop keypad scan  
Keypad debounce time control  
Keypad debounce time control  
Keypad debounce time control  
Keypad hold time control  
14  
13  
12  
11  
10  
9
HLD1  
Keypad hold time control  
8
HLD0  
Keypad hold time control  
[7:0]  
0
Reserved  
Table 19. KEYSTS1/KEYSTS0 Functions  
KEYSTS1  
KEYSTS0  
READ FUNCTION  
WRITE FUNCTION  
Scans keypad once and waits to detect a button press. Upon  
detection, issues an interrupt and waits for the host’s instruction  
before scanning.  
No button press detected;  
scan or debounce in progress  
0
0
Button press detected;  
scan or debounce in progress detection, issues an interrupt and scans the keypad.  
Stops any ongoing scan and waits to detect a button press. Upon  
1
0
1
0
1
1
Stops any ongoing scan and waits to detect a button press. Upon  
detection, issues an interrupt and waits for the host’s instruction  
before scanning.  
No button press detected;  
data available  
Button press detected;  
data available  
Stops any ongoing scan and powers down the button press  
detection circuit. No button presses are detected in this mode.  
Table 20. Keypad Debounce Time Control  
DBN2 DBN1 DBN0  
FUNCTION (ms)  
Debounce time: 2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Debounce time: 10  
Debounce time: 20  
Debounce time: 50  
Debounce time: 60  
Debounce time: 80  
Debounce time: 100  
Debounce time: 120  
24 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
allowing certain keys to be masked from detection.  
Tables 18–21 show the programmable bits of the keypad  
control register. Tables 23, 24, and 25 show the program-  
mable bits of the keypad mask registers. The Keypad  
Controller and GPIO section provides more details.  
allow the keypad controller’s row and column inputs to be  
configured as up to eight parallel I/O pins. Tables 26 and  
27 show the GPIO control register layout and control reg-  
ister descriptions. Tables 28 and 29 show the GPIO pullup  
disable register and associated descriptions. For more  
information, see the Applications Information section.  
GPIO Control Register  
The GPIO control register and the GPIO pullup register  
Table 21. Keypad Hold Time Control  
HLD2  
HLD1  
HLD0  
FUNCTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
If a button is held, wait 100µs before beginning next debounce scan  
If a button is held, wait 1 debounce time before beginning the next debounce scan  
If a button is held, wait 2 debounce times before beginning the next debounce scan  
If a button is held, wait 3 debounce times before beginning the next debounce scan  
If a button is held, wait 4 debounce times before beginning the next debounce scan  
If a button is held, wait 5 debounce times before beginning the next debounce scan  
If a button is held, wait 6 debounce times before beginning the next debounce scan  
If a button is held, wait 7 debounce times before beginning the next debounce scan  
Table 22. Keypad Key Mask Control Register  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
KM15 KM14 KM13 KM12 KM11 KM10 KM9  
KM8  
KM7  
KM6  
KM5  
KM4  
KM3  
KM2  
KM1  
KM0  
Table 23. Keypad Key Mask Control Register Descriptions—Individual Mask  
BIT  
15  
14  
13  
12  
11  
10  
9
NAME  
KM15  
KM14  
KM13  
KM12  
KM11  
KM10  
KM9  
DESCRIPTION  
Mask status register data update on individual key for row 4, column 4  
Mask status register data update on individual key for row 3, column 4  
Mask status register data update on individual key for row 2, column 4  
Mask status register data update on individual key for row 1, column 4  
Mask status register data update on individual key for row 4, column 3  
Mask status register data update on individual key for row 3, column 3  
Mask status register data update on individual key for row 2, column 3  
Mask status register data update on individual key for row 1, column 3  
Mask status register data update on individual key for row 4, column 2  
Mask status register data update on individual key for row 3, column 2  
Mask status register data update on individual key for row 2, column 2  
Mask status register data update on individual key for row 1, column 2  
Mask status register data update on individual key for row 4, column 1  
Mask status register data update on individual key for row 3, column 1  
Mask status register data update on individual key for row 2, column 1  
Mask status register data update on individual key for row 1, column 1  
8
KM8  
7
KM7  
6
KM6  
5
KM5  
4
KM4  
3
KM3  
2
KM2  
1
KM1  
0
KM0  
Table 24. Keypad Column Mask Control Register  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
CM4 CM3 CM2 CM1  
0
0
0
0
0
0
0
0
0
0
0
0
______________________________________________________________________________________ 25  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Table 25. Keypad Column Mask Control Register Descriptions  
BIT  
15  
NAME  
CM4  
CM3  
CM2  
CM1  
0
DESCRIPTION  
Mask interrupt, status register, and pending register data update on all keys in column 4  
Mask interrupt, status register, and pending register data update on all keys in column 3  
Mask interrupt, status register, and pending register data update on all keys in column 2  
Mask interrupt, status register, and pending register data update on all keys in column 1  
Reserved  
14  
13  
12  
[11:0]  
Table 26. GPIO Control Register  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
GP7  
GP6  
GP5  
GP4  
GP3  
GP2  
GP1  
GP0  
OE7  
OE6  
OE5  
OE4  
OE3  
OE2  
OE1  
OE0  
Table 27. GPIO Control Register Descriptions  
DESCRIPTION  
BIT  
NAME  
1
0
15  
14  
13  
12  
11  
10  
9
GP7  
GP6  
GP5  
GP4  
GP3  
GP2  
GP1  
GP0  
C4 pin becomes GPIO pin 7  
C3 pin becomes GPIO pin 6  
C2 pin becomes GPIO pin 5  
C1 pin becomes GPIO pin 4  
R4 pin becomes GPIO pin 3  
R3 pin becomes GPIO pin 2  
R2 pin becomes GPIO pin 1  
R1 pin becomes GPIO pin 0  
C4 pin remains keypad column 4  
C3 pin remains keypad column 3  
C2 pin remains keypad column 2  
C1 pin remains keypad column 1  
R4 pin remains keypad row 4  
R3 pin remains keypad row 3  
R2 pin remains keypad row 2  
R1 pin remains keypad row 1  
GPIO pin configured as an input  
8
[7:0]  
[OE7:OE0] GPIO pin configured as an output  
Table 28. GPIO Pullup Disable Register  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
PU7  
PU6  
PU5  
PU4  
PU3  
PU2  
PU1  
PU0  
0
0
0
0
0
0
0
0
Analog Input Data Registers  
Table 30 shows the format of the X, Y, Z , Z , BAT1,  
BAT2, AUX1, AUX2, TEMP1, and TEMP2 data registers.  
The data format for these registers is right justified  
beginning with bit 11. Data written through the serial  
interface to these registers is not stored.  
Table 29. GPIO Pullup Disable Register  
Descriptions  
1
2
BIT  
[15:8] [PU7:PU0]  
[7:0]  
NAME  
DESCRIPTION  
1: Pullup disabled. Open collector output.  
2: Pullup enabled.  
0
Reserved  
Keypad Data Registers  
Table 31 shows the formatting of the keypad data reg-  
isters, while Tables 32, 33, and 34 provide individual  
register bit descriptions. These registers have the same  
format as the keypad mask register. Each bit repre-  
sents one key on the keypad. Table 35 shows a map of  
a 16-key keypad. Data written through the serial inter-  
face to these registers is not stored.  
Data Registers  
The data results from conversions or keypad scans are  
held in the data registers of the MAX1233/MAX1234.  
During power-up, all of these data registers with the  
exception of the DAC data register default to 0000 .  
H
The DAC register defaults to 1000 .  
H
26 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Table 30. Analog Inputs Data Register Format  
REGISTER  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0  
NAME  
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X11  
Y11  
X10  
Y10  
X9  
Y9  
X8  
Y8  
X7  
Y7  
X6  
Y6  
X5  
Y5  
X4  
Y4  
X3  
Y3  
X2  
Y2  
X1  
Y1  
X0  
Y0  
Y
Z1  
Z1_11 Z1_10 Z1_9 Z1_8 Z1_7 Z1_6 Z1_5 Z1_4 Z1_3 Z1_2 Z1_1 Z1_0  
Z2_11 Z2_10 Z2_9 Z2_8 Z2_7 Z2_6 Z2_5 Z2_4 Z2_3 Z2_2 Z2_1 Z2_0  
B1_11 B1_10 B1_9 B1_8 B1_7 B1_6 B1_5 B1_4 B1_3 B1_2 B1_1 B1_0  
B2_11 B2_10 B2_9 B2_8 B2_7 B2_6 B2_5 B2_4 B2_3 B2_2 B2_1 B2_0  
A1_11 A1_10 A1_9 A1_8 A1_7 A1_6 A1_5 A1_4 A1_3 A1_2 A1_1 A1_0  
A2_11 A2_10 A2_9 A2_8 A2_7 A2_6 A2_5 A2_4 A2_3 A2_2 A2_1 A2_0  
T1_11 T1_10 T1_9 T1_8 T1_7 T1_6 T1_5 T1_4 T1_3 T1_2 T1_1 T1_0  
T2_11 T2_10 T2_9 T2_8 T2_7 T2_6 T2_5 T2_4 T2_3 T2_2 T2_1 T2_0  
Z2  
BATT1  
BATT2  
AUX1  
AUX2  
TEMP1  
TEMP2  
Table 31. Keypad Data Registers  
REGISTER  
NAME  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0  
KBD  
K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0  
KPData1 K1_15 K1_14 K1_13 K1_12 K1_11 K1_10 K1_9 K1_8 K1_7 K1_6 K1_5 K1_4 K1_3 K1_2 K1_1 K1_0  
KPData2 K2_15 K2_14 K2_13 K2_12 K2_11 K2_10 K2_9 K2_8 K2_7 K2_6 K2_5 K2_4 K2_3 K2_2 K2_1 K2_0  
Table 32. Keypad Data Register Descriptions  
BIT  
15  
14  
13  
12  
11  
10  
9
NAME  
K15  
K14  
K13  
K12  
K11  
K10  
K9  
DESCRIPTION  
Keypad scan result for row 4, column 4. Can only be masked by column mask.  
Keypad scan result for row 3, column 4. Can only be masked by column mask.  
Keypad scan result for row 2, column 4. Can only be masked by column mask.  
Keypad scan result for row 1, column 4. Can only be masked by column mask.  
Keypad scan result for row 4, column 3. Can only be masked by column mask.  
Keypad scan result for row 3, column 3. Can only be masked by column mask.  
Keypad scan result for row 2, column 3. Can only be masked by column mask.  
Keypad scan result for row 1, column 3. Can only be masked by column mask.  
Keypad scan result for row 4, column 2. Can only be masked by column mask.  
Keypad scan result for row 3, column 2. Can only be masked by column mask.  
Keypad scan result for row 2, column 2. Can only be masked by column mask.  
Keypad scan result for row 1, column 2. Can only be masked by column mask.  
Keypad scan result for row 4, column 1. Can only be masked by column mask.  
Keypad scan result for row 3, column 1. Can only be masked by column mask.  
Keypad scan result for row 2, column 1. Can only be masked by column mask.  
Keypad scan result for row 1, column 1. Can only be masked by column mask.  
8
K8  
7
K7  
6
K6  
5
K5  
4
K4  
3
K3  
2
K2  
1
K1  
0
K0  
______________________________________________________________________________________ 27  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Table 33. Keypad Data Register 1 (Pending Register) Descriptions  
BIT  
15  
14  
13  
12  
11  
10  
9
NAME  
K1_15  
K1_14  
K1_13  
K1_12  
K1_11  
K1_10  
K1_9  
DESCRIPTION  
Keypad scan result for row 4, column 4. Can only be masked by column mask.  
Keypad scan result for row 3, column 4. Can only be masked by column mask.  
Keypad scan result for row 2, column 4. Can only be masked by column mask.  
Keypad scan result for row 1, column 4. Can only be masked by column mask.  
Keypad scan result for row 4, column 3. Can only be masked by column mask.  
Keypad scan result for row 3, column 3. Can only be masked by column mask.  
Keypad scan result for row 2, column 3. Can only be masked by column mask.  
Keypad scan result for row 1, column 3. Can only be masked by column mask.  
Keypad scan result for row 4, column 2. Can only be masked by column mask.  
Keypad scan result for row 3, column 2. Can only be masked by column mask.  
Keypad scan result for row 2, column 2. Can only be masked by column mask.  
Keypad scan result for row 1, column 2. Can only be masked by column mask.  
Keypad scan result for row 4, column 1. Can only be masked by column mask.  
Keypad scan result for row 3, column 1. Can only be masked by column mask.  
Keypad scan result for row 2, column 1. Can only be masked by column mask.  
Keypad scan result for row 1, column 1. Can only be masked by column mask.  
8
K1_8  
7
K1_7  
6
K1_6  
5
K1_5  
4
K1_4  
3
K1_3  
2
K1_2  
1
K1_1  
0
K1_0  
Table 34. Keypad Data Register 2 (Status Register) Descriptions  
BIT  
15  
14  
13  
12  
11  
10  
9
NAME  
K2_15  
K2_14  
K2_13  
K2_12  
K2_11  
K2_10  
K2_9  
DESCRIPTION  
Keypad scan result for row 4, column 4. Can be masked by key mask or column mask.  
Keypad scan result for row 3, column 4. Can be masked by key mask or column mask.  
Keypad scan result for row 2, column 4. Can be masked by key mask or column mask.  
Keypad scan result for row 1, column 4. Can be masked by key mask or column mask.  
Keypad scan result for row 4, column 3. Can be masked by key mask or column mask.  
Keypad scan result for row 3, column 3. Can be masked by key mask or column mask.  
Keypad scan result for row 2, column 3. Can be masked by key mask or column mask.  
Keypad scan result for row 1, column 3. Can be masked by key mask or column mask.  
Keypad scan result for row 4, column 2. Can be masked by key mask or column mask.  
Keypad scan result for row 3, column 2. Can be masked by key mask or column mask.  
Keypad scan result for row 2, column 2. Can be masked by key mask or column mask.  
Keypad scan result for row 1, column 2. Can be masked by key mask or column mask.  
Keypad scan result for row 4, column 1. Can be masked by key mask or column mask.  
Keypad scan result for row 3, column 1. Can be masked by key mask or column mask.  
Keypad scan result for row 2, column 1. Can be masked by key mask or column mask.  
Keypad scan result for row 1, column 1. Can be masked by key mask or column mask.  
8
K2_8  
7
K2_7  
6
K2_6  
5
K2_5  
4
K2_4  
3
K2_3  
2
K2_2  
1
K2_1  
0
K2_0  
28 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
DAC Data Register  
The DAC data register stores data that is to be written  
Applications Information  
-rogrammable 8ꢂ/10ꢂ/12ꢂBit Resolution  
The MAX1233/MAX1234 provide the option of three dif-  
ferent resolutions for the ADC: 8, 10, or 12 bits. Lower  
resolutions are practical for some measurements such  
as touch pressure. Lower resolution conversions have  
smaller conversion times and therefore consume less  
power. Program the resolution of the MAX1233/  
MAX1234 12-bit ADCs by writing to the RES1 and RES0  
bits in the ADC control register. When the MAX1233/  
MAX1234 power up, both bits are set to zero so the  
resolution is set to 8 bits with a 31µs internally timed  
reference power-up delay as indicated by the ADC res-  
olution control table. As explained in the control register  
section, the RES1 and RES0 bits control the reference  
to the 8-bit DAC. Table 36 shows the configuration of  
the DAC data register. It is right justified with bit 7–bit 0  
storing the input data.  
GPIO Data Register  
Tables 37 and 38 show the format and descriptions for  
the GPIO data register. The register is left justified with  
data in bit 15–bit 8. Reading the GPIO data register  
gives the state of the R_ and C_ pins. Data written to  
the GPIO data register appears on those R_ and C_  
pins, which are configured as general-purpose outputs.  
Data written to pins not configured as general-purpose  
outputs is not stored.  
ADC Transfer Function  
The MAX1233/MAX1234 output data is in straight bina-  
ry format as shown in Figure 11. This figure shows the  
ideal output code for the given input voltage and does  
not include the effects of offset error, gain error, noise,  
or nonlinearity.  
MAX1233  
MAX1234  
OUTPUT CODE  
11 ... 111  
FULL-SCALE  
TRANSITION  
11 ... 110  
11 ... 101  
FS = V  
REF  
Table 35. Keypad to Key Bit Mapping  
ZS = GND  
COMPONENT  
C1  
K0  
K1  
K2  
K3  
C2  
K4  
K5  
K6  
K7  
C3  
K8  
C4  
V
REF  
1LSB =  
4096  
R1  
R2  
R3  
R4  
K12  
K13  
K14  
K15  
00 ... 011  
00 ... 010  
00 ... 001  
K9  
K10  
K11  
00 ... 000  
0
1
2
3
FS  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Figure 11. Ideal Input ꢀoltages and Output Codes  
Table 36. DAC Data Register  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0
0
0
0
0
0
0
0
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
Table 37. GPIO Data Register  
BIT15 BIT14 BIT13 BIT12 BIT11 BIT10 BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
GPD7 GPD6 GPD5 GPD4 GPD3 GPD2 GPD1 GPD0  
0
0
0
0
0
0
0
0
Table 38. GPIO Data Register Descriptions  
BIT  
15...8  
7...0  
NAME  
GPD7...0  
0
DESCRIPTION  
GPIO data bits for GPIO pins 7...0  
Reserved  
______________________________________________________________________________________ 29  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
nal, reference, or both may not settle into their final  
+AV  
DD  
steady-state values before the ADC samples the inputs,  
and the reference voltage may continue to change dur-  
ing the conversion cycle. The MAX1233/MAX1234 can  
be programmed to wait for a fixed amount of time after  
a screen touch has been detected before beginning a  
scan. Use the touch-screen settling control bits in the  
ADC control register (Table 11) to set the settling delay  
to between zero and 100ms.  
FORCE LINE  
Y+  
The settling problem is amplified in some applications  
where external filter capacitors may be required across  
the touch screen to filter noise that may be generated  
by the LCD panel or backlight circuitry, etc. The values  
of these capacitors cause an additional settling time  
requirement when the panel is touched. Any failure to  
settle before conversion start may show up as a gain  
error. Average the conversion result by writing to the  
ADC control register, as shown in Table 10, to minimize  
noise.  
SENSE LINE  
+REF  
CONVERTER  
-REF  
+IN  
-IN  
X+  
SENSE LINE  
Touchꢂ-ressure Measurement  
The MAX1233/MAX1234 provide two methods of mea-  
surement of the pressure applied to the touch screen.  
Although 8-bit resolution is typically sufficient, the follow-  
ing calculations use 12-bit resolution demonstrating the  
maximum precision of the MAX1233/MAX1234. Figure  
13 shows the pressure measurement block diagram.  
Y-  
FORCE LINE  
GND  
Figure 12. Ratiometric Y-Coordinate Measurement  
The first method performs pressure measurements  
using a known X-plate resistance. After completing  
three conversions, X-position, Z1-position, and Z2 posi-  
power-up status when the A/D0–A/D3 bits are zero.  
These values can be set initially on power-up.  
(Subsequently A/D0–A/D3 bits are not zero, and any  
other value of these bits is exclusive to ADC resolution  
programming.)  
tion, use the following equation to calculate R  
:
TOUCH  
X
Z
2
POSITION  
4096  
1  
R
= R  
×
×
TOUCH  
(
XPLATE  
)
Differential Ratiometric Touchꢂ-osition  
Measurement  
Z
1
The MAX1233/MAX1234 provide differential conver-  
sions. Figure 12 shows the switching matrix configura-  
tion for Y coordinate measurement. The +REF and -REF  
inputs are connected directly to Y+ and Y-. The conver-  
sion result is a percentage of the external resistances,  
and is unaffected by variation in the total touch-screen  
resistance or the on-resistance of the internal switching  
matrix. The touch screen remains powered during the  
acquisition and conversion process.  
The second method requires knowing both the X-plate  
and Y-plate resistance. Three touch-screen conver-  
sions are required in this method as well for measure-  
ment of the X-position, Y-position, and Z- position of the  
touch screen. Use the following equation to calculate  
R
:
TOUCH  
R
X
4096  
XPLATE  
POSITION  
4096  
1  
R
=
×
×
TOUCH  
Z
1
Z
1
TouchꢂEcreen Eettling  
There are two mechanisms that affect the voltage level  
at the point where the touch panel is pressed. One is  
electrical ringing due to parasitic capacitance between  
the top and bottom layers of the touch screen and the  
other is the mechanical bouncing caused by vibration  
of the top layer of the touch screen. Thus, the input sig-  
Y
POSITION  
4096  
R  
×
YPLATE  
30 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
FORCE LINE  
SENSE LINE  
MEASURE X-POSITION  
HOST WRITES  
ADC  
X+  
Y+  
BATTERY INPUT 1 OR  
BATTERY INPUT 2  
CONTROL REGISTER  
TOUCH  
START CLOCK  
V
X-POSITION  
SET BUSY  
LOW  
X-  
Y-  
OPEN CIRCUIT  
FORCE LINE  
SENSE LINE  
FORCE LINE  
Y+  
MEASURE Z1-RESISTANCE  
IS ADC  
REFERENCE IN  
AUTO POWER-DOWN  
MODE?  
X+  
NO  
TOUCH  
V
YES  
Z1-RESISTANCE  
POWER UP REFERENCE  
X-  
Y-  
FORCE LINE  
OPEN CIRCUIT  
POWER UP  
ADC  
FORCE LINE  
POWER DOWN  
ADC  
OPEN CIRCUIT  
X+  
Y+  
CONVERT  
BATTERY INPUT 1 OR 2  
TOUCH  
POWER DOWN REFERENCE  
V
Z2-RESISTANCE  
SET BUSY HIGH  
X-  
Y-  
FORCE LINE  
SENSE LINE  
NO  
IS DATA  
AVERAGING DONE?  
MEASURE Z2-RESISTANCE  
TURN OFF CLOCK  
Figure 13. Pressure Measurement Block Diagram  
YES  
DONE  
2.7V  
DC/DC  
CONVERTER  
STORE BATTERY INPUT 1 OR 2 IN  
BAT1 OR BAT2 REGISTER  
BATTERY  
0.5V TO  
6.0V  
AV  
DD  
V
BAT  
7.5k  
Figure 15. Battery ꢀoltage-Reading Flowchart  
Batteryꢂkoltage Monitors  
Two dedicated analog inputs (BAT1 and BAT2) allow the  
MAX1233/MAX1234 to monitor the battery voltages prior  
to the DC/DC converter. Figure 14 shows the battery volt-  
age monitoring circuitry. The MAX1233/ MAX1234 direct-  
ly monitor battery voltages from 0.5V to 6V. An internal  
resistor network divides down BAT1 and BAT2 by 4 so  
that a 6V battery voltage results in a 1.5V input to the  
ADC. To minimize power consumption, the divider is only  
enabled during the sampling of BAT1 and BAT2. Figure  
15 illustrates the process of battery input reading.  
0.125V TO 1.5V  
CONVERTER  
2.5kΩ  
Figure 14. Battery Measurement Block Diagram  
______________________________________________________________________________________ 31  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
Auxiliary Analog Inputs  
Two auxiliary analog inputs (AUX1 and AUX2) allow the  
HOST WRITES  
AUXILIARY INPUT 1 OR  
AUXILIARY INPUT 2  
ADC  
MAX1233/MAX1234 to monitor analog input voltages  
CONTROL REGISTER  
from zero to V  
. Figure 16 illustrates the process of  
REF  
auxiliary input reading.  
START CLOCK  
Temperature Measurements  
The MAX1233/MAX1234 provide two temperature mea-  
surement options: a single-ended conversion method  
and a differential conversion method. Both temperature  
measurement techniques rely on the semiconductor  
junction’s operational characteristics at a fixed current  
SET BUSY  
LOW  
level. The forward diode voltage (V ) vs. temperature  
BE  
IS ADC  
REFERENCE IN  
AUTO POWER-DOWN  
MODE?  
is a well-defined characteristic. The ambient tempera-  
ture can be predicted in applications by knowing the  
value of the V voltage at a fixed temperature and then  
BE  
NO  
monitoring the delta of that voltage as the temperature  
changes. Figure 17 illustrates the functional block of the  
internal temperature sensor.  
YES  
POWER UP REFERENCE  
The single conversion method requires calibration at a  
known temperature, but only requires a single reading  
to predict the ambient temperature. First, the internal  
diode forward bias voltage is measured by the ADC at a  
known temperature. Subsequent diode measurements  
provide an estimate of the ambient temperature through  
extrapolation. This assumes a temperature coefficient of  
-2.1mV/°C. The single conversion method results in a  
resolution of 0.29°C/LSB (2.5V reference) and  
0.12°C/LSB (1.0V reference) with a typical accuracy of  
2°C. Figure 18 shows the flowchart for the single tem-  
perature measurement.  
POWER UP  
ADC  
POWER DOWN  
ADC  
CONVERT  
AUXILIARY INPUT 1 OR 2  
POWER DOWN REFERENCE  
SET BUSY HIGH  
NO  
IS DATA  
The differential conversion method uses two measure-  
ment points. The first measurement is performed with a  
fixed bias current into the internal diode. The second  
measurement is performed with a fixed multiple of the  
original bias current. The voltage difference between the  
first and second conversion is proportional to the  
absolute temperature and is expressed by the following  
formula:  
AVERAGING DONE?  
TURN OFF CLOCK  
YES  
DONE  
STORE AUXILIARY INPUT 1 OR 2 IN  
AUX1 OR AUX2 REGISTER  
V = (kT/q) ln(N)  
BE  
Figure 16. Auxiliary Input Flowchart  
where:  
V = difference in diode voltage  
N = current ratio of the second measurement to the first  
measurement  
BE  
A/D  
CONVERTER  
MUX  
k = Boltzmann’s constant (1.38 × 10-23 eV/°Kelvin)  
q = electron charge (1.60 × 10-19 C)  
T = temperature in °Kelvin  
The resultant equation solving for °K is:  
T(°K) = q x V / (k × ln(N))  
TEMP1  
TEMP2  
Figure 17. Internal Block Diagram of Temperature Sensor  
32 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
HOST WRITES  
ADC  
CONTROL REGISTER  
HOST WRITES  
ADC  
CONTROL REGISTER  
TEMPERATURE INPUT 1  
TEMPERATURE INPUT 1  
AND TEMPERATURE INPUT 2  
START CLOCK  
START CLOCK  
SET BUSY  
LOW  
SET BUSY  
LOW  
CONVERT  
TEMPERATURE INPUT 2  
IS ADC  
REFERENCE IN  
AUTO POWER-DOWN  
MODE?  
IS ADC  
REFERENCE IN  
AUTO POWER-DOWN  
MODE?  
NO  
NO  
NO  
IS DATA  
AVERAGING DONE?  
YES  
YES  
YES  
POWER UP REFERENCE  
POWER UP REFERENCE  
STORE TEMPERATURE INPUT 2 IN  
TEMP2 REGISTER  
POWER UP  
ADC  
POWER UP  
ADC  
POWER DOWN  
ADC  
POWER DOWN  
ADC  
CONVERT  
TEMPERATURE INPUT 1  
CONVERT  
TEMPERATURE INPUT 1  
POWER DOWN REFERENCE  
POWER DOWN REFERENCE  
SET BUSY HIGH  
SET BUSY HIGH  
NO  
IS DATA  
AVERAGING DONE?  
NO  
IS DATA  
AVERAGING DONE?  
TURN OFF CLOCK  
TURN OFF CLOCK  
YES  
YES  
DONE  
DONE  
STORE TEMPERATURE INPUT 1 IN  
TEMP1 REGISTER  
STORE TEMPERATURE INPUT 1 IN  
TEMP1 REGISTER  
Figure 19. Differential Temperature Measurement Process  
Figure 18. Single Temperature Measurement Process  
where:  
is 1.6°C/LSB (2.5V reference) and 0.65°C/LSB (1V ref-  
erence) with a typical accuracy of 3°C. Figure 19  
shows the differential temperature measurement-  
process.  
V = V (I N) - V (I1) (in mV)  
T(°K) = 2.68(°K/mV) × ∆V(mV)  
T(°C) = [2.68(°K/mV) × ∆V(mV) - 273°K]°C/ °K  
This differential conversion method does not require a  
test temperature calibration and can provide much  
improved absolute temperature measurement. In the  
differential conversion method, however, the resolution  
Note: The bias current for each diode temperature  
measurement is only turned ON during the acquisition  
and, therefore, does not noticeably increase power  
consumption.  
______________________________________________________________________________________ 33  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
The keys scanned by the keypad row and column pins  
are debounced for a period of time (debounce period)  
as determined by bits [DBN2:DBN0] of the keypad  
control register.  
Battery koltage, Auxiliary Input, and  
Temperature Input Ecan  
Use this scan to make periodic measurements of both  
battery inputs, both auxiliary inputs, and both tempera-  
ture inputs. The respective data registers have the lat-  
est results at the end of each cycle. Thus, a single write  
by the host to the MAX1233/MAX1234 ADC control reg-  
ister results in six different measurements being made.  
Figure 20 shows this scan operation.  
The keypad controller continues scanning until the keypad  
stays in the same state for an entire debounce period.  
Keypad Data  
Keypad data can be read out of either the keypad data  
status register (maskable), or the keypad data pending  
register (not maskable). The keypad mask register is  
used to mask individual keys in the keypad data status  
register.  
TouchꢂInitiated Ecreen Ecans  
(-ꢁNETE = 1; ADETE = 0)  
In the touch-initiated screen-scan mode, the  
MAX1233/MAX1234 automatically perform a touch-  
screen scan upon detecting a screen touch. The touch-  
screen scans performed are determined by the  
[A/D3:A/D0] written to the ADC control register. Figure  
21 shows the flowchart for a complete touch-initiated X-  
and Y- coordinate scan. Selection of resolution, conver-  
sion rate, averaging, and touch-screen settling time  
determine the overall conversion time.  
GPIO Control  
Write to bits [GP7:GP0] of the GPIO control register to  
configure one or more of the R_/C_pins as a GPIO pin.  
Write to bits [OE7:OE0] of the GPIO control register to  
configure the pins as an input or an output. GPIO data  
can be read from or written to the GPIO data register. A  
read returns the logic state of the GPIO pin. A write sets  
the logic state of a GPIO output pin. Writing to a GPIO  
input pin has no effect.  
Figure 22 shows the complete flowchart for a touch-  
initiated X, Y, and Z scan.  
Table 38 shows ADSTS Bit Operation.  
GPIO Pullup Disable Register  
When programmed as GPIO output, by default, the  
GPIO pins are active CMOS outputs. Write a 1 to the  
pullup disable register to configure the GPIO output as  
an open-drain output.  
HostꢂInitiated Ecreen Ecans  
(-ꢁNETE = ADETE = 0)  
In this mode, the host processor decides when a touch-  
screen scan begins. The MAX1233/MAX1234 detect a  
screen touch and drive PENIRQ LOW. The host recog-  
nizes the interrupt request and can choose to write to  
the ADC control register to select a touch-screen scan  
function (PENSTS = ADSTS = 0). Figures 23 and 24  
show the process of a host-initiated screen scan.  
Using the 8ꢂBit DAC for LCD/TFT  
Contrast Control  
Design Example:  
The 8-bit DAC offers the ability to control biasing of  
LCD/TFT screens. In the circuit of Figure 27, it is  
desired to have the MAX1677 DC-DC converter’s V  
to be adjustable.  
OUT  
Key-Press Initiated Debounce Scan  
(KEYSTS1 = 1, KEYSTS0 =0)  
In the key-press initiated debounce mode, the  
MAX1233/MAX1234 automatically perform a debounce  
upon detecting a key press. Key scanning begins once  
a key press has been detected and ends when a key  
press has been debounced (Figures 25 and 9a).  
The minimum and maximum DAC voltages (V  
DAC(LOW)  
Characteristics table.  
DAC(HIGH)  
) can be found in the Electrical  
and V  
The output voltage of the MAX1677 (V  
) can be cal-  
OUT  
culated by noting the following equations:  
Host-Initiated Debounce Scan  
In this mode, the host processor decides when a  
debounce scan begins. The MAX1233/MAX1234 detect  
a key press and drive KEYIRQ low. The host processor  
recognizes the interrupt request and can choose to  
write to the keypad control register to initiate a  
debounce scan (Figures 26 and 9b).  
V
= V  
+ i R1  
[Equation 1]  
[Equation 2]  
[Equation 3]  
[Equation 4]  
OUT  
REFDAC  
1
i = i + i  
1 3  
2
i = V  
2
/ R2  
REFDAC  
i = (V  
3
- V  
) / R3  
DAC  
REFDAC  
Substituting equations 2, 3, and 4 into equation 1  
yields:  
Keypad Debouncing  
Keys are debounced either when (1) a key press has  
been detected, or (2) when commanded by the host MPU.  
V
= V  
REFDAC  
+ (R1 / R2) V + (R1 / R3)  
REF  
OUT  
(V  
REFDAC  
- V  
)
[Equation 5]  
DAC  
34 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
BATTERY VOLTAGE, AUXILIARY INPUT, AND TEMPERATURE INPUT SCAN ([A/D3:A/D0] = 1011)  
HOST WRITES  
ADC  
CONTROL REGISTER  
CONVERT  
CONVERT  
BATTERY INPUT 2  
TEMPERATURE INPUT 1  
START CLOCK  
NO  
IS DATA  
AVERAGING DONE?  
NO  
IS DATA  
AVERAGING DONE?  
SET BUSY  
LOW  
YES  
YES  
IS ADC  
REFERENCE IN  
AUTO POWER-DOWN  
MODE?  
NO  
STORE BATTERY INPUT 2 IN  
BAT2 REGISTER  
STORE TEMPERATURE INPUT 1 IN  
TEMP1 REGISTER  
YES  
CONVERT  
CONVERT  
AUXILIARY INPUT 1  
TEMPERATURE INPUT 2  
POWER UP REFERENCE  
POWER UP  
ADC  
NO  
IS DATA  
NO  
IS DATA  
AVERAGING DONE?  
AVERAGING DONE?  
CONVERT  
BATTERY INPUT 1  
YES  
YES  
STORE AUXILIARY INPUT 1 IN  
AUX1 REGISTER  
STORE TEMPERATURE INPUT 2 IN  
TEMP2 REGISTER  
NO  
IS DATA  
AVERAGING DONE?  
POWER DOWN  
ADC  
CONVERT  
AUXILIARY INPUT 2  
YES  
POWER DOWN REFERENCE  
SET BUSY HIGH  
STORE BATTERY INPUT 1 IN  
BAT1 REGISTER  
NO  
IS DATA  
AVERAGING DONE?  
YES  
TURN OFF CLOCK  
DONE  
STORE AUXILIARY INPUT 2 IN  
AUX2 REGISTER  
Figure 20. Scan Mode Flowchart  
______________________________________________________________________________________ 35  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
PENIRQ-INITIATED  
X- AND Y- SCREEN SCAN  
SCREEN  
TOUCH  
POWER DOWN ADC  
TURN ON DRIVERS: X+. X-  
ARE THERE  
UNREAD SCAN  
RESULTS?  
YES  
NO  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
SET  
PENIRQ LOW  
YES  
POWER UP ADC  
GO TO  
HOST-INITIATED  
SCAN  
NO  
IS PENSTS  
BIT = 1?  
(FIGURE 23)  
CONVERT Y- COORDINATES  
YES  
START CLOCK  
IS DATA  
AVERAGING DONE?  
NO  
SET BUSY LOW  
YES  
STORE Y- COORDINATES IN  
Y- REGISTER  
TURN ON DRIVERS: Y+, Y-  
POWER DOWN  
ADC  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
SET BUSY HIGH  
TURN OFF CLOCK  
RESET PENIRQ HIGH  
YES  
POWER UP ADC  
CONVERT X- COORDINATES  
DONE  
IS DATA  
NO  
AVERAGING DONE?  
YES  
STORE X- COORDINATES  
IN X- REGISTER  
Figure 21. Touch-Initiated X- and Y- Coordinate Screen Scan  
36 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
PENIRQ-INITIATED  
X, Y, AND Z SCREEN SCAN  
SCREEN  
TOUCH  
STORE X- COORDINATES  
CONVERT Z - COORDINATES  
1
IN X- REGISTER  
ARE THERE  
UNREAD SCAN  
RESULTS?  
YES  
POWER DOWN ADC  
NO  
IS DATA  
AVERAGING DONE?  
TURN ON DRIVERS: X+, X-  
NO  
YES  
SET  
PENIRQ LOW  
STORE Z - COORDINATES  
1
IN Z - REGISTER  
1
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
GO TO  
HOST-INITIATED  
SCAN  
IS PENSTS  
BIT = 1?  
CONVERT Z COORDINATES  
2
YES  
(FIGURE 24)  
POWER UP ADC  
YES  
NO  
IS DATA  
AVERAGING DONE?  
START CLOCK  
CONVERT Y- COORDINATES  
YES  
SET BUSY LOW  
STORE Z - COORDINATES  
2
IN Z - REGISTER  
2
NO  
IS DATA  
AVERAGING DONE?  
TURN ON DRIVERS: Y+, Y-  
POWER UP ADC  
SET BUSY HIGH  
TURN OFF CLOCK  
YES  
STORE Y- COORDINATES IN  
Y- REGISTER  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
POWER DOWN ADC  
YES  
POWER UP ADC  
TURN ON DRIVERS: Y+, X-  
RESET PENIRQ HIGH  
DONE  
CONVERT X- COORDINATES  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
NO  
IS DATA  
AVERAGING DONE?  
YES  
POWER UP ADC  
Figure 22. Touch-Initiated X- , Y-, and Z- Coordinate Screen Scan  
______________________________________________________________________________________ 37  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
HOST-INITIATED  
X- AND Y- SCREEN SCAN  
SCREEN  
TOUCH  
STORE X- COORDINATES  
IN X- REGISTER  
POWER DOWN ADC  
ARE THERE  
UNREAD SCAN  
RESULTS?  
YES  
TURN ON DRIVERS: X+, X-  
NO  
SET  
PENIRQ LOW  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
GO TO  
TOUCH-INITIATED  
SCAN  
YES  
IS PENSTS  
BIT = 1?  
YES  
(FIGURE 21)  
POWER UP ADC  
NO  
HOST WRITES  
ADC CONTROL REGISTER  
(PENSTS = ADSTS = 0)  
CONVERT Y- COORDINATES  
SET BUSY LOW  
START CLOCK  
NO  
IS DATA  
AVERAGING DONE?  
YES  
STORE Y- COORDINATES IN  
Y- REGISTER  
TURN ON DRIVERS: Y+, Y-  
POWER DOWN ADC  
SET BUSY HIGH  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
YES  
TURN OFF CLOCK  
POWER UP ADC  
RESET PENIRQ HIGH  
DONE  
CONVERT X- COORDINATES  
NO  
IS DATA  
AVERAGING DONE?  
YES  
Figure 23. Host-Initiated X- and Y- Coordinate Screen Scan  
38 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
HOST-INITIATED  
X-, Y-, AND Z- SCREEN SCAN  
TURN ON DRIVERS: Y+, X-  
SCREEN  
TOUCH  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
ARE THERE  
UNREAD SCAN  
RESULTS?  
YES  
TURN ON DRIVERS: X+, X-  
YES  
POWER UP ADC  
NO  
SET  
PENIRQ LOW  
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
CONVERT Z - COORDINATES  
1
GO TO  
TOUCH-INITIATED  
SCAN  
YES  
IS PENSTS  
BIT = 1?  
YES  
(FIGURE 22)  
NO  
IS DATA  
AVERAGING DONE?  
POWER UP ADC  
NO  
HOST WRITES  
ADC  
CONTROL REGISTER  
YES  
CONVERT Y- COORDINATES  
STORE Z - COORDINATES  
1
IN Z - REGISTER  
1
START CLOCK  
SET BUSY LOW  
NO  
IS DATA  
AVERAGING DONE?  
CONVERT Z - COORDINATES  
2
YES  
NO  
IS DATA  
AVERAGING DONE?  
STORE Y- COORDINATES IN  
Y- REGISTER  
TURN ON DRIVERS: Y+, Y-  
YES  
POWER DOWN ADC  
STORE Z - COORDINATES  
IIN Z - REGISTER  
2
2
NO  
IS TOUCH-SCREEN  
SETTLING DONE?  
YES  
POWER DOWN ADC  
SET BUSY HIGH  
POWER UP ADC  
CONVERT X- COORDINATES  
TURN OFF CLOCK  
NO  
IS DATA  
AVERAGING DONE?  
RESET PENIRQ HIGH  
DONE  
YES  
STORE X- COORDINATES  
IN X- REGISTER  
POWER DOWN ADC  
Figure 24. Host-Initiated X-, Y-, and Z- Coordinate Screen Scan  
______________________________________________________________________________________ 39  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
HOST-INITIATED DEBOUNCE SCAN  
KEY-PRESS-INITIATED DEBOUNCE SCAN  
KEYPAD  
TOUCH  
KEYPAD  
TOUCH  
ARE THERE  
UNREAD DEBOUNCE  
RESULTS?  
YES  
ARE THERE  
YES  
UNREAD DEBOUNCE  
RESULTS?  
NO  
SET  
KEYIRQ LOW  
NO  
SET  
KEYIRQ LOW  
YES  
GO TO KEY-PRESS-INITIATED  
DEBOUNCE SCAN  
IS KEYSTS1 = 1?  
NO  
GO TO HOST-INITIATED  
DEBOUNCE SCAN  
IS KEYSTS1 = 1?  
NO  
HOST WRITES  
ADC  
YES  
CONTROL REGISTER  
START CLOCK  
START CLOCK  
SET BUSY LOW  
SET BUSY LOW  
SCAN AND DEBOUNCE KEYS  
SCAN AND DEBOUNCE KEYS  
STORE KEYPAD SCAN  
RESULTS IN REGISTER  
STORE KEYPAD SCAN  
RESULTS IN REGISTER  
SET BUSY HIGH  
RESET KEYIRQ HIGH  
DONE  
SET BUSY HIGH  
RESET KEYIRQ HIGH  
DONE  
Figure 25. Key-Press-Initiated Debounce Scan  
Figure 26. Host-Initiated Debounce Scan  
40 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
V
BATT  
MAX1233  
MAX1234  
FEEDBACK  
RESISTORS  
SIMPLIFIED DC/DC CONVERTER  
AV  
DD  
DACOUT  
R3  
ERROR AMP  
R1  
R2  
i
i
1
DAC  
CONTROL  
V
REF  
i
3
2
V
OUT  
(LCD BIAS)  
1.25V  
MAX1677  
Figure 27. LCD Contrast Control Circuit  
CS  
SCK  
CS  
CS  
SCK  
CS  
DCLK  
DOUT  
DCLK  
DOUT  
MISO  
MISO  
SPI  
MICROWIRE  
MAX1233  
MAX1234  
MAX1233  
MAX1234  
V
DD  
MOSI  
DIN  
MOSI  
DIN  
BUSY  
PENIRQ  
KEYIRQ  
BUSY  
PENIRQ  
KEYIRQ  
SS  
Figure 28a. SPI Interface  
Figure 28b. MICROWIRE Interface  
Equation 5 shows that the maximum output voltage occurs  
for the minimum DAC voltage, and that the minimum  
output voltage occurs for the maximum DAC voltage.  
Calculate V  
using the following equation:  
OUTMIN  
V
= V  
/ R3  
+ (R1  
REFMIN  
/ R2  
)V  
+
OUTMIN  
REFMIN  
MIN  
- V  
MAX REFMIN  
)
DACMAX  
(R1  
) (V  
MIN  
MAX  
To ensure that the desired output swing is achieved,  
choose appropriate values of R1, R2, and R3.  
[Equation 7]  
is too low for desired operation, avoid the DAC  
If V  
OUTMIN  
Calculate V  
using the following equation:  
OUTMAX  
codes, which cause the output voltage to go too low.  
V
= V  
+ (R1  
REFMAX  
/ R2 )V  
MIN REFMAX  
OUTMAX  
REFMAX  
MAX  
- V  
Connection to Etandard Interface  
+ (R1  
/ R3  
) (V  
)
DACMIN  
MAX  
MIN  
SPI and MICROWIRE Interfaces  
When using an SPI interface (Figure 28a) or  
MICROWIRE (Figure 28b), set the CPOL = CPHA = 0.  
At least four 8-bit operations are necessary to read or  
write data to/from the MAX1233/MAX1234. DOUT data  
transitions on the serial clock’s falling edge and is  
clocked into the µP on the DCLK’s rising edge. The first  
[Equation 6]  
exceeds the maximum ratings of the  
LCD/TFT display, the DAC codes that cause the output  
voltage to go too high must be avoided.  
If V  
OUTMAX  
______________________________________________________________________________________ 41  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
connections. Establish a single-point analog ground  
CS  
SCK  
CS  
(star ground point) at GND. Connect all analog grounds  
to the star ground. Connect the digital system ground  
to the star ground at this point only. For lowest noise oper-  
ation, the ground return to the star ground’s power supply  
should be low impedance and as short as possible.  
DCLK  
DOUT  
MISO  
QSPI  
MAX1233  
MAX1234  
High-frequency noise in the power supply may affect  
the high-speed comparator in the ADC. Bypass the  
supply to the star ground with a 0.1µF capacitor as  
close to pins 1 and 2 of the MAX1233/MAX1234 as  
possible. Minimize capacitor lead lengths for best sup-  
ply-noise rejection. If the power supply is very noisy, a  
10resistor can be connected as a lowpass filter.  
V
DD  
MOSI  
DIN  
BUSY  
PENIRQ  
KEYIRQ  
SS  
Figure 29. QSPI Interface  
While using the MAX1233/MAX1234 with a resistive  
touch screen, the interconnection between the convert-  
er and the touch screen should be as short and robust  
as possible. Since resistive touch screens have a low  
resistance, longer or loose connections are a source of  
error. Noise can also be a major source of error in  
touch-screen applications (e.g., applications that  
require a backlight LCD panel). This EMI noise can be  
coupled through the LCD panel to the touch screen  
and cause “flickering” of the converted data. Utilizing a  
touch screen with a bottom-side metal layer connected  
to ground couples the majority of noise to ground. In  
addition, the filter capacitors from Y+, Y-, X+, and X-  
inputs to ground also help reduce the noise further.  
Caution should be observed for settling time of the  
touch screen.  
SUPPLIES  
GND  
+3V/+5V  
+3V/+5V  
R* = 10Ω  
AV  
DD  
GND  
DV  
DD  
V
DD  
DGND  
DIGITAL  
CIRCUITRY  
MAX1233  
MAX1234  
*OPTIONAL  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1233/MAX1234  
are measured using the end-point method.  
Figure 30. Power-Supply Grounding Connection  
two 8-bit data streams write the command word into the  
MAX1233/MAX1234. The next two 8-bit data streams  
can contain either the input or output data.  
QSPI Interface  
Using the high-speed QSPI interface (Figure 29) with  
CPOL = 0 and CPHA = 0, the MAX1233/MAX1234 sup-  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
port a maximum f  
of 10MHz. DOUT data transi-  
SCLK  
tions on the serial clock’s falling edge and is clocked  
into the µP on the DCLK’s rising edge.  
Layout, Grounding, and Bypassing  
Aperture Jitter  
For best performance, use printed circuit boards with  
good layouts; do not use wire-wrap boards even for  
prototyping. Ensure that digital and analog signal lines  
are separated from each other. Do not run analog and  
digital (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the sampling clock and the instant when  
an actual sample is taken.  
Figure 30 shows the recommended system ground  
42 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
EignalꢂtoꢂNoise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-  
to-digital noise is caused by quantization error only and  
results directly from the ADC’s resolution (N bits):  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 × log  
2
SNR = (6.02 N + 1.76) dB  
V
1
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
harmonics, respectively.  
5
EpuriousꢂFree Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component.  
EignalꢂtoꢂNoise -lus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
SINAD (dB) = 20 log (Signal  
/ Noise  
)
RMS  
RMS  
ꢁffective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of  
quantization noise only. With an input range equal to  
the full-scale range of the ADC, calculate the effective  
number of bits as follows:  
Chip Information  
TRANSISTOR COUNT: 28,629  
ENOB = (SINAD - 1.76) / 6.02  
______________________________________________________________________________________ 43  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
-ac5age Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
44 ______________________________________________________________________________________  
1ꢀ5k ꢁEDꢂ-rotected TouchꢂEcreen  
Controllers Include DAC and Keypad Controller  
-ac5age Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
21-0140  
H
-DRAWING NOT TO SCALE-  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
CODES  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
**  
**  
**  
**  
A1  
A3  
b
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
YES  
NO  
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
D
E
**  
**  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
L
**  
**  
**  
**  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
40  
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
N
ND  
NE  
16  
20  
28  
32  
4
4
5
5
7
7
8
8
10  
10  
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
NO  
YES  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
0.40  
YES  
NO  
NO  
NOTES:  
T2855N-1 3.15 3.25  
**  
**  
**  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
**  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3, AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
H
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated -roducts, 120 Ean Gabriel Drive, Eunnyvale, CA 94086 408ꢂ737ꢂ7600 ____________________ 45  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1234EVKIT

Evaluation System/Evaluation Kit for the MAX1233/MAX1234
MAXIM

MAX1234EVKIT|MAX1234EVC16

Evaluation System/Evaluation Kit for the MAX1233/MAX1234
MAXIM

MAX1234EVSYS

Evaluation System/Evaluation Kit for the MAX1233/MAX1234
MAXIM

MAX1236

2.7V to 3.6V and 4.5V to 5.5V, Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
MAXIM

MAX1236EUA

2.7V to 3.6V and 4.5V to 5.5V, Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
MAXIM

MAX1236EUA+

2.7V to 3.6V and 4.5V to 5.5V, Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
MAXIM

MAX1236EUA+T

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX1236EUA-T

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX1236EVKIT

Evaluation Kit for the MAX1236
MAXIM

MAX1236KEUA

2.7V to 3.6V and 4.5V to 5.5V, Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
MAXIM

MAX1236KEUA

4-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, MICRO MAX PACKAGE-8
ROCHESTER

MAX1236KEUA+

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM