MAX1221 [MAXIM]

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports; 12位,多通道ADC / DAC,带有FIFO ,温度传感器和GPIO端口
MAX1221
型号: MAX1221
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
12位,多通道ADC / DAC,带有FIFO ,温度传感器和GPIO端口

传感器 温度传感器 先进先出芯片
文件: 总44页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4010; Rev 1; 12/07  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
General Description  
Features  
12-Bit, 225ksps ADC  
The MAX1221/MAX1223/MAX1343 integrate a multichan-  
nel, 12-bit, analog-to-digital converter (ADC) and a 12-bit,  
digital-to-analog converter (DAC) in a single IC. The  
devices also include a temperature sensor and config-  
urable general-purpose I/O ports (GPIOs) with a 25MHz  
SPI™-/QSPI™-/MICROWIRE™-compatible serial inter-  
face. The ADC is available in a 12 or an eight input-chan-  
nel version. The DAC outputs settle within 2.0µs, and the  
ADC has a 225ksps conversion rate.  
Analog Multiplexer with True-Differential  
Track/Hold (T/H)  
12 Single-Ended Channels or Six Differential  
Channels (Unipolar or Bipolar) (MAX1223)  
Eight Single-Ended Channels or Four Differential  
Channels (Unipolar or Bipolar)  
(MAX1221/MAX1343)  
Excellent Accuracy: ±±05 ꢀSB ꢁIꢀ, ±±05 ꢀSB DIꢀ  
12-Bit, Octal, 2µs Settling DAC  
(MAX1221/MAX1223)  
All devices include an internal reference (2.5V) providing  
a well-regulated, low-noise reference for both the ADC  
and DAC. Programmable reference modes for the ADC  
and DAC allow the use of an internal reference, an exter-  
nal reference, or a combination of both. Features such as  
an internal 1ꢀC accurate temperature sensor, FIFO,  
scan modes, programmable internal or external clock  
modes, data averaging, and AutoShutdown™ allow users  
to minimize both power consumption and processor  
requirements. The low glitch energy (4nVs) and low digi-  
tal feedthrough (0.5nVs) of the integrated DACs make  
these devices ideal for digital control of fast-response  
closed-loop systems.  
Ultra-ꢀow Glitch Energy (4nVs)  
Power-Up Options from Zero Scale or Full Scale  
Excellent Accuracy: ±±05 ꢀSB ꢁIꢀ  
ꢁnternal Reference or External Single-Ended/  
Differential Reference  
ꢁnternal Reference Voltage 205V  
ꢁnternal ±1ꢂC Accurate Temperature Sensor  
On-Chip FꢁFO Capable of Storing 16 ADC  
Conversion Results and One Temperature Result  
On-Chip Channel-Scan Mode and ꢁnternal  
Data-Averaging Features  
The devices are guaranteed to operate with a supply volt-  
age from +2.7V to +5.25V. The devices consume 2.5mA  
at 225ksps throughput, only 22µA at 1ksps throughput,  
and under 0.2µA in the shutdown mode. The MAX1221/  
MAX1343 offer four GPIOs that can be configured as  
inputs or outputs.  
Analog Single-Supply Operation  
+207V to +5025V  
207V to AV  
Digital Supply  
DD  
25MHz, SPꢁ/QSPꢁ/MꢁCROWꢁRE Serial ꢁnterface  
AutoShutdown Between Conversions  
ꢀow-Power ADC  
205mA at 225ksps  
22µA at 1ksps  
The MAX1221/MAX1223/MAX1343 are available in 36-pin  
thin QFN packages. All devices are specified over the  
-40ꢀC to +85ꢀC temperature range.  
±02µA at Shutdown  
Applications  
Closed-Loop Controls for Optical Components  
and Base Stations  
ꢀow-Power DAC: 105mA  
Evaluation Kit Available (Order MAX1258EVKꢁT)  
System Supervision and Control  
Data-Acquisition Systems  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
Pin Configurations appear at end of data sheet0  
Ordering Information/Selector Guide  
REF  
VOꢀTAGE  
(V)  
AIAꢀOG  
SUPPꢀY  
VOꢀTAGE (V)  
RESOꢀUTꢁOI  
BꢁTS**  
ADC  
DAC  
PKG  
CODE  
PART  
PꢁI-PACKAGE  
GPꢁOs  
CHAIIEꢀS CHAIIEꢀS  
MAX1221BETX  
MAX1223BETX  
MAX1343BETX  
36 Thin QFN-EP*  
36 Thin QFN-EP*  
36 Thin QFN-EP*  
2.5  
2.5  
2.5  
2.7 to 5.25  
2.7 to 5.25  
2.7 to 5.25  
12  
12  
12  
8
12  
8
8
8
4
4
0
4
T3666-3  
T3666-3  
T3666-3  
Iote: All devices are specified over the -40ꢀC to +85ꢀC operating temperature range.  
*EP = Exposed pad.  
**Number of resolution bits refers to both DAC and ADC.  
________________________________________________________________ Maxim ꢁntegrated Products  
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www0maxim-ic0com0  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
ABSOꢀUTE MAXꢁMUM RATꢁIGS  
AV  
to AGND .........................................................-0.3V to +6V  
Maximum Current into OUT_.............................................100mA  
DD  
DGND to AGND.....................................................-0.3V to +0.3V  
DV to AV .......................................................-3.0V to +0.3V  
Digital Inputs to DGND.............................................-0.3V to +6V  
Continuous Power Dissipation (T = +70ꢀC)  
36-Pin Thin QFN (6mm x 6mm)  
(derate 26.3mW/ꢀC above +70ꢀC)......................2105.3mW  
Operating Temperature Range ...........................-40ꢀC to +85ꢀC  
Storage Temperature Range.............................-60ꢀC to +150ꢀC  
Junction Temperature......................................................+150ꢀC  
Lead Temperature (soldering, 10s) .................................+300ꢀC  
A
DD  
DD  
Digital Outputs to DGND.........................-0.3V to (DV + 0.3V)  
DD  
Analog Inputs, Analog Outputs and REF_  
to AGND...............................................-0.3V to (AV + 0.3V)  
DD  
Maximum Current into Any Pin (except AGND, DGND, AV  
,
DD  
DV , and OUT_)...........................................................50mA  
DD  
Iote: If the package power dissipation is not exceeded, one output at a time may be shorted to AV , DV , AGND, or DGND  
DD  
DD  
indefinitely.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRꢁCAꢀ CHARACTERꢁSTꢁCS  
(AV  
= DV  
= 2.7V to 5.25V, external reference V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless other-  
CLK A  
DD  
DD  
REF  
wise noted. Typical values are at AV  
= DV  
= 3V. T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢀ  
COIDꢁTꢁOIS  
ADC  
MꢁI  
TYP  
MAX  
UIꢁTS  
DC ACCURACY (Iote 1)  
Resolution  
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
0.5  
0.5  
0.5  
0.8  
0.1  
1.0  
1.0  
4.0  
4.0  
DNL  
LSB  
LSB  
2/MAX143  
Gain Error  
(Note 2)  
LSB  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
ppm/ꢀC  
LSB  
DYIAMꢁC SPECꢁFꢁCATꢁOIS (1±kHz sine-wave input, V = 205V , 225ksps, f  
= 306MHz)  
ꢁI  
P-P  
CꢀK  
Signal-to-Noise Plus Distortion  
SINAD  
70  
dB  
Total Harmonic Distortion  
(Up to the Fifth Harmonic)  
THD  
-76  
dBc  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Linear Bandwidth  
SFDR  
IMD  
72  
76  
100  
1
dBc  
dBc  
kHz  
f
= 9.9kHz, f  
= 10.2kHz  
IN1  
IN2  
SINAD > 70dB  
-3dB point  
Full-Power Bandwidth  
MHz  
COIVERSꢁOI RATE (Iote 3)  
External reference  
0.8  
µs  
Conversion  
clock  
Power-Up Time  
t
PU  
Internal reference (Note 4)  
218  
cycles  
2
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
EꢀECTRꢁCAꢀ CHARACTERꢁSTꢁCS (continued)  
(AV  
= DV  
= 2.7V to 5.25V, external reference V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless other-  
DD  
DD  
REF  
CLK A  
wise noted. Typical values are at AV  
= DV  
= 3V. T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
Acquisition Time  
SYMBOꢀ  
COIDꢁTꢁOIS  
MꢁI  
TYP  
MAX  
UIꢁTS  
t
(Note 5)  
0.6  
µs  
ACQ  
Internally clocked  
5.5  
Conversion Time  
t
µs  
CONV  
Externally clocked  
3.6  
0.1  
40  
External-Clock Frequency  
Duty Cycle  
f
Externally clocked conversion (Note 5)  
3.6  
60  
MHz  
%
CLK  
Aperture Delay  
30  
ns  
Aperture Jitter  
< 50  
ps  
AIAꢀOG ꢁIPUTS  
Unipolar  
Bipolar  
0
V
REF  
Input Voltage Range (Note 6)  
V
-V  
/ 2  
V
/ 2  
REF  
REF  
Input Leakage Current  
Input Capacitance  
0.01  
24  
1
µA  
pF  
ꢁITERIAꢀ TEMPERATURE SEISOR  
T
T
= +25ꢀC  
0.7  
1.0  
1/8  
A
A
Measurement Error (Notes 5, 7)  
ꢀC  
= T  
to T  
2.0  
MIN  
MAX  
Temperature Resolution  
ꢁITERIAꢀ REFEREICE  
REF1 Output Voltage  
ꢀC/LSB  
(Note 8)  
2.482  
2.50  
30  
2.518  
V
REF1 Voltage Temperature  
Coefficient  
TC  
ppm/ꢀC  
REF  
REF1 Output Impedance  
REF1 Short-Circuit Current  
EXTERIAꢀ REFEREICE  
6.5  
kΩ  
V
= 2.5V  
0.39  
mA  
REF  
AV  
0.05  
+
DD  
REF1 Input Voltage Range  
V
V
REF mode 11 (Note 4)  
1
V
V
REF1  
REF2  
AV  
0.05  
+
DD  
REF mode 01  
REF mode 11  
1
0
REF2 Input Voltage Range  
(Note 4)  
1
_______________________________________________________________________________________  
3
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢀECTRꢁCAꢀ CHARACTERꢁSTꢁCS (continued)  
(AV  
= DV  
= 2.7V to 5.25V, external reference V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless other-  
DD  
DD  
REF  
CLK A  
wise noted. Typical values are at AV  
= DV  
= 3V. T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢀ  
COIDꢁTꢁOIS  
= 2.5V, f = 225ksps  
MꢁI  
TYP  
25  
MAX  
80  
1
UIꢁTS  
V
REF  
SAMPLE  
REF1 Input Current (Note 9)  
I
I
µA  
REF1  
REF2  
Acquisition between conversions  
= 2.5V, f = 225ksps  
0.01  
25  
V
80  
1
REF  
SAMPLE  
REF2 Input Current  
µA  
Acquisition between conversions  
0.01  
DAC  
DC ACCURACY (Iote 1±)  
Resolution  
12  
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
4
DNL  
Guaranteed monotonic  
(Note 8)  
1.0  
10  
V
3
10  
5
OS  
ppm of  
FS/ꢀC  
Offset-Error Drift  
Gain Error  
GE  
(Note 8)  
10  
LSB  
ppm of  
FS/ꢀC  
Gain Temperature Coefficient  
DAC OUTPUT  
8
AV  
0.02  
-
-
DD  
No load  
0.02  
0.1  
Output Voltage Range  
V
AV  
0.1  
DD  
2/MAX143  
10kΩ load to either rail  
DC Output Impedance  
Capacitive Load  
0.5  
Ω
(Note 11)  
1
nF  
AV  
= 2.7V, V  
= 2.5V,  
DD  
REF  
Resistive Load to AGND  
R
L
2000  
Ω
gain error < 1%  
4
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
EꢀECTRꢁCAꢀ CHARACTERꢁSTꢁCS (continued)  
(AV  
= DV  
= 2.7V to 5.25V, external reference V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless other-  
DD  
DD  
REF  
CLK A  
wise noted. Typical values are at AV  
= DV  
= 3V. T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
Wake-Up Time (Note 12)  
1kΩ Output Termination  
100kΩ Output Termination  
SYMBOꢀ  
COIDꢁTꢁOIS  
From power-down mode, AV  
From power-down mode, AV  
MꢁI  
TYP  
25  
21  
1
MAX  
UIꢁTS  
µs  
= 5V  
DD  
DD  
= 2.7V  
Programmed in power-down mode  
kΩ  
At wake-up or programmed in  
power-down mode  
100  
kΩ  
DYIAMꢁC PERFORMAICE (Iotes 5, 13)  
Output-Voltage Slew Rate  
Output-Voltage Settling Time  
Digital Feedthrough  
SR  
Positive and negative  
3
V/µs  
µs  
t
To 1 LSB, 400 - C00 hex (Note 7)  
Code 0, all digital inputs from 0 to DV  
2
5
S
0.5  
nVs  
DD  
Major Code Transition Glitch  
Impulse  
Between codes 2047 and 2048  
4
nVs  
From V  
660  
720  
260  
320  
REF  
Output Noise (0.1Hz to 50MHz)  
Output Noise (0.1Hz to 500kHz)  
µV  
µV  
P-P  
P-P  
Using internal reference  
From V  
REF  
Using internal reference  
DAC-to-DAC Transition  
Crosstalk  
0.5  
nVs  
ꢁITERIAꢀ REFEREICE  
REF1 Output Voltage  
2.482  
2.50  
30  
2.518  
V
REF1 Temperature Coefficient  
REF1 Short-Circuit Current  
EXTERIAꢀ-REFEREICE ꢁIPUT  
REF1 Input Voltage Range  
REF1 Input Impedance  
TC  
ppm/ꢀC  
mA  
REF  
V
= 2.5V  
0.39  
REF  
V
R
REF modes 01, 10, and 11 (Note 4)  
0.7  
70  
AV  
V
REF1  
DD  
100  
130  
kΩ  
REF1  
DꢁGꢁTAꢀ ꢁITERFACE  
DꢁGꢁTAꢀ ꢁIPUTS (SCꢀK, DꢁI, CS, CNVST, LDAC)  
Input-Voltage High  
V
DV = 2.7V to 5.25V  
2.4  
V
V
IH  
DD  
DV = 3.6V to 5.25V  
0.8  
0.6  
10  
DD  
Input-Voltage Low  
V
IL  
DV = 2.7V to 3.6V  
DD  
Input Leakage Current  
Input Capacitance  
I
0.01  
15  
µA  
pF  
L
C
IN  
DꢁGꢁTAꢀ OUTPUT (DOUT) (Iote 14)  
Output-Voltage Low  
V
I
= 2mA  
SINK  
0.4  
V
OL  
_______________________________________________________________________________________  
5
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢀECTRꢁCAꢀ CHARACTERꢁSTꢁCS (continued)  
(AV  
= DV  
= 2.7V to 5.25V, external reference V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless other-  
DD  
DD  
REF  
CLK A  
wise noted. Typical values are at AV  
= DV  
= 3V. T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢀ  
COIDꢁTꢁOIS  
= 2mA  
SOURCE  
MꢁI  
TYP  
MAX  
UIꢁTS  
DV  
-
-
DD  
Output-Voltage High  
V
I
V
OH  
0.5  
Tri-State Leakage Current  
Tri-State Output Capacitance  
DꢁGꢁTAꢀ OUTPUT (EOC) (Iote 14)  
Output-Voltage Low  
10  
µA  
pF  
C
15  
OUT  
V
I
I
= 2mA  
0.4  
10  
V
V
OL  
SINK  
DV  
DD  
Output-Voltage High  
V
= 2mA  
SOURCE  
OH  
0.5  
Tri-State Leakage Current  
µA  
pF  
Tri-State Output Capacitance  
C
15  
OUT  
DꢁGꢁTAꢀ OUTPUTS (GPꢁO_) (Iote 14)  
I
I
= 2mA  
0.4  
0.8  
SINK  
GPIOC_ Output-Voltage Low  
V
= 4mA  
SINK  
DV  
0.5  
-
-
DD  
GPIOC_ Output-Voltage High  
GPIOA_ Output-Voltage Low  
GPIOA_ Output-Voltage High  
Tri-State Leakage Current  
I
I
I
= 2mA  
V
V
V
SOURCE  
= 15mA  
0.8  
10  
SINK  
DV  
0.8  
DD  
= 15mA  
SOURCE  
µA  
pF  
Tri-State Output Capacitance  
C
15  
OUT  
DD  
2/MAX143  
POWER REQUꢁREMEITS (Iote 15)  
Digital Positive-Supply Voltage  
Digital Positive-Supply Current  
Analog Positive-Supply Voltage  
DV  
2.7  
AV  
V
µA  
mA  
V
DD  
Idle, all blocks shut down  
0.2  
1
4
DI  
DD  
Only ADC on, external reference  
AV  
2.70  
5.25  
2
DD  
Idle, all blocks shut down  
0.2  
2.8  
2.6  
1.5  
-77  
µA  
f
f
= 225ksps  
= 100ksps  
4.2  
SAMPLE  
SAMPLE  
Only ADC on,  
external reference  
Analog Positive-Supply Current  
A
IDD  
mA  
All DACs on, no load, internal reference  
AV = 2.7V  
4.0  
0.5  
REF1 Positive-Supply Rejection  
DAC Positive-Supply Rejection  
PSRR  
PSRD  
dB  
DD  
Output code = FFFhex,  
AV = 2.7V to 5.25V  
0.1  
mV  
DD  
6
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
EꢀECTRꢁCAꢀ CHARACTERꢁSTꢁCS (continued)  
(AV  
= DV  
= 2.7V to 5.25V, external reference V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless other-  
DD  
DD  
REF  
CLK A  
wise noted. Typical values are at AV  
= DV  
= 3V. T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢀ  
COIDꢁTꢁOIS  
Full-scale input, AV = 2.7V to 5.25V  
MꢁI  
TYP  
MAX  
UIꢁTS  
ADC Positive-Supply Rejection  
PSRA  
0.06  
0.5  
mV  
DD  
TꢁMꢁIG CHARACTERꢁSTꢁCS (Figures 6–13)  
SCLK Clock Period  
t
40  
16  
16  
ns  
ns  
ns  
CP  
CH  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
t
40/60 duty cycle  
60/40 duty cycle  
t
CL  
GPIO Output Rise/Fall After  
CS Rise  
t
C
= 20pF  
100  
ns  
GOD  
LOAD  
GPIO Input Setup Before CS Fall  
LDAC Pulse Width  
t
0
20  
1.8  
10  
1.8  
10  
10  
0
ns  
ns  
GSU  
t
LDACPWL  
C
C
C
C
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
12.0  
40  
LOAD  
LOAD  
LOAD  
LOAD  
SCLK Fall to DOUT Transition  
(Note 16)  
t
t
ns  
ns  
DOT  
DOT  
12.0  
40  
SCLK Rise to DOUT Transition  
(Notes 16, 17)  
CS Fall to SCLK Fall Setup Time  
SCLK Fall to CS Rise Setup Time  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
CS Pulse-Width High  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSS  
t
2000  
CSH  
t
10  
0
DS  
t
DH  
t
50  
CSPWH  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
EOC Fall to CS Fall  
t
C
C
= 20pF  
= 20pF  
25  
DOD  
LOAD  
LOAD  
t
1.5  
30  
25.0  
DOE  
t
RDS  
CKSEL = 01 (temp sense) or CKSEL = 10  
(temp sense), internal reference on  
65  
CKSEL = 01 (temp sense) or CKSEL = 10  
(temp sense), internal reference initially off  
140  
CS or CNVST Rise to EOC  
Fall—Internally Clocked  
Conversion Time  
t
µs  
DOV  
CKSEL = 01 (voltage conversion)  
9
9
CKSEL = 10 (voltage conversion), internal  
reference on  
CKSEL = 10 (voltage conversion), internal  
reference initially off  
80  
CKSEL = 00, CKSEL = 01 (temp sense)  
CKSEL = 01 (voltage conversion)  
40  
ns  
µs  
CNVST Pulse Width  
t
CSW  
1.4  
_______________________________________________________________________________________  
7
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢀECTRꢁCAꢀ CHARACTERꢁSTꢁCS (continued)  
(AV  
= DV  
= 2.7V to 5.25V, external reference V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless other-  
DD  
DD  
REF  
CLK A  
wise noted. Typical values are at AV  
= DV  
= 3V. T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
Iote 1: Tested at DV  
= AV  
= +2.7V.  
DD  
DD  
Iote 2: Offset nulled.  
Iote 3: No bus activity during conversion. Conversion time is defined as the number of conversion clock cycles, multiplied by the  
clock period.  
Iote 4: See Table 5 for reference-mode details.  
Iote 5: Not production tested. Guaranteed by design.  
Iote 6: See the ADC/DAC References section.  
Iote 7: Fast automated test, excludes self-heating effects.  
Iote 8: Specified over the -40ꢀC to +85ꢀC temperature range.  
Iote 9: REFSEL[1:0] = 00 or when DACs are not powered up.  
Iote 1±: DAC linearity, gain, and offset measurements are made between codes 115 and 3981.  
Iote 11: The DAC buffers are guaranteed by design to be stable with a 1nF load.  
Iote 12: Time required by the DAC output to power up and settle within 1 LSB in the external reference mode.  
Iote 13: All DAC dynamic specifications are valid for a load of 100pF and 10kΩ.  
Iote 14: Only one digital output (either DOUT, EOC, or the GPIOs) can be indefinitely shorted to either supply at one time.  
Iote 15: All digital inputs at either DV  
or DGND. DV  
should not exceed AV  
.
DD  
DD  
DD  
Iote 16: See the Reset Register section and Table 9 for details on programming the SLOW bit.  
Iote 17: Clock mode 11 only.  
Typical Operating Characteristics  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at  
DD  
DD  
REF  
CLK  
SAMPLE  
LOAD  
REF, T = +25ꢀC, unless otherwise noted.)  
A
2/MAX143  
ANALOG SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ADC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
ANALOG SHUTDOWN CURRENT  
vs. TEMPERATURE  
0.5  
1.00  
0.4  
0.3  
0.2  
0.1  
0
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
0.75  
0.50  
0.25  
0
0.4  
0.3  
0.2  
0.1  
0
-0.25  
-0.50  
-0.75  
-1.00  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
1024  
2048  
3072  
4096  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
OUTPUT CODE  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at  
DD  
DD  
REF  
CLK  
SAMPLE  
LOAD  
REF, T = +25ꢀC, unless otherwise noted.)  
A
ADC INTEGRAL NONLINEARITY  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
vs. OUTPUT CODE  
1.00  
1.00  
1.00  
0.75  
0.50  
0.25  
0
AV = DV = 5V  
EXTERNAL REFERENCE = 4.096V  
DD  
DD  
0.75  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
ADC OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC OFFSET ERROR vs. TEMPERATURE  
2
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.5  
0
0
-1  
-2  
-0.5  
-1.0  
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
ADC EXTERNAL REFERENCE  
INPUT CURRENT vs. SAMPLING RATE  
ANALOG SUPPLY CURRENT  
vs. SAMPLING RATE  
ADC GAIN ERROR vs. TEMPERATURE  
2
1
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-1  
-2  
-40  
-15  
10  
35  
60  
85  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
TEMPERATURE (°C)  
SAMPLING RATE (ksps)  
SAMPLING RATE (ksps)  
_______________________________________________________________________________________  
9
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at  
DD  
DD  
REF  
CLK  
SAMPLE  
LOAD  
REF, T = +25ꢀC, unless otherwise noted.)  
A
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
2.04  
DAC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
1.5  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
1.88  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
AV = DV = 5V  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
DD  
DD  
1.0  
0.5  
0
AV = DV = 3V  
DD  
DD  
-0.5  
-1.0  
-1.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
0
1024  
2048  
3072  
4096  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT CODE  
DAC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
0.4  
0.2  
0
0.4  
0.2  
0
1.5  
1.0  
0.5  
0
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
2/MAX143  
-0.5  
-1.0  
-1.5  
-0.2  
-0.4  
-0.2  
-0.4  
2047  
2050  
2053  
2056  
2059  
2062  
2047  
2050  
2053  
2056  
2059  
2062  
0
1024  
2048  
3072  
4096  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
DAC FULL-SCALE ERROR  
vs. ANALOG SUPPLY VOLTAGE  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
10  
8
10  
8
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
INTERNAL  
REFERENCE  
6
6
4
4
2
2
0
0
EXTERNAL  
REFERENCE = 4.096V  
EXTERNAL  
-2  
-4  
-6  
-2  
-4  
-6  
REFERENCE = 2.5V  
AV = DV = 5V  
AV = DV = 3V  
DD  
DD  
DD  
DD  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1± ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at  
DD  
DD  
REF  
CLK  
SAMPLE  
LOAD  
REF, T = +25ꢀC, unless otherwise noted.)  
A
DAC FULL-SCALE ERROR  
vs. REFERENCE VOLTAGE  
DAC FULL-SCALE ERROR  
vs. REFERENCE VOLTAGE  
DAC FULL-SCALE ERROR  
vs. LOAD CURRENT  
1.00  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
5
AV = DV = 5V  
AV = DV = 5V  
EXTERNAL REFERENCE = 4.096V  
DD  
DD  
DD  
DD  
0.75  
0.50  
0.25  
0
0
-5  
-0.25  
-0.50  
-0.75  
-1.00  
-10  
-15  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
85  
85  
0
2.5  
0
5
10  
15  
20  
25  
30  
5.5  
200  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
LOAD CURRENT (mA)  
DAC FULL-SCALE ERROR  
vs. LOAD CURRENT  
INTERNAL REFERENCE  
ADC REFERENCE SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
VOLTAGE vs. TEMPERATURE  
5
0
2.52  
2.51  
2.50  
2.49  
2.48  
25.1  
25.0  
24.9  
24.8  
24.7  
-5  
-10  
-15  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
35  
60  
3.0  
3.5  
4.0  
4.5  
5.0  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
ADC REFERENCE SUPPLY  
CURRENT vs. TEMPERATURE  
ADC REFERENCE SUPPLY  
CURRENT vs. TEMPERATURE  
ADC FFT PLOT  
0
-20  
25.1  
25.0  
24.9  
24.8  
24.7  
41.0  
40.9  
40.8  
40.7  
40.6  
40.5  
f
f
f
= 32.768kHz  
= 10.080kHz  
= 5.24288MHz  
SAMPLE  
ANALOG_)N  
CLK  
SINAD = 71.27dBc  
SNR = 71.45dBc  
THD = 85.32dBc  
SFDR = 87.25dBc  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
AV = DV = 5V  
EXTERNAL REFERENCE = 4.096V  
AV = DV = 3V  
EXTERNAL REFERENCE = 2.5V  
DD  
DD  
DD  
DD  
50  
100  
150  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
ANALOG INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at  
DD  
DD  
REF  
CLK  
SAMPLE  
LOAD  
REF, T = +25ꢀC, unless otherwise noted.)  
A
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
ADC IMD PLOT  
ADC CROSSTALK PLOT  
0
0
2.08  
2.07  
2.06  
2.05  
2.04  
2.03  
2.02  
f
f
f
= 5.24288MHz  
= 9.0kHz  
= 11.0kHz  
= -6dBFS  
f = 5.24288MHz  
CLK  
f = 10.080kHz  
IN1  
f = 8.0801kHz  
IN2  
AV = DV = 5V  
CLK  
IN1  
IN2  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
-20  
-40  
-20  
-40  
-60  
-80  
A
SNR = 72.00dBc  
THD = 85.24dBc  
ENOB = 11.65 BITS  
IN  
IMD = 82.99dBc  
-60  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
SINKING  
SOURCING  
DAC OUTPUT = MIDSCALE  
2.01  
2.00  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
-30  
0
30  
60  
90  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
5
4
3
2
1
0
DAC OUTPUT = MIDSCALE  
GPIOA0, AGPIOA1 OUTPUTS  
GPIOC0, GPIOC1 OUTPUTS  
2/MAX143  
SINKING  
SOURCING  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
-30  
-20  
0
10  
20  
30  
0
20  
40  
60  
80  
100  
-10  
OUTPUT CURRENT (mA)  
SOURCE CURRENT (mA)  
GPIO OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SINK CURRENT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1500  
1200  
900  
600  
300  
0
GPIOC0, GPIOC1  
OUTPUTS  
GPIOA0, GPIOA1 OUTPUTS  
GPIOC0, GPIOC1  
OUTPUTS  
GPIOA0, GPIOA1 OUTPUTS  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
40 60 80 100  
SINK CURRENT (mA)  
0
20  
40  
60  
80  
100  
0
20  
SOURCE CURRENT (mA)  
12 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C = 50pF, 0.1µF capacitor at  
LOAD  
DD  
DD  
REF  
CLK  
SAMPLE  
REF, T = +25ꢀC, unless otherwise noted.)  
A
GPIO OUTPUT VOLTAGE  
vs. SINK CURRENT  
TEMPERATURE SENSOR ERROR  
vs. TEMPERATURE  
1.00  
0.75  
0.50  
0.25  
0
1500  
1200  
900  
600  
300  
0
GPIOC0, GPIOC1  
OUTPUTS  
-0.25  
-0.50  
GPIOA0, GPIOA1 OUTPUTS  
-0.75  
-1.00  
-40  
-15  
10  
35  
60  
85  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
SINK CURRENT (mA)  
DAC-TO-DAC CROSSTALK  
= 10kΩ, C = 100pF)  
DAC-TO-DAC CROSSTALK  
(R = 10kΩ, C = 100pF)  
LOAD  
(R  
LOAD  
LOAD  
LOAD  
MAX1221 toc40  
MAX1221 toc41  
V
OUTA  
V
OUTA  
1V/div  
2V/div  
V
OUTB  
V
OUTB  
10mV/div  
AC-COUPLED  
10mV/div  
AC-COUPLED  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
100μs/div  
100μs/div  
DYNAMIC RESPONSE RISE TIME  
DYNAMIC RESPONSE RISE TIME  
(R = 10kΩ, C = 100pF)  
(R  
LOAD  
= 10kΩ, C  
= 100pF)  
LOAD  
MAX1221 toc43  
LOAD  
LOAD  
MAX1221 toc42  
CS  
2V/div  
V
OUT  
1V/div  
V
OUT  
CS  
1V/div  
2V/div  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
1μs/div  
1μs/div  
______________________________________________________________________________________ 13  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at  
DD  
DD  
REF  
CLK  
SAMPLE  
LOAD  
REF, T = +25ꢀC, unless otherwise noted.)  
A
DYNAMIC RESPONSE FALL TIME  
(R = 10kΩ, C = 100pF)  
DYNAMIC RESPONSE FALL TIME  
(R = 10kΩ, C = 100pF)  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1221 toc44  
MAX1221 toc45  
CS  
2V/div  
V
OUT  
1V/div  
V
OUT  
CS  
1V/div  
2V/div  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
1μs/div  
1μs/div  
MAJOR CARRY TRANSITION  
(R = 10kΩ, C = 100pF)  
MAJOR CARRY TRANSITION  
(R  
LOAD  
= 10kΩ, C  
= 100pF)  
LOAD  
MAX1221 toc47  
LOAD  
LOAD  
MAX1221 toc46  
CS  
2V/div  
CS  
1V/div  
2/MAX143  
V
V
OUT  
OUT  
10mV/div  
20mV/div  
AC-COUPLED  
AC-COUPLED  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
1μs/div  
1μs/div  
DAC DIGITAL FEEDTHROUGH (R  
= 10kΩ,  
DAC DIGITAL FEEDTHROUGH (R  
= 10kΩ,  
LOAD  
LOAD  
C
LOAD  
= 100pF, CS = HIGH, DIN = LOW)  
C
LOAD  
= 100pF, CS = HIGH, DIN = LOW)  
MAX1221 toc48  
MAX1221 toc49  
SCLK  
2V/div  
SCLK  
1V/div  
V
OUT  
V
OUT  
100mV/div  
100mV/div  
AC-COUPLED  
AC-COUPLED  
AV = DV = 5V  
DD  
DD  
EXTERNAL REFERENCE = 4.096V  
200ns/div  
200ns/div  
14 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 3V external V  
= 2.5V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at  
DD  
DD  
REF  
CLK  
SAMPLE  
LOAD  
REF, T = +25ꢀC, unless otherwise noted.)  
A
NEGATIVE FULL-SCALE SETTLING TIME  
(R = 10kΩ, C = 100pF)  
NEGATIVE FULL-SCALE SETTLING TIME  
(R = 10kΩ, C = 100pF)  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1340 toc50  
MAX1221 toc51  
V
LDAC  
V
OUT  
2V/div  
1V/div  
V
OUT_  
2V/div  
V
LDAC  
AV = DV = 5V  
EXTERNAL REFERENCE = 4.096V  
DD  
DD  
1V/div  
1μs/div  
2μs/div  
POSITIVE FULL-SCALE SETTLING TIME  
(R = 10kΩ, C = 100pF)  
POSITIVE FULL-SCALE SETTLING TIME  
(R = 10kΩ, C = 100pF)  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1221 toc53  
MAX1221 toc52  
V
LDAC  
2V/div  
V
OUT_  
1V/div  
V
OUT_  
2V/div  
V
LDAC  
AV = DV = 5V  
EXTERNAL REFERENCE = 4.096V  
DD  
DD  
1V/div  
1μs/div  
1μs/div  
ADC REFERENCE FEEDTHROUGH  
(R = 10kΩ, C = 100pF)  
ADC REFERENCE FEEDTHROUGH  
(R = 10kΩ, C = 100pF)  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1221 toc54  
MAX1221 toc55  
V
REF2  
V
REF2  
1V/div  
2V/div  
V
DAC-OUT  
V
DAC-OUT  
10mV/div  
AC-COUPLED  
2mV/div  
AC-COUPLED  
AV = DV = 5V  
EXTERNAL REFERENCE = 4.096V  
ADC REFERENCE SWITCHING  
DD  
DD  
ADC REFERENCE SWITCHING  
200μs/div  
200μs/div  
______________________________________________________________________________________ 15  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Description  
PꢁI  
IAME  
FUICTꢁOI  
MAX1221 MAX1223 MAX1343  
1, 2  
1, 2  
GPIOA0, GPIOA1 General-Purpose I/O A0, A1. GPIOA0, A1 can sink and source 15mA.  
Active-Low Conversion-Start Input/Analog Input 11. See Table 5 for details  
on programming the setup register.  
1
CNVST/AIN11  
Active-Low End-of-Conversion Output. Data is valid after the falling edge  
of EOC.  
3
3
3
EOC  
Digital Positive-Power Input. Bypass DV  
capacitor.  
to DGND with a 0.1µF  
DD  
4
5
4
5
4
5
DV  
DD  
DGND  
DOUT  
Digital Ground. Connect DGND to AGND.  
Serial-Data Output. Data is clocked out on the falling edge of the SCLK  
clock in modes 00, 01, and 10. Data is clocked out on the rising edge of  
the SCLK clock in mode 11. It is high impedance when CS is high.  
6
7
6
7
6
7
Serial-Clock Input. Clocks data in and out of the serial interface. (Duty  
cycle must be 40% to 60%). See Table 5 for details on programming the  
clock mode.  
SCLK  
Serial-Data Input. DIN data is latched into the serial interface on the falling  
edge of SCLK.  
8
8
8
9–12  
DIN  
OUT0–OUT3  
OUT0–OUT7  
DAC Outputs  
9–12,  
16–19  
9–12,  
16–19  
DAC Outputs  
2/MAX143  
Positive Analog Power Input. Bypass AV  
capacitor.  
to AGND with a 0.1µF  
DD  
13  
14  
13  
14  
13  
14  
AV  
DD  
AGND  
N.C.  
Analog Ground  
15, 23,  
32, 33  
2, 15, 24,  
32  
15, 23,  
32, 33  
No Connection. Not internally connected.  
Do Not Connect. Do not connect to this pin.  
16–19  
D.C.  
Active-Low Load DAC. LDAC is an asynchronous active-low input that  
updates the DAC outputs. Drive LDAC low to make the DAC registers  
transparent.  
20  
20  
20  
LDAC  
CS  
Active-Low Chip-Select Input. When CS is low, the serial interface is  
enabled. When CS is high, DOUT is high impedance.  
21  
21  
21  
Reset Select. Select DAC wake-up mode. Set RES_SEL low to wake up  
the DAC outputs with a 100kΩ resistor to GND or set RES_SEL high to  
22  
22  
22  
RES_SEL  
wake up the DAC outputs with a 100kΩ resistor to V  
. The default is the  
REF  
external V  
.
REF  
24, 25  
24, 25  
GPIOC0, GPIOC1 General-Purpose I/O C0, C1. GPIOC0, C1 can sink 4mA and source 2mA.  
16 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Pin Description (continued)  
PꢁI  
IAME  
FUICTꢁOI  
MAX1221 MAX1223 MAX1343  
23, 25,  
27–31,  
AIN0–AIN9  
Analog Inputs  
33, 34, 35  
Reference 1 Input. Reference voltage; leave unconnected to use the  
internal reference (2.5V). REF1 is the positive reference in ADC differential  
mode. Bypass REF1 to AGND with a 0.1µF capacitor in external reference  
mode only. See the ADC/DAC References section.  
26  
26  
26  
REF1  
27–31, 34  
35  
27–31, 34  
35  
AIN0–AIN5  
REF2/AIN6  
Analog Inputs  
Reference 2 Input/Analog Input Channel 6. See Table 5 for details on  
programming the setup register.  
Active-Low Conversion-Start Input/Analog Input 7. See Table 5 for details  
on programming the setup register.  
36  
36  
36  
CNVST/AIN7  
REF2/AIN10  
EP  
Reference 2 Input/Analog Input Channel 10. See Table 5 for details on  
programming the setup register.  
Exposed Pad. Must be externally connected to AGND. Do not use as a  
ground connect.  
______________________________________________________________________________________ 17  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
low to latch any input data at DIN on the falling edge of  
Detailed Description  
SCLK. Output data at DOUT is updated on the falling  
The MAX1221/MAX1223/MAX1343 integrate a multi-  
edge of SCLK in clock modes 00, 01, and 10. Output  
channel 12-bit ADC, and an octal/quad 12-bit DAC in a  
data at DOUT is updated on the rising edge of SCLK in  
single IC. The devices also include a temperature sen-  
clock mode 11. See Figures 6–11. Bipolar true-differen-  
sor and configurable GPIOs with a 25MHz SPI-/QSPI-/  
tial results and temperature-sensor results are available  
MICROWIRE-compatible serial interface. The ADC is  
in two’s complement format, while all other results are in  
available in a 12 or an eight input-channel version. The  
binary.  
DAC outputs settle within 2.0µs, and the ADC has a  
225ksps conversion rate.  
A high-to-low transition on CS initiates the data-input  
operation. Serial communications to the ADC always  
begin with an 8-bit command byte (MSB first) loaded  
from DIN. The command byte and the subsequent data  
bytes are clocked from DIN into the serial interface on  
the falling edge of SCLK. The serial-interface and fast-  
interface circuitry is common to the ADC, DAC, and  
GPIO sections. The content of the command byte  
determines whether the SPI port should expect 8, 16, or  
24 bits and whether the data is intended for the ADC,  
DAC, or GPIOs (if applicable). See Table 1. Driving CS  
high resets the serial interface.  
All devices include an internal reference (2.5V) provid-  
ing a well-regulated, low-noise reference for both the  
ADC and DAC. Programmable reference modes for the  
ADC and DAC allow the use of an internal reference, an  
external reference, or a combination of both. Features  
such as an internal 1ꢀC accurate temperature sensor,  
FIFO, scan modes, programmable internal or external  
clock modes, data averaging, and AutoShutdown allow  
users to minimize both power consumption and proces-  
sor requirements. The low glitch energy (4nVs) and  
low digital feedthrough (0.5nVs) of the integrated  
DACs make these devices ideal for digital control of  
fast-response closed-loop systems.  
The conversion register controls ADC channel selec-  
tion, ADC scan mode, and temperature-measurement  
requests. See Table 4 for information on writing to the  
conversion register. The setup register controls the  
clock mode, reference, and unipolar/bipolar ADC con-  
figuration. Use a second byte, following the first, to  
write to the unipolar-mode or bipolar-mode registers.  
See Table 5 for details of the setup register and see  
Tables 6, 7, and 8 for setting the unipolar- and bipolar-  
mode registers. Hold CS low between the command  
byte and the second and third byte. The ADC averag-  
ing register is specific to the ADC. See Table 9 to  
address that register. Table 11 shows the details of the  
reset register.  
The devices are guaranteed to operate with a supply  
voltage from +2.7V to +5.25V. The devices consume  
2.5mA at 225ksps throughput, only 22µA at 1ksps  
throughput, and under 0.2µA in the shutdown mode.  
The MAX1221/MAX1343 offer four GPIOs that can be  
configured as inputs or outputs.  
2/MAX143  
Figure 1 shows the MAX1221 functional diagram. The  
MAX1221/MAX1343 only include the GPIOA0, GPIOA1  
and GPIOC0, GPIOC1 blocks. The MAX1223 excludes  
the GPIOs. The output-conditioning circuitry takes the  
internal parallel data bus and converts it to a serial  
data format at DOUT, with the appropriate wake-up  
timing. The arithmetic logic unit (ALU) performs the  
averaging function.  
Begin a write to the DAC by writing 0001XXXX as a  
command byte. The last 4 bits of this command byte  
are don’t-care bits. Write another 2 bytes (holding CS  
low) to the DAC interface register following the com-  
mand byte to select the appropriate DAC and the data  
to be written to it. See the DAC Serial Interface section  
and Tables 10, 17, and 18.  
SPI-Compatible Serial Interface  
The MAX1221/MAX1223/MAX1343 feature a serial inter-  
face that is compatible with SPI and MICROWIRE  
devices. For SPI, ensure the SPI bus master (typically a  
microcontroller (µC)) runs in master mode so that it  
generates the serial clock signal. Select the SCLK fre-  
quency of 25MHz or less, and set the clock polarity  
(CPOL) and phase (CPHA) in the µC control registers to  
the same value. The MAX1221/MAX1223/MAX1343  
operate with SCLK idling high or low, and thus operate  
with CPOL = CPHA = 0 or CPOL = CPHA = 1. Set CS  
Write to the GPIOs (if applicable) by issuing a command  
byte to the appropriate register. Writing to the  
MAX1221/MAX1343 GPIOs requires 1 additional byte fol-  
lowing the command byte. See Tables 12–16 for details  
on GPIO configuration, writes, and reads. See the GPIO  
Command section. Command bytes written to the  
GPIOs on devices without GPIOs are ignored.  
18 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
DV  
AV  
DD  
DD  
GPIOC0,  
GPIOC1  
GPIOA0,  
GPIOA1  
MAX1221  
GPIO  
USER-PROGRAMMABLE  
CONTROL  
I/O  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
OSCILLATOR  
SCLK  
CS  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
DIN  
SPI  
PORT  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
DOUT  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
TEMPERATURE  
SENSOR  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
EOC  
LOGIC  
CONTROL  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
CNVST  
T/H  
AIN0  
AIN5  
REF2/  
AIN6  
12-BIT  
SAR  
ADC  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
FIFO AND  
ALU  
INPUT  
REGISTER  
DAC  
REGISTER  
CNVST/  
AIN7  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
REF2  
INTERNAL  
REFERENCE  
REF1  
RES_SEL  
LDAC  
AGND  
DGND  
Figure 1. MAX1221 Functional Diagram  
______________________________________________________________________________________ 19  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 10 Command Byte (MSB First)  
REGꢁSTER IAME  
Conversion  
BꢁT 7  
BꢁT 6  
BꢁT 5  
BꢁT 4  
BꢁT 3  
BꢁT 2  
BꢁT 1  
BꢁT ±  
1
0
0
0
0
0
0
0
0
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
TEMP  
Setup  
1
0
0
0
0
0
0
0
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
ADC Averaging  
DAC Select  
Reset  
1
0
0
0
0
0
0
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
1
0
0
0
0
0
X
1
0
0
0
0
X
X
X
RESET  
SLOW  
FBGON  
GPIO Configure*  
GPIO Write*  
GPIO Read*  
No Operation  
0
0
0
0
1
1
0
0
1
0
1
0
X = Don’t care.  
*Only applicable on the MAX1221/MAX1343.  
Power-Up Default State  
The MAX1221/MAX1223/MAX1343 power up with all  
blocks in shutdown (including the reference). All regis-  
ters power up in state 00000000, except for the setup  
register and the DAC input register. The setup register  
powers up at 0010 1000 with CKSEL1 = 1 and REF-  
SEL1 = 1. The DAC input register powers up to FFFh  
when RES_SEL is high and powers up to 000h when  
RES_SEL is low.  
timed conversions through the serial interface by writ-  
ing to the conversion register in the default clock mode,  
10. Use clock mode 11 with SCLK up to 3.6MHz for  
externally timed acquisitions to achieve sampling rates  
up to 225ksps. Clock mode 11 disables scanning and  
averaging. See Figures 6–9 for timing specifications on  
how to begin a conversion.  
These devices feature an active-low, end-of-conversion  
output. EOC goes low when the ADC completes the last  
requested operation and is waiting for the next com-  
mand byte. EOC goes high when CS or CNVST go low.  
EOC is always high in clock mode 11.  
2/MAX143  
12-Bit ADC  
The MAX1221/MAX1223/MAX1343 ADCs use a fully dif-  
ferential successive-approximation register (SAR) con-  
version technique and on-chip track-and-hold (T/H)  
circuitry to convert temperature and voltage signals into  
12-bit digital results. The analog inputs accept both sin-  
gle-ended and differential input signals. Single-ended  
signals are converted using a unipolar transfer function,  
and differential signals are converted using a selec-  
table bipolar or unipolar transfer function. See the ADC  
Transfer Functions section for more data.  
Single-Ended or Differential Conversions  
The MAX1221/MAX1223/MAX1343 use a fully differen-  
tial ADC for all conversions. When a pair of inputs are  
connected as a differential pair, each input is connect-  
ed to the ADC. When configured in single-ended mode,  
the positive input is the single-ended channel and the  
negative input is referred to AGND. See Figure 2.  
In differential mode, the T/H samples the difference  
between two analog inputs, eliminating common-mode  
DC offsets and noise. IN+ and IN- are selected from the  
following pairs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,  
AIN6/AIN7, AIN8/AIN9, AIN10/AIN11. AIN0–AIN7 are  
available on all devices. AIN0–AIN11 are available on  
the MAX1223. See Tables 5–8 for more details on con-  
figuring the inputs. For the inputs that are configurable  
as CNVST, REF2, and an analog input, only one func-  
tion can be used at a time.  
ADC Clock Modes  
When addressing the setup, register bits 5 and 4 of the  
command byte (CKSEL1 and CKSEL0, respectively)  
control the ADC clock modes. See Table 5. Choose  
between four different clock modes for various ways to  
start a conversion and determine whether the acquisi-  
tions are internally or externally timed. Select clock  
mode 00 to configure CNVST/AIN_ to act as a conver-  
sion start and use it to request internally timed conver-  
sions, without tying up the serial bus. In clock mode 01,  
use CNVST to request conversions one channel at a  
time, thereby controlling the sampling speed without  
tying up the serial bus. Request and start internally  
Unipolar or Bipolar Conversions  
Address the unipolar- and bipolar-mode registers  
through the setup register (bits 1 and 0). See Table 5 for  
2± ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
the setup register. See Figures 3 and 4 for the transfer-  
function graphs. Program a pair of analog inputs for dif-  
ferential operation by writing a one to the appropriate bit  
of the bipolar- or unipolar-mode register. Unipolar mode  
voltages is converted. The input capacitance charging  
rate determines the time required for the T/H to acquire  
an input signal. If the input signal’s source impedance is  
high, the required acquisition time lengthens.  
sets the differential input range from 0 to V  
A nega-  
REF1.  
Any source impedance below 300Ω does not signifi-  
cantly affect the ADC’s AC performance. A high-imped-  
ance source can be accommodated either by  
tive differential analog input in unipolar mode causes the  
digital output code to be zero. Selecting bipolar mode  
sets the differential input range to  
V
REF1  
/ 2. The digital  
lengthening t  
(only in clock mode 01) or by placing  
ACQ  
output code is binary in unipolar mode and two’s com-  
plement in bipolar mode.  
a 1µF capacitor between the positive and negative ana-  
log inputs. The combination of the analog-input source  
impedance and the capacitance at the analog input cre-  
ates an RC filter that limits the analog input bandwidth.  
In single-ended mode, the MAX1221/MAX1223/  
MAX1343 always operate in unipolar mode. The analog  
inputs are internally referenced to AGND with a full-scale  
input range from 0 to the selected reference voltage.  
ꢁnput Bandwidth  
The ADC’s input-tracking circuitry has a 1MHz small-sig-  
nal bandwidth, making it possible to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Anti-alias prefiltering  
of the input signals is necessary to avoid high-frequency  
signals aliasing into the frequency band of interest.  
Analog ꢁnput (T/H)  
The equivalent circuit of Figure 2 shows the ADC input  
architecture of the MAX1223. In track mode, a positive  
input capacitor is connected to AIN0–AIN11 in single-  
ended mode and AIN0, AIN2, AIN4–AIN10 in differential  
mode. A negative input capacitor is connected to AGND  
in single-ended mode or AIN1, AIN3, AIN5–AIN11 in dif-  
ferential mode. The MAX1221/MAX1343 feature eight  
analog input channels (AIN0–AIN7). In track mode, a pos-  
itive input capacitor is connected to AIN0–AIN7 in single-  
ended mode and to AIN0, AIN2, AIN4, and AIN6 in  
differential mode. A negative input capacitor is connected  
to AGND in single-ended mode or to AIN1, AIN3, AIN5,  
and AIN7 in differential mode. For external T/H timing, use  
clock mode 01. After the T/H enters hold mode, the differ-  
ence between the sampled positive and negative input  
Analog ꢁnput Protection  
Internal electrostatic-discharge (ESD) protection diodes  
clamp all analog inputs to AV  
and AGND, allowing  
DD  
the inputs to swing from (AGND - 0.3V) to (AV  
+
DD  
0.3V) without damage. However, for accurate conver-  
sions near full scale, the inputs must not exceed AV  
DD  
by more than 50mV or be lower than AGND by 50mV. If  
an analog input voltage exceeds the supplies, limit the  
input current to 2mA.  
ꢁnternal FꢁFO  
The MAX1221/MAX1223/MAX1343 contain a first-  
in/first-out (FIFO) buffer that holds up to 16 ADC results  
plus one temperature result. The internal FIFO allows  
the ADC to process and store multiple internally  
clocked conversions and a temperature measurement  
without being serviced by the serial bus.  
AIN0–AIN11  
(SINGLE-ENDED),  
AIN0, AIN2,  
AIN4–AIN10  
(DIFFERENTIAL)  
REF1  
DAC  
ACQ  
AGND  
CIN+  
COMPARATOR  
If the FIFO is filled and further conversions are request-  
ed without reading from the FIFO, the oldest ADC  
results are overwritten by the new ADC results. Each  
result contains 2 bytes, with the MSB preceded by four  
leading zeros. After each falling edge of CS, the oldest  
available pair of bytes of data is available at DOUT,  
MSB first. When the FIFO is empty, DOUT is zero.  
HOLD  
CIN-  
AGND  
(SINGLE-ENDED),  
AIN1, AIN3,  
ACQ  
The first 2 bytes of data read out after a temperature  
measurement always contain the 12-bit temperature  
result, preceded by four leading zeros, MSB first. If anoth-  
er temperature measurement is performed before the first  
temperature result is read out, the old measurement is  
overwritten by the new result. Temperature results are in  
degrees Celsius (two’s complement), at a resolution of 8  
AIN5–AIN11  
(DIFFERENTIAL)  
ACQ  
HOLD  
HOLD  
AV / 2  
DD  
Figure 2. MAX1223 Equivalent Input Circuit  
______________________________________________________________________________________ 21  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
LSB per degree. See the Temperature Measurements  
section for details on converting the digital code to a tem-  
perature.  
AGND upon power-up to be sure the DAC outputs  
wake up to a known state. Connect RES_SEL to AGND  
to wake up all DAC outputs at 000h. While RES_SEL is  
low, the 100kΩ internal resistor pulls the DAC outputs to  
AGND and the output buffers are powered down.  
12-Bit DAC  
In addition to the 12-bit ADC, the MAX1221/MAX1223/  
MAX1343 also include eight (MAX1221/MAX1223) or  
four (MAX1343) voltage-output, 12-bit, monotonic DACs  
with less than 4 LSB integral nonlinearity error and less  
than 1 LSB differential nonlinearity error. Each DAC has  
a 2µs settling time and ultra-low glitch energy (4nVs).  
The 12-bit DAC code is unipolar binary with 1 LSB =  
Connect RES_SEL to AV  
to wake up all DAC outputs  
DD  
at FFFh. While RES_SEL is high, the 100kΩ pullup  
resistor pulls the DAC outputs to V  
buffers are powered down.  
and the output  
REF1  
DAC Power-Up Modes  
See Table 18 for a description of the DAC power-up  
and power-down modes.  
V
REF  
/ 4096.  
DAC Digital ꢁnterface  
GPIOs  
In addition to the internal ADC and DAC, the  
MAX1221/MAX1343 also provide four GPIO channels,  
GPIOA0, GPIOA1, GPIOC0, GPIOC1. Read and write to  
the GPIOs as detailed in Table 1 and Tables 12–16. Also,  
see the GPIO Command section. See Figures 11 and 12  
for GPIO timing.  
Figure 1 shows the functional diagram of the MAX1221.  
The shift register converts a serial 16-bit word to parallel  
data for each input register operating with a clock rate  
up to 25MHz. The SPI-compatible digital interface to the  
shift register consists of CS, SCLK, DIN, and DOUT.  
Serial data at DIN is loaded on the falling edge of SCLK.  
Pull CS low to begin a write sequence. Begin a write to  
the DAC by writing 0001XXXX as a command byte. The  
last 4 bits of the DAC select register are don’t-care bits.  
See Table 10. Write another 2 bytes to the DAC inter-  
face register following the command byte to select the  
appropriate DAC and the data to be written to it. See  
Tables 17 and 18.  
Write to the GPIOs by writing a command byte to the  
GPIO command register. Write a single data byte to the  
MAX1221/MAX1343 following the command byte.  
The GPIOs can sink and source current. GPIOA0 and  
GPIOA1 can sink and source up to 15mA. GPIOC0 and  
GPIOC1 can sink 4mA and source 2mA. See Table 3.  
The double-buffered DACs include an input and a DAC  
register. The input registers are directly connected to the  
shift register and hold the result of the most recent write  
operation. The 12-bit DAC registers hold the current out-  
put code for the respective DAC. Data can be transferred  
from the input registers to the DAC registers by pulling  
LDAC low or by writing the appropriate DAC command  
sequence at DIN. See Table 17. The outputs of the DACs  
are buffered through eight (MAX1221/MAX1223) or four  
(MAX1343) rail-to-rail op amps.  
2/MAX143  
Table 20 DAC Output Code Table  
DAC COITEITS  
AIAꢀOG OUTPUT  
MSB  
ꢀSB  
4095  
4096  
+V  
+V  
1111  
1111  
0000  
0000  
0111  
1111  
REF  
2049  
4096  
The MAX1221/MAX1223/MAX1343 DAC output-voltage  
range is based on the internal reference or an external  
reference. Write to the setup register (see Table 5) to  
program the reference. If using an external voltage  
reference, bypass REF1 with a 0.1µF capacitor to  
AGND. The internal reference is 2.5V. When using an  
external reference on any of these devices, the voltage  
1000  
1000  
0111  
0001  
0000  
0111  
REF  
2048  
4096  
+V  
REF  
+V  
=
REF  
2
range is 0.7V to AV  
.
DD  
2047  
4096  
+V  
REF  
DAC Transfer Function  
See Table 2 for various analog outputs from the DAC.  
1
DAC Power-On Wake-Up Modes  
0000  
0000  
0000  
0000  
0001  
0000  
+V  
REF  
4096  
The state of the RES_SEL input determines the wake-up  
state of the DAC outputs. Connect RES_SEL to AV  
or  
DD  
0
22 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
See Table 4. The MAX1221/MAX1223/MAX1343 perform  
temperature measurements with an internal diode-con-  
nected transistor. The diode bias current changes from  
68µA to 4µA to produce a temperature-dependent bias  
voltage difference. The second conversion result at 4µA  
is subtracted from the first at 68µA to calculate a digital  
value that is proportional to absolute temperature. The  
output data appearing at DOUT is the digital code  
above, minus an offset to adjust from Kelvin to Celsius.  
Clock Modes  
ꢁnternal Clock  
The MAX1221/MAX1223/MAX1343 can operate from an  
internal oscillator. The internal oscillator is active in  
clock modes 00, 01, and 10. Figures 6, 7, and 8 show  
how to start an ADC conversion in the three internally  
timed conversion modes.  
Read out the data at clock speeds up to 25MHz  
through the SPI interface.  
The reference voltage used for the temperature mea-  
surements is always derived from the internal reference  
source to ensure that 1 LSB corresponds to 1/8 of a  
degree Celsius. On every scan where a temperature  
measurement is requested, the temperature conversion  
is carried out first. The first 2 bytes of data read from  
the FIFO contain the result of the temperature measure-  
ment. If another temperature measurement is per-  
formed before the first temperature result is read out,  
the old measurement is overwritten by the new result.  
Temperature results are in degrees Celsius (two’s com-  
plement). See the Applications Information section for  
information on how to perform temperature measure-  
ments in each clock mode.  
External Clock  
Set CKSEL1 and CKSEL0 in the setup register to 11 to  
set up the interface for external clock mode 11. See  
Table 5. Pulse SCLK at speeds from 0.1MHz to  
3.6MHz. Write to SCLK with a 40% to 60% duty cycle.  
The SCLK frequency controls the conversion timing.  
See Figure 9 for clock mode 11 timing. See the ADC  
Conversions in Clock Mode 11 section.  
ADC/DAC References  
Address the reference through the setup register, bits 3  
and 2. See Table 5. Following a wake-up delay, set  
REFSEL[1:0] = 00 to program both the ADC and DAC  
for internal reference use. Set REFSEL[1:0] = 10 to pro-  
gram the ADC for internal reference use without a  
wake-up delay. Set REFSEL[1:0] = 10 to program the  
DAC for external reference, REF1. When using REF1 or  
REF2/AIN_ in external-reference mode, connect a 0.1µF  
capacitor to AGND. Set REFSEL[1:0] = 01 to program  
the ADC and DAC for external-reference mode. The  
DAC uses REF1 as its external reference, while the  
ADC uses REF2 as its external reference. Set  
REFSEL[1:0] = 11 to program the ADC for external dif-  
ferential reference mode. REF1 is the positive reference  
and REF2 is the negative reference in the ADC external  
differential mode.  
Register Descriptions  
The MAX1221/MAX1223/MAX1343 communicate  
between the internal registers and the external circuitry  
through the SPI-compatible serial interface. Table 1  
details the command byte, the registers, and the bit  
names. Tables 4–12 show the various functions within  
the conversion register, setup register, unipolar-mode  
register, bipolar-mode register, ADC averaging regis-  
ter, DAC select register, reset register, and GPIO com-  
mand register, respectively.  
Conversion Register  
Select active analog input channels, scan modes, and  
a single temperature measurement per scan by issuing  
a command byte to the conversion register. Table 4  
details channel selection, the four scan modes, and  
how to request a temperature measurement. Start a  
scan by writing to the conversion register when in clock  
mode 10 or 11, or by applying a low pulse to the  
CNVST pin when in clock mode 00 or 01. See Figures 6  
and 7 for timing specifications for starting a scan with  
CNVST.  
When REFSEL[1:0] = 00 or 10, REF2/AIN_ functions as  
an analog input channel. When REFSEL[1:0] = 01 or 11,  
REF2/AIN_ functions as the device’s negative reference.  
Temperature Measurements  
Issue a command byte setting bit 0 of the conversion  
register to one to take a temperature measurement.  
Table 30 GPꢁO Maximum Sink/Source  
Current  
A conversion is not performed if it is requested on a  
channel or one of the channel pairs that has been con-  
figured as CNVST or REF2. For channels configured as  
differential pairs, the CHSEL0 bit is ignored and the two  
pins are treated as a single differential channel. For the  
MAX1221/MAX1343, the CHSEL3 bit must be zero.  
MAX1221/MAX1343  
CURREIT  
GPꢁOA±, GPꢁOA1 GPꢁOC±, GPꢁOC1  
(mA)  
(mA)  
Sink  
15  
4
2
Source  
15  
______________________________________________________________________________________ 23  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Channels 8–11 are invalid. Any scans or averages on  
Table 40 Conversion Register*  
these channles can cause corrupt data.  
BꢁT  
IAME  
BꢁT  
FUICTꢁOI  
Select scan mode 00 or 01 to return one result per sin-  
gle-ended channel and one result per differential pair  
within the selected scanning range (set by bits 2 and 1,  
SCAN1 and SCAN0), plus one temperature result if  
selected. Select scan mode 10 to scan a single input  
channel numerous times, depending on NSCAN1 and  
NSCAN0 in the ADC averaging register (Table 9).  
Select scan mode 11 to return only one result from a  
single channel.  
7 (MSB) Set to one to select conversion register.  
Analog input channel select  
CHSEL3  
6
(MAX1223). Set to 0 on the  
MAX1221/MAX1343.  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
5
4
3
2
1
Analog input channel select.  
Analog input channel select.  
Analog input channel select.  
Scan mode select.  
Setup Register  
Issue a command byte to the setup register to config-  
ure the clock, reference, power-down modes, and ADC  
single-ended/differential modes. Table 5 details the bits  
in the setup-register command byte. Bits 5 and 4  
(CKSEL1 and CKSEL0) control the clock mode, acqui-  
sition and sampling, and the conversion start. Bits 3  
and 2 (REFSEL1 and REFSEL0) set the device for either  
internal or external reference. Bits 1 and 0 (DIFFSEL1  
and DIFFSEL0) address the ADC unipolar-mode and  
bipolar-mode registers and configure the analog input  
channels for differential operation.  
Scan mode select.  
Set to one to take a single temperature  
measurement. The first conversion  
result of a scan contains temperature  
information.  
TEMP  
0 (LSB)  
*See below for bit details.  
SEꢀECTED  
CHAIIEꢀ (I)  
CHSEꢀ3 CHSEꢀ2 CHSEꢀ1 CHSEꢀ±  
The ADC reference is always on if any of the following  
conditions are true:  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
1) The FBGON bit is set to one in the reset register.  
2/MAX143  
2) At least one DAC output is powered up and  
REFSEL[1:0] (in the setup register) = 00.  
3) At least one DAC is powered down through the  
100kΩ to V  
and REFSEL[1:0] = 00.  
REF  
If any of the above conditions exist, the ADC reference is  
always on, but there is a 188 clock-cycle delay before  
temperature-sensor measurements begin, if requested.  
SCAI MODE  
(CHAIIEꢀ I ꢁS SEꢀECTED BY  
BꢁTS CHSEꢀ3–CHSEꢀ±)  
SCAI1 SCAI±  
0
0
0
1
Scans channels 0 through N.  
Scans channels N through the highest  
numbered channel.  
Scans channel N repeatedly. The ADC  
averaging register sets the number of  
results.  
1
1
0
1
No scan. Converts channel N once only.  
24 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Table 50 Setup Register*  
BꢁT IAME  
BꢁT  
FUICTꢁOI  
7 (MSB)  
Set to zero to select setup register.  
Set to one to select setup register.  
6
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
5
Clock mode and CNVST configuration; resets to one at power-up.  
Clock mode and CNVST configuration.  
4
3
Reference-mode configuration.  
2
1
Reference-mode configuration.  
Unipolar-/bipolar-mode register configuration for differential mode.  
Unipolar-/bipolar-mode register configuration for differential mode.  
0 (LSB)  
*See below for bit details.  
Table 5a0 Clock Modes (see Clock Modes section)  
CKSEꢀ1  
CKSEꢀ±  
COIVERSꢁOI CꢀOCK  
Internal  
ACQUꢁSꢁTꢁOI/SAMPꢀꢁIG  
Internally timed.  
CNVST COIFꢁGURATꢁOI  
CNVST  
0
0
1
1
0
1
0
1
Internal  
Externally timed by CNVST.  
Internally timed.  
CNVST  
Internal  
AIN11/AIN7  
External (3.6MHz max)  
Externally timed by SCLK.  
AIN11/AIN7  
Table 5b0 Clock Modes ±±, ±1, and 1±  
VOꢀTAGE  
REFEREICE COIDꢁTꢁOIS  
OVERRꢁDE  
REF2  
COIFꢁGURATꢁOI  
REFSEꢀ1 REFSEꢀ±  
AUTOSHUTDOWI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 internal-conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN10/AIN6  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
AIN  
Internal reference not used.  
External single-  
ended (REF1  
for DAC and  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2  
REF2 for ADC)  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 internal-  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
conversion clock cycles.  
1
1
0
1
AIN10/AIN6  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
AIN  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2  
______________________________________________________________________________________ 25  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 5c0 Clock Mode 11  
VOꢀTAGE  
REFEREICE COIDꢁTꢁOIS  
OVERRꢁDE  
REF2  
COIFꢁGURATꢁOI  
REFSEꢀ1 REFSEꢀ±  
AUTOSHUTDOWI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 external-conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN10/AIN6  
Internal reference required. There is a programmed  
delay of 244 external-conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
External single-  
ended (REF1  
Internal reference not used.  
Internal reference required. There is a programmed  
delay of 244 external-conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
REF2  
for DAC and  
Temperature  
REF2 for ADC)  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 external-  
conversion clock cycles.  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
1
1
0
1
AIN10/AIN6  
Internal reference required. There is a programmed  
delay of 244 external-conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
2/MAX143  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
delay of 244 external-conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
REF2  
Temperature  
Table 5d0 Differential Select Modes  
DꢁFFSEꢀ1 DꢁFFSEꢀ±  
FUICTꢁOI  
0
0
1
1
0
1
0
1
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
1 byte of data follows the command setup byte and is written to the unipolar-mode register.  
1 byte of data follows the command setup byte and is written to the bipolar-mode register.  
26 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Table 60 Unipolar-Mode Register (Addressed Through the Setup Register)  
BꢁT IAME  
UCH0/1  
UCH2/3  
UCH4/5  
UCH6/7  
BꢁT  
FUICTꢁOI  
Configure AIN0 and AIN1 for unipolar differential conversion.  
Configure AIN2 and AIN3 for unipolar differential conversion.  
Configure AIN4 and AIN5 for unipolar differential conversion.  
Configure AIN6 and AIN7 for unipolar differential conversion.  
7 (MSB)  
6
5
4
Configure AIN8 and AIN9 for unipolar differential conversion (MAX1223). Set UCH8/9 to zero on the  
MAX1221/MAX1343.  
UCH8/9  
3
2
Configure AIN10 and AIN11 for unipolar differential conversion (MAX1223). Set UCH8/9 to zero on  
the MAX1221/MAX1343.  
UCH10/11  
X
X
1
Don’t care.  
Don’t care.  
0 (LSB)  
Table 70 Bipolar-Mode Register (Addressed Through the Setup Register)  
BꢁT IAME  
BꢁT  
FUICTꢁOI  
Set to one to configure AIN0 and AIN1 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN0 and AIN1 for unipolar  
single-ended conversion.  
BCH0/1  
7 (MSB)  
Set to one to configure AIN2 and AIN3 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN2 and AIN3 for unipolar  
single-ended conversion.  
BCH2/3  
BCH4/5  
BCH6/7  
BCH8/9  
BCH10/11  
6
5
4
3
2
Set to one to configure AIN4 and AIN5 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN4 and AIN5 for unipolar  
single-ended conversion.  
Set to one to configure AIN6 and AIN7 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN6 and AIN7 for unipolar  
single-ended conversion.  
Set to one to configure AIN8 and AIN9 for bipolar differential conversion (MAX1223). Set the  
corresponding bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN8 and  
AIN9 for unipolar single-ended conversion. Set BCH8/9 to zero on the MAX1221 and MAX1343.  
Set to one to configure AIN10 and AIN11 for bipolar differential conversion (MAX1223). Set the  
corresponding bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN10 and  
AIN11 for unipolar single-ended conversion. Set BCH8/9 to zero on the MAX1221 and MAX1343.  
X
X
1
Don’t care.  
Don’t care.  
0 (LSB)  
______________________________________________________________________________________ 27  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Unipolar/Bipolar Registers  
The final 2 bits (LSBs) of the setup register control the  
unipolar-/bipolar-mode address registers. Set  
DIFFSEL[1:0] = 10 to write to the unipolar-mode regis-  
ter. Set bits DIFFSEL[1:0] = 11 to write to the bipolar-  
mode register. In both cases, the setup command byte  
must be followed by 1 byte of data that is written to the  
unipolar-mode register or bipolar-mode register. Hold  
CS low and run 16 SCLK cycles before pulling CS high.  
If the last 2 bits of the setup register are 00 or 01, nei-  
ther the unipolar-mode register nor the bipolar-mode  
register is written. Any subsequent byte is recognized  
as a new command byte. See Tables 6, 7, and 8 to pro-  
gram the unipolar- and bipolar-mode registers.  
Both registers power up at all zeros to set the inputs as  
eight unipolar single-ended channels. To configure a  
channel pair as single-ended unipolar, bipolar differen-  
tial, or unipolar differential, see Table 8.  
In unipolar mode, AIN+ can exceed AIN- by up to  
REF  
bipolar mode, either input can exceed the other by up  
Table 80 Unipolar/Bipolar Channel Function  
V
. The output format in unipolar mode is binary. In  
UIꢁPOꢀAR-  
to V  
/ 2. The output format in bipolar mode is two’s  
REF  
BꢁPOꢀAR-MODE  
REGꢁSTER BꢁT  
CHAIIEꢀ PAꢁR  
FUICTꢁOI  
MODE  
complement (see the ADC Transfer Functions section).  
REGꢁSTER BꢁT  
ADC Averaging Register  
Write a command byte to the ADC averaging register to  
configure the ADC to average up to 32 samples for  
each requested result, and to independently control the  
number of results requested for single-channel scans.  
0
0
1
1
0
1
0
1
Unipolar single-ended  
Bipolar differential  
Unipolar differential  
Unipolar differential  
Table 90 ADC Averaging Register*  
BꢁT IAME  
BꢁT  
FUICTꢁOI  
7 (MSB)  
Set to zero to select ADC averaging register.  
6
Set to zero to select ADC averaging register.  
5
Set to one to select ADC averaging register.  
2/MAX143  
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
4
Set to one to turn averaging on. Set to zero to turn averaging off.  
Configures the number of conversions for single-channel scans.  
Configures the number of conversions for single-channel scans.  
Single-channel scan count. (Scan mode 10 only.)  
Single-channel scan count. (Scan mode 10 only.)  
3
2
1
0 (LSB)  
*See below for bit details.  
FUICTꢁOI  
AVGOI  
IAVG1  
IAVG±  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Performs one conversion for each requested result.  
Performs four conversions and returns the average for each requested result.  
Performs eight conversions and returns the average for each requested result.  
Performs 16 conversions and returns the average for each requested result.  
Performs 32 conversions and returns the average for each requested result.  
ISCAI1  
ISCAI±  
FUICTꢁOI (APPꢀꢁES OIꢀY ꢁF SCAI MODE 1± ꢁS SEꢀECTED)  
Scans channel N and returns four results.  
0
0
1
1
0
1
0
1
Scans channel N and returns eight results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
28 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Table 9 details the four scan modes available in the  
ADC conversion register. All four scan modes allow  
averaging as long as the AVGON bit, bit 4 in the  
averaging register, is set to 1. Select scan mode 10 to  
scan the same channel multiple times. Clock mode 11  
disables averaging. For example, if AVGON = 1,  
NAVG[1:0] = 00, NSCAN[1:0] = 11 and SCAN[1:0] =  
10, 16 results are written to the FIFO, with each result  
being the average of four conversions of channel N.  
byte controls the DAC serial interface. See Table 17  
and the DAC Serial Interface section.  
Reset Register  
Write to the reset register (as shown in Table 11) to  
clear the FIFO or reset all registers (excluding the DAC  
and GPIO registers) to their default states. When the  
RESET bit in the reset register is set to 0, the FIFO is  
cleared. Set the RESET bit to one to return all the  
device registers to their default power-up state. All reg-  
isters power up in state 00000000, except for the setup  
register that powers up in clock mode 10 (CKSEL1 = 1  
and REFSEL1 = 1). The DAC and GPIO registers are  
not reset by writing to the reset register. Set the SLOW  
bit to one to add a 15ns delay in the DOUT signal path  
to provide a longer hold time. Writing a one to the  
SLOW bit also clears the contents of the FIFO. Set the  
FBGON bit to one to force the bias block and bandgap  
reference to power up regardless of the state of the  
DAC and activity of the ADC block. Setting the FBGON  
bit high also removes the programmed wake-up delay  
between conversions in clock modes 01 and 11.  
Setting the FBGON bit high also clears the FIFO.  
DAC Select Register  
Write a command byte 0001XXXX to the DAC select  
register (as shown in Table 9) to set up the DAC inter-  
face and indicate that another word will follow. The last  
4 bits of the DAC select register are don’t-care bits. The  
word that follows the DAC select-register command  
Table 1±0 DAC Select Register  
BꢁT  
IAME  
BꢁT  
FUICTꢁOI  
X
7 (MSB) Set to zero to select DAC select register.  
6
5
4
3
2
1
0
Set to zero to select DAC select register.  
Set to zero to select DAC select register.  
Set to one to select DAC select register.  
Don’t care.  
Table 120 GPꢁO Command Register  
X
Don’t care.  
X
Don’t care.  
BꢁT IAME  
BꢁT  
FUICTꢁOI  
X
Don’t care.  
7 (MSB)  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
GPIO configuration bit.  
6
5
Table 110 Reset Register  
4
BꢁT  
BꢁT  
3
FUICTꢁOI  
IAME  
2
1
7 (MSB) Set to zero to select ADC reset register.  
GPIOSEL1  
GPIOSEL2  
6
5
4
3
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to one to select ADC reset register.  
0 (LSB)  
GPIO write bit.  
GPꢁOSEꢀ1 GPꢁOSEꢀ2  
FUICTꢁOI  
GPIO configuration; written data is  
entered in the GPIO configuration  
register.  
Set to zero to clear the FIFO only. Set to  
one to set the device in its power-on  
condition.  
1
1
RESET  
SLOW  
2
1
GPIO write; written data is entered  
in the GPIO write register.  
1
0
0
1
Set to one to turn on slow mode.  
Set to one to force internal bias block and  
bandgap reference to be always powered  
up.  
GPIO read; the next 8 SCLK cycles  
transfer the state of all GPIO  
drivers into DOUT.  
FBGON 0 (LSB)  
______________________________________________________________________________________ 29  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
GPꢁO Command  
GPꢁO Read  
Write the command byte 00000001 to indicate a GPIO  
read operation. The eight SCLK cycles following the  
command byte transfer the state of the GPIOs to DOUT  
in the MAX1221/MAX1343. See Table 16.  
Write a command byte to the GPIO command register  
to configure, write, or read the GPIOs, as detailed in  
Table 12.  
Write the command byte 00000011 to configure the  
GPIOs. The eight SCLK cycles following the command  
byte load data from DIN to the GPIO configuration reg-  
ister in the MAX1221/MAX1343. See Tables 13 and 14.  
The register bits are updated after the last CS rising  
edge. All GPIOs default to inputs upon power-up.  
DAC Serial ꢁnterface  
Write a command byte 0001XXXX to the DAC select  
register to indicate the word to follow is written to the  
DAC serial interface, as detailed in Tables 1, 10, 17, and  
18. Write the next 16 bits to the DAC interface register,  
as shown in Tables 17 and 18. Following the high-to-low  
transition of CS, the data is shifted synchronously and  
latched into the input register on each falling edge of  
SCLK. Each word is 16 bits. The first 4 bits are the con-  
trol bits followed by 12 data bits (MSB first). See Figures  
9–12 for DAC timing specifications.  
The data in the register controls the function of each  
GPIO, as shown in Tables 13, 14, and 16.  
GPꢁO Write  
Write the command byte 00000010 to indicate a GPIO  
write operation. The eight SCLK cycles following the com-  
mand byte load data from DIN into the GPIO write register  
in the MAX1221/MAX1343. See Tables 14 and 15. The  
register bits are updated after the last CS rising edge.  
If CS goes high prior to completing 16 SCLK cycles, the  
command is discarded. To initiate a new transfer, drive  
CS low again.  
For example, writing the DAC serial interface word 1111  
0000 and 0011 0100 disconnects DAC outputs 2 and 3  
Table 130 MAX1221/MAX1343 GPꢁO Configuration  
DATA PꢁI  
DꢁI  
DOUT  
GPꢁO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
GPIOC1  
0
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
0
X
0
X
0
2/MAX143  
Table 140 MAX1221/MAX1343 GPꢁO Write  
DATA PꢁI  
DꢁI  
GPꢁO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
GPIOC1  
0
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
X
X
0
DOUT  
0
0
Table 150 GPꢁO-Mode Control  
COIFꢁGURATꢁOI  
BꢁT  
WRꢁTE  
BꢁT  
OUTPUT  
STATE  
GPꢁO  
FUICTꢁOI  
1
1
0
1
0
1
1
0
Output  
Output  
Input  
Tri-state  
Pulldown  
(open drain)  
0
0
0
Table 160 MAX1221/MAX1343 GPꢁO Read  
DATA PꢁI  
DꢁI  
GPꢁO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
X
0
X
0
X
0
X
0
X
X
X
X
DOUT  
GPIOC1  
GPIOC0  
GPIOA1  
GPIOA0  
3± ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Table 170 DAC Serial-ꢁnterface Configuration  
16-BꢁT SERꢁAꢀ WORD  
MSB  
ꢀSB  
DESCRꢁPTꢁOI  
FUICTꢁOI  
COITROꢀ BꢁTS  
DATA BꢁTS  
C3 C2 C1 C± D11 D1± D9 D8 D7 D6 D5 D4 D3 D2 D1 D±  
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
No operation.  
Reset all internal registers to  
000h and leave output buffers in  
their present state.  
0
0
0
1
0
X
X
X
X
X
X
X
X
X
X
X
RESET  
Preset all internal registers to  
FFFh and leave output buffers in  
their present state.  
0
0
0
1
1
X
X
X
X
X
X
X
X
X
X
X
Pull-High  
D11–D0 to input register 0, DAC  
output unchanged.  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
DAC0  
DAC1  
DAC2  
DAC3  
D11–D0 to input register 1, DAC  
output unchanged.  
D11–D0 to input register 2, DAC  
output unchanged.  
D11–D0 to input register 3, DAC  
output unchanged.  
D11–D0 to input register 4, DAC  
output unchanged  
(MAX1221/MAX1223). NOP  
command (MAX1343).  
D11–D0 to input register 5, DAC  
output unchanged  
(MAX1221/MAX1223). NOP  
command (MAX1343).  
D11–D0 to input register 6, DAC  
output unchanged  
(MAX1221/MAX1223). NOP  
command (MAX1343).  
0
0
1
1
1
0
1
1
0
0
1
0
DAC4  
DAC5  
DAC6  
D11–D0 to input register 7, DAC  
output unchanged  
(MAX1221/MAX1223). NOP  
command (MAX1343).  
1
1
0
0
0
1
1
0
DAC7  
D11–D0 to input registers 0–3  
and DAC register 0–3. DAC  
outputs updated (write-through).  
DAC0–3  
D11–D0 to input registers 4–7  
and DAC register 4–7. DAC  
outputs updated (write-through)  
(MAX1221/MAX1223). NOP  
command (MAX1343).  
D11–D0 to input registers 0–7  
and DAC register 0–7  
(MAX1221/MAX1223). D11–D0 to  
input registers 0–3 and DAC  
registers 0–3 (MAX1343). DAC  
outputs updated (write-through).  
1
1
0
1
1
0
1
0
DAC4–7  
DAC0–7  
______________________________________________________________________________________ 31  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 170 DAC Serial-ꢁnterface Configuration (continued)  
16-BꢁT SERꢁAꢀ WORD  
MSB  
ꢀSB  
DESCRꢁPTꢁOI  
FUICTꢁOI  
COITROꢀ BꢁTS  
DATA BꢁTS  
C3 C2 C1 C± D11 D1± D9 D8 D7 D6 D5 D4 D3 D2 D1 D±  
D11–D0 to input registers 0–7  
(MAX1221/MAX1223). D11–D0 to  
input registers 0–3 (MAX1343).  
DAC outputs unchanged.  
1
1
1
1
0
1
X
X
X
X
DAC0–7  
Input registers to DAC registers  
indicated by ones, DAC outputs  
updated, equivalent to software  
LDAC. (No effect on DACs  
indicated by zeros.) DAC7–DAC4  
are only valid on the MAX1221/  
MAX1223. These are don’t-care  
bits for the MAX1343.  
DAC DACDAC DACDAC DACDAC DAC  
7
1
0
DAC0–7  
6
5
4
3
2
1
0
Table 180 DAC Power-Up and Power-Down Commands  
COITROꢀ  
DATA BꢁTS  
BꢁTS  
DESCRꢁPTꢁOI  
FUICTꢁOI  
C3 C2 C1 C±  
D3 D2 D1 D±  
2/MAX143  
Power up individual DAC buffers indicated by data  
in DAC0 through DAC3. A one indicates the DAC  
output is connected and active. A zero does not  
affect the DAC’s present state.  
1
1
1
1
1
1
1
1
— — — — — — — —  
— — — — — — — —  
0
0
0
1
1
0
X
X
Power-Up  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
DAC output is disconnected and high impedance.  
A zero does not affect the DAC’s present state.  
Power-Down 1  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
DAC output is disconnected and pulled to AGND  
with a 1kΩ resistor. A zero does not affect the DAC’s  
present state.  
1
1
1
1
1
1
1
1
1
1
1
1
— — — — — — — —  
— — — — — — — —  
— — — — — — — —  
1
0
1
0
0
1
0
0
1
X
X
X
Power-Down 2  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
Power-Down 3 DAC output is disconnected and pulled to AGND  
with a 100kΩ resistor. A zero does not affect the  
DAC’s present state.  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
Power-Down 4 DAC output is disconnected and pulled to REF1 with  
a 100kΩ resistor. A zero does not affect the DAC’s  
present state.  
32 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
and forces them to a high-impedance state. DAC out-  
puts 0 and 1 remain in their previous state.  
second byte is read out partially, the rest of that byte is  
lost. The remaining data in the FIFO is unaffected and  
can be read out normally after taking CS low again, as  
long as the 4 leading bits (normally zeros) are ignored.  
If CS is pulled low before EOC goes low, a conversion  
may not be completed and the FIFO data may not be  
correct. Incorrect writes (pulling CS high before com-  
pleting eight SCLK cycles) are ignored and the register  
remains unchanged.  
Output-Data Format  
Figures 6–9 illustrate the conversion timing for the  
MAX1221/MAX1223/MAX1343. All 12-bit conversion  
results are output in 2-byte format, MSB first, with four  
leading zeros. Data appears on DOUT on the falling  
edges of SCLK. Data is binary for unipolar mode and  
two’s complement for bipolar mode and temperature  
results. See Figures 3, 4, and 5 for input/output and  
temperature-transfer functions.  
V
REF  
= V  
- V  
REF+ REF-  
ADC Transfer Functions  
Figure 3 shows the unipolar transfer function for single-  
ended or differential inputs. Figure 4 shows the bipolar  
transfer function for differential inputs. Code transitions  
occur halfway between successive-integer LSB values.  
V
V
REF  
REF  
011....111  
011....110  
011....101  
FS = V / 2 + V  
REF  
COM  
ZS = COM  
-FS = -V / 2  
REF  
V
REF  
Output coding is binary, with 1 LSB = V  
/ 4096 for  
1 LSB = V / 4096  
REF1  
REF  
000....001  
000....000  
111....111  
unipolar and bipolar operation, and 1 LSB = +0.125ꢀC  
for temperature measurements. Bipolar true-differential  
results and temperature-sensor results are available in  
two’s complement format, while all others are in binary.  
See Tables 6, 7, and 8 for details on which setting  
(unipolar or bipolar) takes precedence.  
(COM)  
V
REF  
100....011  
100....010  
100....001  
100....000  
In unipolar mode, AIN+ can exceed AIN- by up to  
V
. In bipolar mode, either input can exceed the  
REF1  
other by up to V  
-FS  
-1  
(COM)  
INPUT VOLTAGE (LSB)  
0
+1  
+FS - 1 LSB  
/ 2.  
REF1  
Partial Reads and Partial Writes  
If the first byte of an entry in the FIFO is partially read  
(CS is pulled high after fewer than eight SCLK cycles),  
the remaining bits are lost for that byte. The next byte of  
data that is read out contains the next 8 bits. If the first  
byte of an entry in the FIFO is read out fully, but the  
Figure 4. Bipolar Transfer Function—Full Scale ( FS) =  
V
/ 2  
REF  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
011....111  
011....110  
111....111  
111....110  
111....101  
FS = V  
REF  
1 LSB = V / 4096  
REF  
000....010  
000....001  
000....000  
111....111  
111....110  
111....101  
000....011  
000....010  
000....001  
000....000  
100....001  
100....000  
0
1
2
3
FS  
INPUT VOLTAGE (LSB)  
0
-256  
+255.5  
FS - 3/2 LSB  
TEMPERATURE (°C)  
Figure 5. Temperature Transfer Function  
______________________________________________________________________________________ 33  
Figure 3. Unipolar Transfer Function—Full Scale (FS) = V  
REF  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
CNVST  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
MSB1  
LSB1  
MSB2  
t
RDS  
EOC  
Figure 6. Clock Mode 00—After writing a command byte, set CNVST low for at least 40ns to begin a conversion.  
t
CSW  
CNVST  
(CONVERSION 2)  
(ACQUISITION 1)  
(ACQUISITION 2)  
CS  
t
DOV  
(CONVERSION 1)  
SCLK  
DOUT  
2/MAX143  
MSB1  
LSB1  
MSB2  
EOC  
Figure 7. Clock Mode 01—After writing a command byte, request multiple conversions by setting CNVST low for each conversion.  
store the results in the FIFO, and shut down. After the  
Applications Information  
scan is complete, EOC is pulled low and the results are  
Internally Timed Acquisitions and  
available in the FIFO. Wait until EOC goes low before  
pulling CS low to communicate with the serial interface.  
EOC stays low until CS or CNVST is pulled low again. A  
temperature-conversion result, if requested, precedes  
all other FIFO results.  
Conversions Using CNVST  
ADC Conversions in Clock Mode ±±  
In clock mode 00, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated through CNVST  
and performed automatically using the internal oscilla-  
tor. Results are added to the internal FIFO to be read  
out later. See Figure 6 for clock mode 00 timing after a  
command byte is issued. See Table 5 for details on  
programming the clock mode in the setup register.  
Do not issue a second CNVST signal before EOC goes  
low; otherwise, the FIFO can be corrupted. Wait until all  
conversions are complete before reading the FIFO. SPI  
communications to the DAC and GPIO registers are per-  
mitted during conversion. However, coupled noise may  
result in degraded ADC signal-to-noise ratio (SNR).  
Initiate a scan by setting CNVST low for at least 40ns  
before pulling it high again. The MAX1221/MAX1223/  
MAX1343 then wake up, scan all requested channels,  
34 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
(CONVERSION BYTE)  
DIN  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
t
DOV  
Figure 8. Clock Mode 10—The command byte to the conversion register begins the acquisition (CNVST is not required).  
Externally Timed Acquisitions and  
pulled low again. Wait until EOC goes low before pulling  
CS or CNVST low. The number of CNVST signals must  
equal the number of conversions requested by the scan  
and averaging registers to correctly update the FIFO.  
Wait until all conversions are complete before reading  
the FIFO. SPI communications to the DAC and GPIO  
registers are permitted during conversion. However,  
coupled noise may result in degraded ADC SNR.  
Internally Timed Conversions with CNVST  
ADC Conversions in Clock Mode ±1  
In clock mode 01, conversions are requested one at a  
time using CNVST and performed automatically using  
the internal oscillator. See Figure 7 for clock mode 01  
timing after a command byte is issued.  
Setting CNVST low begins an acquisition, wakes up the  
ADC, and places it in track mode. Hold CNVST low for  
at least 1.4µs to complete the acquisition. If reference  
mode 00 or 10 is selected, an additional 45µs is  
required for the internal reference to power up. If a tem-  
perature measurement is being requested, reference  
power-up and temperature measurement is internally  
timed. In this case, hold CNVST low for at least 40ns.  
If averaging is turned on, multiple CNVST pulses need to  
be performed before a result is written to the FIFO. Once  
the proper number of conversions has been performed  
to generate an averaged FIFO result (as specified to the  
averaging register), the scan logic automatically switch-  
es the analog input multiplexer to the next requested  
channel. If a temperature measurement is programmed,  
it is performed after the first rising edge of CNVST follow-  
ing the command byte written to the conversion register.  
The temperature-conversion result is available on DOUT  
once EOC has been pulled low.  
Set CNVST high to begin a conversion. Sampling is  
completed approximately 500ns after CNVST goes high.  
After the conversion is complete, the ADC shuts down  
and pulls EOC low. EOC stays low until CS or CNVST is  
______________________________________________________________________________________ 35  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
(CONVERSION BYTE)  
DIN  
(ACQUISITION1)  
(CONVERSION1)  
(ACQUISITION2)  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
Figure 9. Clock Mode 11—Externally Timed Acquisition, Sampling, and Conversion without CNVST  
Initiate a conversion by writing a command byte to the  
conversion register followed by 16 SCLK cycles. If CS  
is pulsed high between the eighth and ninth cycles, the  
pulse width must be less than 100µs. To continuously  
convert at 16 cycles per conversion, alternate 1 byte of  
zeros (NOP byte) between each conversion byte. If 2  
NOP bytes follow a conversion byte, the analog cells  
power down at the end of the second NOP. Set the  
FBGON bit to one in the reset register to keep the inter-  
nal bias block powered.  
Internally Timed Acquisitions and  
Conversions Using the Serial Interface  
ADC Conversions in Clock Mode 1±  
In clock mode 10, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated by writing a com-  
mand byte to the conversion register, and is performed  
automatically using the internal oscillator. This is the  
default clock mode upon power-up. See Figure 8 for  
clock mode 10 timing.  
Initiate a scan by writing a command byte to the conver-  
sion register. The MAX1221/MAX1223/MAX1343 then  
power up, scan all requested channels, store the results  
in the FIFO, and shut down. After the scan is complete,  
EOC is pulled low and the results are available in the  
FIFO. If a temperature measurement is requested, the  
temperature result precedes all other FIFO results. EOC  
stays low until CS is pulled low again. Wait until all con-  
versions are complete before reading the FIFO. SPI  
communications to the DAC and GPIO registers are per-  
mitted during conversion. However, coupled noise may  
result in degraded ADC SNR.  
2/MAX143  
If reference mode 00 is requested, or if an external refer-  
ence is selected but a temperature measurement is being  
requested, wait 45µs with CS high after writing the con-  
version byte to extend the acquisition and allow the inter-  
nal reference to power up. To perform a temperature  
measurement, write 24 bytes (192 cycles) of zeros after  
the conversion byte. The temperature result appears on  
DOUT during the last 2 bytes of the 192 cycles.  
Conversion-Time Calculations  
The conversion time for each scan is based on a num-  
ber of different factors: conversion time per sample,  
samples per result, results per scan, if a temperature  
measurement is requested, and if the external refer-  
ence is in use. Use the following formula to calculate  
the total conversion time for an internally timed conver-  
sion in clock mode 00 and 10 (see the Electrical  
Characteristics, as applicable):  
Externally Clocked Acquisitions and  
Conversions Using the Serial Interface  
ADC Conversions in Clock Mode 11  
In clock mode 11, acquisitions and conversions are ini-  
tiated by writing a command byte to the conversion  
register and are performed one at a time using the  
SCLK as the conversion clock. Scanning, averaging  
and the FIFO are disabled, and the conversion result is  
available at DOUT during the conversion. Output data  
is updated on the rising edge of SCLK in clock mode  
11. See Figure 9 for clock mode 11 timing.  
Total conversion time =  
t
x n  
x n  
+ t + t  
CNV  
AVG  
SCAN TS INT-REF,SU  
where:  
t
= t  
(where t  
is dependent from the clock  
DOV  
CNV  
DOV  
and reference mode selected.)  
36 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
t
CH  
t
CL  
32  
16  
8
SCLK  
DIN  
5
1
2
3
4
t
DH  
t
DS  
D13  
D12  
D11  
D15  
D14  
D1  
D0  
t
DOT  
t
DOD  
t
DOE  
D15  
D7  
D14  
D6  
D12  
D4  
D13  
D5  
DOUT  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
CS  
Figure 10. DAC/GPIO Serial-Interface Timing (Clock Modes 00, 01, and 10)  
n
n
= samples per result (amount of averaging)  
fications for clock modes 00, 01, and 10. Figure 11  
shows the timing specifications for clock mode 11.  
Figure 12 details the timing specifications for the DAC  
input select register and 2 bytes to follow. Output data  
is updated on the rising edge of SCLK in clock mode  
11. Figure 13 shows the GPIO timing. Figure 14 shows  
the timing details of a hardware LDAC command DAC-  
register update. For a software-command DAC-register  
AVG  
= number of times each channel is scanned; set  
SCAN  
to one unless [SCAN1, SCAN0] = 10  
t
= time required for temperature measurement  
TS  
(58.1µs); set to zero if temperature measurement is not  
requested  
t
= t  
(external-reference wake-up); if a  
WU  
INT-REF,SU  
conversion using the external reference is requested  
update, t is valid from the rising edge of CS, which fol-  
S
lows the last data bit in the software command word.  
In clock mode 01, the total conversion time depends on  
how long CNVST is held low or high. Conversion time in  
externally clocked mode (CKSEL1, CKSEL0 = 11)  
depends on the SCLK period and how long CS is held  
high between each set of eight SCLK cycles. In clock  
mode 01, the total conversion time does not include the  
time required to turn on the internal reference.  
LDAC Functionality  
Drive LDAC low to transfer the content of the input reg-  
isters to the DAC registers. Drive LDAC permanently  
low to make the DAC register transparent. The DAC  
output typically settles from zero to full scale within  
LSB after 2µs. See Figure 14.  
1
DAC/GPꢁO Timing  
Figures 10–13 detail the timing diagrams for writing to  
the DAC and GPIOs. Figure 10 shows the timing speci-  
______________________________________________________________________________________ 37  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
t
CH  
t
CL  
32  
16  
8
SCLK  
5
1
2
3
4
t
DH  
t
DS  
D15  
D14  
D13  
D12  
D11  
D1  
D0  
DIN  
DOUT  
CS  
t
t
DOT  
DOE  
t
DOD  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
Figure 11. DAC/GPIO Serial-Interface Timing (Clock Mode 11)  
2/MAX143  
SCLK  
10  
24  
1
2
8
9
DIN  
BIT 7 (MSB)  
BIT 6  
BIT 0 (LSB)  
BIT 15  
BIT 14  
BIT 1  
BIT 0  
DOUT  
CS  
THE COMMAND BYTE  
INITIALIZES THE DAC SELECT  
REGISTER  
THE NEXT 16 BITS SELECT THE DAC  
AND THE DATA WRITTEN TO IT  
Figure 12. DAC-Select Register Byte and DAC Serial-Interface Word  
38 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
CS  
t
GOD  
t
GSU  
GPIO INPUT/OUTPUT  
Figure 13. GPIO Timing  
t
LDACPWL  
LDAC  
t
S
1 LSB  
OUT_  
Figure 14. LDAC Functionality  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Ensure that digital  
and analog signal lines are separated from each other.  
Do not run analog and digital signals parallel to one  
another (especially clock signals) or do not run digital  
lines underneath the MAX1221/MAX1223/MAX1343  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. INL for  
the MAX1221/MAX1223/MAX1343 is measured using  
the end-point method.  
package. High-frequency noise in the AV  
power sup-  
DD  
ply may affect performance. Bypass the AV  
with a 0.1µF capacitor to AGND, close to the AV  
supply  
DD  
DD  
pin.  
Bypass the DV  
supply with a 0.1µF capacitor to  
DD  
DGND, close to the DV  
pin. Minimize capacitor lead  
DD  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
lengths for best supply-noise rejection. If the power sup-  
ply is very noisy, connect a 10Ω resistor in series with the  
supply to improve power-supply filtering.  
The MAX1221/MAX1223/MAX1343 thin QFN packages  
contain an exposed pad on the underside of the device.  
Connect this exposed pad to AGND. Refer to the  
MAX1258EVKIT for an example of proper layout.  
Unipolar ADC Offset Error  
For an ideal converter, the first transition occurs at 0.5  
LSB, above zero. Offset error is the amount of deviation  
between the measured first transition point and the  
ideal first transition point.  
______________________________________________________________________________________ 39  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Bipolar ADC Offset Error  
While in bipolar mode, the ADC’s ideal midscale transi-  
tion occurs at AGND -0.5 LSB. Bipolar offset error is the  
measured deviation from this ideal value.  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the ENOB as follows:  
ADC Gain Error  
Gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed and with  
a full-scale analog input voltage applied to the ADC,  
resulting in all ones at DOUT.  
ENOB = (SINAD - 1.76)/6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
DAC Offset Error  
DAC offset error is determined by loading a code of  
all zeros into the DAC and measuring the analog  
output voltage.  
2
2
2
2
2
THD = 20 x log  
V
+ V + V + V + V  
/V  
1
(
)
2
3
4
5
6
DAC Gain Error  
DAC gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed, when  
loading a code of all ones into the DAC.  
where V is the fundamental amplitude, and V through  
6
1
2
V are the amplitudes of the first five harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest distortion  
component.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
ADC Channel-to-Channel Crosstalk  
Bias the ON channel to midscale. Apply a full-scale sine  
wave test tone to all OFF channels. Perform an FFT on  
the ON channel. ADC channel-to-channel crosstalk is  
expressed in dB as the amplitude of the FFT spur at the  
frequency associated with the OFF channel test tone.  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge of the sampling clock and the instant when an  
actual sample is taken.  
2/MAX143  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-  
to-digital noise is caused by quantization error only and  
results directly from the ADC’s resolution (N bits):  
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
relative to the total input power when two tones, f1 and  
f2, are present at the inputs. The intermodulation prod-  
ucts are (f1 f2), (2 x f1), (2 x f2), (2 x f1 f2), (2 x f2  
f1). The individual input tone levels are at -7dBFS.  
SNR = (6.02 x N + 1.76)dB  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC so the signal’s slew rate does not limit the ADC’s  
performance. The input frequency is then swept up to  
the point where the amplitude of the digitized conver-  
sion result has decreased by -3dB. Note that the T/H  
performance is usually the limiting factor for the small-  
signal input bandwidth.  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise. RMS noise  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first five har-  
monics, and the DC offset.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
SINAD(dB) = 20 x log (Signal /Noise  
RMS  
)
RMS  
4± ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
DAC Digital Feedthrough  
Chip Information  
DAC digital feedthrough is the amount of noise that  
TRANSISTOR COUNT: 58,141  
appears on the DAC output when the DAC digital con-  
PROCESS: BiCMOS  
trol lines are toggled.  
ADC Power-Supply Rejection  
ADC power-supply rejection (PSR) is defined as the  
shift in offset error when the power supply is moved  
from the minimum operating voltage to the maximum  
operating voltage.  
DAC Power-Supply Rejection  
DAC PSR is the amount of change in the converter’s  
value at full-scale as the power-supply voltage changes  
from its nominal value. PSR assumes the converter’s lin-  
earity is unaffected by changes in the power-supply  
voltage.  
______________________________________________________________________________________ 41  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Configurations  
TOP VIEW  
GPIOA0  
GPIOA1  
EOC  
1
2
3
4
5
6
7
8
9
27 AIN0  
CNVST/AIN11  
N.C.  
1
2
3
4
5
6
7
8
9
27 AIN2  
26 REF1  
25 AIN1  
24 N.C.  
23 AIN0  
22 RES_SEL  
21 CS  
26 REF1  
25 GPIOC1  
24 GPIOC0  
23 N.C.  
EOC  
DV  
DD  
DV  
DD  
DGND  
DOUT  
SCLK  
DIN  
DGND  
DOUT  
SCLK  
DIN  
MAX1221  
MAX1223  
22 RES_SEL  
21 CS  
LDAC  
20  
LDAC  
20  
OUT0  
19 OUT7  
OUT0  
19 OUT7  
THꢁI QFI  
THꢁI QFI  
TOP VIEW  
2/MAX143  
36 35 34 33 32 31 30 29 28  
GPIOA0  
1
2
3
4
5
6
7
8
9
27 AIN0  
GPIOA1  
EOC  
26 REF1  
25 GPIOC1  
24 GPIOC0  
23 N.C.  
DV  
DD  
DGND  
DOUT  
SCLK  
DIN  
MAX1343  
22 RES_SEL  
21 CS  
20 LDAC  
19 D.C.  
OUT0  
10 11 12 13 14 15 16 17 18  
THꢁI QFI  
(6mm x 6mm x ±08mm)  
42 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
2/MAX143  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www0maxim-ic0com/packages.)  
______________________________________________________________________________________ 43  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Revision History  
REVꢁSꢁOI  
IUMBER  
REVꢁSꢁOI  
DATE  
PAGES  
CHAIGED  
DESCRꢁPTꢁOI  
1
12/07  
Changed timing characteristic specification  
7
2/MAX143  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
44 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1221BETX

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1221BETX+

暂无描述
MAXIM

MAX1221BETX-T

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220, TQFN-36
MAXIM

MAX1223

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1223BETX

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1224

1.5Msps, Single-Supply, Low-Power, True-Differential, 12-Bit ADCs
MAXIM

MAX1224CTC

暂无描述
MAXIM

MAX1224CTC+

ADC, Successive Approximation
MAXIM

MAX1224CTC+T

暂无描述
MAXIM

MAX1224CTC-T

1.5Msps, Single-Supply, Low-Power, True-Differential, 12-Bit ADCs
MAXIM

MAX1224ETC

A/D Converter, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, TQFN-12
MAXIM

MAX1224ETC+

A/D Converter, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, ROHS COMPLIANT, TQFN-12
MAXIM