MAX1111EEE/V+T [MAXIM]

暂无描述;
MAX1111EEE/V+T
型号: MAX1111EEE/V+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总20页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1194; Rev 4; 4/11  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
General Description  
____________________________Features  
o 2.7V to 5.5V Single Supply  
o Low Power: 85µA at 50ksps  
6µA at 1ksps  
The MAX1110/MAX1111 low-power, 8-bit, 8-channel  
analog-to-digital converters (ADCs) feature an internal  
track/hold, voltage reference, clock, and serial inter-  
face. They operate from a single 2.7V to 5.5V supply  
and consume only 85µA while sampling at rates up to  
50ksps. The MAX1110’s 8 analog inputs and the  
MAX1111’s 4 analog inputs are software-configurable,  
allowing unipolar/bipolar and single-ended/differential  
operation.  
o 8-Channel Single-Ended or 4-Channel Differential  
Inputs (MAX1110)  
o 4-Channel Single-Ended or 2-Channel Differential  
Inputs (MAX1111)  
o Internal Track/Hold; 50kHz Sampling Rate  
o Internal 2.048V Reference  
o SPI/QSPI/MICROWIRE-Compatible Serial Interface  
o Software-Configurable Unipolar or Bipolar Inputs  
Successive-approximation conversions are performed  
using either the internal clock or an external serial-inter-  
face clock. The full-scale analog input range is deter-  
mined by the 2.048V internal reference, or by an  
externally applied reference ranging from 1V to V  
.
DD  
The 4-wire serial interface is compatible with the SPI™,  
QSPI™, and MICROWIRE™ serial-interface standards.  
A serial-strobe output provides the end-of-conversion  
signal for interrupt-driven processors.  
o Total Unadjusted Error: 1 LSB (max)  
0.3 LSB (typ)  
Ordering Information appears at end of data sheet.  
The MAX1110/MAX1111 have a software-program-  
mable, 2µA automatic power-down mode to minimize  
power consumption. Using power-down, the supply  
current is reduced to 6µA at 1ksps, and only 52µA at  
10ksps. Power-down can also be controlled using the  
SHDN input pin. Accessing the serial interface automat-  
ically powers up the device.  
________________Functional Diagram  
CS  
SCLK  
The MAX1110 is available in a 20-pin SSOP package.  
The MAX1111 is available in a small 16-pin QSOP  
package.  
INPUT  
INT  
SHIFT  
REGISTER  
DIN  
CLOCK  
CONTROL  
LOGIC  
SHDN  
CH0  
CH1  
CH2  
________________________Applications  
Portable Data Logging  
OUTPUT  
SHIFT  
DOUT  
REGISTER  
SSTRB  
ANALOG  
INPUT  
MUX  
CH3  
T/H  
CH4*  
CH5*  
CH6*  
CH7*  
CLOCK  
IN  
Hand-Held Measurement Devices  
Medical Instruments  
8-BIT  
SAR ADC  
OUT  
REF  
V
DD  
System Diagnostics  
COM  
DGND  
AGND  
+2.048V  
REFERENCE  
Solar-Powered Remote Systems  
REFOUT  
MAX1110  
MAX1111  
4mA to 20mA-Powered Remote  
Data-Acquisition Systems  
REFIN  
*MAX1110 ONLY  
Pin Configurations appear at end of data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to AGND..............................................................-0.3V to 6V  
Operating Temperature Ranges  
AGND to DGND.......................................................-0.3V to 0.3V  
MAX1110CAP/MAX1111CEE...............................0°C to +70°C  
MAX1110EAP/MAX1111EGE............................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
CH0–CH7, COM, REFIN,  
REFOUT to AGND ......................................-0.3V to (V  
+ 0.3V)  
DD  
Digital Inputs to DGND ...............................................-0.3V to 6V  
Digital Outputs to DGND............................-0.3V to (V + 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
QSOP (derate 8.30mW/°C above +70°C).....................667mW  
SSOP (derate 8.00mW/°C above +70°C) .....................640mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.7V to 5.5V; unipolar input mode; V  
= 0V; f  
= 500kHz, external clock (50% duty cycle); 10 clocks/conversion cycle  
SCLK  
DD  
COM  
(50ksps); 1µF capacitor at REFOUT; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
0/MAX1  
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
8
Bits  
LSB  
LSB  
LSB  
V
V
= 2.7V to 3.6V  
= 5.5V (Note 2)  
0.15  
0.2  
0.5  
DD  
Relative Accuracy (Note 1)  
Differential Nonlinearity  
Offset Error  
INL  
DD  
DNL  
No missing codes over temperature  
1
1
V
DD  
V
DD  
= 2.7V to 3.6V  
= 5.5V (Note 2)  
0.35  
0.5  
Gain Error (Note 3)  
Internal or external reference  
External reference, 2.048V  
1
1
LSB  
ppm/°C  
LSB  
Gain Temperature Coefficient  
Total Unadjusted Error  
0.8  
0.3  
TUE  
Channel-to-Channel  
Offset Matching  
0.1  
LSB  
DYNAMIC SPECIFICATIONS (10.034kHz sine-wave input, 2.048V , 50ksps, 500kHz external clock)  
P-P  
Signal-to-Noise  
and Distortion Ratio  
SINAD  
49  
dB  
dB  
Total Harmonic Distortion  
THD  
-70  
(up to the 5th harmonic)  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
SFDR  
68  
-75  
1.5  
800  
dB  
dB  
V
= 2.048V , 25kHz (Note 4)  
P-P  
CH_  
-3dB rolloff  
MHz  
kHz  
Full-Power Bandwidth  
2
_______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.7V to 5.5V; unipolar input mode; V  
= 0V; f  
= 500kHz, external clock (50% duty cycle); 10 clocks/conversion cycle  
SCLK  
DD  
COM  
(50ksps); 1µF capacitor at REFOUT; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
Internal clock  
25  
55  
Conversion Time (Note 5)  
t
µs  
CONV  
External clock, 500kHz, 10 clocks/conversion  
External clock, 2MHz  
20  
1
Track/Hold Acquisition Time  
Aperture Delay  
t
µs  
ns  
ACQ  
10  
Aperture Jitter  
<50  
400  
ps  
Internal Clock Frequency  
kHz  
kHz  
MHz  
(Note 6)  
50  
0
500  
2
External Clock-Frequency Range  
Used for data transfer only  
ANALOG INPUT  
Unipolar input, V  
= 0V  
V
REFIN  
COM  
Input Voltage Range, Single-  
Ended and Differential (Note 7)  
V
V
V
COM  
Bipolar input, V  
= V  
/2  
COM  
REFIN  
/2  
REFIN  
Multiplexer Leakage Current  
Input Capacitance  
On/off-leakage current, V  
= 0V or V  
0.01  
18  
1
µA  
pF  
CH_  
DD  
INTERNAL REFERENCE  
REFOUT Voltage  
1.968  
2.048  
3.5  
2.128  
V
mA  
REFOUT Short-Circuit Current  
REFOUT Temperature Coefficient  
Load Regulation (Note 8)  
Capacitive Bypass at REFOUT  
EXTERNAL REFERENCE AT REFIN  
50  
ppm/°C  
mV  
0 to 0.5mA output load  
2.5  
1
1
µF  
V
+
DD  
Input Voltage Range  
V
0.05  
Input Current  
(Note 9)  
1
20  
µA  
POWER REQUIREMENTS  
Supply Voltage  
V
DD  
2.7  
5.5  
V
V
= 2.7V to 3.6V  
Operating mode  
Reference disabled  
Operating mode  
Reference disabled  
85  
45  
250  
DD  
Full-scale input  
= 10pF  
C
LOAD  
V
DD  
= 5.5V  
120  
80  
250  
Supply Current (Note 2)  
I
µA  
DD  
Full-scale input  
= 10pF  
C
LOAD  
Software  
2
Power-down  
3.2  
10  
4
SHDN at DGND  
Power-Supply Rejection  
(Note 10)  
V
= 2.7V to 3.6V; external reference,  
DD  
PSR  
0.4  
mV  
2.048V; full-scale input  
_______________________________________________________________________________________  
3
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.7V to 5.5V; unipolar input mode; V  
= 0V; f  
= 500kHz, external clock (50% duty cycle); 10 clocks/conversion cycle  
SCLK  
DD  
COM  
(50ksps); 1µF capacitor at REFOUT; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS: DIN, SCLK, CS  
V
V
3.6V  
2
3
DD  
V
IH  
V
DIN, SCLK, CS Input High Voltage  
> 3.6V  
DD  
V
0.8  
V
V
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN INPUT  
IL  
V
0.2  
HYST  
I
IN  
Digital inputs = 0V or V  
(Note 6)  
1
µA  
pF  
DD  
C
IN  
15  
V
V
- 0.4  
V
V
SHDN Input High Voltage  
SH  
DD  
V
SM  
1.1  
V
DD  
- 1.1  
SHDN Input Mid-Voltage  
0/MAX1  
V
V /2  
DD  
V
SHDN Voltage, High Impedance  
SHDN Input Low Voltage  
SHDN Input Current  
SHDN = open  
FLT  
V
0.4  
4
V
SL  
V
SHDN  
= 0V or V  
µA  
DD  
SHDN Maximum Allowed Leakage  
for Mid-Input  
100  
nA  
V
SHDN = open  
DIGITAL OUTPUTS: DOUT, SSTRB  
I
I
I
= 5mA  
0.4  
0.8  
SINK  
Output Low Voltage  
V
OL  
= 16mA  
SINK  
Output High Voltage  
V
OH  
= 0.5mA  
V - 0.5  
DD  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
0.01  
10  
15  
µA  
pF  
CS = V  
CS = V  
L
DD  
C
(Note 6)  
OUT  
DD  
4
_______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
TIMING CHARACTERISTICS (Figures 8 and 9)  
(V  
= 2.7V to 5.5V, T = T  
A
to T  
, unless otherwise noted.)  
MAX  
DD  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1
TYP  
MAX  
UNITS  
µs  
Track/Hold Acquisition Time  
DIN to SCLK Setup  
t
ACQ  
t
100  
0
ns  
DS  
DH  
DO  
DIN to SCLK Hold  
t
ns  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to SSTRB  
t
Figure 1, C  
Figure 1, C  
Figure 2, C  
= 100pF  
= 100pF  
= 100pF  
20  
200  
240  
240  
ns  
LOAD  
LOAD  
LOAD  
t
ns  
DV  
t
ns  
TR  
t
100  
0
ns  
CSS  
CSH  
t
ns  
t
200  
200  
ns  
CH  
t
ns  
CL  
t
C
= 100pF  
LOAD  
240  
240  
ns  
SSTRB  
CS Fall to SSTRB Output Enable  
Figure 1, external clock mode only,  
C = 100pF  
LOAD  
t
ns  
ns  
ns  
SDV  
(Note 6)  
CS Rise to SSTRB output  
Disable (Note 6)  
Figure 2, external clock mode only,  
C = 100pF  
LOAD  
t
240  
STR  
SCK  
SSTRB Rise to SCLK Rise  
(Note 6)  
t
Figure 11, internal clock mode only  
0
External reference  
20  
12  
µs  
t
WAKE  
Wake-Up Time  
Internal reference (Note 11)  
ms  
Note 1: Relative accuracy is the analog value’s deviation (at any code) from its theoretical value after the full-scale range is calibrated.  
Note 2: See Typical Operating Characteristics.  
Note 3:  
V
= 2.048V, offset nulled.  
REFIN  
Note 4: On-channel grounded; sine wave applied to all off-channels.  
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 6: Guaranteed by design. Not subject to production testing.  
Note 7: Common-mode range for the analog inputs is from AGND to V  
.
DD  
Note 8: External load should not change during the conversion for specified accuracy.  
Note 9: External reference at 2.048V, full-scale input, 500kHz external clock.  
Note 10: Measured as | V (2.7V) - V (3.6V) |.  
FS  
FS  
Note 11: 1µF at REFOUT; internal reference settling to 0.5 LSB.  
_______________________________________________________________________________________  
5
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
__________________________________________Typical Operating Characteristics  
(V  
= 2.7V; f  
= 500kHz; external clock (50% duty cycle); R = ; T = +25°C, unless otherwise noted.)  
SCLK L  
A
DD  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
400  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
160  
140  
120  
100  
80  
OUTPUT CODE = 10101010  
OUTPUT CODE = FULL SCALE  
SHDN = DGND  
C
= 10pF  
LOAD  
350  
300  
250  
200  
150  
100  
V
V
= 5.5V  
= 3.6V  
DD  
C
= 60pF  
LOAD  
DD  
C
= 30pF  
LOAD  
2.0  
60  
3.0  
2.5  
3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
0/MAX1  
INTEGRAL NONLINEARITY vs.  
SUPPLY VOLTAGE  
DIFFERENTIAL NONLINEARITY  
vs. CODE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
2.5 3.0 3.5  
4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5  
4.0 4.5 5.0 5.5 6.0  
0
64  
128  
192  
256  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
DIGITAL CODE  
INTEGRAL NONLINEARITY  
vs. CODE  
OFFSET ERROR vs. TEMPERATURE  
FFT PLOT  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.20  
0.15  
0.10  
0.05  
0
20  
0
f
f
= 10.034kHz, 2V  
= 50ksps  
CH_  
SAMPLE  
P-P  
-20  
-40  
-60  
-80  
-100  
-0.05  
-0.10  
-0.15  
-0.20  
100  
-60  
-20  
20  
60  
140  
0
64  
128  
192  
256  
0
5
10  
15  
20  
25  
TEMPERATURE (°C)  
DIGITAL CODE  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
MAX1110  
MAX1111  
1–4  
5–8  
1–4  
CH0–CH3  
CH4–CH7  
Sampling Analog Inputs  
Sampling Analog Inputs  
Ground Reference for Analog Inputs. Sets zero-code voltage in single-ended mode.  
Must be stable to 0.5 LSB.  
9
5
6
7
COM  
SHDN  
REFIN  
Three-Level Shutdown Input. Normally high impedance. Pulling SHDN low shuts the  
MAX1110/MAX1111 down to 10µA (max) supply current; otherwise, the devices are  
fully operational. Pulling SHDN high shuts down the internal reference.  
10  
11  
Reference Voltage Input for Analog-to-Digital Conversion. Connect to REFOUT to use  
the internal reference.  
12  
13  
14  
8
9
REFOUT  
AGND  
Internal Reference Generator Output. Bypass with a 1µF capacitor to AGND.  
Analog Ground  
Digital Ground  
10  
DGND  
Serial-Data Output. Data is clocked out on SCLK’s falling edge. High impedance when  
CS is high.  
15  
11  
12  
DOUT  
Serial-Strobe Output. In internal clock mode, SSTRB goes low when the MAX1110/  
MAX1111 begin the A/D conversion and goes high when the conversion is done.  
In external clock mode, SSTRB pulses high for two clock periods before the MSB is  
shifted out. High impedance when CS is high (external clock mode only).  
16  
SSTRB  
Serial-Data Input. Data is clocked in at SCLK’s rising edge. The voltage at DIN can  
17  
18  
13  
14  
DIN  
exceed V (up to 5.5V).  
DD  
Active-Low Chip Select. Data is not clocked into DIN unless CS is low. When CS is  
CS  
high, DOUT is high impedance. The voltage at CS can exceed V (up to 5.5V).  
DD  
Serial-Clock Input. Clocks data in and out of serial interface. In external clock mode,  
SCLK also sets the conversion speed (duty cycle must be 45% to 55%). The voltage at  
19  
20  
15  
16  
SCLK  
SCLK can exceed V (up to 5.5V).  
DD  
V
DD  
Positive Supply Voltage, 2.7V to 5.5V  
+3V  
+3V  
3kΩ  
3kΩ  
DOUT  
DOUT  
DOUT  
DOUT  
3kΩ  
C
C
LOAD  
LOAD  
3kΩ  
C
LOAD  
C
LOAD  
DGND  
DGND  
DGND  
DGND  
b) High-Z to V and V to V  
OL  
a) High-Z to V and V to V  
a) V to High-Z  
b) V to High-Z  
OL  
OH  
OL  
OH  
OH  
OL  
OH  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
_______________________________________________________________________________________  
7
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
acquisition interval spans two SCLK cycles and ends  
_______________Detailed Description  
on the falling SCLK edge after the last bit of the input  
control word has been entered. At the end of the acqui-  
sition interval, the T/H switch opens, retaining charge  
The MAX1110/MAX1111 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to an 8-bit digital output. A flexible seri-  
al interface provides easy interface to microprocessors  
(µPs). Figure 3 shows the Typical Operating Circuit.  
on C  
as a sample of the signal at IN+. The conver-  
HOLD  
sion interval begins with the input multiplexer switching  
from the positive input (IN+) to the negative  
C
HOLD  
input (IN-). In single-ended mode, IN- is simply COM.  
This unbalances node ZERO at the input of the com-  
parator. The capacitive DAC adjusts during the remain-  
der of the conversion cycle to restore node ZERO to 0V  
within the limits of 8-bit resolution. This action is equiva-  
Pseudo-Differential Input  
The sampling architecture of the ADC’s analog com-  
parator is illustrated in Figure 4, the equivalent input cir-  
cuit. In single-ended mode, IN+ is internally switched to  
the selected input channel, CH_, and IN- is switched to  
COM. In differential mode, IN+ and IN- are selected  
from the following pairs: CH0/CH1, CH2/CH3,  
CH4/CH5, and CH6/CH7. Configure the MAX1110  
channels with Table 1 and the MAX1111 channels with  
Table 2.  
lent to transferring a charge of 18pF x (V  
HOLD  
- V ) from  
IN-  
IN+  
C
to the binary-weighted capacitive DAC, which in  
turn forms a digital representation of the analog input  
signal.  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the sixth bit of the 8-bit control byte has  
been shifted in. It enters its hold mode on the falling  
clock edge after the eighth bit of the control byte has  
been shifted in. If the converter is set up for single-  
ended inputs, IN- is connected to COM, and the con-  
verter samples the “+” input; if it is set up for differential  
inputs, IN- connects to the “-” input, and the difference  
(IN+ - IN-) is sampled. At the end of the conversion, the  
0/MAX1  
In differential mode, IN- and IN+ are internally switched  
to either of the analog inputs. This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side (IN-) must remain sta-  
ble within 0.5 LSB ( 0.1 LSB for best results) with  
respect to AGND during a conversion. To accomplish  
this, connect a 0.1µF capacitor from IN- (the selected  
analog input) to AGND.  
positive input connects back to IN+, and C  
charges to the input signal.  
HOLD  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
+2.7V  
CAPACITIVE DAC  
REFIN  
V
DD  
V
CH0  
CH7  
DD  
COMPARATOR  
0.1μF  
1μF  
INPUT  
MUX  
C
HOLD  
ANALOG  
INPUTS  
AGND  
DGND  
COM  
ZERO  
+
CH0  
CH1  
18pF  
CPU  
CH2  
6.5kΩ  
R
IN  
CH3  
MAX1110  
MAX1111  
C
SWITCH  
HOLD  
CH4*  
CH5*  
CH6*  
CH7*  
COM  
TRACK  
I/O  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
AT THE SAMPLING INSTANT,  
CS  
REFOUT  
REFIN  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
SCLK  
T/H  
SWITCH  
DIN  
1μF  
DOUT  
SSTRB  
SHDN  
SINGLE-ENDED MODE: IN+ = CHO–CH7, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4*/CH5*, CH6*/CH7*.  
V
SS  
*MAX1110 ONLY  
Figure 3. Typical Operating Circuit  
Figure 4. Equivalent Input Circuit  
8
_______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
Table 1a. MAX1110 Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
+
+
+
+
+
+
+
+
Table 1b. MAX1110 Channel Selection in Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
Table 2a. MAX1111 Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
COM  
0
1
0
1
0
0
1
1
X
X
X
X
+
+
+
+
Table 2b. MAX1111 Channel Selection in Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
0
0
1
1
0
1
0
1
X
X
X
X
+
+
+
+
_______________________________________________________________________________________  
9
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
age. However, for accurate conversions near full scale,  
the inputs must not exceed V by more than 50mV or  
DD  
be lower than AGND by 50mV.  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off channels over 2mA.  
The MAX1110/MAX1111 can be configured for differen-  
tial or single-ended inputs with bits 2 and 3 of the con-  
trol byte (Table 3). In single-ended mode, the analog  
inputs are internally referenced to COM with a full-scale  
t
, is the minimum time needed for the signal to be  
ACQ  
acquired. It is calculated by:  
t
= 6 x (R + R ) x 18pF  
ACQ  
S
IN  
where R = 6.5kΩ, R = the source impedance of the  
IN  
S
input signal, and t  
is never less than 1µs. Note that  
ACQ  
source impedances below 2.4kΩ do not significantly  
input range from COM to V  
+ COM. For bipolar  
REFIN  
affect the AC performance of the ADC.  
operation, set COM to V  
/2.  
REFIN  
In differential mode, choosing unipolar mode sets the  
differential input range at 0V to V . In unipolar  
Input Bandwidth  
The ADC’s input tracking circuitry has a 1.5MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-  
frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
REFIN  
mode, the output code is invalid (code zero) when a  
negative differential input voltage is applied. Bipolar  
mode sets the differential input range to  
V
/2.  
REFIN  
Note that in this mode, the common-mode input range  
includes both supply rails. Refer to Table 4 for input  
voltage ranges.  
0/MAX1  
Quick Look  
To quickly evaluate the MAX1110/MAX1111’s analog  
performance, use the circuit of Figure 5. The  
MAX1110/MAX1111 require a control byte to be written  
to DIN before each conversion. Tying DIN to +3V feeds  
Analog Inputs  
Internal protection diodes, which clamp the analog  
input to V  
and AGND, allow the channel input pins to  
DD  
swing from (AGND - 0.3V) to (V  
+ 0.3V) without dam-  
DD  
Table 3. Control-Byte Format  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
(MSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
7 (MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
Select which of the input channels are to be used for the conversion (Tables 1 and 2).  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. Select differential operation  
3
UNI/BIP  
if bipolar mode is used (Table 4).  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to COM. In differential mode, the voltage differ-  
ence between two channels is measured (Tables 1 and 2).  
2
SGL/DIF  
1 = fully operational, 0 = power-down.  
1
PD1  
PD0  
Selects fully operational or power-down mode.  
1 = external clock mode, 0 = internal clock mode.  
0 (LSB)  
Selects external or internal clock mode.  
10 ______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
Table 4. Full-Scale and Zero-Scale Voltages  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Full Scale  
Zero  
Scale  
Negative  
Full Scale  
Full Scale Zero Scale  
+V  
+ COM  
/2  
-V  
+ COM  
/2  
REFIN  
REFIN  
V
REFIN  
+ COM  
COM  
COM  
in control bytes of $FF (hex), which trigger single-  
ended, unipolar conversions on CH7 (MAX1110) or  
CH3 (MAX1111) in external clock mode without power-  
ing down between conversions. In external clock mode,  
the SSTRB output pulses high for two clock periods  
before the most significant bit of the 8-bit conversion  
result is shifted out of DOUT. Varying the analog input  
alters the output code. A total of 10 clock cycles is  
required per conversion. All transitions of the SSTRB  
and DOUT outputs occur on SCLK’s falling edge.  
ister. After CS falls, the first arriving logic “1” bit at DIN  
defines the MSB of the control byte. Until this first start bit  
arrives, any number of logic “0” bits can be clocked into  
DIN with no effect. Table 3 shows the control-byte format.  
The MAX1110/MAX1111 are compatible with MICROWIRE,  
SPI, and QSPI devices. For SPI, select the correct clock  
polarity and sampling edge in the SPI control registers:  
set CPOL = 0 and CPHA = 0. MICROWIRE, SPI, and  
QSPI all transmit a byte and receive a byte at the same  
time. Using the Typical Operating Circuit (Figure 3), the  
simplest software interface requires three 8-bit transfers  
to perform a conversion (one 8-bit transfer to configure  
the ADC, and two more 8-bit transfers to clock out the  
8-bit conversion result). Figure 6 shows the MAX1110/  
MAX1111 common serial-interface connections.  
How to Start a Conversion  
A conversion is started by clocking a control byte into  
DIN. With CS low, each rising edge on SCLK clocks a bit  
from DIN into the MAX1110/MAX1111’s internal shift reg-  
V
DD  
+3V  
OSCILLOSCOPE  
0.1µF  
1µF  
SCLK  
DGND  
SSTRB  
DOUT*  
AGND  
MAX1110  
MAX1111  
CH7 (CH3)  
0V TO  
+2.048V  
ANALOG  
INPUT  
CS  
0.01µF  
SCLK  
CH4  
500kHz  
OSCILLATOR  
CH3  
COM  
CH1  
CH2  
+3V  
DIN  
SSTRB  
DOUT  
REFOUT  
REFIN  
SHDN  
N.C.  
C1  
1µF  
*FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FF (HEX)  
( ) ARE FOR THE MAX1111.  
Figure 5. Quick-Look Circuit  
______________________________________________________________________________________ 11  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
Simple Software Interface  
Make sure the CPU’s serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 50kHz to 500kHz.  
I/O  
SCK  
CS  
SCLK  
DOUT  
1) Set up the control byte for external clock mode and  
call it TB1. TB1 should be of the format 1XXXXX11  
binary, where the Xs denote the particular channel  
and conversion mode selected.  
MISO  
+3V  
MAX1110  
MAX1111  
SS  
2) Use a general-purpose I/O line on the CPU to pull  
CS low.  
a) SPI  
3) Transmit TB1 and, simultaneously, receive a byte  
and call it RB1. Ignore RB1.  
CS  
SCK  
CS  
SCLK  
DOUT  
4) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB2.  
MISO  
+3V  
5) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB3.  
MAX1110  
MAX1111  
SS  
6) Pull CS high.  
0/MAX1  
b) QSPI  
Figure 7 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion padded  
with two leading zeros and six trailing zeros. The total  
conversion time is a function of the serial-clock  
frequency and the amount of idle time between 8-bit  
transfers. Make sure that the total conversion time does  
not exceed 1ms, to avoid excessive T/H droop.  
I/O  
SK  
SI  
CS  
SCLK  
DOUT  
MAX1110  
MAX1111  
Digital Inputs  
CS, SCLK, and DIN can accept input signals up to  
5.5V, regardless of the supply voltages. This allows the  
MAX1110/MAX1111 to accept digital inputs from both  
3V and 5V systems.  
c) MICROWIRE  
Figure 6. Common Serial-Interface Connections to the  
MAX1110/MAX1111  
CS  
t
ACQ  
1
4
8
12  
16  
20  
24  
SCLK  
UNI/  
BIP  
SGL/  
DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
DIN  
START  
SSTRB  
RB2  
B5  
RB3  
FILLED WITH ZEROS  
RB1  
DOUT  
B7  
B6  
B4  
B3  
B2  
B1  
B0  
ACQUISITION  
CONVERSION  
A/D STATE  
IDLE  
4μs  
IDLE  
(f  
= 500kHz)  
SCLK  
Figure 7. Single-Conversion Timing, External Clock Mode, 24 Clocks  
12 ______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 15). For bipolar inputs, the output is two’s-com-  
plement (Figure 16). Data is clocked out at SCLK’s  
falling edge in MSB-first format.  
conversion steps. SSTRB pulses high for two clock  
periods after the last bit of the control byte. Successive-  
approximation bit decisions are made and appear at  
DOUT on each of the next eight SCLK falling edges  
(Figure 7). After the eight data bits are clocked out,  
subsequent clock pulses clock out zeros from the  
DOUT pin.  
Clock Modes  
The MAX1110/MAX1111 can use either an external ser-  
ial clock or the internal clock to perform the successive-  
approximation conversion. In both clock modes, the  
external clock shifts data in and out of the devices. Bit  
PD0 of the control byte programs the clock mode.  
Figures 8–11 show the timing characteristics common  
to both modes.  
SSTRB and DOUT go into a high-impedance state  
when CS goes high; after the next CS falling edge,  
SSTRB outputs a logic low. Figure 9 shows the SSTRB  
timing in external clock mode.  
The conversion must complete in 1ms, or droop on the  
sample-and-hold capacitors can degrade conversion  
results. Use internal clock mode if the serial-clock fre-  
quency is less than 50kHz, or if serial-clock interruptions  
could cause the conversion interval to exceed 1ms.  
External Clock  
In external clock mode, the external clock not only  
shifts data in and out, it also drives the analog-to-digital  
CS  
• • •  
• • •  
t
t
t
CSH  
CSS  
CH  
t
t
CL  
CSH  
SCLK  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
t
t
t
TR  
DO  
DV  
DO  
DOUT  
Figure 8. Detailed Serial-Interface Timing  
CS  
• • •  
• • •  
t
t
STR  
SDV  
• • •  
• • •  
SSTRB  
t
SSTRB  
t
SSTRB  
SCLK  
• • • •  
• • • •  
PD0 CLOCKED IN  
Figure 9. External Clock Mode SSTRB Detailed Timing  
______________________________________________________________________________________ 13  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
CS  
1
4
8
15  
2
3
5
6
7
9
10  
11  
12  
16  
17  
18  
SCLK  
UNI/ SGL/  
SEL2 SEL1 SEL0  
PD1 PD0  
BIP  
DIF  
DIN  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
DOUT  
B7  
B6  
B1  
B0  
CONVERSION  
25µs TYP  
A/D STATE  
IDLE  
IDLE  
t
ACQ  
4µs (f  
= 500kHz)  
SCLK  
A
Figure 10. Internal Clock Mode Timing  
CS  
t
t
CONV  
CSS  
t
t
SCK  
CSH  
SSTRB  
t
SSTRB  
SCLK  
PD0 CLOCK IN  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 11. Internal Clock Mode SSTRB Detailed Timing  
Internal Clock  
remaining bits in MSB-first format (Figure 10). CS does  
not need to be held low once a conversion is started.  
Pulling CS high prevents data from being clocked into  
the MAX1110/MAX1111 and three-states DOUT, but it  
does not adversely affect an internal clock-mode con-  
version already in progress. When internal clock mode  
is selected, SSTRB does not go into a high-impedance  
state when CS goes high.  
Internal clock mode frees the µP from the burden of  
running the SAR conversion clock. This allows the con-  
version results to be read back at the processor’s con-  
venience, at any clock rate up to 2MHz. SSTRB goes  
low at the start of the conversion and then goes high  
when the conversion is complete. SSTRB is low for  
25µs (typ), during which time SCLK should remain low  
for best noise performance.  
Figure 11 shows the SSTRB timing in internal clock  
mode. In this mode, data can be shifted in and out of  
the MAX1110/MAX1111 at clock rates up to 2MHz, pro-  
An internal register stores data when the conversion is  
in progress. SCLK clocks the data out of this register at  
any time after the conversion is complete. After SSTRB  
goes high, the second falling clock edge produces the  
MSB of the conversion at DOUT, followed by the  
vided that the minimum acquisition time, t  
above 1µs.  
, is kept  
ACQ  
14 ______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
CS  
1
8
10  
1
8
10  
1
8
10 1  
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 3  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B7  
B7  
B0  
B7  
B0  
DOUT  
SSTRB  
CONVERSION RESULT 0  
CONVERSION RESULT 1  
CONVERSION RESULT 2  
Figure 12a. Continuous Conversions, External Clock Mode, 10 Clocks/Conversion Timing  
CS  
SCLK  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DIN  
DOUT  
B7  
B7  
B0  
CONVERSION RESULT 0  
CONVERSION RESULT 1  
Figure 12b. Continuous Conversions, External Clock Mode, 16 Clocks/Conversion Timing  
Data Framing  
The falling edge of CS does not start a conversion. The  
first logic high clocked into DIN is interpreted as a start  
bit and defines the first bit of the control byte. A conver-  
sion starts on the falling edge of SCLK, after the eighth  
bit of the control byte (the PD0 bit) is clocked into DIN.  
The start bit is defined as:  
If CS is toggled before the current conversion is com-  
plete, then the next high bit clocked into DIN is recog-  
nized as a start bit; the current conversion is  
terminated, and a new one is started.  
The fastest the MAX1110/MAX1111 can run is 10  
clocks per conversion. Figure 12a shows the serial-  
interface timing necessary to perform a conversion  
every 10 SCLK cycles in external clock mode.  
The first high bit clocked into DIN with CS low any  
time the converter is idle; e.g., after V  
is applied.  
DD  
Many microcontrollers require that conversions occur in  
multiples of eight SCLK clocks; 16 clocks per conver-  
sion is typically the fastest that a microcontroller can  
drive the MAX1110/MAX1111. Figure 12b shows the  
serial-interface timing necessary to perform a conver-  
sion every 16 SCLK cycles in external clock mode.  
OR  
The first high bit clocked into DIN after the MSB of a  
conversion in progress is clocked onto the DOUT  
pin.  
______________________________________________________________________________________ 15  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
Hard-Wired Power-Down  
Applications Information  
Pulling SHDN low places the converters in hard-wired  
power-down. Unlike software power-down, the conversion  
is not completed; it stops coincidentally with SHDN  being  
brought low. SHDN also controls the state of the internal  
reference (Table 5). Letting SHDN high impedance  
enables the internal 2.048V voltage reference. When  
returning to normal operation with SHDN high impedance,  
Power-On Reset  
When power is first applied, and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX1110/MAX1111 in internal clock mode. SSTRB is  
high on power-up and, if CS is low, the first logical 1 on  
DIN is interpreted as a start bit. Until a conversion takes  
place, DOUT shifts out zeros. No conversions should  
be performed until the reference voltage has stabilized  
(see Electrical Characteristics).  
there is a t  
delay of approximately 1MΩ x C  
,
LOAD  
RC  
where C  
is the capacitive loading on the SHDN pin.  
LOAD  
Pulling SHDN high disables the internal reference, which  
saves power when using an external reference.  
Power-Down  
When operating at speeds below the maximum sam-  
pling rate, the MAX1110/MAX1111’s automatic power-  
down mode can save considerable power by placing  
the converters in a low-current shutdown state between  
conversions. Figure 13 shows the average supply cur-  
rent as a function of the sampling rate.  
External Reference  
An external reference between 1V and V  
should be  
DD  
connected directly at the REFIN terminal. The DC input  
impedance at REFIN is extremely high, consisting of  
leakage current only (typically 10nA). During a conver-  
sion, the reference must be able to deliver up to 20µA  
average load current and have an output impedance of  
1kΩ or less at the conversion clock frequency. If the  
reference has higher output impedance or is noisy,  
bypass it close to the REFIN pin with a 0.1µF capacitor.  
0/MAX1  
Select power-down with PD1 of the DIN control byte  
with SHDN high or high impedance (Table 3). Pull  
SHDN low at any time to shut down the converters com-  
pletely. SHDN  overrides PD1 of the control byte.  
Figures 14a and 14b illustrate the various power-down  
sequences in both external and internal clock modes.  
If an external reference is used with the MAX1110/  
MAX1111, connect SHDN to V  
to disable the internal  
DD  
reference and decrease power consumption.  
Software Power-Down  
Software power-down is activated using bit PD1 of the  
control byte. When software power-down is asserted, the  
ADCs continue to operate in the last specified clock  
mode until the conversion is complete. The ADCs then  
power down into a low quiescent-current state. In internal  
clock mode, the interface remains active, and conversion  
results can be clocked out after the MAX1110/  
MAX1111 have entered a software power-down.  
1000  
C
= 60pF  
LOAD  
CODE = 10101010  
100  
10  
The first logical 1 on DIN is interpreted as a start bit,  
which powers up the MAX1110/MAX1111. If the DIN byte  
contains PD1 = 1, then the chip remains powered up. If  
PD1 = 0, power-down resumes after one conversion.  
C
= 30pF  
LOAD  
CODE = 10101010  
C
LOAD  
= 30pF  
CODE = 11111111  
Table 5. Hard-Wired Power-Down and  
Internal Reference State  
V
C
= V  
= 3V  
DD  
REFIN  
AT DOUT AND SSTRB  
LOAD  
1
0
10  
20  
30  
40  
50  
DEVICE  
MODE  
INTERNAL  
SHDN  
STATE  
SAMPLING RATE (ksps)  
REFERENCE  
1
Enabled  
Enabled  
Disabled  
Enabled  
Disabled  
High Impedance  
0
Figure 13. Average Supply Current vs. Sampling Rate  
Power-Down  
16 ______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
CLOCK  
MODE  
INTERNAL  
EXTERNAL  
EXTERNAL  
SHDN  
SETS POWER-  
DOWN MODE  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
S
X
X X X X 1  
1
S X  
X
X X X 0  
1
S
X X X X X 1  
1
DIN  
DOUT  
MODE  
DATA VALID  
DATA VALID  
DATA  
INVALID  
POWER-  
DOWN  
POWER-  
DOWN  
POWERED UP  
POWERED UP  
POWERED  
UP  
Figure 14a. Power-Down Modes, External Clock Timing Diagram  
INTERNAL CLOCK MODE  
SETS POWER-DOWN MODE  
SETS INTERNAL  
CLOCK MODE  
S
X
X X X X 1  
0
S X  
X
X X X 0  
0
S
DIN  
DATA VALID  
DATA VALID  
DOUT  
SSTRB  
CONVERSION  
CONVERSION  
POWER-DOWN  
POWERED UP  
MODE  
POWERED  
UP  
Figure 14b. Power-Down Modes, Internal Clock Timing Diagram  
Internal Reference  
To use the MAX1110/MAX1111 with the internal refer-  
ence, connect REFIN to REFOUT. The full-scale range  
of the MAX1110/MAX1111 with the internal reference is  
typically 2.048V with unipolar inputs, and 1.024V with  
bipolar inputs. The internal reference should be  
bypassed to AGND with a 1µF capacitor placed as  
close to the REFIN pin as possible.  
Transfer Function  
Table 4 shows the full-scale voltage ranges for unipolar  
and bipolar modes. Figure 15 depicts the nominal, unipo-  
lar I/O transfer function, and Figure 16 shows the bipolar  
I/O transfer function when using a 2.048V reference.  
Code transitions occur at integer LSB values. Output cod-  
ing is binary, with 1 LSB = 8mV (2.048V/256) for unipolar  
operation and 1 LSB = 8mV [(2.048V/2 - -2.048V/2)/256]  
for bipolar operation.  
______________________________________________________________________________________ 17  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
OUTPUT CODE  
FULL-SCALE  
SUPPLIES  
TRANSITION  
11111111  
11111110  
+3V  
GND  
11111101  
FS = V  
1LSB = V  
+ COM  
REFIN  
R* = 10Ω  
REFIN  
256  
00000011  
00000010  
V
DD  
AGND  
DGND  
+3V  
DGND  
00000001  
00000000  
DIGITAL  
CIRCUITRY  
MAX1110  
MAX1111  
0/MAX1  
0
1
2
3
FS  
FS - 1LSB  
(COM)  
INPUT VOLTAGE (LSB)  
* OPTIONAL  
Figure 15. Unipolar Transfer Function  
Figure 17. Power-Supply Grounding Connections  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards. Wire-  
wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
OUTPUT CODE  
V
REFIN  
2
+FS =  
+ COM  
01111111  
01111110  
V
REFIN  
COM =  
2
-V  
REFIN  
2
-FS =  
+ COM  
00000010  
00000001  
00000000  
Figure 17 shows the recommended system ground  
connections. A single-point analog ground (star ground  
point) should be established at AGND, separate from  
the logic ground. Connect all other analog grounds and  
DGND to the star ground. No other digital system  
ground should be connected to this ground. The  
ground return to the power supply for the star ground  
should be low impedance and as short as possible for  
noise-free operation.  
V
REFIN  
256  
1LSB =  
11111111  
11111110  
11111101  
10000001  
10000000  
High-frequency noise in the V  
power supply can  
DD  
affect the comparator in the ADC. Bypass the supply to  
COM  
INPUT VOLTAGE (LSB)  
the star ground with 0.1µF and 1µF capacitors close to  
-FS  
1
2
the V  
pin of the MAX1110/MAX1111. Minimize  
DD  
+FS - LSB  
capacitor lead lengths for best supply-noise rejection. If  
the +3V power supply is very noisy, a 10Ω resistor can  
be connected to form a lowpass filter.  
Figure 16. Bipolar Transfer Function  
18 ______________________________________________________________________________________  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
0/MAX1  
Pin Configurations  
TOP VIEW  
+
CH0  
CH1  
CH2  
CH3  
V
1
2
DD  
SCLK  
CS  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
+
CH0  
CH1  
1
2
3
4
5
6
7
8
V
16  
15  
14  
DD  
SCLK  
CS  
3
CH2  
DIN  
4
MAX1110  
CH3  
MAX1111  
CH4  
CH5  
CH6  
CH7  
13 DIN  
SSTRB  
DOUT  
DGND  
AGND  
REFOUT  
REFIN  
5
COM  
12 SSTRB  
11 DOUT  
6
SHDN  
REFIN  
REFOUT  
7
10  
9
DGND  
AGND  
8
COM  
9
SHDN  
10  
QSOP  
SSOP  
Ordering Information  
Chip Information  
PROCESS: CMOS  
PART  
TEMP RANGE  
PIN-PACKAGE  
20 SSOP  
Dice*  
SUBSTRATE CONNECTED TO DGND  
MAX1110CAP+  
MAX1110C/D  
MAX1110EAP+  
MAX1111CEE+  
MAX1111EEE+  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
20 SSOP  
16 QSOP  
16 QSOP  
16 QSOP  
Package Information  
For the latest package outline information and land patterns  
(footnote), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
MAX1111EEE/V+  
*Dice are specified at T = +25°C, DC parameters only.  
A
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
20 SSOP  
16 QSOP  
A20+1  
E16+1  
21-0056  
21-0055  
90-0094  
90-0167  
______________________________________________________________________________________ 19  
+2.7V, Low-Power, Multichannel,  
Serial 8-Bit ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
Added automotive qualified part to data sheet  
3
4
2/10  
4/11  
19  
Removed PDIP packages from data sheet. Revised Timing Characteristics table and  
included style updates throughout data sheet.  
1–7, 10, 13,  
14, 16, 18, 19  
0/MAX1  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1111EPE

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs
MAXIM

MAX1111EPE+

ADC, Successive Approximation, 8-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDIP16, PLASTIC, DIP-16
MAXIM

MAX1111MJE

+2.7V, Low-Power, Multichannel, Serial 8-Bit ADCs
MAXIM

MAX1112

+5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs
MAXIM

MAX1112-MAX1113

+5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs
MAXIM

MAX11120

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11120ATI

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11120ATI+

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11120_12

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11120_V01

1Msps, Low-Power, Serial 12-/10-/8-Bit, 4-/8-/16-Channel ADCs
MAXIM

MAX11120_V2

1Msps, Low-Power, Serial 12-/10-/8-Bit, 4-/8-/16-Channel ADCs
MAXIM

MAX11121

1Msps, Low-Power, Serial 12-/10-/8-Bit, 4-/8-/16-Channel ADCs
MAXIM