MAX1220BETX-T [MAXIM]

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, TQFN-36;
MAX1220BETX-T
型号: MAX1220BETX-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, TQFN-36

信息通信管理
文件: 总47页 (文件大小:983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3295; Rev 3; 11/04  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
General Description  
Features  
The MAX1220–MAX1223/MAX1257/MAX1258 integrate a  
12-bit, multichannel, analog-to-digital converter (ADC),  
and a 12-bit, octal, digital-to-analog converter (DAC) in a  
single IC. These devices also include a temperature sen-  
sor and configurable general-purpose I/O ports (GPIOs)  
with a 25MHz SPI™-/QSPI™-/MICROWIRE™-compatible  
serial interface. The ADC is available in 8/12/16 input-  
channel versions. The octal DAC outputs settle within  
2.0µs and the ADC has a 300ksps conversion rate.  
12-Bit, 300ksps ADC  
Analog Multiplexer with True-Differential  
Track/Hold (T/H)  
16 Single-Ended Channels or 8 Differential  
Channels (Unipolar or Bipolar)  
12 Single-Ended Channels or 6 Differential  
Channels (Unipolar or Bipolar)  
8 Single-Ended Channels or 4 Differential  
Channels (Unipolar or Bipolar)  
Excellent Accuracy: 0ꢀ. ꢁSB ꢂIꢁ, 0ꢀ. ꢁSB DIꢁ  
All devices include an internal reference (2.5V or  
4.096V) for both the ADC and DAC. Programmable ref-  
erence modes allow the use of an internal reference, an  
external reference, or a combination of both. Features  
such as an internal 1°C accurate temperature sensor,  
FIFO, scan modes, programmable internal or external  
clock modes, data averaging, and AutoShutdown™  
allow users to minimize power consumption and proces-  
sor requirements. The low glitch energy (4nVs) and low  
digital feedthrough (0.5nVs) of the integrated octal  
DACs make these devices ideal for digital control of  
fast-response closed-loop systems.  
12-Bit, Octal, 2µs Settling DAC  
Ultra-ꢁow Glitch Energy (4nV•s)  
Power-Up Options from Zero Scale or Full Scale  
Excellent Accuracy: 0ꢀ. ꢁSB ꢂIꢁ  
ꢂnternal Reference or External Single-Ended/  
Differential Reference  
ꢂnternal Reference Voltage 2ꢀ.V or 4ꢀ096V  
ꢂnternal 1ꢃC Accurate Temperature Sensor  
On-Chip FꢂFO Capable of Storing 16 ADC  
Conversion Results and One Temperature Result  
On-Chip Channel-Scan Mode and ꢂnternal  
The devices are guaranteed to operate with a supply volt-  
age from +2.7V to +3.6V (MAX1221/MAX1223/MAX1257)  
and from +4.75V to +5.25V (MAX1220/MAX1222/  
MAX1258). These devices consume 2.5mA at 300ksps  
throughput, only 22µA at 1ksp throughput, and under  
0.2µA in the shutdown mode. The MAX1257/MAX1258  
feature 12 GPIOs, while the MAX1220/MAX1221 offer 4  
GPIOs that can be configured as inputs or outputs.  
The MAX1220–MAX1223 are available in 36-pin thin  
QFN packages. The MAX1257/MAX1258 are available  
in 48-pin thin QFN packages. All devices are specified  
over the -40°C to +85°C temperature range.  
Data-Averaging Features  
Analog Single-Supply Operation  
+2ꢀ7V to +3ꢀ6V or +4ꢀ7.V to +.ꢀ2.V  
2.MHz, SPꢂ/QSPꢂ/MꢂCROWꢂRE Serial ꢂnterface  
AutoShutdown Between Conversions  
ꢁow-Power ADC  
2ꢀ.mA at 300ksps  
22µA at 1ksps  
0ꢀ2µA at Shutdown  
ꢁow-Power DAC: 1ꢀ.µA  
Evaluation Kit Available (Order MAX12.8EVKꢂT)  
Applications  
Controls for Optical Components  
Base-Station Control Loops  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
System Supervision and Control  
Data-Acquisition Systems  
Ordering Information/Selector Guide  
REF  
VOꢁTAGE  
(V)  
AIAꢁOG  
SUPPꢁY  
VOꢁTAGE (V)  
RESOꢁUTꢂOI  
BꢂTS***  
ADC  
DAC  
PART  
TEMP RAIGE PꢂI-PACKAGE  
GPꢂOs  
CHAIIEꢁS CHAIIEꢁS  
MAX1220BETX -40°C to +85°C 36 Thin QFN-EP**  
MAX1221BETX -40°C to +85°C 36 Thin QFN-EP**  
MAX1222BETX* -40°C to +85°C 36 Thin QFN-EP**  
MAX1223BETX* -40°C to +85°C 36 Thin QFN-EP**  
MAX12.7BETM -40°C to +85°C 48 Thin QFN-EP**  
MAX12.8BETM -40°C to +85°C 48 Thin QFN-EP**  
4.096  
2.5  
4.75 to 5.25  
2.7 to 3.6  
12  
12  
12  
12  
12  
12  
8
8
8
8
8
8
8
4
4
8
4.096  
2.5  
4.75 to 5.25  
2.7 to 3.6  
12  
12  
16  
16  
0
0
2.5  
2.7 to 3.6  
12  
12  
4.096  
4.75 to 5.25  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
***Number of resolution bits refers to both DAC and ADC.  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
ABSOꢁUTE MAXꢂMUM RATꢂIGS  
AV  
to AGND .........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DGND to AGND.....................................................-0.3V to +0.3V  
DV to AV .......................................................-3.0V to +0.3V  
Digital Inputs to DGND.............................................-0.3V to +6V  
36-Pin Thin QFN (6mm x 6mm)  
(derate 26.3mW/°C above +70°C)......................2105.3mW  
40-Pin Thin QFN (6mm x 6mm)  
DD  
DD  
Digital Outputs to DGND .........................-0.3V to (DV + 0.3V)  
Analog Inputs, Analog Outputs and REF_  
(derate 26.3mW/°C above +70°C)......................2105.3mW  
48-Pin Thin QFN (7mm x 7mm)  
DD  
to AGND...............................................-0.3V to (AV + 0.3V)  
(derate 26.3mW/°C above +70°C)......................2105.3mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Maximum Current into Any Pin (except AGND, DGND, AV  
,
DD  
DV , and OUT_) ...........................................................50mA  
DD  
Maximum Current into OUT_.............................................100mA  
Iote: If the package power dissipation is not exceeded, one output at a time may be shorted to AV , DV , AGND, or DGND  
DD  
DD  
indefinitely.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS  
(AV  
= DV  
= 2.7V to 3.6V (MAX1221/MAX1223/MAX1257), external reference V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
=
DD  
DD  
REF  
DD  
DV = 4.75V to 5.25V (MAX1220/MAX1222/MAX1258), external reference V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz  
DD  
REF  
SCLK  
(50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at AV = DV = 3V (MAX1221/MAX1223/MAX1257),  
A
DD  
DD  
AV = DV = 5V (MAX1220/MAX1222/MAX1258), T = +25°C. Outputs are unloaded, unless otherwise noted.)  
DD  
DD  
A
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
ADC  
MꢂI  
TYP  
MAX  
UIꢂTS  
DC ACCURACY (Note 1)  
Resolution  
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
0.5  
1
1.0  
1.0  
4.0  
4.0  
DNL  
LSB  
LSB  
Gain Error  
(Note 2)  
0.1  
0.8  
0.1  
LSB  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
ppm/°C  
LSB  
DYIAMꢂC SPECꢂFꢂCATꢂOIS (10kHz sine wave input, V = 2ꢀ.V  
(MAX1221/MAX1223/MAX12.7), V = 4ꢀ096V  
ꢂI P-P  
ꢂI  
P-P  
(MAX1220/MAX1222/MAX12.8), 300ksps, f  
= 4ꢀ8MHz)  
SCꢁK  
Signal-to-Noise Plus Distortion  
SINAD  
70  
-76  
72  
dB  
Total Harmonic Distortion  
(Up to the Fifth Harmonic)  
THD  
dBc  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Linear Bandwidth  
SFDR  
IMD  
dBc  
dBc  
kHz  
f
= 9.9kHz, f = 10.2kHz  
76  
100  
1
in1  
in2  
SINAD > 70dB  
-3dB point  
Full-Power Bandwidth  
MHz  
COIVERSꢂOI RATE (Note 3)  
External reference  
0.8  
µs  
Conversion  
clock  
Power-Up Time  
t
PU  
Internal reference (Note 4)  
218  
cycles  
2
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 2.7V to 3.6V (MAX1221/MAX1223/MAX1257), external reference V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
=
DD  
DD  
REF  
DD  
DV = 4.75V to 5.25V (MAX1220/MAX1222/MAX1258), external reference V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz  
DD  
REF  
SCLK  
(50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at AV = DV = 3V (MAX1221/MAX1223/MAX1257),  
A
DD  
DD  
AV = DV = 5V (MAX1220/MAX1222/MAX1258), T = +25°C. Outputs are unloaded, unless otherwise noted.)  
DD  
DD  
A
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
3.5  
MAX  
UIꢂTS  
Acquisition Time  
t
(Note 5)  
0.6  
µs  
ACQ  
Internally clocked  
Conversion Time  
t
µs  
CONV  
Externally clocked  
2.7  
Internal Clock Frequency  
External Clock Frequency  
Duty Cycle  
Internally clocked conversion  
Externally clocked conversion (Note 5)  
4.3  
MHz  
MHz  
%
f
0.1  
40  
4.8  
60  
CLK  
Aperture Delay  
30  
ns  
Aperture Jitter  
<50  
ps  
AIAꢁOG ꢂIPUTS  
Unipolar  
Bipolar  
0
V
REF  
Input Voltage Range (Note 6)  
V
-V  
/2  
V
/2  
REF  
REF  
Input Leakage Current  
Input Capacitance  
0.01  
24  
1
µA  
pF  
ꢂITERIAꢁ TEMPERATURE SEISOR  
T
T
= +25°C  
0.7  
1.0  
1/8  
A
A
Measurement Error (Notes 5, 7)  
°C  
= T  
to T  
3.0  
MIN  
MAX  
Temperature Resolution  
°C/LSB  
ꢂITERIAꢁ REFEREICE  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
2.482  
4.066  
2.50  
2.518  
4.126  
REF1 Output Voltage (Note 8)  
V
4.096  
REF1 Voltage Temperature  
Coefficient  
TC  
30  
ppm/°C  
kΩ  
REF  
REF1 Output Impedance  
REF1 Short-Circuit Current  
EXTERIAꢁ REFEREICE  
6.5  
V
V
= 2.5V  
0.39  
0.63  
REF  
REF  
mA  
= 4.096V  
AV  
0.05  
+
DD  
REF1 Input Voltage Range  
V
V
REF mode 11 (Note 4)  
1
V
V
REF1  
REF2  
AV  
0.05  
+
DD  
REF mode 01  
REF mode 11  
1
0
REF2 Input Voltage Range  
(Note 4)  
1
_______________________________________________________________________________________  
3
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 2.7V to 3.6V (MAX1221/MAX1223/MAX1257), external reference V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
=
DD  
DD  
REF  
DD  
DV = 4.75V to 5.25V (MAX1220/MAX1222/MAX1258), external reference V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz  
DD  
REF  
SCLK  
(50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at AV = DV = 3V (MAX1221/MAX1223/MAX1257),  
A
DD  
DD  
AV = DV = 5V (MAX1220/MAX1222/MAX1258), T = +25°C. Outputs are unloaded, unless otherwise noted.)  
DD  
DD  
A
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
MAX  
UIꢂTS  
V
= 2.5V  
REF  
(MAX1221/MAX1223/MAX1257),  
= 300ksps  
25  
80  
f
SAMPLE  
REF1 Input Current (Note 9)  
I
µA  
REF1  
V
= 4.096V  
REF  
(MAX1220/MAX1222/MAX1258),  
= 300ksps  
40  
80  
1
f
SAMPLE  
Acquisition between conversions  
0.01  
25  
V
= 2.5V  
REF  
(MAX1221/MAX1223/MAX1257),  
= 300ksps  
80  
f
SAMPLE  
REF2 Input Current  
I
µA  
REF2  
V
= 4.096V  
REF  
(MAX1220/MAX1222/MAX1258),  
= 300ksps  
40  
80  
1
f
SAMPLE  
Acquisition between conversions  
0.01  
DAC  
DC ACCURACY (Note 10)  
Resolution  
12  
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
0.5  
4
Guaranteed monotonic  
(Note 8)  
1.0  
10  
V
3
10  
5
OS  
ppm of  
FS/°C  
Offset-Error Drift  
Gain Error  
GE  
(Note 8)  
10  
LSB  
ppm of  
FS/°C  
Gain Temperature Coefficient  
DAC OUTPUT  
8
AV  
0.02  
-
-
DD  
No load  
0.02  
0.1  
Output-Voltage Range  
V
AV  
0.1  
DD  
10kload to either rail  
DC Output Impedance  
Capacitive Load  
0.5  
(Note 11)  
1
nF  
AV  
= 2.7V, V  
= 2.5V  
DD  
REF  
(MAX1221/MAX1223/MAX1257),  
gain error < 1%  
2000  
500  
Resistive Load to AGND  
R
L
AV  
= 4.75V, V  
= 4.096V  
DD  
REF  
(MAX1220/MAX1222/MAX1258),  
gain error < 2%  
4
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 2.7V to 3.6V (MAX1221/MAX1223/MAX1257), external reference V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
=
DD  
DD  
REF  
DD  
DV = 4.75V to 5.25V (MAX1220/MAX1222/MAX1258), external reference V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz  
DD  
REF  
SCLK  
(50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at AV = DV = 3V (MAX1221/MAX1223/MAX1257),  
A
DD  
DD  
AV = DV = 5V (MAX1220/MAX1222/MAX1258), T = +25°C. Outputs are unloaded, unless otherwise noted.)  
DD  
DD  
A
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
25  
21  
1
MAX  
UIꢂTS  
µs  
From power-down mode, AV  
From power-down mode, AV  
= 5V  
DD  
Wake-Up Time (Note 12)  
1kOutput Termination  
100kOutput Termination  
= 2.7V  
DD  
Programmed in power-down mode  
kΩ  
At wake-up or programmed in  
power-down mode  
100  
kΩ  
DYIAMꢂC PERFORMAICE (Notes 5, 13)  
Output-Voltage Slew Rate  
Output-Voltage Settling Time  
Digital Feedthrough  
SR  
Positive and negative  
3
V/µs  
µs  
t
To 1 LSB, 400 - C00 hex (Note 7)  
Code 0, all digital inputs from 0 to DV  
2
5
S
0.5  
nVs  
DD  
Major Code Transition Glitch  
Impulse  
Between codes 2047 and 2048  
4
nVs  
From V  
660  
720  
260  
320  
REF  
Output Noise (0.1Hz to 50MHz)  
Output Noise (0.1Hz to 500kHz)  
µV  
µV  
P-P  
P-P  
Using internal reference  
From V  
REF  
Using internal reference  
DAC-to-DAC Transition  
Crosstalk  
0.5  
nVs  
ꢂITERIAꢁ REFEREICE  
REF1 Output Voltage (Note 8)  
REF1 Temperature Coefficient  
REF1 Short-Circuit Current  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
2.482  
4.066  
2.5  
4.096  
30  
2.518  
4.126  
V
TC  
ppm/°C  
mA  
REF  
V
V
= 2.5V  
0.39  
0.63  
REF  
REF  
= 4.096V  
EXTERIAꢁ-REFEREICE ꢂIPUT  
REF1 Input Voltage Range  
REF1 Input Impedance  
V
R
REF modes 01, 10, and 11 (Note 4)  
0.7  
70  
AV  
V
REF1  
DD  
100  
130  
kΩ  
REF1  
DꢂGꢂTAꢁ ꢂITERFACE  
DꢂGꢂTAꢁ ꢂIPUTS (SCꢁK, DꢂI, CS, CNVST, LDAC)  
Input-Voltage High  
V
DV = 2.7V to 5.25V  
2.4  
V
V
IH  
DD  
DV = 3.6V to 5.25V  
0.8  
0.6  
10  
DD  
Input-Voltage Low  
V
IL  
DV = 2.7V to 3.6V  
DD  
Input Leakage Current  
Input Capacitance  
I
0.01  
15  
µA  
pF  
L
C
IN  
DꢂGꢂTAꢁ OUTPUT (DOUT) (Note 14)  
Output-Voltage Low  
V
I
= 2mA  
SINK  
0.4  
V
OL  
_______________________________________________________________________________________  
.
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 2.7V to 3.6V (MAX1221/MAX1223/MAX1257), external reference V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
=
DD  
DD  
REF  
DD  
DV = 4.75V to 5.25V (MAX1220/MAX1222/MAX1258), external reference V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz  
DD  
REF  
SCLK  
(50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at AV = DV = 3V (MAX1221/MAX1223/MAX1257),  
A
DD  
DD  
AV = DV = 5V (MAX1220/MAX1222/MAX1258), T = +25°C. Outputs are unloaded, unless otherwise noted.)  
DD  
DD  
A
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
= 2mA  
MꢂI  
TYP  
MAX  
10  
UIꢂTS  
DV  
-
-
DD  
Output-Voltage High  
V
I
V
OH  
SOURCE  
0.5  
Tri-State Leakage Current  
Tri-State Output Capacitance  
DꢂGꢂTAꢁ OUTPUT (EOC) (Note 14)  
Output-Voltage Low  
µA  
pF  
C
15  
OUT  
V
I
I
= 2mA  
0.4  
10  
V
V
OL  
SINK  
DV  
DD  
Output-Voltage High  
V
= 2mA  
SOURCE  
OH  
0.5  
Tri-State Leakage Current  
µA  
pF  
Tri-State Output Capacitance  
C
15  
OUT  
DꢂGꢂTAꢁ OUTPUTS (GPꢂO_) (Note 14)  
I
I
= 2mA  
0.4  
0.8  
SINK  
GPIOB_, GPIOC_ Output-  
Voltage Low  
V
= 4mA  
SINK  
GPIOB_, GPIOC_ Output-  
Voltage High  
DV  
0.5  
-
-
DD  
I
I
I
= 2mA  
V
V
V
SOURCE  
GPIOA_ Output-Voltage Low  
GPIOA_ Output-Voltage High  
Tri-State Leakage Current  
= 15mA  
0.8  
10  
SINK  
DV  
0.8  
DD  
= 15mA  
SOURCE  
µA  
pF  
Tri-State Output Capacitance  
C
15  
OUT  
POWER REQUꢂREMEITS (Note 15)  
Digital Positive-Supply Voltage  
DV  
2.70  
AV  
V
DD  
DD  
Idle, all blocks shut down  
0.2  
1
4
µA  
mA  
Digital Positive-Supply Current  
DI  
AV  
DD  
Only ADC on, external reference  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
Idle, all blocks shut down  
2.7  
3.6  
5.25  
2
Analog Positive-Supply Voltage  
Analog Positive-Supply Current  
V
DD  
4.75  
0.2  
2.8  
2.6  
1.5  
µA  
f
f
= 300ksps  
= 100ksps  
4.2  
SAMPLE  
SAMPLE  
Only ADC on,  
external reference  
A
IDD  
mA  
All DACs on, no load, internal reference  
4
AV = 2.7V (MAX1221/MAX1223/  
MAX1257)  
DD  
-77  
-80  
0.1  
0.1  
REF1 Positive-Supply Rejection  
DAC Positive-Supply Rejection  
PSRR  
PSRD  
dB  
AV = 4.75V (MAX1220/MAX1222/  
DD  
MAX1258)  
MAX1221/MAX1223/MAX1257  
0.5  
0.5  
Output  
code =  
FFFhex  
AV  
= 2.7V to 3.6V  
DD  
mV  
MAX1220/MAX1222/MAX1258  
AV = 4.75V to 5.25V  
DD  
6
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 2.7V to 3.6V (MAX1221/MAX1223/MAX1257), external reference V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
=
DD  
DD  
REF  
DD  
DV = 4.75V to 5.25V (MAX1220/MAX1222/MAX1258), external reference V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz  
DD  
REF  
SCLK  
(50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at AV = DV = 3V (MAX1221/MAX1223/MAX1257),  
A
DD  
DD  
AV = DV = 5V (MAX1220/MAX1222/MAX1258), T = +25°C. Outputs are unloaded, unless otherwise noted.)  
DD  
DD  
A
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
MAX  
UIꢂTS  
MAX1221/MAX1223/MAX1257  
0.06  
0.5  
Full-  
scale  
input  
AV  
= 2.7V to 3.6V  
DD  
ADC Positive-Supply Rejection  
PSRA  
mV  
MAX1220/MAX1222/MAX1258  
AV = 4.75V to 5.25V  
0.06  
0.5  
DD  
TꢂMꢂIG CHARACTERꢂSTꢂCS (Figures 6–13)  
SCLK Clock Period  
t
40  
16  
16  
ns  
ns  
ns  
CP  
CH  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
t
40/60 duty cycle  
60/40 duty cycle  
t
CL  
GPIO Output Rise/Fall After  
CS Rise  
t
C
= 20pF  
100  
ns  
GOD  
LOAD  
GPIO Input Setup Before CS Fall  
LDAC Pulse Width  
t
0
20  
1.8  
10  
1.8  
10  
10  
0
ns  
ns  
GSU  
t
LDACPWL  
C
C
C
C
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
12.0  
40  
LOAD  
LOAD  
LOAD  
LOAD  
SCLK Fall to DOUT Transition  
(Note 16)  
t
t
ns  
ns  
DOT  
DOT  
12.0  
40  
SCLK Rise to DOUT Transition  
(Notes 16, 17)  
CS Fall to SCLK Fall Setup Time  
SCLK Fall to CS Rise Setup Time  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
CS Pulse-Width High  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSS  
t
CSH  
t
10  
0
DS  
t
DH  
t
50  
CSPWH  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
EOC Fall to CS Fall  
t
C
C
= 20pF  
= 20pF  
25  
DOD  
LOAD  
LOAD  
t
1.5  
30  
25.0  
DOE  
t
RDS  
CKSEL = 01 (temp sense) or CKSEL =  
10 (temp sense), internal reference on  
55  
CKSEL = 01 (temp sense) or CKSEL =  
10 (temp sense), internal reference  
initially off  
120  
CS or CNVST Rise to EOC Fall  
t
µs  
DOV  
CKSEL = 01 (voltage conversion)  
8
8
CKSEL = 10 (voltage conversion),  
internal reference on  
CKSEL = 10 (voltage conversion),  
internal reference initially off  
80  
CKSEL = 00, CKSEL = 01 (temp sense)  
CKSEL = 01 (voltage conversion)  
40  
ns  
µs  
CNVST Pulse Width  
t
CSW  
1.4  
_______________________________________________________________________________________  
7
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 2.7V to 3.6V (MAX1221/MAX1223/MAX1257), external reference V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
=
DD  
DD  
REF  
DD  
DV = 4.75V to 5.25V (MAX1220/MAX1222/MAX1258), external reference V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz  
DD  
REF  
SCLK  
(50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at AV = DV = 3V (MAX1221/MAX1223/MAX1257),  
A
DD  
DD  
AV = DV = 5V (MAX1220/MAX1222/MAX1258), T = +25°C. Outputs are unloaded, unless otherwise noted.)  
DD  
DD  
A
Iote 1: Tested at DV = AV = +3.6V (MAX1221/MAX1223/MAX1257), DV = AV = +5.25V (MAX1220/MAX1222/MAX1258).  
DD  
DD  
DD  
DD  
Iote 2: Offset nulled.  
Iote 3: No bus activity during conversion. Conversion time is defined as the number of conversion clock cycles multiplied by the  
clock period.  
Iote 4: See Table 5 for reference-mode details.  
Iote .: Not production tested. Guaranteed by design.  
Iote 6: See the ADC/DAC References section.  
Iote 7: Fast automated test, excludes self-heating effects.  
Iote 8: Specified over the -40°C to +85°C temperature range.  
Iote 9: REFSEL[1:0] = 00 or when DACs are not powered up.  
Iote 10: DAC linearity, gain, and offset measurements are made between codes 115 and 3981.  
Iote 11: The DAC buffers are guaranteed by design to be stable with a 1nF load.  
Iote 12: Time required by the DAC output to power up and settle within 1 LSB in the external reference mode.  
Iote 13: All DAC dynamic specifications are valid for a load of 100pF and 10k.  
Iote 14: Only one digital output (either DOUT, EOC, or the GPIOs) can be indefinitely shorted to either supply at one time.  
Iote 1.: All digital inputs at either DV  
or DGND. DV  
should not exceed AV  
.
DD  
DD  
DD  
Iote 16: See the Reset Register section and Table 9 for details on programming the SLOW bit.  
Iote 17: Clock mode 11 only.  
Typical Operating Characteristics  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV = 5V  
DD  
DD  
DD  
REF  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz (50% duty cycle), f  
REF  
CLK  
SAMPLE  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.6  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
8
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV = 5V  
DD  
DD  
DD  
REF  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f = 4.8MHz (50% duty cycle), f  
CLK SAMPLE  
REF  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
INTERNAL OSCILLATOR FREQUENCY  
vs. ANALOG SUPPLY VOLTAGE  
INTERNAL OSCILLATOR FREQUENCY  
vs. ANALOG SUPPLY VOLTAGE  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
4096  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
ADC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
ADC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
MAX1221/MAX1223/MAX1257  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
ADC OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
ADC OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
0
-1  
-2  
-3  
-4  
1.00  
0.75  
0.50  
0.25  
0
-0.50  
-0.75  
-1.00  
-1.25  
-1.50  
-0.25  
-0.50  
-0.75  
-1.00  
MAX1221/MAX1223/MAX1257  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
2.7  
3.0  
3.3  
0
1024  
2048  
3072  
4096  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
SUPPLY VOLTAGE (V)  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
9
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV = 5V  
DD  
DD  
DD  
REF  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz (50% duty cycle), f  
REF  
CLK  
SAMPLE  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
ADC GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC OFFSET ERROR  
vs. TEMPERATURE  
0.2  
0.1  
1.7  
1
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
MAX1220/MAX1222/MAX1258  
0
-1  
-2  
-3  
-4  
0
-0.1  
-0.2  
-0.3  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
10 35 60 85  
MAX1221/MAX1223/MAX1257  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
ADC EXTERNAL REFERENCE  
INPUT CURRENT vs. SAMPLING RATE  
ADC GAIN ERROR  
vs. TEMPERATURE  
ANALOG SUPPLY CURRENT  
vs. SAMPLING RATE  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX1220/MAX1222/MAX1258  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
-0.5  
-1.0  
MAX1221/MAX1223/MAX1257  
MAX1221/MAX1223/MAX1257  
0
50  
100  
150  
200  
250  
300  
-40  
-15  
10  
35  
60  
85  
0
50  
100  
150  
200  
250  
300  
SAMPLING RATE (ksps)  
TEMPERATURE (°C)  
SAMPLING RATE (ksps)  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
2.7  
2.6  
2.5  
2.4  
2.3  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
MAX1220/MAX1222/MAX1258  
-40  
-15  
10  
35  
60  
85  
2.7  
3.0  
3.3  
3.6  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
10 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV = 5V  
DD  
DD  
DD  
REF  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f = 4.8MHz (50% duty cycle), f  
CLK SAMPLE  
REF  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DAC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DAC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
2.16  
2.15  
2.14  
2.13  
2.12  
2.11  
2.10  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
-40  
-15  
10  
35  
60  
85  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
TEMPERATURE (°C)  
OUTPUT CODE  
OUTPUT CODE  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
DAC FULL-SCALE ERROR  
vs. ANALOG SUPPLY VOLTAGE  
0.4  
0.2  
0
0.4  
0.2  
0
0.20  
0.16  
0.12  
0.08  
0.04  
0
-0.2  
-0.4  
-0.2  
-0.4  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
2047  
2050  
2053  
2056  
2059  
2062  
2047  
2050  
2053  
2056  
2059  
2062  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
OUTPUT CODE  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
DAC FULL-SCALE ERROR  
vs. ANALOG SUPPLY VOLTAGE  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
-2.1  
-2.2  
-2.3  
-2.4  
-2.5  
5
4
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
3
EXTERNAL REFERENCE = 2.500V  
INTERNAL REFERENCE  
INTERNAL REFERENCE  
2
EXTERNAL REFERENCE = 4.096V  
1
0
-1  
-2  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV = 5V  
DD  
DD  
DD  
REF  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz (50% duty cycle), f  
REF  
CLK  
SAMPLE  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
DAC FULL-SCALE ERROR  
vs. LOAD CURRENT  
DAC FULL-SCALE ERROR  
vs. REFERENCE VOLTAGE  
DAC FULL-SCALE ERROR  
vs. REFERENCE VOLTAGE  
5
1.00  
0.75  
0.50  
0.25  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
-5  
-0.25  
-0.50  
-0.75  
-1.00  
-10  
-15  
MAX1220/MAX1222/MAX1258  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
0
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (mA)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
DAC FULL-SCALE ERROR  
vs. LOAD CURRENT  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
5
0
4.12  
4.11  
4.10  
4.09  
4.08  
2.52  
2.51  
2.50  
2.49  
2.48  
-5  
-10  
-15  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
ADC REFERENCE SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ADC REFERENCE SUPPLY CURRENT  
vs. TEMPERATURE  
ADC REFERENCE SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
43.0  
42.8  
42.6  
42.4  
42.2  
42.0  
50  
48  
46  
44  
42  
40  
25.8  
25.7  
25.6  
25.5  
25.4  
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
2.7  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
12 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV  
= 5V  
DD  
DD  
REF  
DD  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz (50% duty cycle), f  
REF  
CLK  
SAMPLE  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
ADC REFERENCE SUPPLY CURRENT  
vs. TEMPERATURE  
ADC FFT PLOT  
ADC IMD PLOT  
0
-20  
0
27.00  
26.75  
26.50  
26.25  
26.00  
25.75  
25.50  
25.25  
25.00  
f
f
f
= 32.768kHz  
= 10.080kHz  
= 5.24288MHz  
f
f
f
= 5.24288MHz  
SAMPLE  
ANALOG_)N  
CLK  
CLK  
IN1  
IN2  
= 9.0kHz  
= 11.0kHz  
= -6dBFS  
-20  
SINAD = 71.27dBc  
SNR = 71.45dBc  
THD = 85.32dBc  
SFDR = 87.25dBc  
A
-40  
-40  
-60  
IN  
IMD = 82.99dBc  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
MAX1221/MAX1223/MAX1257  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
-40  
-15  
10  
35  
60  
85  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
ADC CROSSTALK PLOT  
0
-20  
2.08  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
f = 5.24288MHz  
CLK  
f = 10.080kHz  
IN1  
f = 8.0801kHz  
IN2  
2.07  
2.06  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
SNR = 72.00dBc  
THD = 85.24dBc  
ENOB = 11.65 BITS  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
SINKING  
SINKING  
SOURCING  
SOURCING  
DAC OUTPUT = MIDSCALE  
MAX1220/MAX1222/MAX1258  
DAC OUTPUT = MIDSCALE  
MAX1221/MAX1223/MAX1257  
0
50  
100  
150  
200  
-30  
0
30  
60  
90  
-30  
-20  
0
10  
20  
30  
-10  
ANALOG INPUT FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
GPIO OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SINK CURRENT  
5
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1500  
1200  
900  
600  
300  
0
MAX1220/MAX1222/MAX1258  
MAX1221/MAX1223/MAX1257  
GPIOA0–A3 OUTPUTS  
GPIOB0–B3, C0–C3  
OUTPUTS  
GPIOA0–A3 OUTPUTS  
GPIOB0–B3, C0–C3  
OUTPUTS  
GPIOA0–A3 OUTPUTS  
GPIOB0–B3,  
C0–C3 OUTPUTS  
MAX1220/MAX1222/MAX1258  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
SOURCE CURRENT (mA)  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
______________________________________________________________________________________ 13  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV = 5V  
DD  
DD  
DD  
REF  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f  
= 4.8MHz (50% duty cycle), f  
REF  
CLK  
SAMPLE  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
GPIO OUTPUT VOLTAGE  
vs. SINK CURRENT  
TEMPERATURE SENSOR ERROR  
vs. TEMPERATURE  
DAC-TO-DAC CROSSTALK  
R
= 10k, C  
= 100pF  
LOAD  
MAX1220 toc51  
LOAD  
1.00  
0.75  
0.50  
0.25  
0
1500  
1200  
900  
600  
300  
0
GPIOB0–B3, C0–C3  
OUTPUTS  
V
OUTA  
1V/div  
-0.25  
-0.50  
-0.75  
-1.00  
V
OUTB  
GPIOA0–A3 OUTPUTS  
10mV/div  
AC-COUPLED  
MAX1221/MAX1223/MAX1257  
MAX1221/MAX1223/MAX1257  
-40  
-15  
10  
35  
60  
85  
0
10  
20  
30  
40  
50  
60  
100µs  
TEMPERATURE (°C)  
SINK CURRENT (mA)  
DYNAMIC RESPONSE RISE TIME  
= 10k, C = 100pF  
DYNAMIC RESPONSE RISE TIME  
= 10k, C = 100pF  
DAC-TO-DAC CROSSTALK  
= 10k, C = 100pF  
R
R
LOAD  
R
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1220 toc53  
MAX1220 toc54  
MAX1220 toc52  
MAX1221/MAX1223/MAX1257  
CS  
2V/div  
V
OUTA  
2V/div  
V
OUT  
1V/div  
V
OUTB  
V
10mV/div  
AC-COUPLED  
OUT  
CS  
1V/div  
2V/div  
MAX1220/MAX1222/MAX1258  
MAX1220/MAX1222/MAX1258  
1µs  
1µs  
100µs  
DYNAMIC RESPONSE FALL TIME  
= 10k, C = 100pF  
DYNAMIC RESPONSE FALL TIME  
= 10k, C = 100pF  
MAJOR CARRY TRANSITION  
= 10k, C = 100pF  
R
R
LOAD  
R
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1220 toc55  
MAX1220 toc56  
MAX1220 toc57  
MAX1221/MAX1223/MAX1257  
CS  
2V/div  
CS  
1V/div  
V
OUT  
1V/div  
V
OUT  
V
OUT  
10mV/div  
AC-COUPLED  
CS  
1V/div  
2V/div  
MAX1220/MAX1222/MAX1258  
MAX1220/MAX1222/MAX1258  
1µs  
1µs  
1µs  
14 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V (MAX1221/MAX1223/MAX1257), external V  
= 2.5V (MAX1221/MAX1223/MAX1257), AV  
= DV = 5V  
DD  
DD  
DD  
REF  
DD  
(MAX1220/MAX1222/MAX1258), external V  
= 4.096V (MAX1220/MAX1222/MAX1258), f = 4.8MHz (50% duty cycle), f  
CLK SAMPLE  
REF  
= 300ksps, C  
= 50pF, 0.1µF capacitor at REF, T = +25°C, unless otherwise noted.)  
LOAD  
A
DAC DIGITAL FEEDTHROUGH R  
= 10k,  
DAC DIGITAL FEEDTHROUGH R  
= 10k,  
LOAD  
MAJOR CARRY TRANSITION  
= 10k, C = 100pF  
LOAD  
C
LOAD  
= 100pF, CS = HIGH, DIN = LOW  
C
LOAD  
= 100pF, CS = HIGH, DIN = LOW  
R
LOAD  
LOAD  
MAX1220 toc60  
MAX1220 toc59  
MAX1220 toc58  
SCLK  
2V/div  
CS  
2V/div  
SCLK  
1V/div  
V
V
OUT  
V
OUT  
OUT  
100mV/div  
AC-COUPLED  
100mV/div  
AC-COUPLED  
20mV/div  
AC-COUPLED  
MAX1220/MAX1222/MAX1258  
200ns  
MAX1221/MAX1223/MAX1257  
200ns  
MAX1220/MAX1222/MAX1258  
1µs  
NEGATIVE FULL-SCALE SETTLING TIME  
= 10k, C = 100pF  
NEGATIVE FULL-SCALE SETTLING TIME  
POSITIVE FULL-SCALE SETTLING TIME  
R
R
LOAD  
= 10k, C  
= 100pF  
R
LOAD  
= 10k, C  
= 100pF  
LOAD  
MAX1220 toc63  
LOAD  
LOAD  
LOAD  
MAX1220 toc61  
MAX1220 toc62  
MAX1221/MAX1223/MAX1257  
MAX1221/MAX1223/MAX1257  
V
LDAC  
V
OUT  
2V/div  
V
OUT_  
1V/div  
1V/div  
V
OUT_  
2V/div  
V
LDAC  
V
LDAC  
1V/div  
1V/div  
MAX1220/MAX1222/MAX1258  
1µs  
2µs  
1µs  
ADC REFERENCE FEEDTHROUGH  
= 10k, C = 100pF  
ADC REFERENCE FEEDTHROUGH  
= 10k, C = 100pF  
POSITIVE FULL-SCALE SETTLING TIME  
= 10k, C = 100pF  
R
R
LOAD  
R
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1220 toc65  
MAX1220 toc66  
MAX1220 toc64  
V
REF2  
V
REF2  
1V/div  
V
LDAC  
2V/div  
2V/div  
V
OUT_  
V
DAC-OUT  
2V/div  
V
DAC-OUT  
10mV/div  
2mV/div  
AC-COUPLED  
AC-COUPLED  
MAX1221/MAX1223/MAX1257  
MAX1220/MAX1222/MAX1258  
MAX1220/MAX1222/MAX1258  
ADC REFERENCE SWITCHING  
ADC REFERENCE SWITCHING  
200µs  
200µs  
1µs  
______________________________________________________________________________________ 1.  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Description  
PꢂI  
IAME  
FUICTꢂOI  
MAX1220/ MAX1222/ MAX12.7/  
MAX1221 MAX1223 MAX12.8  
1, 2  
GPIOA0, GPIOA1 General-Purpose I/O A0, A1. GPIOA0, A1 can sink and source 15mA.  
Active-Low End-of-Conversion Output. Data is valid after the falling edge of  
EOC.  
3
3
4
EOC  
Digital Positive-Power Input. Bypass DV  
to DGND with a 0.1µF  
4
5
4
5
7
8
DV  
DD  
DD  
DGND  
Digital Ground. Connect DGND to AGND.  
Serial-Data Output. Data is clocked out on the falling edge of the SCLK  
clock in modes 00, 01, and 10. Data is clocked out on the rising edge of  
the SCLK clock in mode 11. It is high impedance when CS is high.  
6
6
9
DOUT  
Serial-Clock Input. Clocks data in and out of the serial interface. (Duty  
cycle must be 40% to 60%.) See Table 5 for details on programming the  
clock mode.  
7
8
7
8
10  
11  
SCLK  
Serial-Data Input. DIN data is latched into the serial interface on the falling  
edge of SCLK.  
DIN  
9–12,  
16–19  
9–12,  
16–19  
12–15,  
22–25  
OUT0–OUT7  
DAC Outputs  
Positive Analog Power Input. Bypass AV  
Analog Ground  
to AGND with a 0.1µF  
13  
14  
13  
14  
18  
19  
AV  
DD  
DD  
AGND  
15, 23, 32,  
33  
2, 15, 24, 32  
26  
27  
N.C.  
No Connection. Not internally connected.  
Active-Low Load DAC. LDAC is an asynchronous active-low input that  
updates the DAC outputs. Drive LDAC low to make the DAC registers  
transparent.  
20  
21  
20  
21  
LDAC  
CS  
Active-Low Chip-Select Input. When CS is low, the serial interface is  
enabled. When CS is high, DOUT is high impedance.  
Reset Select. Select DAC wake-up mode. Set RES_SEL low to wake up the  
DAC outputs with a 100kresistor to GND or set RES_SEL high to wake  
22  
22  
28  
RES_SEL  
up the DAC outputs with a 100kresistor to V  
power up the DAC input register to FFFh. Set RES_SEL low to power up the  
DAC input register to 000h.  
. Set RES_SEL high to  
REF  
24, 25  
GPIOC0, GPIOC1 General-Purpose I/O C0, C1. GPIOC0, C1 can sink 4mA and source 2mA.  
16 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Description (continued)  
PꢂI  
IAME  
FUICTꢂOI  
MAX1220/ MAX1222/ MAX12.7/  
MAX1221 MAX1223 MAX12.8  
Reference 1 Input. Reference voltage; leave unconnected to use the  
internal reference (2.5V for the MAX1221/MAX1223/MAX1257 or 4.096V for  
the MAX1220/MAX1222/MAX1258). REF1 is the positive reference in ADC  
external differential reference mode. Bypass REF1 to AGND with a 0.1µF  
capacitor in external reference mode only. See the ADC/DAC References  
section.  
26  
26  
35  
REF1  
27–31, 34  
35  
AIN0–AIN5  
REF2/AIN6  
Analog Inputs  
Reference 2 Input/Analog-Input Channel 6. See Table 5 for details on  
programming the setup register.  
Active-Low Conversion-Start Input/Analog Input 7. See Table 5 for details  
on programming the setup register. REF2 is the negative reference in the  
ADC external differential reference mode.  
36  
1
CNVST/AIN7  
CNVST/AIN11  
Active-Low Conversion-Start Input/Analog Input 11. See Table 5 for details  
on programming the setup register.  
23, 25,  
27–31,  
33, 34, 35  
AIN0–AIN9  
Analog Inputs  
Reference 2 Input/Analog-Input Channel 10. See Table 5 for details on  
programming the setup register. REF2 is the negative reference in the ADC  
external differential reference mode.  
36  
1
REF2/AIN10  
Active-Low Conversion-Start Input/Analog Input 15. See Table 5 for details  
on programming the setup register.  
CNVST/AIN15  
2, 3, 5, 6 GPIOA0–GPIOA3 General-Purpose I/O A0–A3. GPIOA0–GPIOA3 can sink and source 15mA.  
16, 17,  
20, 21  
General-Purpose I/O B0–B3. GPIOB0–GPIOB3 can sink 4mA and  
source 2mA.  
GPIOB0–GPIOB3  
GPIOC0–GPIOC3  
AIN0–AIN13  
General-Purpose I/O C0–C3. GPIOC0–GPIOC3 can sink 4mA and  
source 2mA.  
29–32  
33, 34,  
36–47  
Analog Inputs  
Reference 2 Input/Analog-Input Channel 14. See Table 5 for details on  
programming the setup register. REF2 is the negative reference in the ADC  
external differential reference mode.  
48  
REF2/AIN14  
EP  
Exposed Paddle. Must be externally connected to AGND. Do not use as a  
ground connect.  
______________________________________________________________________________________ 17  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
the SCLK frequency of 25MHz or less, and set the  
Detailed Description  
clock polarity (CPOL) and phase (CPHA) in the µC con-  
The MAX1220–MAX1223/MAX1257/MAX1258 integrate  
trol registers to the same value. The MAX1220–  
a 12-bit, multichannel, analog-to-digital converter  
MAX1223/MAX1257/MAX1258 operate with SCLK idling  
(ADC), and a 12-bit, octal, digital-to-analog converter  
high or low, and thus operate with CPOL = CPHA = 0 or  
(DAC) in a single IC. These devices also include a tem-  
CPOL = CPHA = 1. Set CS low to latch any input data  
perature sensor and configurable GPIOs with a 25MHz  
at DIN on the falling edge of SCLK. Output data at  
SPI-/QSPI-/MICROWIRE-compatible serial interface.  
DOUT is updated on the falling edge of SCLK in clock  
The ADC is available in 8/12/16 input-channel  
modes 00, 01, and 10. Output data at DOUT is updated  
versions. The octal DAC outputs settle within 2.0µs, and  
on the rising edge of SCLK in clock mode 11. See  
the ADC has a 300ksps conversion rate.  
Figures 6–11. Bipolar true-differential results and tem-  
All devices include an internal reference (2.5V or  
4.096V) providing a well-regulated, low-noise reference  
for both the ADC and DAC. Programmable reference  
modes for the ADC and DAC allow the use of an inter-  
nal reference, an external reference, or a combination  
of both. Features such as an internal 1°C accurate  
temperature sensor, FIFO, scan modes, programmable  
internal or external clock modes, data averaging, and  
AutoShutdown allow users to minimize both power con-  
sumption and processor requirements. The low glitch  
energy (4nVs) and low digital feedthrough (0.5nVs) of  
the integrated octal DACs make these devices ideal for  
digital control of fast-response closed-loop systems.  
perature-sensor results are available in two’s comple-  
ment format, while all other results are in binary.  
A high-to-low transition on CS initiates the data-input  
operation. Serial communications to the ADC always  
begin with an 8-bit command byte (MSB first) loaded  
from DIN. The command byte and the subsequent data  
bytes are clocked from DIN into the serial interface on  
the falling edge of SCLK. The serial-interface and fast-  
interface circuitry is common to the ADC, DAC, and  
GPIO sections. The content of the command byte  
determines whether the SPI port should expect 8, 16, or  
24 bits and whether the data is intended for the ADC,  
DAC, or GPIOs (if applicable). See Table 1. Driving CS  
high resets the serial interface.  
These devices are guaranteed to operate with a supply  
voltage from +2.7V to +3.6V (MAX1221/MAX1223/  
MAX1257) and from +4.75V to +5.25V (MAX1220/  
MAX1222/MAX1258). These devices consume 2.5mA  
at 300ksps throughput, only 22µA at 1ksps throughput,  
and under 0.2µA in the shutdown mode. The MAX1257/  
MAX1258 feature 12 GPIOs while the MAX1220/  
MAX1221 offer 4 GPIOs that can be configured as  
inputs or outputs.  
The conversion register controls ADC channel selec-  
tion, ADC scan mode, and temperature-measurement  
requests. See Table 4 for information on writing to the  
conversion register. The setup register controls the  
clock mode, reference, and unipolar/bipolar ADC con-  
figuration. Use a second byte, following the first, to  
write to the unipolar-mode or bipolar-mode registers.  
See Table 5 for details of the setup register and see  
Tables 6, 7, and 8 for setting the unipolar- and bipolar-  
mode registers. Hold CS low between the command  
byte and the second and third byte. The ADC averag-  
ing register is specific to the ADC. See Table 9 to  
address that register. Table 11 shows the details of the  
reset register.  
Figure 1 shows the MAX1257/MAX1258 functional dia-  
gram. The MAX1220/MAX1221 only include the GPIO  
A0, A1, GPIO C0, C1 block. The MAX1222/MAX1223  
exclude the GPIOs. The output-conditioning circuitry  
takes the internal parallel data bus and converts it to a  
serial data format at DOUT, with the appropriate wake-  
up timing. The arithmetic logic unit (ALU) performs the  
averaging function.  
Begin a write to the DAC by writing 0001XXXX as a  
command byte. The last 4 bits of this command byte  
are don’t-care bits. Write another 2 bytes (holding CS  
low) to the DAC interface register following the com-  
mand byte to select the appropriate DAC and the data  
to be written to it. See the DAC Serial Interface section  
and Tables 10, 20, and 21.  
SPI-Compatible Serial Interface  
The MAX1220–MAX1223/MAX1257/MAX1258 feature a  
serial interface that is compatible with SPI and  
MICROWIRE devices. For SPI, ensure the SPI bus mas-  
ter (typically a microcontroller (µC)) runs in master  
mode so that it generates the serial clock signal. Select  
18 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
DV  
AV  
DD  
DD  
GPIOB0– GPIOC0–  
GPIOB3 GPIOC3  
GPIOA0–  
GPIOA3  
MAX1257  
MAX1258  
GPIO  
CONTROL  
USER-PROGRAMMABLE  
I/O  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
OSCILLATOR  
SCLK  
CS  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
DIN  
SPI  
PORT  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
DOUT  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
TEMPERATURE  
SENSOR  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
EOC  
LOGIC  
CONTROL  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
CNVST  
AIN0  
12-BIT  
SAR  
ADC  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
FIFO AND  
ALU  
INPUT  
REGISTER  
DAC  
REGISTER  
T/H  
AIN13  
REF2/  
AIN14  
CNVST/  
AIN15  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
REF2  
INTERNAL  
REFERENCE  
REF1  
RES_SEL  
LDAC  
AGND  
DGND  
Figure 1. MAX1257/MAX1258 Functional Diagram  
______________________________________________________________________________________ 19  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 1ꢀ Command Byte (MSB First)  
REGꢂSTER IAME  
Conversion  
Setup  
BꢂT 7  
BꢂT 6  
BꢂT .  
BꢂT 4  
BꢂT 3  
BꢂT 2  
BꢂT 1  
BꢂT 0  
1
0
0
0
0
0
0
0
0
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
TEMP  
1
0
0
0
0
0
0
0
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
ADC Averaging  
DAC Select  
Reset  
1
0
0
0
0
0
0
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
1
0
0
0
0
0
X
1
0
0
0
0
X
X
X
RESET  
SLOW  
FBGON  
GPIO Configure*  
GPIO Write*  
GPIO Read*  
No Operation  
0
0
0
0
1
1
0
0
1
0
1
0
X = Don’t care.  
*Only applicable on the MAX1220/MAX1221/MAX1257/MAX1258.  
Write to the GPIOs (if applicable) by issuing a com-  
mand byte to the appropriate register. Writing to the  
MAX1220/MAX1221 GPIOs requires 1 additional byte  
following the command byte. Writing to the MAX1257/  
MAX1258 requires 2 additional bytes following the  
command byte. See Tables 12–19 for details on GPIO  
configuration, writes, and reads. See the GPIO  
Command section. Command bytes written to the  
GPIOs on devices without GPIOs are ignored.  
between four different clock modes for various ways to  
start a conversion and determine whether the acquisi-  
tions are internally or externally timed. Select clock  
mode 00 to configure CNVST/AIN_ to act as a conver-  
sion start and use it to request internally timed conver-  
sions, without tying up the serial bus. In clock mode 01,  
use CNVST to request conversions one channel at a  
time, thereby controlling the sampling speed without  
tying up the serial bus. Request and start internally  
timed conversions through the serial interface by writ-  
ing to the conversion register in the default clock mode,  
10. Use clock mode 11 with SCLK up to 4.8MHz for  
externally timed acquisitions to achieve sampling rates  
up to 300ksps. Clock mode 11 disables scanning and  
averaging. See Figures 6–9 for timing specifications on  
how to begin a conversion.  
Power-Up Default State  
The MAX1220–MAX1223/MAX1257/MAX1258 power up  
with all blocks in shutdown (including the reference). All  
registers power up in state 00000000, except for the  
setup register and the DAC input register. The setup  
register powers up at 0010 1000 with CKSEL1 = 1 and  
REFSEL1 = 1. The DAC input register powers up to  
FFFh when RES_SEL is high and powers up to 000h  
when RES_SEL is low.  
These devices feature an active-low, end-of-conversion  
output. EOC goes low when the ADC completes the  
last requested operation and is waiting for the next  
command byte. EOC goes high when CS or CNVST go  
low. EOC is always high in clock mode 11.  
12-Bit ADC  
The MAX1220–MAX1223/MAX1257/MAX1258 ADCs  
use a fully differential successive-approximation regis-  
ter (SAR) conversion technique and on-chip track-and-  
hold (T/H) circuitry to convert temperature and voltage  
signals into 12-bit digital results. The analog inputs  
accept both single-ended and differential input signals.  
Single-ended signals are converted using a unipolar  
transfer function, and differential signals are converted  
using a selectable bipolar or unipolar transfer function.  
See the ADC Transfer Functions section for more data.  
Single-Ended or Differential Conversions  
The MAX1220–MAX1223/MAX1257/MAX1258 use a  
fully differential ADC for all conversions. When a pair of  
inputs are connected as a differential pair, each input is  
connected to the ADC. When configured in single-  
ended mode, the positive input is the single-ended  
channel and the negative input is referred to AGND.  
See Figure 2.  
In differential mode, the T/H samples the difference  
between two analog inputs, eliminating common-mode  
DC offsets and noise. IN+ and IN- are selected from  
the following pairs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,  
AIN6/AIN7, AIN8/AIN9, AIN10/AIN11, AIN12/AIN13,  
ADC Clock Modes  
When addressing the setup, register bits 5 and 4 of the  
command byte (CKSEL1 and CKSEL0, respectively)  
control the ADC clock modes. See Table 5. Choose  
20 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
AIN14/AIN15. AIN0–AIN7 are available on all devices.  
AIN0–AIN11 are available on the MAX1222/MAX1223.  
AIN0–AIN15 are available on the MAX1257/MAX1258.  
See Tables 5–8 for more details on configuring the  
inputs. For the inputs that are configurable as CNVST,  
REF2, and an analog input, only one function can be  
used at a time.  
connected to AIN0–AIN15 in single-ended mode and  
AIN0, AIN2, and AIN4–AIN14 (only positive inputs) in  
differential mode. A negative input capacitor is con-  
nected to AGND in single-ended mode or AIN1, AIN3,  
and AIN5–AIN15 (only negative inputs) in differential  
mode. For external T/H timing, use clock mode 01.  
After the T/H enters hold mode, the difference between  
the sampled positive and negative input voltages is  
converted. The input capacitance charging rate deter-  
mines the time required for the T/H to acquire an input  
signal. If the input signal’s source impedance is high,  
the required acquisition time lengthens.  
Unipolar or Bipolar Conversions  
Address the unipolar- and bipolar-mode registers  
through the setup register (bits 1 and 0). See Table 5 for  
the setup register. See Figures 3 and 4 for the transfer-  
function graphs. Program a pair of analog inputs for dif-  
ferential operation by writing a one to the appropriate bit  
of the bipolar- or unipolar-mode register. Unipolar mode  
Any source impedance below 300does not signifi-  
cantly affect the ADC’s AC performance. A high-imped-  
ance source can be accommodated either by  
sets the differential input range from 0 to V  
A nega-  
REF1.  
lengthening t  
(only in clock mode 01) or by placing  
ACQ  
tive differential analog input in unipolar mode causes  
the digital output code to be zero. Selecting bipolar  
a 1µF capacitor between the positive and negative ana-  
log inputs. The combination of the analog-input source  
impedance and the capacitance at the analog input cre-  
ates an RC filter that limits the analog input bandwidth.  
mode sets the differential input range to V  
/ 2. The  
REF1  
digital output code is binary in unipolar mode and two’s  
complement in bipolar mode.  
In single-ended mode, the MAX1220–MAX1223/  
MAX1257/MAX1258 always operate in unipolar mode.  
The analog inputs are internally referenced to AGND  
with a full-scale input range from 0 to the selected ref-  
erence voltage.  
Input Bandwidth  
The ADC’s input-tracking circuitry has a 1MHz small-  
signal bandwidth, making it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Anti-alias prefiltering  
of the input signals is necessary to avoid high-frequen-  
cy signals aliasing into the frequency band  
of interest.  
Analog Input (T/H)  
The equivalent circuit of Figure 2 shows the ADC input  
architecture of the MAX1220–MAX1223/MAX1257/  
MAX1258. In track mode, a positive input capacitor is  
Analog-Input Protection  
Internal electrostatic-discharge (ESD) protection diodes  
clamp all analog inputs to AV  
and AGND, allowing  
DD  
AIN0–AIN15  
(SINGLE-ENDED),  
AIN0, AIN2,  
REF1  
DAC  
the inputs to swing from (AGND - 0.3V) to (AV  
+
DD  
ACQ  
AGND  
0.3V) without damage. However, for accurate conver-  
sions near full scale, the inputs must not exceed AV  
AIN4–AIN14  
DD  
(DIFFERENTIAL)  
CIN+  
by more than 50mV or be lower than AGND by 50mV. If  
an analog input voltage exceeds the supplies, limit the  
input current to 2mA.  
COMPARATOR  
HOLD  
Internal FIFO  
The MAX1220–MAX1223/MAX1257/MAX1258 contain a  
first-in/first-out (FIFO) buffer that holds up to 16 ADC  
results plus one temperature result. The internal FIFO  
allows the ADC to process and store multiple internally  
clocked conversions and a temperature measurement  
without being serviced by the serial bus.  
CIN-  
AGND  
(SINGLE-ENDED),  
AIN1, AIN3,  
AIN5–AIN15  
(DIFFERENTIAL)  
ACQ  
ACQ  
HOLD  
HOLD  
If the FIFO is filled and further conversions are request-  
ed without reading from the FIFO, the oldest ADC  
results are overwritten by the new ADC results. Each  
result contains 2 bytes, with the MSB preceded by four  
leading zeros. After each falling edge of CS, the oldest  
AV / 2  
DD  
Figure 2. Equivalent Input Circuit  
______________________________________________________________________________________ 21  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
available pair of bytes of data is available at DOUT,  
MSB first. When the FIFO is empty, DOUT is zero.  
Table 5) to program the reference. If using an external  
voltage reference, bypass REF1 with a 0.1µF capacitor  
to AGND. The MAX1221/MAX1223/MAX1257 internal  
reference is 2.5V. The MAX1220/MAX1222/MAX1258  
internal reference is 4.096V. When using an external  
reference on any of these devices, the voltage range is  
The first 2 bytes of data read out after a temperature  
measurement always contain the 12-bit temperature  
result, preceded by four leading zeros, MSB first. If  
another temperature measurement is performed before  
the first temperature result is read out, the old measure-  
ment is overwritten by the new result. Temperature  
results are in degrees Celsius (two’s complement), at a  
resolution of 8 LSB per degree. See the Temperature  
Measurements section for details on converting the dig-  
ital code to a temperature.  
0.7V to AV  
.
DD  
DAC Transfer Function  
See Table 2 for various analog outputs from the DAC.  
DAC Power-On Wake-Up Modes  
The state of the RES_SEL input determines the wake-up  
state of the DAC outputs. Connect RES_SEL to AV  
or  
DD  
12-Bit DAC  
In addition to the 12-bit ADC, the MAX1220–MAX1223/  
MAX1257/MAX1258 also include eight voltage-output,  
12-bit, monotonic DACs with less than 4 LSB integral  
nonlinearity error and less than 1 LSB differential non-  
linearity error. Each DAC has a 2µs settling time and  
ultra-low glitch energy (4nVs). The 12-bit DAC code is  
AGND upon power-up to be sure the DAC outputs  
wake up to a known state. Connect RES_SEL to AGND  
to wake up all DAC outputs at 000h. While RES_SEL is  
low, the 100kinternal resistor pulls the DAC outputs to  
AGND and the output buffers are powered down.  
Connect RES_SEL to AV  
to wake up all DAC outputs  
DD  
at FFFh. While RES_SEL is high, the 100kpullup  
unipolar binary with 1 LSB = V  
/ 4096.  
REF  
resistor pulls the DAC outputs to V  
buffers are powered down.  
and the output  
REF1  
DAC Digital Interface  
Figure 1 shows the functional diagram of the MAX1257/  
MAX1258. The shift register converts a serial 16-bit  
word to parallel data for each input register operating  
with a clock rate up to 25MHz. The SPI-compatible digi-  
tal interface to the shift register consists of CS, SCLK,  
DIN, and DOUT. Serial data at DIN is loaded on the  
falling edge of SCLK. Pull CS low to begin a write  
sequence. Begin a write to the DAC by writing  
0001XXXX as a command byte. The last 4 bits of the  
DAC select register are don’t-care bits. See Table 10.  
Write another 2 bytes to the DAC interface register fol-  
lowing the command byte to select the appropriate DAC  
and the data to be written to it. See Tables 20 and 21.  
DAC Power-Up Modes  
See Table 21 for a description of the DAC power-up  
and power-down modes.  
Table 2ꢀ DAC Output Code Table  
DAC COITEITS  
AIAꢁOG OUTPUT  
MSB  
ꢁSB  
4095  
4096  
1111  
1111  
0000  
0000  
0111  
1111  
+V  
REF  
The eight double-buffered DACs include an input and a  
DAC register. The input registers are directly connect-  
ed to the shift register and hold the result of the most  
recent write operation. The eight 12-bit DAC registers  
hold the current output code for the respective DAC.  
Data can be transferred from the input registers to the  
DAC registers by pulling LDAC low or by writing the  
appropriate DAC command sequence at DIN. See  
Table 20. The outputs of the DACs are buffered through  
eight rail-to-rail op amps.  
2049  
4096  
1000  
1000  
0111  
0001  
0000  
0111  
+V  
REF  
2048  
4096  
+V  
REF  
+V  
=
REF  
2
2047  
4096  
+V  
REF  
The MAX1220–MAX1223/MAX1257/MAX1258 DAC out-  
put-voltage range is based on the internal reference or  
an external reference. Write to the setup register (see  
1
0000  
0000  
0000  
0000  
0001  
0000  
+V  
REF  
4096  
0
22 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
REFSEL[1:0] = 00 to program both the ADC and DAC  
for internal reference use. Set REFSEL[1:0] = 10 to pro-  
gram the ADC for internal reference. Set REFSEL[1:0] =  
10 to program the DAC for external reference, REF1.  
When using REF1 or REF2/AIN_ in external-reference  
mode, connect a 0.1µF capacitor to AGND. Set  
REFSEL[1:0] = 01 to program the ADC and DAC for  
external-reference mode. The DAC uses REF1 as its  
external reference, while the ADC uses REF2 as its  
external reference. Set REFSEL[1:0] = 11 to program  
the ADC for external differential reference mode. REF1  
is the positive reference and REF2 is the negative refer-  
ence in the ADC external differential mode.  
GPIOs  
In addition to the internal ADC and DAC, the  
MAX1257/MAX1258 also provide 12 general-purpose  
input/output channels, GPIOA0–GPIOA3, GPIOB0–  
GPIOB3, and GPIOC0–GPIOC3. The MAX1220/MAX1221  
include four GPIO channels (GPIOA0, GPIOA1, GPIOC0,  
GPIOC1). Read and write to the GPIOs as detailed in  
Table 1 and Tables 12–19. Also, see the GPIO Command  
section. See Figures 11 and 12 for GPIO timing.  
Write to the GPIOs by writing a command byte to the  
GPIO command register. Write a single data byte to the  
MAX1220/MAX1221 following the command byte. Write  
2 bytes to the MAX1257/MAX1258 following the com-  
mand byte.  
When REFSEL[1:0] = 00 or 10, REF2/AIN_ functions as  
an analog input channel. When REFSEL[1:0] = 01 or 11,  
REF2/AIN_ functions as the device’s negative reference.  
The GPIOs can sink and source current. The  
MAX1257/MAX1258 GPIOA0–GPIOA3 can sink and  
source up to 15mA. GPIOB0–GPIOB3 and GPIOC0–  
GPIOC3 can sink 4mA and source 2mA. The MAX1220/  
MAX1221 GPIOA0 and GPIOA1 can sink and source up  
to 15mA. The MAX1220/MAX1221 GPIOC0 and GPIOC1  
can sink 4mA and source 2mA. See Table 3.  
Temperature Measurements  
Issue a command byte setting bit 0 of the conversion  
register to one to take a temperature measurement.  
See Table 4. The MAX1220–MAX1223/MAX1257/  
MAX1258 perform temperature measurements with an  
internal diode-connected transistor. The diode bias cur-  
rent changes from 68µA to 4µA to produce a tempera-  
ture-dependent bias voltage difference. The second  
conversion result at 4µA is subtracted from the first at  
68µA to calculate a digital value that is proportional to  
absolute temperature. The output data appearing at  
DOUT is the digital code above, minus an offset to  
adjust from Kelvin to Celsius.  
Clock Modes  
Internal Clock  
The MAX1220–MAX1223/MAX1257/MAX1258 can  
operate from an internal oscillator. The internal oscilla-  
tor is active in clock modes 00, 01, and 10. Figures 6,  
7, and 8 show how to start an ADC conversion in the  
three internally timed conversion modes.  
Read out the data at clock speeds up to 25MHz  
through the SPI interface.  
The reference voltage used for the temperature mea-  
surements is always derived from the internal reference  
source to ensure that 1 LSB corresponds to 1/8 of a  
degree Celsius. On every scan where a temperature  
measurement is requested, the temperature conversion  
is carried out first. The first 2 bytes of data read from  
the FIFO contain the result of the temperature measure-  
ment. If another temperature measurement is per-  
formed before the first temperature result is read out,  
the old measurement is overwritten by the new result.  
Temperature results are in degrees Celsius (two’s com-  
plement). See the Applications Information section for  
information on how to perform temperature measure-  
ments in each clock mode.  
External Clock  
Set CKSEL1 and CKSEL0 in the setup register to 11 to  
set up the interface for external clock mode 11. See  
Table 5. Pulse SCLK at speeds from 0.1MHz to  
4.8MHz. Write to SCLK with a 40% to 60% duty cycle.  
The SCLK frequency controls the conversion timing.  
See Figure 9 for clock mode 11 timing. See the ADC  
Conversions in Clock Mode 11 section.  
ADC/DAC References  
Address the reference through the setup register, bits 3  
and 2. See Table 5. Following a wake-up delay, set  
Table 3ꢀ GPꢂO Maximum Sink/Source Current  
MAX12.7/MAX12.8  
CURREIT  
MAX1220/MAX1221  
GPꢂOA0–GPꢂOA3  
15mA  
GPꢂOB0–GPꢂOB3  
GPꢂOC0–GPꢂOC3  
GPꢂOA0, GPꢂOA1  
15mA  
GPꢂOC0, GPꢂOC1  
4mA  
2mA  
4mA  
2mA  
4mA  
2mA  
SꢂIK CURREIT  
15mA  
15mA  
SOURCE CURREIT  
______________________________________________________________________________________ 23  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Register Descriptions  
The MAX1220–MAX1223/MAX1257/MAX1258 commu-  
nicate between the internal registers and the external  
circuitry through the SPI-compatible serial interface.  
Table 1 details the command byte, the registers, and  
the bit names. Tables 4–12 show the various functions  
within the conversion register, setup register, unipolar-  
mode register, bipolar-mode register, ADC averaging  
register, DAC select register, reset register, and GPIO  
command register, respectively.  
Table 4ꢀ Conversion Register*  
BꢂT  
IAME  
BꢂT  
FUICTꢂOI  
7 (MSB)  
Set to one to select conversion register.  
Analog-input channel select.  
Analog-input channel select.  
Analog-input channel select.  
Analog-input channel select.  
Scan-mode select.  
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
6
5
4
3
2
1
Conversion Register  
Select active analog input channels, scan modes, and  
a single temperature measurement per scan by issuing  
a command byte to the conversion register. Table 4  
details channel selection, the four scan modes, and  
how to request a temperature measurement. Start a  
scan by writing to the conversion register when in clock  
mode 10 or 11, or by applying a low pulse to the  
CNVST pin when in clock mode 00 or 01. See Figures 6  
and 7 for timing specifications for starting a scan with  
CNVST.  
Scan-mode select.  
Set to one to take a single temp-  
erature measurement. The first  
conversion result of a scan contains  
temperature information.  
TEMP  
0 (LSB)  
*See below for bit details.  
SEꢁECTED  
CHAIIEꢁ  
(I)  
CHSEꢁ3  
CHSEꢁ2  
CHSEꢁ1  
CHSEꢁ0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
A conversion is not performed if it is requested on a  
channel or one of the channel pairs that has been con-  
figured as CNVST or REF2. For channels configured as  
differential pairs, the CHSEL0 bit is ignored and the two  
pins are treated as a single differential channel.  
AIN2  
AIN3  
AIN4  
Select scan mode 00 or 01 to return one result per sin-  
gle-ended channel and one result per differential pair  
within the selected scanning range (set by bits 2 and 1,  
SCAN1 and SCAN0), plus one temperature result, if  
selected. Select scan mode 10 to scan a single input  
channel numerous times, depending on NSCAN1 and  
NSCAN0 in the ADC averaging register (Table 9).  
Select scan mode 11 to return only one result from a  
single channel.  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
Setup Register  
Issue a command byte to the setup register to config-  
ure the clock, reference, power-down modes, and ADC  
single-ended/differential modes. Table 5 details the bits  
in the setup-register command byte. Bits 5 and 4  
(CKSEL1 and CKSEL0) control the clock mode, acqui-  
sition and sampling, and the conversion start. Bits 3  
and 2 (REFSEL1 and REFSEL0) set the device for either  
internal or external reference. Bits 1 and 0 (DIFFSEL1  
and DIFFSEL0) address the ADC unipolar-mode and  
bipolar-mode registers and configure the analog-input  
channels for differential operation.  
SCAI MODE  
SCAI1 SCAI0  
(CHAIIEꢁ I ꢂS SEꢁECTED BY  
BꢂTS CHSEꢁ3–CHSEꢁ0)  
0
0
0
1
Scans channels 0 through N.  
Scans channels N through the highest  
numbered channel.  
Scans channel N repeatedly. The ADC  
averaging register sets the number of  
results.  
1
1
0
1
No scan. Converts channel N once only.  
24 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table .ꢀ Setup Register*  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
7 (MSB)  
Set to zero to select setup register.  
Set to one to select setup register.  
6
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
5
Clock mode and CNVST configuration; resets to one at power-up.  
Clock mode and CNVST configuration.  
4
3
Reference-mode configuration.  
2
1
Reference-mode configuration.  
Unipolar-/bipolar-mode register configuration for differential mode.  
Unipolar-/bipolar-mode register configuration for differential mode.  
0 (LSB)  
*See below for bit details.  
Table .aꢀ Clock Modes*  
CKSEꢁ1  
CKSEꢁ0  
COIVERSꢂOI CꢁOCK  
ACQUꢂSꢂTꢂOI/SAMPꢁꢂIG  
Internally timed.  
CNVST COIFꢂGURATꢂOI  
0
0
1
1
0
1
0
1
Internal  
Internal  
CNVST  
Externally timed by CNVST.  
Internally timed.  
CNVST  
Internal  
AIN15/AIN11/AIN7  
AIN15/AIN11/AIN7  
External (4.8MHz max)  
Externally timed by SCLK.  
*See the Clock Modes section.  
Table .bꢀ Clock Modes 00, 01, and 10  
VOꢁTAGE  
REFEREICE COIDꢂTꢂOIS  
OVERRꢂDE  
REF2  
COIFꢂGURATꢂOI  
REFSEꢁ1 REFSEꢁ0  
AUTOSHUTDOWI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 internal-conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN14/AIN10/AIN6  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
AIN  
Internal reference not used.  
External single-  
ended (REF1  
for DAC and  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2  
REF2 for ADC)  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 internal-  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
conversion clock cycles.  
1
1
0
1
AIN14/AIN10/AIN6  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
AIN  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2  
______________________________________________________________________________________ 2.  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
The ADC reference is always on if any of the following  
conditions are true:  
3)At least one DAC is powered down through the  
100kto V and REFSEL[1:0] = 00.  
REF  
1)The FBGON bit is set to one in the reset register.  
If any of the above conditions exist, the ADC reference  
is always on, but there is a 188 clock-cycle delay  
before temperature-sensor measurements begin, if  
requested.  
2)At least one DAC output is powered up and  
REFSEL[1:0] (in the setup register) = 00.  
Table .cꢀ Clock Mode 11  
VOꢁTAGE  
REFEREICE COIDꢂTꢂOIS  
OVERRꢂDE  
REF2  
AUTOSHUTDOWI  
REFSEꢁ1 REFSEꢁ0  
COIFꢂGURATꢂOI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 external conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN14/AIN10/AIN6  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
External single-  
Internal reference not used.  
Internal reference required. There is a programmed  
ended (REF1  
for DAC and  
REF2 for ADC)  
REF2  
AIN14/AIN10/AIN6  
REF2  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 external  
conversion clock cycles.  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
1
1
0
1
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
Table .dꢀ Differential Select Modes  
DꢂFFSEꢁ1 DꢂFFSEꢁ0  
FUICTꢂOI  
0
0
1
1
0
1
0
1
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
1 byte of data follows the command setup byte and is written to the unipolar-mode register.  
1 byte of data follows the command setup byte and is written to the bipolar-mode register.  
26 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 6ꢀ Unipolar-Mode Register (Addressed Through the Setup Register)  
BꢂT IAME  
UCH0/1  
BꢂT  
FUICTꢂOI  
Configure AIN0 and AIN1 for unipolar differential conversion.  
Configure AIN2 and AIN3 for unipolar differential conversion.  
Configure AIN4 and AIN5 for unipolar differential conversion.  
Configure AIN6 and AIN7 for unipolar differential conversion.  
Configure AIN8 and AIN9 for unipolar differential conversion.  
Configure AIN10 and AIN11 for unipolar differential conversion.  
Configure AIN12 and AIN13 for unipolar differential conversion.  
Configure AIN14 and AIN15 for unipolar differential conversion.  
7 (MSB)  
UCH2/3  
6
UCH4/5  
5
UCH6/7  
4
UCH8/9  
3
UCH10/11  
UCH12/13  
UCH14/15  
2
1
0 (LSB)  
Table 7ꢀ Bipolar-Mode Register (Addressed Through the Setup Register)  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
Set to one to configure AIN0 and AIN1 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN0 and AIN1 for unipolar  
single-ended conversion.  
BCH0/1  
7 (MSB)  
Set to one to configure AIN2 and AIN3 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN2 and AIN3 for unipolar  
single-ended conversion.  
BCH2/3  
BCH4/5  
6
Set to one to configure AIN4 and AIN5 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN4 and AIN5 for unipolar  
single-ended conversion.  
5
Set to one to configure AIN6 and AIN7 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN6 and AIN7 for unipolar  
single-ended conversion.  
BCH6/7  
4
Set to one to configure AIN8 and AIN9 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN8 and AIN9 for unipolar  
single-ended conversion.  
BCH8/9  
3
Set to one to configure AIN10 and AIN11 for bipolar differential conversion. Set the corresponding  
bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN10 and AIN11 for  
unipolar single-ended conversion.  
BCH10/11  
BCH12/13  
BCH14/15  
2
1
Set to one to configure AIN12 and AIN13 for bipolar differential conversion. Set the corresponding  
bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN12 and AIN13 for  
unipolar single-ended conversion.  
Set to one to configure AIN14 and AIN15 for bipolar differential conversion. Set the corresponding  
bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN14 and AIN15 for  
unipolar single-ended conversion.  
0 (LSB)  
______________________________________________________________________________________ 27  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Unipolar/Bipolar Registers  
The final 2 bits (LSBs) of the setup register control the  
unipolar-/bipolar-mode address registers. Set  
DIFFSEL[1:0] = 10 to write to the unipolar-mode regis-  
ter. Set bits DIFFSEL[1:0] = 11 to write to the bipolar-  
mode register. In both cases, the setup command byte  
must be followed by 1 byte of data that is written to the  
unipolar-mode register or bipolar-mode register. Hold  
CS low and run 16 SCLK cycles before pulling CS high.  
If the last 2 bits of the setup register are 00 or 01, nei-  
ther the unipolar-mode register nor the bipolar-mode  
register is written. Any subsequent byte is recognized  
as a new command byte. See Tables 6, 7, and 8 to pro-  
gram the unipolar- and bipolar-mode registers.  
Both registers power up at all zeros to set the inputs as  
16 unipolar single-ended channels. To configure a  
channel pair as single-ended unipolar, bipolar differen-  
tial, or unipolar differential, see Table 8.  
In unipolar mode, AIN+ can exceed AIN- by up to  
REF  
bipolar mode, either input can exceed the other by up  
Table 8ꢀ Unipolar/Bipolar Channel Function  
V
. The output format in unipolar mode is binary. In  
UIꢂPOꢁAR-  
to V  
/ 2. The output format in bipolar mode is two’s  
REF  
BꢂPOꢁAR-MODE  
REGꢂSTER BꢂT  
CHAIIEꢁ PAꢂR  
FUICTꢂOI  
MODE  
complement (see the ADC Transfer Functions section).  
REGꢂSTER BꢂT  
ADC Averaging Register  
Write a command byte to the ADC averaging register to  
configure the ADC to average up to 32 samples for  
each requested result, and to independently control the  
number of results requested for single-channel scans.  
0
0
1
1
0
1
0
1
Unipolar single-ended  
Bipolar differential  
Unipolar differential  
Unipolar differential  
Table 9ꢀ ADC Averaging Register*  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
7 (MSB)  
Set to zero to select ADC averaging register.  
6
Set to zero to select ADC averaging register.  
5
Set to one to select ADC averaging register.  
AVGON  
4
Set to one to turn averaging on. Set to zero to turn averaging off.  
Configures the number of conversions for single-channel scans.  
Configures the number of conversions for single-channel scans.  
Single-channel scan count. (Scan mode 10 only.)  
Single-channel scan count. (Scan mode 10 only.)  
NAVG1  
3
NAVG0  
2
1
NSCAN1  
NSCAN0  
0 (LSB)  
*See below for bit details.  
FUICTꢂOI  
AVGOI  
IAVG1  
IAVG0  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Performs one conversion for each requested result.  
Performs four conversions and returns the average for each requested result.  
Performs eight conversions and returns the average for each requested result.  
Performs 16 conversions and returns the average for each requested result.  
Performs 32 conversions and returns the average for each requested result.  
ISCAI1  
ISCAI0  
FUICTꢂOI (APPꢁꢂES OIꢁY ꢂF SCAI MODE 10 ꢂS SEꢁECTED)  
Scans channel N and returns four results.  
0
0
1
1
0
1
0
1
Scans channel N and returns eight results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
28 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 9 details the four scan modes available in the  
ADC conversion register. All four scan modes allow  
averaging as long as the AVGON bit, bit 4 in the  
averaging register, is set to 1. Select scan mode 10 to  
scan the same channel multiple times. Clock mode 11  
disables averaging. For example, if AVGON = 1,  
NAVG[1:0] = 00, NSCAN[1:0] = 11 and SCAN[1:0] =  
10, 16 results are written to the FIFO, with each result  
being the average of four conversions of channel N.  
Reset Register  
Write to the reset register (as shown in Table 11) to  
clear the FIFO or to reset all registers to their default  
states. Set the RESET bit to one to reset the FIFO. Set  
the RESET bit to zero to return the MAX1220–MAX1223/  
MAX1257/MAX1258 to their default power-up state. All  
registers power up in state 00000000, except for the  
setup register that powers up in clock mode 10  
(CKSEL1 = 1). Set the SLOW bit to one to add a 15ns  
delay in the DOUT signal path to provide a longer hold  
time. Writing a one to the SLOW bit also clears the con-  
tents of the FIFO. Set the FBGON bit to one to force the  
bias block and bandgap reference to power up regard-  
less of the state of the DAC and activity of the ADC  
block. Setting the FBGON bit high also removes the  
programmed wake-up delay between conversions in  
clock modes 01 and 11. Setting the FBGON bit high  
also clears the FIFO.  
DAC Select Register  
Write a command byte 0001XXXX to the DAC select  
register (as shown in Table 9) to set up the DAC inter-  
face and indicate that another word will follow. The last  
4 bits of the DAC select register are don’t-care bits. The  
word that follows the DAC select-register command  
byte controls the DAC serial interface. See Table 20  
and the DAC Serial Interface section.  
GPIO Command  
Write a command byte to the GPIO command register  
to configure, write, or read the GPIOs, as detailed in  
Table 12.  
Table 10ꢀ DAC Select Register  
BꢂT  
BꢂT  
FUICTꢂOI  
IAME  
X
7 (MSB) Set to zero to select DAC select register.  
Write the command byte 00000011 to configure the  
GPIOs. The eight SCLK cycles following the command  
byte load data from DIN to the GPIO configuration reg-  
ister in the MAX1220/MAX1221. The 16 SCLK cycles  
6
5
4
3
2
1
0
Set to zero to select DAC select register.  
Set to zero to select DAC select register.  
Set to one to select DAC select register.  
Don’t care.  
Table 12ꢀ GPꢂO Command Register  
X
Don’t care.  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
X
Don’t care.  
7 (MSB)  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
GPIO configuration bit.  
X
Don’t care.  
6
5
Table 11ꢀ Reset Register  
4
3
BꢂT  
BꢂT  
FUICTꢂOI  
2
1
IAME  
GPIOSEL1  
GPIOSEL2  
7 (MSB) Set to zero to select ADC reset register.  
0 (LSB)  
GPIO write bit.  
6
5
4
3
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to one to select ADC reset register.  
GPꢂOSEꢁ1 GPꢂOSEꢁ2  
FUICTꢂOI  
GPIO configuration; written data is  
entered in the GPIO configuration  
register.  
1
1
0
1
0
1
Set to zero to clear the FIFO only. Set to  
one to set the device in its power-on  
condition.  
RESET  
SLOW  
2
1
GPIO write; written data is entered  
in the GPIO write register.  
Set to one to turn on slow mode.  
GPIO read; the next 8/16 SCLK  
cycles transfer the state of all GPIO  
drivers into DOUT.  
Set to one to force internal bias block and  
bandgap reference to be always powered  
up.  
FBGON 0 (LSB)  
______________________________________________________________________________________ 29  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
following the command byte load data from DIN to the  
GPIO Write  
Write the command byte 00000010 to indicate a GPIO  
GPIO configuration register in the MAX1257/MAX1258.  
See Tables 13 and 14. The register bits are updated  
after the last CS rising edge. All GPIOs default to inputs  
upon power-up.  
write operation. The eight SCLK cycles following the  
command byte load data from DIN into the GPIO write  
register in the MAX1220/MAX1221. The 16 SCLK  
cycles following the command byte load data from DIN  
into the GPIO write register in the MAX1257/MAX1258.  
See Tables 15 and 16. The register bits are updated  
after the last CS rising edge.  
The data in the register controls the function of each  
GPIO, as shown in Tables 13–19.  
Table 13ꢀ MAX1220/MAX1221 GPꢂO Configuration  
DATA PꢂI  
DꢂI  
DOUT  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
GPIOC1  
0
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
0
X
0
X
0
Table 14ꢀ MAX12.7/MAX12.8 GPꢂO Configuration  
DATA PꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE 1  
DATA BYTE 2  
DꢂI  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
X
0
X
X
0
X
0
DOUT  
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 1.ꢀ MAX1220/MAX1221 GPꢂO Write  
DATA PꢂI  
DꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
GPIOC1  
0
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
0
X
X
0
DOUT  
0
Table 16ꢀ MAX12.7/MAX12.8 GPꢂO Write  
DATA PꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE 1  
DATA BYTE 2  
DꢂI  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
X
0
X
X
X
0
DOUT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
GPIO Read  
Write the command byte 00000001 to indicate a GPIO  
read operation. The eight SCLK cycles following the  
command byte transfer the state of the GPIOs to DOUT  
in the MAX1220/MAX1221. The 16 SCLK cycles follow-  
ing the command byte transfer the state of the GPIOs to  
DOUT in the MAX1257/MAX1258. See Tables 18 and 19.  
DAC Serial Interface  
Write a command byte 0001XXXX to the DAC select  
register to indicate the word to follow is written to the  
DAC serial interface, as detailed in Tables 1, 10, 20, and  
21. Write the next 16 bits to the DAC interface register,  
as shown in Tables 20 and 21. Following the high-to-low  
transition of CS, the data is shifted synchronously and  
latched into the input register on each falling edge of  
SCLK. Each word is 16 bits. The first 4 bits are the con-  
trol bits followed by 12 data bits (MSB first) and 2 don’t-  
care sub-bits. See Figures 9–12 for DAC timing  
specifications.  
Table 17ꢀ GPꢂO-Mode Control  
COIFꢂGURATꢂOI  
BꢂT  
WRꢂTE  
BꢂT  
OUTPUT  
STATE  
GPꢂO  
FUICTꢂOI  
If CS goes high prior to completing 16 SCLK cycles,  
the command is discarded. To initiate a new transfer,  
drive CS low again.  
1
1
0
1
0
1
1
0
Output  
Output  
Input  
For example, writing the DAC serial interface word  
1111 0000 and 1111 0100 disconnects DAC outputs 4  
through 7 and forces them to a high-impedance state.  
DAC outputs 0 through 3 remain in their previous state.  
Tri-state  
Pulldown  
(open drain)  
0
0
0
Table 18ꢀ MAX1220/MAX1221 GPꢂO Read  
DATA PꢂI  
DꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
X
0
X
0
X
0
X
0
X
X
X
X
DOUT  
GPIOC1  
GPIOC0  
GPIOA1  
GPIOA0  
Table 19ꢀ MAX12.7/MAX12.8 GPꢂO Read  
DATA PꢂI  
DꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE 1  
DATA BYTE 2  
0
0
0
0
0
0
0
0
1
0
X
0
X
0
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
DOUT  
0
0
0
0
0
0
0
______________________________________________________________________________________ 31  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 20ꢀ DAC Serial-ꢂnterface Configuration  
16-BꢂT SERꢂAꢁ WORD  
MSB  
COITROꢁ  
BꢂTS  
C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D. D4 D3 D2 D1 D0  
ꢁSB  
DESCRꢂPTꢂOI  
FUICTꢂOI  
DATA BꢂTS  
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
No operation.  
Reset all internal registers to 000h and  
leave output buffers in their present state.  
0
0
0
1
0
X
0
X
X
X
X
X
X
X
X
X
RESET  
Preset all internal registers to FFFh and  
leave output buffers in their present state.  
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
1
X
1
X
X
X
X
X
X
X
X
X
Pull-High  
DAC0  
DAC1  
DAC2  
DAC3  
DAC4  
DAC5  
DAC6  
DAC7  
D11–D0 to input register 0,  
DAC output unchanged.  
D11–D0 to input register 1,  
DAC output unchanged.  
D11–D0 to input register 2,  
DAC output unchanged.  
D11–D0 to input register 3,  
DAC output unchanged.  
D11–D0 to input register 4,  
DAC output unchanged.  
D11–D0 to input register 5,  
DAC output unchanged.  
D11–D0 to input register 6,  
DAC output unchanged.  
D11–D0 to input register 7,  
DAC output unchanged.  
D11–D0 to input registers 0–3 and DAC  
registers 0–3. DAC outputs updated  
(write-through).  
1
1
0
0
1
1
0
1
DAC0–DAC3  
D11–D0 to input registers 4–7 and DAC  
DAC4–DAC7 registers 4–7. DAC outputs updated  
(write-through).  
D11–D0 to input registers 0–7 and DAC  
registers 0–7. DAC outputs updated  
(write-through).  
1
1
1
1
0
0
0
1
DAC0–DAC7  
DAC0–DAC7  
D11–D0 to input registers 0–7.  
DAC outputs unchanged.  
Input registers to DAC registers indicated  
by ones, DAC outputs updated,  
equivalent to software LDAC.  
1
1
1
0
X
X
X
X
DAC0–DAC7  
(No effect on DACs indicated by zeros.)  
32 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 21ꢀ DAC Power-Up and Power-Down Commands  
COITROꢁ  
DATA BꢂTS  
BꢂTS  
DESCRꢂPTꢂOI  
FUICTꢂOI  
C3 C2 C1 C0  
D3 D2 D1 D0  
Power up individual DAC buffers indicated by data  
in DAC0 through DAC7. A one indicates the DAC  
output is connected and active. A zero does not  
affect the DAC’s present state.  
1
1
1
1
1
1
1
1
— — — — — — — —  
0
0
0
1
1
0
X
X
Power-Up  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
DAC output is disconnected and high impedance.  
A zero does not affect the DAC’s present state.  
— — — — — — — —  
Power-Down 1  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
DAC output is disconnected and pulled to AGND  
with a 1kresistor. A zero does not affect the DAC’s  
present state.  
1
1
1
1
1
1
1
1
1
1
1
1
— — — — — — — —  
— — — — — — — —  
— — — — — — — —  
1
0
1
0
0
1
0
0
1
X
X
X
Power-Down 2  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
Power-Down 3 DAC output is disconnected and pulled to AGND  
with a 100kresistor. A zero does not affect the  
DAC’s present state.  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
Power-Down 4 DAC output is disconnected and pulled to REF1 with  
a 100kresistor. A zero does not affect the DAC’s  
present state.  
occur halfway between successive-integer LSB values.  
Output-Data Format  
Output coding is binary, with 1 LSB = V  
/ 4096  
Figures 6–9 illustrate the conversion timing for the  
MAX1220–MAX1223/MAX1257/MAX1258. All 12-bit  
conversion results are output in 2-byte format, MSB  
first, with four leading zeros. Data appears on DOUT on  
the falling edges of SCLK. Data is binary for unipolar  
mode and two’s complement for bipolar mode and tem-  
perature results. See Figures 3, 4, and 5 for input/out-  
put and temperature-transfer functions.  
REF1  
(MAX1221/MAX1223/MAX1257) and 1 LSB = V  
/
REF1  
4096 (MAX1220/MAX1222/MAX1258) for unipolar and  
bipolar operation, and 1 LSB = +0.125°C for tempera-  
ture measurements. Bipolar true-differential results and  
temperature-sensor results are available in two’s com-  
plement format, while all others are in binary. See  
Tables 6, 7, and 8 for details on which setting (unipolar  
or bipolar) takes precedence.  
ADC Transfer Functions  
Figure 3 shows the unipolar transfer function for single-  
ended or differential inputs. Figure 4 shows the bipolar  
transfer function for differential inputs. Code transitions  
In unipolar mode, AIN+ can exceed AIN- by up to  
V
. In bipolar mode, either input can exceed the  
REF1  
other by up to V  
/ 2.  
REF1  
______________________________________________________________________________________ 33  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
MAX1257/MAX1258 then wake up, scan all requested  
channels, store the results in the FIFO, and shut down.  
After the scan is complete, EOC is pulled low and the  
results are available in the FIFO. Wait until EOC goes  
low before pulling CS low to communicate with the seri-  
al interface. EOC stays low until CS or CNVST is pulled  
low again. A temperature-conversion result, if request-  
ed, precedes all other FIFO results.  
Partial Reads and Partial Writes  
If the 1st byte of an entry in the FIFO is partially read  
(CS is pulled high after fewer than eight SCLK cycles),  
the remaining bits are lost for that byte. The next byte of  
data that is read out contains the next 8 bits. If the first  
byte of an entry in the FIFO is read out fully, but the  
second byte is read out partially, the rest of that byte is  
lost. The remaining data in the FIFO is unaffected and  
can be read out normally after taking CS low again, as  
long as the 4 leading bits (normally zeros) are ignored.  
If CS is pulled low before EOC goes low, a conversion  
may not be completed and the FIFO data may not be  
correct. Incorrect writes (pulling CS high before com-  
pleting eight SCLK cycles) are ignored and the register  
remains unchanged.  
V
REF  
= V - V  
REF+ REF-  
V
REF  
V
REF  
011....111  
011....110  
011....101  
FS = V / 2 + V  
REF  
COM  
ZS = COM  
-FS = -V / 2  
REF  
V
REF  
Applications Information  
1 LSB = V / 4096  
REF  
000....001  
000....000  
111....111  
Internally Timed Acquisitions and  
(COM)  
Conversions Using CNVST  
ADC Conversions in Clock Mode 00  
In clock mode 00, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated through CNVST  
and performed automatically using the internal oscilla-  
tor. Results are added to the internal FIFO to be read  
out later. See Figure 6 for clock mode 00 timing after a  
command byte is issued. See Table 5 for details on  
programming the clock mode in the setup register.  
V
REF  
100....011  
100....010  
100....001  
100....000  
-FS  
-1 0 +1  
(COM)  
+FS - 1 LSB  
INPUT VOLTAGE (LSB)  
Initiate a scan by setting CNVST low for at least 40ns  
before pulling it high again. The MAX1220–MAX1223/  
Figure 4. Bipolar Transfer Function—Full Scale ( FS) =  
V
REF  
/ 2  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
111....111  
011....111  
011....110  
FS = V  
REF  
111....110  
111....101  
1 LSB = V / 4096  
REF  
000....010  
000....001  
000....000  
111....111  
111....110  
111....101  
000....011  
000....010  
000....001  
000....000  
100....001  
100....000  
0
1
2
3
FS  
INPUT VOLTAGE (LSB)  
0
-256  
+255.5  
FS - 3/2 LSB  
TEMPERATURE (°C)  
Figure 5. Temperature Transfer Function  
Figure 3. Unipolar Transfer Function—Full Scale (FS) = V  
REF  
34 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
CNVST  
CS  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
SCLK  
DOUT  
LSB1  
MSB2  
MSB1  
t
RDS  
EOC  
Figure 6. Clock Mode 00—After writing a command byte, set CNVST low for at least 40ns to begin a conversion.  
t
CSW  
CNVST  
(CONVERSION 2)  
(ACQUISITION 1)  
(ACQUISITION 2)  
CS  
t
DOV  
SCLK  
(CONVERSION 1)  
DOUT  
EOC  
LSB1  
MSB2  
MSB1  
Figure 7. Clock Mode 01—After writing a command byte, request multiple conversions by setting CNVST low for each conversion.  
at least 1.4µs to complete the acquisition. If reference  
mode 00 or 10 is selected, an additional 45µs is  
required for the internal reference to power up. If a tem-  
perature measurement is being requested, reference  
power-up and temperature measurement is internally  
timed. In this case, hold CNVST low for at least 40ns.  
Do not issue a second CNVST signal before EOC goes  
low; otherwise, the FIFO can be corrupted. Wait until all  
conversions are complete before reading the FIFO. SPI  
communications to the DAC and GPIO registers are per-  
mitted during conversion. However, coupled noise may  
result in degraded ADC signal-to-noise ratio (SNR).  
Set CNVST high to begin a conversion. Sampling is  
completed approximately 500ns after CNVST goes  
high. After the conversion is complete, the ADC shuts  
down and pulls EOC low. EOC stays low until CS or  
CNVST is pulled low again. Wait until EOC goes low  
before pulling CS or CNVST low. The number of CNVST  
signals must equal the number of conversions request-  
ed by the scan and averaging registers to correctly  
update the FIFO. Wait until all conversions are com-  
plete before reading the FIFO. SPI communications to  
the DAC and GPIO registers are permitted during  
Externally Timed Acquisitions and  
Internally Timed Conversions with CNVST  
ADC Conversions in Clock Mode 01  
In clock mode 01, conversions are requested one at a  
time using CNVST and performed automatically using  
the internal oscillator. See Figure 7 for clock mode 01  
timing after a command byte is issued.  
Setting CNVST low begins an acquisition, wakes up the  
ADC, and places it in track mode. Hold CNVST low for  
______________________________________________________________________________________ 3.  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
(CONVERSION BYTE)  
DIN  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
MSB1  
LSB1  
MSB2  
t
DOV  
EOC  
Figure 8. Clock Mode 10—The command byte to the conversion register begins the acquisition (CNVST is not required).  
conversion. However, coupled noise may result in  
degraded ADC SNR.  
Internally Timed Acquisitions and  
Conversions Using the Serial Interface  
If averaging is turned on, multiple CNVST pulses need to  
be performed before a result is written to the FIFO. Once  
the proper number of conversions has been performed  
to generate an averaged FIFO result (as specified to the  
averaging register), the scan logic automatically switch-  
es the analog-input multiplexer to the next requested  
channel. If a temperature measurement is programmed,  
it is performed after the first rising edge of CNVST follow-  
ing the command byte written to the conversion register.  
The temperature-conversion result is available on DOUT  
once EOC has been pulled low.  
ADC Conversions in Clock Mode 10  
In clock mode 10, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated by writing a com-  
mand byte to the conversion register, and is performed  
automatically using the internal oscillator. This is the  
default clock mode upon power-up. See Figure 8 for  
clock mode 10 timing.  
Initiate a scan by writing a command byte to the conver-  
sion register. The MAX1220–MAX1223/MAX1257/  
MAX1258 then power up, scan all requested channels,  
store the results in the FIFO, and shut down. After the  
scan is complete, EOC is pulled low and the results are  
available in the FIFO. If a temperature measurement is  
requested, the temperature result precedes all other  
FIFO results. EOC stays low until CS is pulled low again.  
Wait until all conversions are complete before reading  
the FIFO. SPI communications to the DAC and GPIO  
registers are permitted during conversion. However,  
coupled noise may result in degraded ADC SNR.  
36 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
(CONVERSION BYTE)  
DIN  
(ACQUISITION1)  
(CONVERSION1)  
(ACQUISITION2)  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
Figure 9. Clock Mode 11—Externally Timed Acquisition, Sampling, and Conversion without CNVST  
Conversion-Time Calculations  
The conversion time for each scan is based on a num-  
ber of different factors: conversion time per sample,  
samples per result, results per scan, if a temperature  
measurement is requested, and if the external refer-  
ence is in use. Use the following formula to calculate  
the total conversion time for an internally timed conver-  
sion in clock mode 00 and 10 (see the Electrical  
Characteristics, as applicable):  
Externally Clocked Acquisitions and  
Conversions Using the Serial Interface  
ADC Conversions in Clock Mode 11  
In clock mode 11, acquisitions and conversions are ini-  
tiated by writing a command byte to the conversion  
register and are performed one at a time using the  
SCLK as the conversion clock. Scanning, averaging  
and the FIFO are disabled, and the conversion result is  
available at DOUT during the conversion. Output data  
is updated on the rising edge of SCLK in clock mode  
11. See Figure 9 for clock mode 11 timing.  
Total conversion time =  
t
x n  
x n + t + t  
SCAN TS INT-REF,SU  
CNV  
AVG  
where:  
= t  
Initiate a conversion by writing a command byte to the  
conversion register followed by 16 SCLK cycles. If CS  
is pulsed high between the eighth and ninth cycles, the  
pulse width must be less than 100µs. To continuously  
convert at 16 cycles per conversion, alternate 1 byte of  
zeros (NOP byte) between each conversion byte. If 2  
NOP bytes follow a conversion byte, the analog cells  
power down at the end of the second NOP. Set the  
FBGON bit to one in the reset register to keep the inter-  
nal bias block powered.  
t
, where t  
is dependent on the clock  
DOV  
CNV  
DOV  
mode and the reference mode selected  
n
= samples per result (amount of averaging)  
AVG  
n
= number of times each channel is scanned; set  
SCAN  
to one unless [SCAN1, SCAN0] = 10  
t
= time required for temperature measurement  
TS  
(53.1µs); set to zero if temperature measurement is not  
requested  
If reference mode 00 is requested, or if an external refer-  
ence is selected but a temperature measurement is being  
requested, wait 45µs with CS high after writing the con-  
version byte to extend the acquisition and allow the inter-  
nal reference to power up. To perform a temperature  
measurement, write 24 bytes (192 cycles) of zeros after  
the conversion byte. The temperature result appears on  
DOUT during the last 2 bytes of the 192 cycles.  
t
= t  
(external-reference wake-up); if a  
WU  
INT-REF,SU  
conversion using the external reference is requested  
In clock mode 01, the total conversion time depends on  
how long CNVST is held low or high. Conversion time in  
externally clocked mode (CKSEL1, CKSEL0 = 11)  
depends on the SCLK period and how long CS is held  
high between each set of eight SCLK cycles. In clock  
mode 01, the total conversion time does not include the  
time required to turn on the internal reference.  
______________________________________________________________________________________ 37  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
t
CH  
t
CL  
32  
16  
8
SCLK  
DIN  
5
1
2
3
4
t
DH  
t
DS  
D13  
D12  
D11  
D15  
D14  
D1  
D0  
t
DOT  
t
DOD  
t
DOE  
D15  
D7  
D14  
D6  
D12  
D4  
D13  
D5  
DOUT  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
CS  
Figure 10. DAC/GPIO Serial-Interface Timing (Clock Modes 00, 01, and 10)  
DAC/GPIO Timing  
Figures 10–13 detail the timing diagrams for writing to  
the DAC and GPIOs. Figure 10 shows the timing speci-  
fications for clock modes 00, 01, and 10. Figure 11  
shows the timing specifications for clock mode 11.  
Figure 12 details the timing specifications for the DAC  
input select register and 2 bytes to follow. Output data  
is updated on the rising edge of SCLK in clock mode  
11. Figure 13 shows the GPIO timing. Figure 14 shows  
the timing details of a hardware LDAC command DAC-  
register update. For a software-command DAC-register  
update, t is valid from the rising edge of CS, which fol-  
S
lows the last data bit in the software command word.  
38 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
t
CH  
t
CL  
32  
16  
8
SCLK  
5
1
2
3
4
t
DH  
t
DS  
D15  
D14  
D13  
D12  
D11  
D1  
D0  
DIN  
DOUT  
CS  
t
t
DOT  
DOE  
t
DOD  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
Figure 11. DAC/GPIO Serial-Interface Timing (Clock Mode 11)  
SCLK  
10  
24  
1
2
8
9
DIN  
BIT 7 (MSB)  
BIT 6  
BIT 0 (LSB)  
BIT 15  
BIT 14  
BIT 1  
BIT 0  
DOUT  
CS  
THE COMMAND BYTE  
INITIALIZES THE DAC SELECT  
REGISTER  
THE NEXT 16 BITS SELECT THE DAC  
AND THE DATA WRITTEN TO IT  
Figure 12. DAC-Select Register Byte and DAC Serial-Interface Word  
______________________________________________________________________________________ 39  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
CS  
t
GOD  
t
GSU  
GPIO INPUT/OUTPUT  
Figure 13. GPIO Timing  
t
LDACPWL  
LDAC  
t
S
1 LSB  
OUT_  
Figure 14. LDAC Functionality  
The MAX1220–MAX1223/MAX1257/MAX1258 thin QFN  
packages contain an exposed pad on the underside of  
the device. Connect this exposed pad to AGND. Refer to  
the MAX1258EVKIT for an example of proper layout.  
LDAC Functionality  
Drive LDAC low to transfer the content of the input reg-  
isters to the DAC registers. Drive LDAC permanently  
low to make the DAC register transparent. The DAC  
output typically settles from zero to full scale within  
LSB after 2µs. See Figure 14.  
1
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. INL for  
the MAX1220–MAX1223/MAX1257/MAX1258 is mea-  
sured using the end-point method.  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Ensure that digi-  
tal and analog signal lines are separated from each  
other. Do not run analog and digital signals parallel to  
one another (especially clock signals) or do not run  
digital lines underneath the MAX1220–MAX1223/  
MAX1257/MAX1258 package. High-frequency noise in  
the AV  
power supply may affect performance.  
DD  
Bypass the AV  
AGND, close to the AV  
with a 0.1µF capacitor to DGND, close to the DV  
supply with a 0.1µF capacitor to  
DD  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
pin. Bypass the DV  
supply  
DD  
DD  
pin.  
DD  
Minimize capacitor lead lengths for best supply-noise  
rejection. If the power supply is very noisy, connect a  
10resistor in series with the supply to improve power-  
supply filtering.  
40 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Unipolar ADC Offset Error  
For an ideal converter, the first transition occurs at 0.5  
LSB, above zero. Offset error is the amount of deviation  
between the measured first transition point and the  
ideal first transition point.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
SINAD(dB) = 20 x log (Signal  
/ Noise  
)
RMS  
RMS  
Bipolar ADC Offset Error  
While in bipolar mode, the ADC’s ideal midscale transi-  
tion occurs at AGND -0.5 LSB. Bipolar offset error is the  
measured deviation from this ideal value.  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the ENOB as follows:  
ADC Gain Error  
Gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed and with  
a full-scale analog input voltage applied to the ADC,  
resulting in all ones at DOUT.  
ENOB = (SINAD - 1.76) / 6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
DAC Offset Error  
DAC offset error is determined by loading a code of all  
zeros into the DAC and measuring the analog output  
voltage.  
2
2
2
2
2
THD = 20 x log  
V
+ V3 + V4 + V5 + V6 /V  
(
)
2
1  
DAC Gain Error  
DAC gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed, when  
loading a code of all ones into the DAC.  
where V is the fundamental amplitude, and V through  
6
1
2
V are the amplitudes of the first five harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest distortion  
component.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
ADC Channel-to-Channel Crosstalk  
Bias the ON channel to midscale. Apply a full-scale sine  
wave test tone to all OFF channels. Perform an FFT on  
the ON channel. ADC channel-to-channel crosstalk is  
expressed in dB as the amplitude of the FFT spur at the  
frequency associated with the OFF channel test tone.  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge of the sampling clock and the instant when an  
actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-  
to-digital noise is caused by quantization error only and  
results directly from the ADC’s resolution (N bits):  
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
relative to the total input power when two tones, f1 and  
f2, are present at the inputs. The intermodulation prod-  
ucts are (f1 f2), (2 x f1), (2 x f2), (2 x f1 f2), (2 x f2  
f1). The individual input tone levels are at -7dB FS.  
SNR = (6.02 x N + 1.76)dB  
Small-Signal Bandwidth  
A small -20dB FS analog input signal is applied to an  
ADC so the signal’s slew rate does not limit the ADC’s  
performance. The input frequency is then swept up to  
the point where the amplitude of the digitized conver-  
sion result has decreased by -3dB. Note that the T/H  
performance is usually the limiting factor for the small-  
signal input bandwidth.  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise. RMS noise  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first five har-  
monics, and the DC offset.  
______________________________________________________________________________________ 41  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Full-Power Bandwidth  
A large -0.5dB FS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
DAC Power-Supply Rejection  
DAC PSR is the amount of change in the converter’s  
value at full-scale as the power-supply voltage changes  
from its nominal value. PSR assumes the converter’s  
linearity is unaffected by changes in the power-supply  
voltage.  
DAC Digital Feedthrough  
DAC digital feedthrough is the amount of noise that  
appears on the DAC output when the DAC digital con-  
trol lines are toggled.  
Chip Information  
TRANSISTOR COUNT: 58,141  
PROCESS: BiCMOS  
ADC Power-Supply Rejection  
ADC power-supply rejection (PSR) is defined as the  
shift in offset error when the power-supply is moved  
from the minimum operating voltage to the maximum  
operating voltage.  
42 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Configurations  
TOP VIEW  
1
2
3
4
5
6
7
8
9
27 AIN2  
26 REF1  
25 AIN1  
24 N.C.  
23 AIN0  
22 RES_SEL  
21 CS  
GPIOA0  
GPIOA1  
EOC  
1
2
3
4
5
6
7
8
9
27 AIN0  
CNVST/AIN11  
N.C.  
26 REF1  
25 GPIOC1  
24 GPIOC0  
23 N.C.  
EOC  
DV  
DD  
DV  
DD  
DGND  
DOUT  
SCLK  
DIN  
DGND  
DOUT  
SCLK  
DIN  
MAX1222  
MAX1223  
MAX1220  
MAX1221  
22 RES_SEL  
21 CS  
LDAC  
20  
LDAC  
20  
OUT0  
19 OUT7  
OUT0  
19 OUT7  
THꢂI QFI  
THꢂI QFI  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
CNVST/AIN15  
1
2
3
4
5
6
7
8
9
AIN2  
REF1  
AIN1  
AIN0  
GPIOA0  
GPIOA1  
EOC  
GPIOA2  
GPIOA3  
GPIOC3  
GPIOC2  
GPIOC1  
GPIOC0  
RES_SEL  
CS  
MAX1257  
MAX1258  
DV  
DD  
DGND  
DOUT  
SCLK 10  
DIN 11  
LDAC  
OUT7  
OUT0 12  
THꢂI QFI  
______________________________________________________________________________________ 43  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢀmaxim-icꢀcom/packages.)  
D2  
D
C
L
b
D2/2  
D/2  
k
E/2  
E2/2  
C
(NE-1) X  
e
E
E2  
L
k
L
DETAIL A  
e
(ND-1) X  
e
DETAIL B  
e
C
C
L
L
L
L1  
L
L
e
e
DALLAS  
SEMICONDUCTOR  
A
A1  
A2  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0144  
D
2
44 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢀmaxim-icꢀcom/packages.)  
DALLAS  
SEMICONDUCTOR  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0144  
D
2
______________________________________________________________________________________ 4.  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢀmaxim-icꢀcom/packages.)  
D2  
D
C
L
b
D/2  
D2/2  
k
E/2  
E2/2  
(NE-1) X  
e
C
L
E
E2  
k
L
e
(ND-1) X  
e
e
L
C
C
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
1
E
21-0141  
2
46 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢀmaxim-icꢀcom/packages.)  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1.  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
2
E
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 47  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1220_10

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1220_12

12-Bit, Multichannel ADCs/DACs with FIFO,Temperature Sensing, and GPIO Ports
MAXIM

MAX1221

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1221BETX

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1221BETX+

暂无描述
MAXIM

MAX1221BETX-T

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220, TQFN-36
MAXIM

MAX1223

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1223BETX

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1224

1.5Msps, Single-Supply, Low-Power, True-Differential, 12-Bit ADCs
MAXIM

MAX1224CTC

暂无描述
MAXIM

MAX1224CTC+

ADC, Successive Approximation
MAXIM

MAX1224CTC+T

暂无描述
MAXIM