MAX11060GUU+T [MAXIM]

暂无描述;
MAX11060GUU+T
型号: MAX11060GUU+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总35页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5741ꢀ Rev 1ꢀ 4/11  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
General Description  
Features  
o Four Fully Differential Simultaneously Sampled  
The MAX11040K/MAX11060 are 24-/16-bit, 4-channel,  
simultaneous-sampling, sigma-delta analog-to-digital  
converters (ADCs). The devices allow simultaneous  
sampling of as many as 32 channels using a built-in  
cascade feature to synchronize as many as eight  
devices. The serial interface of the devices allows read-  
ing data from all the cascaded devices using a single  
command. Four modulators simultaneously convert  
each fully differential analog input with a programmable  
data output rate ranging from 0.25ksps to 64ksps. The  
devices achieve 106dB SNR at 16ksps and 117dB SNR  
at 1ksps (MAX11040K). The devices operate from a  
single +3V supply. The differential analog input range is  
2.2V when using the internal referenceꢀ an eꢁternal  
reference is optional. Each input is overvoltage protect-  
ed up to 6V without damage. The devices use an  
internal crystal oscillator or an eꢁternal source for clock.  
Channels  
o Cascadable for Up to 32 Channels of  
Simultaneous Sampling  
o 106dB (MAX11040K) SNR at 16ksps  
o 117dB (MAX11040K) SNR at 1ksps  
o 0.25% Error Over a 1000:1 Dynamic Range,  
Processed Over 16.7ms (MAX11040K)  
o
o
2.2ꢀ FullꢁScale ꢂnput Range  
6ꢀ Overvoltage Protected ꢂnputs  
o ꢂnternal Crystal Oscillator  
o 2.5ꢀ, 50ppm/°C ꢂnternal Reference or External  
Reference  
o Programmable Output Data Rate  
0.25ksps to 64ksps Range  
0.065% Resolution  
o Programmable Sampling Phase  
0 to 333µs Delay in 1.33µs Steps  
The devices are compatible with SPI™, QSPI™,  
MICROWIRE™, and DSP-compatible 4-wire serial inter-  
faces. An on-board interface logic allows one serial inter-  
face (with a single chip select) to control up to eight  
cascaded devices or 32 simultaneous sampling analog  
input channels.  
o SPꢂꢁ/QSPꢂꢁ/MꢂCROWꢂREꢁ/DSPꢁCompatible 4ꢁWire  
Serial ꢂnterface  
o Cascadable ꢂnterface Allows Control of Up to  
Eight Devices with a Single CS Signal  
o 3.0ꢀ to 3.6ꢀ Analog Supply ꢀoltage  
The devices are ideally suited for power-management  
systems. Each channel includes an adjustable sam-  
pling phase enabling internal compensation for phase  
shift due to eꢁternal dividers, transformers, or filters at  
the inputs. The output data rate is adjustable with a  
0.065% resolution (at 16ksps or below) to track the  
varying frequency of a periodic input. A SYNC input  
allows periodic alignment of the conversion timing of  
multiple devices with a remote timing source.  
o 2.7ꢀ to ꢀ  
Digital Supply ꢀoltage  
AꢀDD  
o 38ꢁPin TSSOP Package  
Functional Diagram  
OVRFLW FAULT  
The devices are available in a 38-pin TSSOP package speci-  
fied over the -40°C to +105°C industrial temperature range.  
AIN0+  
AIN0-  
SYNC  
24-/16-BIT  
ADC  
DIGITAL  
FILTER  
Applications  
Power-Protection Relay Equipment  
Multiphase Power Systems  
DRDYIN  
REF0  
AIN1+  
AIN1-  
DRDYOUT  
24-/16-BIT  
ADC  
DIGITAL  
FILTER  
REGISTERS AND  
DIGITAL  
CONTROL  
CASCIN  
SERIAL  
INTERFACE  
CASCOUT  
REF1  
AIN2+  
24-/16-BIT  
ADC  
DIGITAL  
FILTER  
Industrial Data-Acquisition Systems  
Medical Instrumentation  
CS  
AIN2-  
SCLK  
REF2  
AIN3+  
DIN  
24-/16-BIT  
ADC  
DIGITAL  
FILTER  
AIN3-  
REF3  
DOUT  
Ordering Information  
PART  
MAX11040KGUU+ -40°C to +105°C  
MAX11060GUU+ -40°C to +105°C  
TEMP RANGE  
PꢂNꢁPACKAGE  
38 TSSOP  
MAX11040K  
MAX11060  
2.5V  
REFERENCE  
CRYSTAL  
OSCILLATOR  
REFIO  
38 TSSOP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
AGND  
XIN  
XOUT  
CLKOUT  
DGND  
MICROWIRE is a trademark of National Semiconductor Corp.  
SPI/QSPI are trademarks of Motorola, Inc.  
________________________________________________________________ Maxim ꢂntegrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1ꢁ888ꢁ629ꢁ4642,  
or visit Maxim’s website at www.maximꢁic.com.  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
ABSOLUTE MAXꢂMUM RATꢂNGS  
AVDD to AGND ........................................................-0.3V to +4V  
AIN_ _ to AGND (V  
< 3V or V  
< 2.7V or  
AVDD  
DVDD  
DVDD to DGND......................................-0.3V to (V  
AGND to DGND.....................................................-0.3V to +0.3V  
+ 0.3V)  
FAULTDIS = 1 or SHDN = 1 or  
f < 20MHz)........................................-3.5V to +3.5V  
XIN CLOCK  
AVDD  
DIN, SCLK, CS, XIN, SYNC, DRDYIN,  
CASCIN to DGND..............................-0.3V to (V  
DOUT, DRDYOUT, CASCOUT, CLKOUT,  
REFIO, REF_ to AGND............................-0.3V to (V  
Maꢁimum Current into Any Pin............................................50mA  
+ 0.3V)  
AVDD  
+ 0.3V)  
DVDD  
Continuous Power Dissipation (T = +70°C)  
A
XOUT to DGND..................................-0.3V to (V  
FAULT, OVRFLW to DGND ...................................-0.3V to +4.0V  
AIN_+ to AIN_- ......................................................-6.0V to +6.0V  
+ 0.3V)  
TSSOP (derated 13.7mW/°C above +70°C) ..............1096mW  
Operating Temperature Range .........................-40°C to +105°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
DVDD  
AIN_ _ to AGND (V  
3V, V  
2.7V, FAULTDIS = 0,  
AVDD  
DVDD  
SHDN = 0, f  
20MHz)....................-6.0V to +6.0V  
XIN CLOCK  
Stresses beyond those listed under “Absolute Maꢁimum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Eꢁposure to  
absolute maꢁimum rating conditions for eꢁtended periods may affect device reliability.  
ELECTRꢂCAL CHARACTERꢂSTꢂCS  
(V  
= +3.0V to +3.6V, V  
= +2.7V to V  
, f  
= 24.576MHz, f  
= 16ksps, V  
= +2.5V (eꢁternal), C  
=
AV  
DD  
DV  
DD  
AV  
DD XIN CLOCK  
OUT  
REFIO  
REFIO  
C
REF0  
= C  
= C  
= C  
= 1μF to AGND, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
REF1  
REF2  
REF3  
A
MIN  
PARAMETER  
SYMBOL  
CONDꢂTꢂONS  
MꢂN  
TYP  
MAX  
UNꢂTS  
DC ACCURACY (Note 2)  
MAX11040K  
MAX11060  
24  
16  
Resolution  
Bits  
4K/MAX160  
24-bit no missing code (MAX11040K)ꢀ  
16-bit no missing code (MAX11060)  
Differential Nonlinearity  
DNL  
INL  
0.1  
LSB  
T = +25°C and +105°C (MAX11040K)  
A
0.001  
0.004  
0.006  
Integral Nonlinearity (Note 3)  
%FS  
T
A
= -40°C (MAX11040K)  
MAX11060  
0.001  
Offset Error  
-1  
-1  
+1  
+1  
mV  
%FS  
Gain Error  
(Note 4)  
(Note 5)  
(Note 5)  
Offset-Error Drift  
Gain-Error Drift  
0.5  
1
ppm/°C  
ppm/°C  
% FS  
Change in Gain Error vs. f  
f
= 0.25ksps to 64ksps  
< 0.025  
0.03  
OUT  
OUT  
Channel-to-Channel Gain Matching  
DYNAMꢂC SPECꢂFꢂCATꢂONS (62.5Hz sineꢁwave input, 2.17ꢀ  
% FS  
)
PꢁP  
(Note 6) (MAX11040K)  
(Note 6) (MAX11060)  
103  
106  
Signal-to-Noise Ratio  
SNR  
dB  
dB  
94.5  
T = +25°C and +105°C (MAX11040K)  
A
-94  
-90  
Total Harmonic Distortion  
THD  
T = -40°C (MAX11040K)  
A
MAX11060  
T = +25°C and +105°C (MAX11040K)  
-106  
98  
93  
89  
A
Signal-to-Noise Plus Distortion  
SINAD  
SFDR  
T
A
= -40°C (MAX11040K)  
dB  
MAX11060  
T = +25°C and +105°C (MAX11040K)  
94  
94  
89  
100  
A
Spurious-Free Dynamic Range  
Relative Accuracy (Note 7)  
dB  
%
T
A
= -40°C (MAX11040K)  
MAX11060  
100  
0.1%FS input (MAX11040K)  
6.0%FS input (MAX11040K)  
0.25  
0.005  
2
_______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
ELECTRꢂCAL CHARACTERꢂSTꢂCS (continued)  
(V  
= +3.0V to +3.6V, V  
= +2.7V to V  
, f  
= 24.576MHz, f  
= 16ksps, V  
= +2.5V (eꢁternal), C  
=
AV  
DD  
DV  
DD  
AV  
DD XIN CLOCK  
OUT  
REFIO  
REFIO  
C
REF0  
= C  
= C  
= C  
= 1μF to AGND, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
REF1  
REF2  
REF3  
A
MIN  
PARAMETER  
SYMBOL  
CONDꢂTꢂONS  
MꢂN  
TYP  
3.4  
MAX  
UNꢂTS  
kHz  
Bandwidth  
Latency  
-3dB  
(Note 8)  
405  
μs  
Passband Flatness  
From DC to 1.4kHz  
FS vs. 0.1% FS  
< 0.1  
< 0.01  
0.0001  
0.001  
-130  
dB  
Amplitude-Dependent Phase Error  
Channel-to-Channel Phase Matching  
Phase-Error Drift  
0.12  
Degrees  
Degrees  
Degrees  
dB  
Channel-to-Channel Isolation  
Common-Mode Rejection  
CMRR  
109  
dB  
ANALOG ꢂNPUTS (AꢂN_+, AꢂN_ꢁ)  
Differential FS Input Range  
Single-Ended Positive Input Range  
Single-Ended Negative Input Range  
Positive Fault Threshold  
V
V
- V  
AIN_-  
-2.2  
-2.2  
+2.2  
+2.2  
+2.2  
2.65  
-2.25  
V
V
IN  
AIN_+  
V
Referenced to AGND  
Referenced to AGND  
AIN_+  
V
-2.2  
V
AIN_-  
V
V
V
or V  
or V  
(Note 9)  
(Note 9)  
2.25  
-2.65  
V
PFT  
AIN_+  
AIN_+  
AIN_-  
AIN_-  
Negative Fault Threshold  
V
V
NFT  
Fault Pin Response Time  
2.5  
130  
μs  
V
V
V
V V  
IN PFT  
NFT  
Input Impedance  
Z
kΩ  
IN  
< V  
or V > V  
PFT  
> 0.5  
0.01  
3.072  
4.0  
IN  
NFT  
IN  
DC Leakage Current  
I
+ = V  
-
1
μA  
Msps  
pF  
IN  
AIN_  
AIN_  
Input Sampling Rate  
f
f = f  
S
/8  
S
XINCLOCK  
Input Sampling Capacitance  
ꢂNTERNAL REFERENCE  
REFIO Output Voltage  
REFIO Output Resistance  
REFIO Temp Drift  
V
T
A
= T  
MAX  
2.4  
2.5  
1
2.6  
V
REF  
kΩ  
50  
ppm/°C  
ppm/  
1000hr  
REFIO Long-Term Stability  
200  
REFIO Output Noise  
3
μV  
RMS  
REFIO Power-Supply Rejection  
EXTERNAL REFERENCE  
REFIO Input Voltage  
PSRR  
75  
dB  
V
2.3  
2.7  
V
REF  
REFIO Sink Current  
200  
200  
10  
μA  
μA  
pF  
REFIO Source Current  
REFIO Input Capacitance  
CRYSTAL OSCꢂLLATOR (XꢂN, XOUT)  
Tested Resonant Frequency  
Maꢁimum Crystal ESR  
(Note 10)  
24.576  
30  
MHz  
Ω
Oscillator Startup Time  
Oscillator Stability  
< 2  
10  
ms  
V
= 3.3V, eꢁcluding crystal  
ppm/°C  
pF  
DVDD  
Maꢁimum Oscillator Load  
10  
_______________________________________________________________________________________  
3
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
ELECTRꢂCAL CHARACTERꢂSTꢂCS (continued)  
(V  
= +3.0V to +3.6V, V  
= +2.7V to V  
, f  
= 24.576MHz, f  
= 16ksps, V  
= +2.5V (eꢁternal), C  
=
AV  
DD  
DV  
DD  
AV  
DD XIN CLOCK  
OUT  
REFIO  
REFIO  
C
REF0  
= C  
= C  
= C  
= 1μF to AGND, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
REF1  
REF2  
REF3  
A
MIN  
PARAMETER  
SYMBOL  
CONDꢂTꢂONS  
MꢂN  
TYP  
MAX  
UNꢂTS  
DꢂGꢂTAL ꢂNPUTS (SCLK, CS, DꢂN, SYNC, CASCꢂN, DRDYIN, XꢂN)  
0.3 ꢁ  
Input Low Voltage  
Input High Voltage  
V
V
V
IL  
V
DVDD  
0.7 ꢁ  
V
IH  
V
DVDD  
Input Hysteresis  
V
V
= 3.0V  
DVDD  
100  
0.01  
15  
mV  
μA  
pF  
HYS  
Input Leakage Current  
Input Capacitance  
I
1
L
C
IN  
CMOS DꢂGꢂTAL OUTPUTS (DOUT, CASCOUT, DRDYOUT, CLKOUT)  
0.15 ꢁ  
Output Low Voltage  
Output High Voltage  
V
I
= 5mA  
SINK  
V
V
OL  
V
DVDD  
0.85 ꢁ  
V
I
I = 1mA  
SOURCE  
OH  
V
DVDD  
Three-State Leakage Current  
Three-State Capacitance  
1
μA  
pF  
LT  
4K/MAX160  
C
15  
30  
OUT  
OPENꢁDRAꢂN DꢂGꢂTAL OUTPUTS (OVRFLW, FAULT)  
0.15 ꢁ  
Output Low Voltage  
Output High Voltage  
V
I
= 5mA  
V
OL  
SINK  
V
DVDD  
0.85 ꢁ  
V
Internal pullup only  
V
OH  
V
DVDD  
Internal Pullup Resistance  
POWER REQUꢂREMENTS  
Analog Supply Voltage  
Digital Supply Voltage  
k  
AV  
DV  
3.0  
2.7  
3.6  
V
DD  
V
V
DD  
AVDD  
35  
Normal operation  
25  
0.1  
11  
mA  
μA  
mA  
μA  
dB  
dB  
Analog Supply Current (Note 11)  
Digital Supply Current (Note 11)  
I
AVDD  
Shutdown and f  
= 0Hz  
= 0Hz  
5
XINCLOCK  
Normal operation  
Shutdown and f  
15  
I
DVDD  
0.3  
70  
XINCLOCK  
AC Positive-Supply Rejection  
DC Positive-Supply Rejection  
ESD PROTECTꢂON  
All Pins  
V
V
= 3.3V + 100mV  
at 1kHz  
P-P  
AVDD  
AVDD  
= V  
= 3.0V to 3.6V  
75  
DVDD  
ESD  
Human Body Model  
2.5  
kV  
TꢂMꢂNG CHARACTERꢂSTꢂCS (Figures 7–10)  
SCLK Clock Period  
t
50  
20  
10  
0
ns  
ns  
ns  
ns  
ns  
SCP  
SCLK Pulse Width (High and Low)  
DIN or CS to SCLK Fall Setup  
SCLK Fall to DIN Hold  
t
PW  
t
SU  
HD  
t
SCLK Rise to CS Rise  
t
0
CSH1  
4
_______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
ELECTRꢂCAL CHARACTERꢂSTꢂCS (continued)  
(V  
= +3.0V to +3.6V, V  
= +2.7V to V  
, f  
= 24.576MHz, f  
= 16ksps, V  
= +2.5V (eꢁternal), C  
=
AV  
DD  
DV  
DD  
AV  
DD XIN CLOCK  
OUT  
REFIO  
REFIO  
C
REF0  
= C  
= C  
= C  
= 1μF to AGND, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
REF1  
REF2  
REF3  
A
MIN  
PARAMETER  
SYMBOL  
CONDꢂTꢂONS  
MꢂN  
TYP  
10  
MAX  
UNꢂTS  
C
= 30pF  
= 100pF  
= 30pF  
= 30pF  
1.5  
16  
LOAD  
LOAD  
LOAD  
LOAD  
SCLK Rise to DOUT Valid  
t
ns  
DOT  
C
C
C
< 16  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
t
0.3  
0.7  
16  
20  
16  
ns  
ns  
ns  
ns  
ns  
DOE  
DOD  
CSW  
t
t
CASCIN-to-SCLK Rise Setup  
SCLK Rise to CASCOUT Valid  
t
16  
SC  
t
C
= 100pF  
20  
COT  
LOAD  
XIN  
SYNC Pulse Width  
t
2
Clock  
Cycles  
SYN  
XIN Clock Pulse Width  
DRDYIN to DRDYOUT  
XIN Clock to DRDYOUT Delay  
XIN Clock Period  
t
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
XPW  
t
C
= 30pF  
20  
40  
DRDY  
LOAD  
t
DRDYIN = DGND  
XDRDY  
t
t
40  
16  
5
XP  
SS  
HS  
XIN Clock to SYNC Setup  
SYNC to XIN Clock Hold  
XIN-to-CLKOUT Delay  
Power-On Reset Delay  
(Note 12)  
(Note 12)  
t
t
40  
XCD  
(Note 13)  
< 1  
Note 1: Devices are production tested at +105°C. Specifications to -40°C are guaranteed by design.  
Note 2: Tested at V = V = +3.0V.  
AV  
DD  
DV  
DD  
Note 3: Integral nonlinearity is the deviation of the analog value at any code from its ideal value after the offset and gain errors are  
removed.  
Note 4: Offset nulled.  
Note 5: Offset and gain drift defined as change in offset and gain error vs. full scale.  
Note 6: Noise measured with AIN_+ = AIN_- = AGND.  
Note 7: Relative accuracy is defined as the difference between the actual RMS amplitude and the ideal RMS amplitude of a 62.5Hz  
sine wave, measured over one cycle at a 16ksps data rate, eꢁpressed as a fraction of the ideal RMS amplitude. The rela-  
tive accuracy specification refers to the maꢁimum error eꢁpected over 1 million measurements. Calculated from SNR. Not  
production tested.  
Note 8: Latency is a function of the sampling rate and XIN clock.  
Note 9: Voltage levels below the positive fault threshold and above the negative fault threshold, relative to AGND on each individ-  
ual AIN_+ and AIN_- input, do not trigger the analog input protection circuitry.  
Note 10: Test performed using RXD MP35.  
Note 11: All digital inputs at DGND or DVDD.  
Note 12: SYNC is captured by the subsequent XIN clock if this specification is violated.  
Note 13: Delay from DVDD eꢁceeds 2.0V until digital interface is operational.  
_______________________________________________________________________________________  
5
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Typical Operating Characteristics (MAX11040K)  
(V  
= V  
= 3.3V, f  
= 24.576MHz, f  
= 16ksps, V  
= 2.5V (eꢁternal), C  
= C  
= C  
= C  
=
REF2  
AV  
DD  
DV  
DD  
XIN CLOCK  
OUT  
REFIO  
REFIO  
REF0  
REF1  
C
REF3  
= 1μF, T = +25°C, unless otherwise noted.)  
A
HISTOGRAM OF RMS AMPLITUDE  
AT 0.1% FS  
MAXIMUM EXPECTED ERROR OF CALCULATED  
INL vs. DIFFERENTIAL INPUT VOLTAGE  
RMS AMPLITUDE vs. INPUT AMPLITUDE  
0.005  
0.004  
0.003  
0.002  
0.001  
0
1
500  
1 MILLION 62.5Hz CYCLES  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.1  
0.01  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
0.001  
0
-2.5  
-1.5  
-0.5  
0.5  
1.5  
2.5  
0.01  
0.1  
1
10  
100  
DIFFERENTIAL INPUT VOLTAGE (V)  
INPUT AMPLITUDE (% FS)  
RMS AMPLITUDE (% FS)  
SIGNAL-TO-NOISE RATIO  
vs. OUTPUT DATA RATE  
FFT vs. FREQUENCY AT FULL SCALE  
FFT vs. FREQUENCY AT 0.1% FULL SCALE  
4K/MAX160  
0
-20  
-40  
-60  
130  
120  
110  
100  
90  
60Hz SINE-WAVE INPUT  
60Hz SINE-WAVE INPUT  
-40  
-80  
-60  
-100  
-120  
-140  
-160  
-180  
-80  
-100  
-120  
-140  
80  
0
1000 2000 3000 4000 5000 6000 7000 8000  
FREQUENCY (Hz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
FREQUENCY (Hz)  
0.1  
1
10  
100  
OUTPUT DATA RATE (ksps)  
RMS AMPLITUDE GAIN ERROR  
vs. OUTPUT DATA RATE  
RMS AMPLITUDE  
vs. SOURCE RESISTANCE  
RMS AMPLITUDE  
vs. INPUT FREQUENCY  
0.05  
0.04  
0.03  
0.02  
0.01  
0
1
0
0.1  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
OUTPUT DATA RATE (Hz)  
SOURCE RESISTANCE (Ω)  
INPUT FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Typical Operating Characteristics (MAX11040K continued)  
(V  
= V  
= 3.3V, f  
= 24.576MHz, f  
= 16ksps, V  
= 2.5V (eꢁternal), C  
= C  
= C  
= C  
=
REF2  
AV  
DD  
DV  
DD  
XIN CLOCK  
OUT  
REFIO  
REFIO  
REF0  
REF1  
C
REF3  
= 1μF, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION  
vs. INPUT FREQUENCY  
0.10  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
-80  
-90  
0.10  
0.08  
0.06  
0.04  
0.02  
0
AVDD = DVDD  
AVDD = DVDD  
0.08  
0.06  
0.04  
0.02  
0
-100  
-110  
-120  
-130  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0
500  
1000  
1500  
2000  
-40  
-11  
18  
47  
76  
105  
SUPPLY VOLTAGE (V)  
INPUT FREQUENCY (Hz)  
TEMPERATURE (°C)  
GAIN ERROR  
vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR DRIFT  
1.0  
0.8  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
1.0  
0.8  
AVDD = DVDD  
V
= V  
DVDD  
= 3.3V  
AVDD  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (hr)  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Typical Operating Characteristics (MAX11040K continued)  
(V  
= V  
= 3.3V, f  
= 24.576MHz, f  
= 16ksps, V  
= 2.5V (eꢁternal), C  
= C  
= C  
= C  
=
REF2  
AV  
DD  
DV  
DD  
XIN CLOCK  
OUT  
REFIO  
REFIO  
REF0  
REF1  
C
REF3  
= 1μF, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
30  
25  
20  
15  
10  
5
30  
500  
400  
300  
200  
100  
0
V
AVDD  
= V  
= 3.3V  
AVDD = DVDD  
DVDD  
AVDD = DVDD  
25  
20  
I
AVDD  
I
AVDD  
15  
10  
5
I
DVDD  
I
DVDD  
I
DVDD  
I
AVDD  
0
0
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-11  
18  
47  
76  
105  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4K/MAX160  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
CRYSTAL OSCILLATOR STARTUP TIME  
MAX11040K/11060 toc20  
1000  
V
= V  
DVDD  
= 3.6V  
AVDD  
800  
600  
400  
200  
0
CLKOUT  
500mV/div  
I
AVDD  
I
DVDD  
-40  
-11  
18  
47  
76  
105  
40μs/div  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Pin Configuration  
TOP VIEW  
+
AIN0-  
AIN0+  
REF0  
1
2
3
4
5
6
7
8
9
38 AIN2-  
37 AIN2+  
36 REF2  
AGND  
AIN1-  
AIN1+  
REF1  
35 AGND  
34 AIN3-  
33 AIN3+  
32 REF3  
MAX11040K  
MAX11060  
AGND  
REFIO  
31 AGND  
30 AVDD  
29 AGND  
28 DGND  
27 DVDD  
26 XIN  
AGND 10  
DGND 11  
DVDD 12  
CASCIN 13  
CASCOUT 14  
CS 15  
25 XOUT  
24 SYNC  
23 DRDYIN  
22 DRDYOUT  
21 CLKOUT  
20 OVRFLW  
SCLK 16  
DIN 17  
DOUT 18  
FAULT 19  
TSSOP  
Pin Description  
PꢂN  
1
NAME  
AIN0-  
AIN0+  
REF0  
FUNCTꢂON  
Negative Analog Input Channel 0  
Positive Analog Input Channel 0  
2
3
ADC0 Buffered Reference Voltage. Bypass REF0 with a 1μF capacitor to AGND.  
4, 8, 10,  
29, 31, 35  
AGND  
Analog Ground  
5
6
7
AIN1-  
AIN1+  
REF1  
Negative Analog Input Channel 1  
Positive Analog Input Channel 1  
ADC1 Buffered Reference Voltage. Bypass REF1 with a 1μF capacitor to AGND.  
Reference Voltage Output/Input. Reference voltage for analog-to-digital conversion. In internal reference  
mode, the reference buffer provides a +2.5V nominal output. In eꢁternal reference mode, overdrive REFIO  
with an eꢁternal reference between 2.3V to 2.7V. Bypass REFIO with a 1μF capacitor to AGND.  
9
REFIO  
_______________________________________________________________________________________  
9
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Pin Description (continued)  
PꢂN  
NAME  
FUNCTꢂON  
11, 28  
DGND  
Digital Ground  
Positive Digital Supply Voltage. Bypass each DVDD to DGND with a 1μF capacitor in parallel with a  
0.01μF capacitor as close as possible to the device.  
12, 27  
DVDD  
Cascade Input. A logic-low on CASCIN while CS is a logic-low during the last cycle of a byte signals the  
device to perform the requested data transfer during subsequent bytes using DIN and DOUT. Once the  
13  
CASCIN requested transfer is completed, the part three-states DOUT and ignores DIN until a new command is  
issued. CASCIN is clocked in at the rising edge of SCLK. Connect CASCIN to DGND when not daisy  
chaining multiple devices. See the Multiple Device Connection section for connection recommendations.  
Cascade Output. CASCOUT is driven low during the last cycle of the last byte of a data transfer to signal  
the neꢁt device in the daisy-chain to begin transferring data on the neꢁt byte. CASCOUT changes after  
the rising edge of SCLK. Leave CASCOUT unconnected when not daisy chaining multiple devices. See  
the Multiple Device Connection section.  
14  
15  
CASCOUT  
Active-Low Chip-Select Input. A falling edge on CS while CASCIN is a logic-low enables DIN and DOUT  
for data transfer. A logic-high on CS prevents data from being clocked in on DIN and places DOUT in a  
CS  
high-impedance state.  
Serial-Clock Input. Clocks in data at DIN on the falling edge of SCLK and clocks out data at DOUT on the  
rising edge of SCLK. SCLK must idle high (CPOL = 1).  
16  
17  
SCLK  
DIN  
4K/MAX160  
Serial Data Input. Data at DIN is clocked in on the falling edge of SCLK.  
Serial Data Output. The drive for DOUT is enabled by a falling edge on CS while CASCIN is low or by a  
falling edge on CASCIN while CS is low. DOUT is disabled/three-stated when CS is high or after the  
appropriate number of data bytes have been transferred in response to the requested command. Data is  
clocked out at DOUT on the rising edge of SCLK.  
18  
19  
20  
21  
DOUT  
FAULT  
Active-Low Overvoltage Fault Indicator Output. FAULT goes low when any analog input goes outside the fault  
threshold range (between V  
and V  
). The FAULT output is open drain with a 30kΩ internal pullup  
PFT  
NFT  
resistor, allowing wire-NOR functionality. See the Analog Input Overvoltage and Fault Protection section.  
Active-Low Channel Data Overflow Output. OVRFLW goes low when a conversion result goes outside the  
voltage range bounded by the positive and negative full scale on one or more of the analog input  
channels or when FAULT goes low. The OVRFLW output is open drain with a 30kΩ internal pullup resistor,  
allowing wire-NOR functionality. See the Analog Input Overvoltage and Fault Protection section.  
OVRFLW  
CLKOUT  
Buffered Clock Output. When the XTALEN bit in the configuration register is 1 and a crystal is installed  
between XIN and XOUT, CLKOUT provides a buffered version of the internal oscillator’s clock. Setting the  
XTALEN bit to 0 places CLKOUT in a high-impedance state.  
10 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Pin Description (continued)  
PꢂN  
NAME  
FUNCTꢂON  
Active-Low Data Ready Output. When DRDYIN = 0, DRDYOUT outputs a logic-low to indicate the  
DRDYOUT availability of a new conversion result. DRDYOUT transitions high at the neꢁt CS falling edge or when  
DRDYIN = 1. See the Multiple Device Connection section.  
22  
Active-Low Data Ready Input. A logic-high at DRDYIN causes DRDYOUT to output a logic-high. When  
DRDYIN = 0, DRDYOUT outputs a logic-low when a new conversion result is available. See the Multiple  
Device Connection section. Connect DRDYIN to DGND when not daisy chaining multiple devices.  
23  
24  
25  
DRDYIN  
SYNC  
Sampling Synchronization Input. The falling edge of SYNC aligns sampling and output data so that  
multiple devices sample simultaneously. Synchronize multiple devices running from independent crystals  
by connecting DRDYOUT of the last device in the chain to the SYNC inputs of all devices in the chain.  
Connect SYNC to DGND for single device operation. See the Multiple Device Connection section.  
Crystal Oscillator Output. Connect a 24.576MHz eꢁternal crystal or resonator between XIN and XOUT  
when using the internal oscillator. Leave XOUT unconnected when driving with an eꢁternal frequency. See  
the Crystal Oscillator section.  
XOUT  
Crystal Oscillator/Clock Input. Connect a 24.576MHz eꢁternal crystal or resonator between XIN and XOUT  
when using the internal oscillator or drive XIN with an eꢁternal clock and leave XOUT unconnected. See  
the Crystal Oscillator section.  
26  
30  
XIN  
Positive Analog Supply Voltage. Bypass to AGND with a 1μF capacitor in parallel with a 0.01μF capacitor  
as close as possible to the device.  
AVDD  
32  
33  
34  
36  
37  
38  
REF3  
AIN3+  
AIN3-  
REF2  
ADC3 Buffered Reference Voltage. Bypass with a 1μF capacitor to AGND.  
Positive Analog Input Channel 3  
Negative Analog Input Channel 3  
ADC2 Buffered Reference Voltage. Bypass with a 1μF capacitor to AGND.  
Positive Analog Input Channel 2  
AIN2+  
AIN2-  
Negative Analog Input Channel 2  
______________________________________________________________________________________ 11  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
the effective sample rate of the ADC, is software pro-  
grammable.  
Typical Operating Circuit  
The devices operate from a single 3.0V to 3.6V analog  
3.3V  
3.3V  
1µF  
1µF  
supply and a 2.7V to V  
digital supply. The 4-wire  
AVDD  
serial interface is SPI/QSPI/MICROWIRE and DSP com-  
patible.  
0.01µF  
0.01µF  
ADC Modulator  
Each channel of the devices performs analog-to-  
digital conversion on its input using a dedicated  
switched-capacitor sigma-delta modulator. The modula-  
tor converts the input signal into low-resolution digital data  
for which the average value represents the digitized sig-  
nal information at 3.072Msps for a 24.576MHz XIN clock.  
This data stream is then presented to the digital filter for  
processing to remove the high-frequency noise that cre-  
ates a high-resolution 24-/16-bit output data stream.  
20pF  
24.576MHz  
20pF  
AVDD  
DVDD  
XIN  
AIN0+  
AIN0-  
AIN0+  
AIN0-  
REF0  
XOUT  
1µF  
CLKOUT  
CASCOUT  
CASCIN  
MAX11040K  
MAX11060  
AIN1+  
AIN1-  
AIN1+  
AIN1-  
REF1  
1µF  
The input sampling network of the analog input consists  
OVRFLW  
FAULT  
of a pair of 4pF capacitors (C  
), the bottom  
SAMPLE  
AIN2+  
AIN2-  
AIN2+  
AIN2-  
REF2  
plates of which are connected to AIN_+ and AIN_- dur-  
ing the track phase and then shorted together during  
the hold phase (see Figure 1). The internal switches  
have a total series resistance of 400Ω. Given a  
24.576MHz XIN clock, the switching frequency is  
3.072MHz. The sampling phase lasts for 120ns.  
1µF  
CS  
SCLK  
4K/MAX160  
AIN3+  
AIN3-  
AIN3+  
AIN3-  
REF3  
DIN  
MICROCONTROLLER  
OR DSP  
DOUT  
1µF  
SYNC  
DRDYOUT  
REFIO  
DRDYIN  
DGND  
1µF  
AGND  
MAX11040K  
MAX11060  
TRACK  
AIN_+  
AIN_-  
C
SAMPLE+  
Detailed Description  
HOLD  
TO ADC  
C
SAMPLE-  
The MAX11040K/MAX11060 are 24-/16-bit, simultane-  
ous-sampling, 4-channel, sigma-delta ADCs including  
support for synchronized sampling and daisy chaining  
of the serial interface across multiple (up to eight)  
devices. The serial interface of the set of synchronized  
devices behaves as one device. Each channel includes  
a differential analog input, a sigma-delta modulator, a  
digital decimation filter, an independent programmable  
sampling delay, and a buffered reference signal from  
the internal or an eꢁternal reference. The device con-  
tains an internal crystal oscillator. The output data rate,  
TRACK  
R
R
ON  
ON  
AVDD/2  
Figure 1. Simplified Track/Hold Stage  
12 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Since the transfer function of a digital filter is repeatable  
and predictable, it is possible to correct for frequency-  
dependent attenuation in downstream software. See  
the Compensating for the Rolloff of the Digital Filter in a  
Typical FFT Analysis section. The transfer function is  
defined by the following equation:  
Digital Filter  
The devices contain an on-chip digital lowpass filter  
that processes the data stream from each modulator  
and generates the high-resolution output data. The low-  
pass filter frequency response is determined by the  
programmable output data rate. At the nominal 16ksps  
output data rate, the -3dB bandwidth of the filter is  
3.4kHz. The passband flatness is better than 0.1dB  
from 0 to 1.74kHz. The notches are located at 5.75kHz  
and 7.195kHz. These frequencies scale linearly with the  
output data rate. See Figure 2 and Table 1 for the fre-  
quency response at different data rates.  
3
f
AIN  
f
× sin π ×  
SAMPLE  
f
SAMPLE  
Gain(f ) =  
AIN  
f
AIN  
XINCLOCK  
f
× sin π ×  
XINCLOCK  
f
×
FIR_Gain(f  
(
)
)
AIN  
1
0
where:  
Gain is the filter gain.  
f
f
is the analog input frequency.  
-1  
-2  
-3  
-4  
-5  
-6  
AIN  
is the programmed output data rate, nominally  
SAMPLE  
16kHz.  
f
is the clock frequency at XIN, nominally  
XINCLOCK  
24.576MHz.  
FIR_Gain (f ) is the normalized gain of the FIR filter  
AIN  
with the following filter coefficients, as a function of the  
analog input frequency f  
applied at the output data rate:  
. These coefficients are  
AIN  
0
0.04 0.08 0.12 0.16 0.20 0.24 0.28  
/f  
f
AIN SAMPLE  
+ 0.022  
- 0.074  
- 0.036  
+ 0.312  
+ 0.552  
+ 0.312  
- 0.036  
- 0.074  
+ 0.022  
Figure 2. Digital Filter Response  
Table 1. Bandwidth vs. Output Data Rate  
OUTPUT DATA ꢁ3dB BANDWꢂDTH ꢁ0.1dB BANDWꢂDTH  
RATE (ksps)  
(kHz)  
(kHz)  
0.5  
1
0.11  
0.21  
0.42  
0.85  
1.69  
2.11  
2.54  
3.38  
6.78  
13.5  
0.05  
0.11  
0.22  
0.43  
0.87  
1.09  
1.31  
1.74  
3.48  
6.96  
2
4
8
10  
12  
16  
32  
64  
______________________________________________________________________________________ 13  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Modulator Clock  
The modulator clock is created by dividing the frequen-  
cy at the XIN input by a factor of 8. The XIN input is dri-  
ven either directly by an eꢁternal clock or by the  
on-chip crystal oscillator.  
Analog Input Overvoltage  
and Fault Protection  
The full-scale differential input range of the devices is  
0.88V  
. The converter accurately represents any  
REF  
input for which the positive and negative analog inputs  
are separated by a magnitude of less than 0.88V  
.
REF  
Crystal Oscillator  
The on-chip oscillator requires an eꢁternal crystal (or  
resonator) with a 24.576MHz operating frequency con-  
nected between XIN and XOUT, as shown in Figure 3.  
As in any crystal-based oscillator circuit, the oscillator  
The device includes special circuitry that protects it  
against voltages on the analog inputs up to +6V.  
Setting FAULTDIS = 1 disables the protection circuitry.  
There are two mechanisms of overvoltage detection  
and protection: full-scale overflow and overvoltage  
fault. Full-scale overflow occurs if the magnitude of the  
applied input voltage on any one or more channels is  
frequency is sensitive to the capacitive load (C ). C is  
L
L
the capacitance that the crystal needs from the oscilla-  
tor circuit and not the capacitance of the crystal. The  
input capacitance across XIN and XOUT is 1.5pF.  
greater than 0.88V  
. In this case, the digital output is  
REF  
clipped to positive or negative full scale and the OVRFLW  
flag goes low. Overvoltage fault occurs if the magni-  
tude of an applied input voltage on any one or more  
channels goes outside the fault-detection thresholds.  
The reaction to an overvoltage fault is dependent on  
whether the fault-protection circuitry is enabled. If  
enabled, the input-protection circuits engage and the  
FAULT flag goes low. A full-scale overflow or an over-  
voltage fault condition on any one channel does not  
affect the output data for the other channels.  
Choose a crystal with a 24.576MHz oscillation frequen-  
cy and an ESR less than 30Ω, such as the MP35 from  
RXD Technologies. See Figure 3 for the block diagram  
of the crystal oscillator. Set XTALEN = 1 in the configu-  
ration register to enable the crystal oscillator. The  
CLKOUT output provides a buffered version of the  
clock that is capable of driving eight devices, allowing  
synchronized operation from a single crystal. See the  
Multiple Device Synchronization section in the  
Applications Information section.  
4K/MAX160  
The input protection circuits allow up to 6V relative to  
AGND on each input, and up to 6V differentially  
between AIN+ and AIN-, without damaging the devices  
only if the following conditions are satisfied: power is  
applied, the devices are not in shutdown mode, a clock  
frequency of at least 20MHz is available at XIN, and  
FAULTDIS = 0. The analog inputs allow up to 3.5V rel-  
ative to AGND when either devices are placed in shut-  
down mode, the clock stops, or FAULTDIS = 1.  
External Clock  
To use an eꢁternal clock, set XTALEN = 0 in the  
Configuration register and connect an eꢁternal clock  
source (20MHz–25MHz) to XIN. CLKOUT becomes  
high impedance.  
During an overvoltage fault condition, the impedance  
between AIN_+ and AIN_- reduces to as low as 0.5kΩ.  
MAX11040K  
MAX11060  
The output structure and cascading features of FAULT  
and OVRFLW are discussed in the Multiple Device  
Digital Interface section.  
20pF  
XIN  
24.576MHz  
OSCILLATOR  
Analog ꢂnput Overflow  
Detection and Recovery (OVRFLW)  
24.576MHz  
The OVRFLW flag is set based on the ADC conversion  
result. When the applied voltage on one or more analog  
inputs goes outside the positive or negative full scale  
XOUT  
20pF  
( 0.88V  
), OVRFLW asserts after a delay defined by  
REF  
the latency of the converter, coincident with the DRDYOUT  
of the full-scale clamped conversion result (see Figure  
4). The specifics of the latency are discussed earlier in  
the data sheet in the Latency section.  
Figure 3. Crystal Oscillator Input  
14 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
When the analog input voltage changes between the  
the latency of the converter, the ADC conversion result  
prematurely jumps to the full-scale value when a fault is  
detected (see Detection Discontinuity in Figure 4).  
During a fault condition and the subsequent fault-  
recovery time, the ADC conversion result remains at full  
scale. This creates a discontinuity in the digital conver-  
sion result only if the fault recovery time is greater than  
the latency plus the time that the input changes  
between the fault threshold and the ADC full scale (see  
Recovery Discontinuity in Figure 4). Neither of these  
steps occur if the fault-protection circuitry is disabled  
(FAULTDIS = 1), or if the input is slow relative to the  
above descriptions (see Figure 5).  
ADC full scale and the fault threshold faster than the  
latency of the converter, OVRFLW goes low with the  
FAULT output. OVRFLW remains invalid until a valid  
clock frequency is available at XIN.  
OvervoltageꢁFault Detection and Recovery (FAULT)  
With overvoltage-fault protection enabled (FAULTDIS =  
0), FAULT immediately transitions from a high to low  
when any of the analog inputs go outside the voltage  
range bounded by the fault-detection thresholds V  
PFT  
and V  
.
NFT  
Once the analog inputs return back within the fault  
thresholds, the FAULT interrupt output goes high after a  
delay called the fault-recovery time. The fault-recovery  
time is:  
For data rates faster than 32ksps (FSAMPC = 111), the  
converter output may contain invalid data for up to  
188μs after FAULT returns high. To prevent this behav-  
ior, disable the overvoltage-fault protection by setting  
the FAULTDIS bit in the configuration register to 1 when  
using FSAMPC = 111, and limit the analog input swing  
to 3.5V.  
20 ꢁ t  
< fault-recovery time < 25 ꢁ t  
DOUT  
DOUT  
where t  
XINCLOCK  
is the data output period determined by  
DOUT  
f
and the selected output data rate.  
In the event the analog input voltage changes between  
the ADC full scale and the fault threshold faster than  
FAULT-DETECTION  
THRESHOLD  
(V OR |V |)  
PFT  
NFT  
|AIN+ - AIN-|  
DETECTION  
DISCONTINUITY  
RECOVERY  
DISCONTINUITY  
FULL SCALE  
(|0.88V |)  
REF  
LATENCY  
RECOVERY TIME  
DIGITAL OUTPUT  
DATA AT DOUT  
LATENCY  
LATENCY  
LATENCY  
FAULT  
OVRFLW  
Figure 4. High-Frequency Analog Input Overvoltage Detection and Recovery  
______________________________________________________________________________________ 15  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
FAULT-DETECTION  
THRESHOLD  
(V OR |V |)  
PFT  
NFT  
|AIN+ - AIN-|  
LATENCY  
LATENCY  
FULL SCALE  
(|0.88V |)  
REF  
RECOVERY TIME  
LATENCY  
DIGITAL OUTPUT  
DATA AT DOUT  
LATENCY  
FAULT  
OVRFLW  
4K/MAX160  
Figure 5. Low-Frequency Analog Input Overvoltage Detection and Recovery  
Reference  
The devices operate with either a +2.5V internal  
REF0  
bandgap reference or an eꢁternal reference source  
between +2.3V and +2.7V applied at REFIO. Bypass  
REFIO and each REF_ to AGND with a 1μF capacitor.  
The reference voltage sets the positive and negative  
full-scale voltage according to the following formula:  
REF1  
REF2  
REF3  
FS = 0.88 V  
REFIO  
The reference voltage at REFIO (eꢁternal or internal) is  
individually buffered to generate the reference voltages  
at REF0 to REF3 (see Figure 6.) These independent  
buffers minimize the potential for crosstalk between  
each of the internal ADCs.  
+2.5V  
REFERENCE  
REFIO  
Serial Interface  
The devices’ interface is fully compatible with SPI/DSP  
standard serial interfaces (compatible with SPI modes  
CPOL = 1, CPHA = 0). The serial interface provides  
access to four on-chip registers: Sampling Instant  
Control register (32 bits), Data Rate Control register (16  
bits), Configuration register (8 bits), and Data register  
(96 bits). All serial-interface commands begin with a  
command byte, which addresses a specific register,  
followed by data bytes with a data length that depends  
on the specific register addressed and the number of  
Figure 6. REFIO Input  
devices cascaded (see Figures 7, 8, and the Registers  
section).  
The serial interface consists of eight signals: CS,  
SCLK, DIN, DOUT, CASCIN, CASCOUT, DRDYIN,  
and DRDYOUT. CASCIN, CASCOUT, DRDYIN, and  
DRDYOUT are used for daisy chaining multiple devices  
together. See the Multiple Device Connection section  
for details on how to connect CASCIN, CASCOUT,  
16 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
DRDYIN, and DRDYOUT. For single-device applications,  
ferred MSB first. Drive CS high to disable the interface  
connect CASCIN and DRDYIN to DGND and drive CS  
low to transfer data in and out of the devices. With  
DRDYIN low, a falling edge at the data-ready signal out-  
put (DRDYOUT) indicates that new conversion results  
are available for reading in the 96-bit data register. A  
falling edge on SCLK clocks in data at DIN. Data at  
DOUT changes on the rising edge of SCLK and is valid  
on the falling edge of SCLK. DIN and DOUT are trans-  
and place DOUT in a high-impedance state.  
An interface operation with the devices takes effect on  
the last rising edge of SCLK. If CS goes high before the  
complete transfer, the write is ignored. Every data  
transfer is initiated by the command byte. The com-  
mand byte consists of an R/W bit and 7 address bits  
(see Table 2.) Figures 7 and 8 show the timing for read  
and write operations, respectively.  
t
CSW  
t
SU  
t
SCP  
t
PW  
CS  
t
PW  
t
DCD  
SCLK  
t
SU  
t
CSH1  
DIN  
R/W A6 A5 A4 A3 A2 A1 A0  
t
t
DOT  
HD  
COMMAND ADDRESS  
HIGH-Z  
HIGH-Z  
DOUT  
B7 B6 B5 B4 B3 B2 B1 B0  
t
DOE  
DATA LENGTH (NUMBER OF BYTES) DEPENDS  
ON THE REGISTER BEING READ (SEE TABLE 2)  
DRDYIN  
t
DRDY  
DATA READY  
DRDYOUT  
Figure 7. General Read-Operation Timing Diagram  
t
CSW  
t
SU  
CS  
t
CSH1  
DIN  
R/W A6 A5 A4 A3 A2 A1 A0  
B7 B6 B5 B4 B3 B2 B1 B0  
t
HD  
SCLK  
t
SU  
t
t
PW  
SCP  
t
PW  
DATA LENGTH (NUMBER OF BYTES) DEPENDS ON  
THE REGISTER BEING WRITTEN (SEE TABLE 2)  
HIGH-Z  
HIGH-Z  
DOUT  
Figure 8. General Write-Operation Timing Diagram  
______________________________________________________________________________________ 17  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Registers  
The devices include four registers accessible by 7  
command bytes. The command bytes provide read  
and write access to the Data Rate Control register, the  
Sampling Instant Control register, and the Configuration  
register, and read access to the Data register. See  
Table 2. Figure 9 shows the CASCIN and CASOUT  
timing diagram. Figure 10 is the XIN clock, CLKOUT,  
SYNC, and DRDYOUT timing diagram.  
SCLK  
t
COT  
CASCOUT  
(DEVICE n)  
CASCIN  
(DEVICE n+1)  
Table 2. Command Bytes  
t
SC  
ADDRESS  
[A6:A0]  
DATA  
LENGTH*  
R/W  
FUNCTꢂON  
Write Sampling Instant  
Control Register  
0
1
0
1
0
1000000  
1000000  
1010000  
1010000  
1100000  
32 ꢁ n** bits  
32 ꢁ n bits  
16 bits  
Figure 9. CASCIN and CASCOUT Timing Diagram  
Read Sampling Instant  
Control Register  
Write Data-Rate Control  
Register  
t
t
XP  
XPW  
XIN CLOCK  
4K/MAX160  
Read Data-Rate Control  
Register  
16 bits  
t
XCD  
Write Configuration  
Register  
8 ꢁ n bits  
8 ꢁ n bits  
CLKOUT  
t
HS  
Read Configuration  
Register  
1
1
1100000  
1110000  
t
SS  
SYNC  
96 ꢁ n bits Read Data Register  
t
XDRDY  
t
SYN  
*All data lengths are proportional to the number of cascaded  
devices eꢁcept for reads and writes to the Data Rate Control  
register. When accessing the Data Rate Control register, the  
data length is fiꢁed at 16 bits. These 16 bits are automatically  
written to all cascaded devices.  
DRDYOUT  
**n is the total number of cascaded devices.  
Figure 10. XIN Clock, CLKOUT, SYNC, and DRDYOUT Timing  
Diagram  
18 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Sampling ꢂnstant Control Register  
By default, the devices sample all 4 input channels  
simultaneously. To delay the sampling instant on one or  
more channels, program the appropriate byte in the  
Sampling Instant Control register. The delay of the  
actual sampling instant of each individual channel from  
the default sampling instant (PHI_[7:0] = 0ꢁ00) is  
adjustable between 32 to 819,121 XIN clock cycles,  
which is 1.3μs to 333μs with f  
at 24.576MHz  
XINCLOCK  
(see Table 3.)  
Configuration Register  
The Configuration register contains 5 bits that control the  
functionality of the devices. The default state is 0ꢁ00.  
The data length of the Configuration register is 8 bits  
per cascaded device (see Table 4).  
Table 3. Sampling ꢂnstant Control Register  
BꢂT  
NAME  
DESCRꢂPTꢂON  
Channel 0 sample instant adjust. PHI0 delays sampling instant on channel 0 by 32 XIN clock cycles per  
LSB, up to 8192 cycles total (1.3μs resolutionꢀ 333μs range at XIN of 24.576MHz).  
[31:24]  
PHI0[7:0]  
Channel 1 sample instant adjust. PHI1 delays sampling instant on channel 1 by 32 XIN clock cycles per  
LSB, up to 8192 cycles total (1.3μs resolutionꢀ 333μs range at XIN of 24.576MHz).  
[23:16]  
[15:8]  
[7:0]  
PHI1[7:0]  
PHI2[7:0]  
PHI3[7:0]  
Channel 2 sample instant adjust. PHI2 delays sampling instant on channel 2 by 32 XIN clock cycles per  
LSB, up to 8192 cycles total (1.3μs resolutionꢀ 333μs range at XIN of 24.576MHz).  
Channel 3 sample instant adjust. PHI3 delays sampling instant on channel 3 by 32 XIN clock cycles per  
LSB, up to 8192 cycles total (1.3μs resolutionꢀ 333μs range at XIN of 24.576MHz).  
Table 4. Configuration Register  
BꢂT  
NAME  
DESCRꢂPTꢂON  
Shutdown bit. Set SHDN high to place the device in shutdown mode. In shutdown mode, the internal  
oscillator, fault circuitry, and internal bandgap reference are turned off. Set SHDN low for normal operation.  
7
SHDN  
Reset bit. Set RST high to reset all registers to the default states eꢁcept for the RST bit, and realign  
sampling clocks and output data.  
6
5
RST  
Enable 24-bit resolution bit for the MAX11040K. Set EN24BIT high to enable the 24-bit data output. Set  
EN24BIT low to enable 19-bit data output with device address and channel address tags. Tables 5 and 6  
specify the Data register for both states of this bit. Set to 0 for MAX11060.  
EN24BIT  
Internal oscillator enable bit. When using the on-chip crystal oscillator as the clock source, set XTALEN high  
to enable the crystal oscillator and provide a buffered version of the crystal clock at the CLKOUT output.  
When using an eꢁternal clock source, set XTALEN low to disable the internal crystal oscillator and three-  
state the CLKOUT output. Connect the eꢁternal clock source to the XIN input.  
4
3
XTALEN  
Overvoltage fault-protection disable bit. Set FAULTDIS high to disable the overvoltage fault-protection  
circuits. For FAULTDIS = 0, the absolute maꢁimum input range is 6V. Analog inputs beyond the fault-  
detection threshold range trip the fault-protection circuits. The output remains clipped for a fault-recovery  
time (typically < 1.57ms) after the inputs return within the fault-detection threshold range. For FAULTDIS =  
1, the absolute maꢁimum input range is only 3.5V, but there is no fault-recovery delay. See the  
Overvoltage Fault Detection and Recovery (FAULT) section.  
FAULTDIS  
PDBUF  
PDBUF = 1 disables the internal reference buffer. Use this mode when an eꢁternal reference is usedꢀ  
otherwise, PDBUF should be set to 0 to enable the internal reference buffer.  
2
[1:0]  
Reserved Must set to 0.  
______________________________________________________________________________________ 19  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Data Register  
The Data register contains the results of the ADC con-  
version. The result is reported in two’s complement for-  
mat. The register contains one or two pieces of  
information, depending on the state of EN24BIT in the  
Configuration register. When EN24BIT is set to zero, the  
Data register contains the ADC data truncated to 19  
bits, followed by the device and channel addresses  
(see Table 5). When EN24BIT is set to one, the data  
contained in the Data register represents the 24-bit  
conversion (see Table 6). The data length of the Data  
register is 96 bits for each cascaded device. Figure 11  
shows the sequence of the conversion result output of  
all channels for two cascaded devices. Table 7 is the  
data register for the MAX11060.  
If the results are not read back prior to completion of  
the neꢁt conversion, the data is overwritten.  
Table 5. Data Register (EN24BꢂT = 0) (MAX11040K)  
BꢂT  
NAME  
DESCRꢂPTꢂON  
[95:77]  
[76:74]  
[73:72]  
[71:53]  
[52:50]  
[49:48]  
[47:29]  
[28:26]  
[25:24]  
[23:5]  
CH0DATA[18:0] Channel 0 19-bit conversion result (two’s complement)  
IC[2:0]  
00  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 0 address tag = 00  
CH1DATA[18:0] Channel 1 19-bit conversion result (two’s complement)  
IC[2:0]  
01  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 1 address tag = 01  
CH2DATA[18:0] Channel 2 19-bit conversion result (two’s complement)  
4K/MAX160  
IC[2:0]  
10  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 2 address tag = 10  
CH3DATA[18:0] Channel 3 19-bit conversion result (two’s complement)  
[4:2]  
IC[2:0]  
11  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 3 address tag = 11  
[1:0]  
Table 6. Data Register (EN24BꢂT = 1) (MAX11040K)  
BꢂT  
NAME  
DESCRꢂPTꢂON  
[95:72]  
[71:48]  
[47:24]  
[23:0]  
CH0DATA[23:0] Channel 0 24-bit conversion result (two’s complement)  
CH1DATA[23:0] Channel 1 24-bit conversion result (two’s complement)  
CH2DATA[23:0] Channel 2 24-bit conversion result (two’s complement)  
CH3DATA[23:0] Channel 3 24-bit conversion result (two’s complement)  
Table 7. Data Register (MAX11060)  
BꢂT  
NAME  
CH0DATA[15:0]  
000  
DESCRꢂPTꢂON  
Channel 0 16-bit conversion result (two’s complement)  
[95:80]  
[79:77]  
[76:74]  
[73:72]  
[71:56]  
[55:53]  
[52:50]  
[49:48]  
[47:32]  
IC[2:0]  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 0 address tag = 00  
00  
CH1DATA[15:0]  
000  
Channel 1 16-bit conversion result (two’s complement)  
IC[2:0]  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 1 address tag = 01  
01  
CH2DATA[15:0]  
Channel 2 16-bit conversion result (two’s complement)  
20 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Table 7. Data Register (MAX11060) (continued)  
BꢂT  
[31:29]  
[28:26]  
[25:24]  
[23:8]  
[7:5]  
NAME  
DESCRꢂPTꢂON  
000  
IC[2:0]  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 2 address tag = 10  
10  
CH3DATA[15:0]  
000  
Channel 3 16-bit conversion result (two’s complement)  
[4:2]  
IC[2:0]  
Device address tag. IC[2:0] starts with 000 for the device nearest the master.  
Channel 3 address tag = 11  
[1:0]  
11  
CS  
DIN  
SCLK  
DOUT  
24 CYCLES  
24 CYCLES  
24 CYCLES  
24 CYCLES  
24 CYCLES  
24 CYCLES  
24 CYCLES  
24 CYCLES  
CHANNEL 0  
DEVICE 0  
CHANNEL 1  
DEVICE 0  
CHANNEL 2  
DEVICE 0  
CHANNEL 3  
DEVICE 0  
CHANNEL 0  
DEVICE 1  
CHANNEL 1  
DEVICE 1  
CHANNEL 2  
DEVICE 1  
CHANNEL 3  
DEVICE 1  
CASCOUT0  
(CASCIN0 = 0)  
DEVICE 1 TAKES OVER SPI BUS  
CASCOUT1  
DRDYOUT0  
(DRDYIN0 = 0)  
DEVICE 0 DATA READY  
DRDYOUT1  
DEVICE 0 AND DEVICE 1 DATA READY  
Figure 11. 192-Bit Data Read Operation Diagram for Two Cascaded Devices  
Data Rate Control Register  
The Data Rate Control register controls the output data  
period, which corresponds to the output data rate of  
the ADC. The data period is controlled by both a  
coarse (FSAMPC[2:0]) and a fine (FSAMPF[10:0])  
adjustment (see Table 8).  
Divider = Coarse Cycle Factor ꢁ 384 + Fine Cycle  
Factor ꢁ FSAMPF[10:0]  
Note: Fractional results for the divider are rounded  
down to the nearest integer. Coarse cycle factor and  
fine cycle factor come from Table 8. The effect of  
FSAMPF[10:0] in the formula has limitations as noted in  
the table.  
The final data rate is derived by dividing the XIN clock  
frequency by a divider value. The divider value is a  
function of FSAMPC[2:0] and FSAMPF[10:0]:  
Eꢁamples of output data rate vs. FSAMPC[2:0] and  
FSAMPF[10:0] are shown in Table 9. Table 10 shows  
typical device performance for various data rate settings.  
Data Rate = f /Divider  
XINCLOCK  
______________________________________________________________________________________ 21  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
The data length of the Data-Rate Control register is 16  
bits total for writes and reads (see Table 2). Changes to  
the Data-Rate Control register take effect after 16 con-  
version periods (Figure 12), i.e., the ADC continues to  
operate at the old data rate for another 16 periods. Also,  
the last sample at the old data rate (sample 16 in Figure  
12) may contain some noise component and should be  
discarded. Changes in data rate should be limited to  
5% for correct operation. The data rate register should  
not be updated more than once every 32 data rate peri-  
ods.  
is available for reading (DRDYOUT goes low). The laten-  
cy of the converter is specified by the following equation:  
Latency = (6 ꢁ t ) + (PHI ꢁ 1.3μs) + 30μs  
DOUT  
where t  
is the data output period (inverse of the  
DOUT  
programmed sample rate) determined by XINCLOCK  
and the selected output data rate, and PHI is the pro-  
grammed sampling instant delay for the channel in ques-  
tion (0 PHI 255). The latency is approꢁimately 405μs  
at 16ksps.  
Because the two filters operate at different output data  
rates, a skew builds up between them over the 16 sam-  
ples that both are in operation. For eꢁample, at 30ksps,  
the minimum data rate step size is 0.125%ꢀ so over 16  
samples, the difference becomes 2%. This causes the  
period from sample 16 to sample 17 to be different by  
this amount.  
Note: Write to the data rate register in the time window of  
10ns after the rising edge of DRDYOUT and 100ns  
before the falling edge of DRDYOUT.  
The digital filter determines the latency. Latency is  
defined as the time between the effective point in time  
that a sample is taken and when the resulting digital data  
4K/MAX160  
16  
1
2
17  
15  
DRDYOUT  
CS  
DATA AT THE OLD  
DATA RATE  
DATA AT THE NEW  
DATA RATE  
CHANGE DATA RATE  
DATA READ  
Figure 12. Timing Diagram for a Data-Rate Change  
22 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Table 8. DataꢁRate Control Register  
BꢂTS  
NAME  
FSAMPC[2:0]  
Reserved  
DESCRꢂPTꢂON  
Output data rate coarse adjust bits. FSAMPC[2:0] sets the coarse cycle factor.  
Coarse Cycle  
Factor  
Sample Rate in ksps  
FSAMPC  
(f  
= 24.576MHz)  
XIN CLOCK  
000  
001  
010  
011  
100  
101  
110  
111  
4
128  
64  
32  
16  
8
16  
0.5  
1
[15:13]  
[12:11]  
2
4
8
2
32  
64  
1
Set to 0.  
Output data rate fine adjusts bits. FSAMPF[10:0] increases the output data period by a number of  
XIN clock cycles. This number is the value of the register times the fine cycle factor. Values of  
FSAMPF greater than 1535 have no additional effect.  
FSAMPC  
000  
XIN Fine Cycle Factor  
1 cycle  
001  
32 cycles  
16 cycles  
8 cycles  
[10:0]  
FSAMPF[10:0]  
010  
011  
100  
4 cycles  
101  
2 cycles  
110  
1 cycle  
111  
1 cycle  
Table 9. Examples of Output Data Rate as a Function of FSAMPC[2:0] and FSAMPF[10:0]  
FSAMPF OUTPUT DATA PERꢂOD  
RESOLUTꢂON  
(24.576MHz CLOCK CYCLES)  
OUTPUT DATA  
RATE (sps)  
OUTPUT DATA PERꢂOD  
(24.576MHz CLOCK CYCLES)  
FSAMPC[2:0] FSAMPF[10:0]  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
250.1  
250.1  
98272  
98272  
49184  
49152  
49136  
49136  
24592  
24576  
24568  
24568  
12296  
12288  
10111111111  
001  
32  
16  
8
00000000001  
499.7  
00000000000  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
500.0  
500.2  
10111111111  
010  
500.2  
00000000001  
999.3  
00000000000  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
1000.0  
1000.3  
1000.3  
1998.7  
2000.0  
10111111111  
011  
00000000001  
00000000000  
______________________________________________________________________________________ 23  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Table 9. Examples of Output Data Rate as a Function of FSAMPC[2:0] and  
FSAMPF[10:0] (continued)  
FSAMPF OUTPUT DATA PERꢂOD  
RESOLUTꢂON  
(24.576MHz CLOCK CYCLES)  
OUTPUT DATA  
RATE (sps)  
OUTPUT DATA PERꢂOD  
(24.576MHz CLOCK CYCLES)  
FSAMPC[2:0] FSAMPF[10:0]  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
2000.7  
2000.7  
3997.4  
4000.0  
4001.3  
4001.3  
7994.8  
8000.0  
8002.6  
8002.6  
15990  
16000  
16010  
16010  
31958  
32000  
32042  
32042  
63834  
64000  
12284  
12284  
6148  
6144  
6142  
6142  
3074  
3072  
3071  
3071  
1537  
1536  
1535  
1535  
769  
10111111111  
100  
4
2
1
1
1
00000000001  
00000000000  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
10111111111  
101  
00000000001  
00000000000  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
10111111111  
000  
00000000001  
00000000000  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
4K/MAX160  
1011111111ꢁ  
110  
0000000001ꢁ  
0000000000ꢁ  
11ꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
768  
767  
101111111ꢁꢁ  
111  
767  
000000001ꢁꢁ  
385  
000000000ꢁꢁ  
384  
Table 10. Typical Performance vs. Output Data Rate  
RELATꢂꢀE  
SNR OF 24ꢁBꢂT ACCURACY OF  
RELATꢂꢀE  
ACCURACY OF  
SꢂNGLE CYCLE  
AT 60Hz (%)  
OUTPUT  
ꢁ3dB  
ꢁ0.1dB  
FAULT  
RECOꢀERY  
TꢂME (µs)  
LATENCY  
(µs)  
DATA RATE BANDWꢂDTH BANDWꢂDTH  
DATA (dB)  
256 DATA  
POꢂNTS (%)  
(ksps)  
(kHz)  
(kHz)  
0.5  
1
0.11  
0.21  
0.42  
0.85  
1.69  
2.11  
2.54  
3.38  
6.78  
13.5  
0.05  
0.11  
0.22  
0.43  
0.87  
1.09  
1.31  
1.74  
3.48  
6.96  
12030  
6030  
3030  
1530  
780  
16375  
8375  
4375  
2375  
1375  
1175  
1042  
875  
117  
115  
113  
111  
108  
107  
106  
105  
97  
0.04  
0.05  
0.06  
0.08  
0.11  
0.13  
0.14  
0.16  
0.40  
2.51  
0.23  
0.20  
0.17  
0.16  
0.16  
0.16  
0.16  
0.16  
0.28  
1.26  
2
4
8
10  
12  
16  
32  
64  
630  
530  
405  
218  
625  
124  
500  
81  
24 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
n, which is driven by the CASCOUT of device n-1,  
allows device n to take over the SPI bus until all eꢁpect-  
ed data is written or readꢀ at this point, device n pulls its  
CASCOUT output low. Similarly, CASCOUT of device n  
drives CASCIN of device n+1. Figures 12 and 14 show  
read operations, including CASCIN and CASCOUT tim-  
ings, for two cascaded devices and eight cascaded  
devices, respectively. The operation described above  
applies to all register operations eꢁcept for writes to the  
Data-Rate Control register. A fiꢁed 16-bit word is written  
to the Data-Rate Control registers of all devices in the  
chain, independent of the number of cascaded devices  
(see Figure 15). Reading from the Data-Rate Control  
register returns 16 bits per cascaded device.  
Multiple Device Connection  
Daisy chain up to eight devices for applications that  
require up to 32 simultaneously sampled inputs over a  
single SPI-/DSP-compatible serial interface with a single  
chip-select signal, and single interface commands that  
apply to all devices in the chain. The eight devices effec-  
tively operate as one device.  
There are two aspects to cascading multiple devices:  
the digital interface and the mechanism for keeping  
multiple devices sampling simultaneously.  
There are many configurations for connecting multiple  
devicesꢀ one is described in the neꢁt section, others  
are described in the Synchronizing Multiple Devices  
section within the Applications Information section.  
Connecting the open-drain OVRFLW output of all  
devices together creates one signal that summarizes  
the overflow information of all devices. This is also true  
of the FAULT output. Connecting together these out-  
puts from multiple devices has the effect of a “wire  
NOR.” Any device that has an active condition on these  
outputs is allowed to pull the line low.  
Multiple Device Digital ꢂnterface  
Figure 13 shows the most common way to daisy chain  
the digital interface of multiple devices.  
SPI bus arbitration is performed using CASCIN and  
CASCOUT. A falling edge at the CASCIN input of device  
SYNC  
CS  
SYNC  
CS  
SYNC  
CS  
SCLK  
DIN  
SCLK  
DIN  
SCLK  
DIN  
MAX11040K  
MAX11060  
MAX11040K  
MAX11060  
MAX11040K  
MAX11060  
CASCIN  
DRDYIN  
CASCOUT  
CASCIN  
DRDYIN  
CASCOUT  
CASCIN  
DRDYIN  
DRDYOUT  
DSP OR  
MICROCONTROLLER  
DEVICE 0  
DEVICE n  
DEVICE n+1  
FAULT  
OVRFLW  
FAULT  
OVRFLW  
DOUT  
FAULT  
OVRFLW  
DOUT  
DOUT  
XIN  
XOUT CLKOUT  
XIN  
XIN  
CASCADE UP TO 8 DEVICES  
Figure 13. Daisy Chaining Multiple Devices  
______________________________________________________________________________________ 25  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
There are two ways to use a single line to indicate that  
all devices have their data ready, depending on  
whether they are clocked synchronously. If all devices  
have the same XIN clock and have been synchronized  
using SYNC or reset commands, the DRDYOUT of any  
device in the chain is used to represent all of them.  
Alternatively, if the devices use a different XIN clock,  
connect DRDYIN of device 0 to ground, and connect  
DRDYIN of device n to the DRDYOUT of device n-1 for  
all devices. DRDYOUT does not go low until DRDIN is  
low and the conversion of the device is complete. In this  
configuration, DRDYOUT of the last device goes low only  
when all devices in the chain have their data ready.  
t
CSW  
CS  
DIN  
SCLK  
DOUT  
4K/MAX160  
DEVICE 0  
DEVICE 1  
DEVICE 2  
DEVICE 3  
DEVICE 4  
DEVICE 5  
DEVICE 6  
DEVICE 7  
CASCOUT0  
(CASCIN0 = 0)  
CASCOUT1  
CASCOUT2  
CASCOUT3  
CASCOUT4  
CASCOUT5  
CASCOUT6  
CASCOUT7  
Figure 14. Configuration Register Read Operation Timing Diagram for Eight Cascaded Devices  
26 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
CS  
DIN  
B15 B14 B13  
X
X
B10 B9 B8  
B7 B6 B5 B4 B3 B2 B1 B0  
SCLK  
HIGH-Z  
HIGH-Z  
DOUT  
CASCOUT0  
(CASCIN0 = 0)  
CASCOUT1  
CASCOUT2  
CASCOUT3  
CASCOUT4  
CASCOUT5  
CASCOUT6  
CASCOUT7  
X = RESERVED  
Figure 15. Data Rate Controller Register Write Operation Timing Diagram for Eight Cascaded Devices  
______________________________________________________________________________________ 27  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
SYNC for Simultaneous  
Sampling with Multiple Devices  
OUT with a period t . The effect of a SYNC falling edge  
S
as shown in Figure 16 is described in sequence below:  
The SYNC input permits multiple devices to sample  
simultaneously. The mismatch between the power-up  
reset of multiple devices causes the devices to begin  
conversion at different times. After a falling edge on the  
SYNC input, the device completes the current conver-  
sion and then synchronizes subsequent conversions  
(see Figure 16).  
1) A SYNC falling edge is issued two XIN clock cycles  
after the DRDYOUT event 2.  
2) The converter remembers the two XIN clock cycles,  
and completes the current sample, issuing DRDYOUT  
event 3 a period of t after DRDYOUT event 2.  
S
3) Then, the converter pauses for the remembered time  
period, two XIN clock cycles for this eꢁample.  
Upon a SYNC falling edge, the devices measure the time  
between the SYNC falling edge to the preceding DRDY-  
OUT falling edge, wait until the neꢁt DRDYOUT falling  
edge, then pause the ADC for the measured amount of  
time. Figure 16 shows an eꢁample where the converter  
is regularly sampling the input and producing a DRDY-  
4) Correspondingly, DRDYOUT event 4 is issued two  
XIN cycles later than it would have without the  
SYNC falling edge.  
5) The process continues as normal with DRDYOUT  
event 5 appearing t after DRDYOUT event 4.  
S
NOTE: THE LATENCY IS NOT TO SCALE.  
4K/MAX160  
t
S
1
DELAY 2  
CYCLES  
t
S
t
S
2
t
S
3
AIN_  
4
t
S
5
6
S
t
S
t
t
S
S
t
t
S
XIN  
DRDYOUT  
1
2
3
4
5
SYNC  
MEASURE  
PAUSE  
Figure 16. Effect of a SYNC Falling Edge  
28 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Referring back to the analog input, since the entire sam-  
pling section of the converter also paused for two clock  
cycles, the sampling point for sample 5 is also paused  
by two clock cycles, possibly creating a small distur-  
bance at the SYNC falling edge. This disturbance is fil-  
tered with the digital filter, which makes it less distinct.  
OUTPUT CODE  
FS = +0.88 x V  
ZS = 0  
REFIO  
FULL-SCALE  
TRANSITION  
011...111  
If the SYNC falling edge occurred during the same XIN  
clock period as the DRDYOUT signal, the disturbance  
does not affect the periodic timing since the SYNC  
falling edge would demand a pause of zero XIN clock  
cycles. Hence, connecting the DRDYOUT of one con-  
verter to the SYNC inputs of many converters, as illus-  
trated in Figure 13, aligns the sampling of the  
converters on the first SYNC falling edge, but does not  
disturb a regular sampling process for future samples.  
011..110  
-FS = -0.88 x V  
REFIO  
2(0.88 x V  
)
REFIO  
1 LSB =  
000...011  
000...010  
000...001  
000...000  
111...111  
N*  
2
*N = 19 FOR 19-BIT TRANSFER  
FUNCTION,  
N = 24 FOR 24-BIT TRANSFER  
FUNCTION  
N = 16 FOR MAX11060  
111...110  
See the Multiple Device Synchronization section for dif-  
ferent ways to use the SYNC input.  
100...001  
100...000  
Transfer Function  
Figures 17 shows the bipolar I/O transfer function.  
Code transitions occur halfway between successive-  
integer LSB values. Output coding is binary, with 1 LSB  
-FS  
0
FS  
FS - 3/2 LSB  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
= (0.88 ꢁ V  
) ꢁ 2/524,288 in 19-bit mode, (0.88 ꢁ  
REFIO  
V ) ꢁ 2/16,777,216 in 24-bit mode, and (0.88 ꢁ  
REFIO  
V ) ꢁ 2/65536 for the MAX11060.  
REFIO  
Figure 17. ADC Transfer Function  
Power-On Reset  
The serial interface, logic, digital filter, and modulator  
circuits reset to zero at power-up. The power-on reset  
circuit releases this reset no more than 1ms after  
V
DV  
rises above 2V.  
DD  
______________________________________________________________________________________ 29  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
between the clock sources by resynchronizing after  
Applications Information  
Multiple Device Synchronization  
each conversion when DRDYOUT transitions low. In  
this configuration, the maꢁimum correction caused by a  
SYNC edge is one XIN clock cycle.  
Synchronizing Multiple Devices  
Using a Shared XꢂN Clock Source  
The resulting sampling rate is determined by the sampling  
frequency of the device with the slowest clock source,  
plus the delay through the DRDYIN to DRDYOUT chain  
between this slowest device and the end of the chain.  
To synchronize multiple devices sharing a single XIN  
clock source, transition the SYNC input that is shared  
by all devices high to low. When an eꢁternal sync  
source is not available, connect DRDYOUT of one  
device to the SYNC input of all devices in the chain.  
The devices ignore any SYNC transitions applied dur-  
ing the power-on reset.  
Synchronizing Multiple Devices  
to an ꢂndependent Clock Source  
To periodically synchronize multiple devices to an inde-  
pendent timing source, connect the timing source to  
the SYNC inputs of the devices. If minimal jitter is  
important in the application, program the devices to a  
frequency slightly slower than the eꢁternal frequency,  
such that SYNC falling edges only occur a short time  
after the DRDYOUT signals.  
Synchronizing Multiple Devices  
Using ꢂndependent XꢂN Clock Sources  
If it is undesirable to connect the XIN clock sources  
together, due to EMI or other reasonsꢀ use DRDYIN,  
DRDYOUT, and SYNC to align the conversion timing as  
shown in Figure 18. This minimizes the effects of drift  
4K/MAX160  
SYNC  
CS  
SYNC  
CS  
SYNC  
CS  
SCLK  
DIN  
SCLK  
DIN  
SCLK  
DIN  
MAX11040K  
MAX11060  
MAX11040K  
MAX11060  
MAX11040K  
MAX11060  
CASCIN  
DRDYIN  
CASCOUT  
DRDYOUT  
CASCIN  
DRDYIN  
CASCOUT  
DRDYOUT  
CASCIN  
DRDYIN  
DRDYOUT  
DSP OR  
MICROCONTROLLER  
DEVICE 0  
DEVICE n  
DEVICE n+1  
FAULT  
OVRFLW  
FAULT  
OVRFLW  
DOUT  
FAULT  
OVRFLW  
DOUT  
DOUT  
XIN  
XOUT CLKOUT  
XIN  
XOUT  
XIN  
XOUT  
CASCADE UP TO 8 DEVICES  
Figure 18. One Crystal per Device and All SYNC Inputs Driven by DRDYOUT of the Last Device in the Chain  
30 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Eꢁample:  
Assume f  
Signal Distortion at SYNC Falling Edges  
Each SYNC falling edge causes a disruption in the digi-  
tal filter timing proportional to the delay from the previ-  
ous falling edge of DRDYOUT to the falling edge of  
SYNC. Any analysis of the output data that assumes a  
uniform sampling period sees an error proportional to  
that delay, with a maꢁimum value determined by the  
maꢁimum derivative of the analog input. Figure 19  
shows the effect of this discontinuity at output sample 5.  
= 60Hz, f = 16ksps, and eight total  
AIN_  
S
devices in the chain.  
Device 1 has the longest t  
therefore the worst-case SYNC error.  
delay,  
DRDYOUT_TO_SYNC  
If device 1 has the fastest XIN clock in the chain, and  
device 2 has the slowest XIN clock in the chain, and  
they differ by 0.1%, device 1 completes its conversion  
as much as 0.1% earlier than device 2. Hence, the  
delay of device 2 is:  
Assuming a 60Hz 2.2V sine wave, the maꢁimum pos-  
sible error on any given sample caused by a SYNC  
falling edge is:  
0.1% ꢁ (1/16kHz ) = 62.5ns  
The signal then propagates down the chain at a time  
delay of nominally 20ns for each device.  
V
= 2.2V ꢁ 2π ꢁ 60Hz ꢁ t  
ERROR_MAX  
DRDYOUT_TO_SYNC  
DRDYOUT_TO_SYNC  
= 0.83μV/ns ꢁ t  
The total delay back to the SYNC falling edge after  
The delay from DRDYOUT to SYNC is quantized to  
within one cycle of the 24.576MHz clock. SYNC pulses  
that are asynchronous to DRDYOUT may cause large  
errors. To eliminate this error, use a single clock source  
for all devices and avoid disrupting the output data tim-  
ing with SYNC pulses while making high-precision  
measurements. Alternately, minimize the delay from  
DRDYOUT to SYNC to minimize the error.  
going through siꢁ additional delays is:  
t
= 62.5ns + 6 ꢁ 20ns = 182.5ns  
DELAY  
Maꢁimum % Error = 2π ꢁ f ꢁ t  
IN  
DRDYOUT_TO_SYNC ꢁ  
= 2 ꢁ π ꢁ 60Hz ꢁ 182.5ns ꢁ 100% = 0.007%  
100%  
The above error is relative to the signal level, not to the  
full scale of the data converter.  
NOTE: THE LATENCY IS NOT TO SCALE.  
t
S
t
S
1
t
S
2
t
S
3
t
DRYOUT_TO_SYNC  
5
AIN_  
4
t
S
6
t
t
t
S
S
S
t
S
DRDYOUT  
SYNC  
1
2
3
4
PAUSE FOR  
DRYOUT_TO_SYNC  
MEASURE  
t
t
DRYOUT_TO_SYNC  
1
2
RECONSTRUCTED  
DIGITAL OUTPUT  
3
4
DISCONTINUITY DUE TO SYNC EVENT  
5
6
Figure 19. Eꢁample of Discontinuity in Reconstructed Digital Output Due to SYNC Falling Edge with a Large DRDYOUT-to-SYNC Delay  
______________________________________________________________________________________ 31  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Source Impedance and  
Input Sampling Network  
Analog Filtering  
The analog filtering requirements in front of the devices  
are considerably reduced compared to a conventional  
converter with no on-chip filtering. The internal digital  
filter has significant rejection of signals higher than the  
Nyquist frequency of the output data rate that would  
alias back into the sampled signal.  
The source impedance that drives the analog inputs  
affects the sampling period.  
Lowꢁꢂmpedance Sources  
Minimize the source impedance to ensure the input  
capacitor fully charges during the sampling phase.  
The required source resistance is defined by the  
equation below:  
The internal digital filter does not provide rejection  
close to the harmonics of the 3.072MHz modulator fre-  
quency. For eꢁample, assuming an output data rate of  
16ksps if the XIN clock is set to 24.576MHz, then the  
band between 3.0686MHz and 3.0750MHz is not  
eꢁplicitly filtered. Since this unfiltered band is very  
small compared to its actual frequency, very little  
broadband noise enters through this mechanism. If  
focused narrowband noise in this band is present, a  
simple analog filter can create significant attenuation at  
this frequency because the ratio of passband-to-stop-  
band frequency is large.  
t
SAMP  
R
<
R  
INT  
SOURCE_MAX  
1
Error  
K ꢁ C  
ꢁ In  
SAMP  
120ns  
=
2600Ω  
1
Error  
1.5 ꢁ 4pF ꢁ In  
where K = 1.5 and R  
= 2600Ω.  
INT  
In addition, because the device’s common-mode rejec-  
tion eꢁtends out to several 100kHz, the common-mode  
noise susceptibility in this frequency range is substan-  
tially reduced.  
For eꢁample, the required source resistance to achieve  
0.1% accuracy is:  
120ns  
4K/MAX160  
R
<
2600Ω  
SOURCE_MAX  
1
1.5 ꢁ 4pF ꢁ ln  
Providing additional filtering in some applications  
ensures that differential noise signals outside the fre-  
quency band of interest do not saturate the analog  
modulator.  
0.1%  
120ns  
1.5 ꢁ 4pF ꢁ ln 1000  
=
=
2600Ω  
(
)
The modulator saturates if the input voltage eꢁceeds its  
full scale ( 2.2V). The digital filter does not prevent a  
large signal in the filter stopband from saturating the  
modulator. If signals outside the band of interest cause  
violation of this full scale while accurate conversion of  
passband signals is desired, then additional analog fil-  
tering is required to prevent saturation.  
120ns  
1.5 ꢁ 4pF ꢁ 6.912600Ω = 294Ω  
Highꢁꢂmpedance Sources  
If the source impedance is greater than  
R
, as defined in the Low-Impedance  
SOURCE_MAX  
Sources section, place a 0.1μF bypass capacitor  
between AIN_+ and AIN_- to provide transient charge.  
The average switched-capacitor load with a proper  
bypass capacitor and XIN clock frequency =  
24.576MHz is equivalent to a 130kΩ resistor connect-  
ed between AIN_+ and AIN_-. This resistance is inde-  
pendent of the value of the 0.1μF bypass capacitor. If  
another XIN clock frequency is chosen, this resistance  
is directly proportional to the XIN clock period.  
Compensating for the Rolloff of  
the Digital Filter in Typical FFT Analysis  
To calculate FIR_GAIN(f  
):  
AIN_  
1) Decide the number of evenly spaced frequencies  
between DC and the Nyquist frequency of the output  
data rate at which correction factors are desired,  
which is usually the same as the FFT result.  
2) Create an array with a length that is 2ꢁ the number of  
the desired frequencies. (Again, the result is likely to  
correlate with the time domain array that is loaded  
into an FFT algorithm.)  
Although the addition of a bypass capacitor helps charge  
the devices’ 0 input capacitor, some gain error due to  
resistive drop across the source resistance still remains.  
Calculate this gain error using the following equation:  
3) Fill this array with the filter coefficients provided in  
the Digital Filter section. Fill the rest of the array with  
zeros.  
R
R
SOURCE  
+ 130kΩ  
SOURCE  
SOURCE  
ΔGain =  
=
R
+ R  
R
SOURCE  
LOAD  
4) Take an FFT of this array. The result represents the  
response of the devices’ built-in FIR filter.  
32 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
To compensate the result of an FFT for the devices’ out-  
put data:  
Lay out the traces in perpendicular directions when a  
digital line and an analog line cross each other.  
1) Calculate the inverse (1/ꢁ) of the equation provided  
in the Digital Filter section for each frequency in the  
FFT.  
Bypass AVDD to the analog ground plane with a 0.1μF  
capacitor in parallel with a 1μF to 10μF low-ESR capac-  
itor. Keep capacitor leads short for best supply-noise  
rejection. Bypass REF+ and REF- with a 0.1μF capaci-  
tor to GND. Place all bypass capacitors as close as  
possible to the device for optimum decoupling.  
2) Multiply the FFT of the devices’ output data by the  
result of the above step.  
Power Supplies  
AVDD and DVDD provide power to the devices. The  
AVDD powers up the analog section, while the DVDD  
powers up the digital section. The power supply for  
AVDD and DVDD ranges from +3.0V to +3.6V and 2.7V  
Crystal Layout  
Follow these basic layout guidelines when placing a  
crystal on a PCB with the devices to avoid coupled  
noise:  
to V  
, respectively. Bypass AVDD to AGND with a  
1) Place the crystal as close as possible to XIN and  
XOUT. Keeping the trace lengths between the crys-  
tal and inputs as short as possible reduces the  
probability of noise coupling by reducing the length  
of the “antennae.” Keep the XIN and XOUT lines  
close to each other to minimize the loop area of the  
clock lines. Keeping the trace lengths short also  
decreases the amount of stray capacitance.  
AVDD  
1μF electrolytic capacitor in parallel with a 0.1μF ceramic  
capacitor and bypass DVDD to DGND with a 1μF elec-  
trolytic capacitor in parallel with a 0.1μF ceramic capaci-  
tor. For improved performance, place the bypass  
capacitors as close as possible to the device.  
Layout, Grounding, and Bypassing  
The best layout and grounding design always comes  
from a thorough analysis of the complete system. This  
includes the signal source’s dependence and sensitivi-  
ty on ground currents, and knowledge of the various  
currents that could travel through the various potential  
grounding paths.  
2) Keep the crystal solder pads and trace width to XIN  
and XOUT as small as possible. The larger these  
bond pads and traces are, the more likely it is that  
noise will couple from adjacent signals.  
3) Place a guard ring (connect to ground) around the  
crystal to isolate the crystal from noise coupled from  
adjacent signals.  
Use PCBs with separate analog and digital ground  
planes. Connect the two ground planes together only at  
the devices’ GND input. Isolate the digital supply from  
the analog with a low-value resistor (10Ω) or ferrite  
bead when the analog and digital supplies come from  
the same source.  
4) Ensure that no signals on other PCB layers run  
directly below the crystal or below the traces to XIN  
and XOUT. The more the crystal is isolated from  
other signals on the board, the less likely for noise to  
couple into the crystal.  
Ensure that digital return currents do not pass through  
the analog ground and that return-current paths are low  
impedance. A 5mA current flowing through a PCB  
ground trace impedance of only 0.05Ω creates an error  
voltage of approꢁimately 250μV.  
5) Place a local ground plane on the PCB layer imme-  
diately below the crystal guard ring. This helps to  
isolate the crystal from noise coupling from signals  
on other PCB layers.  
Note: Keep the ground plane in the vicinity of the  
crystal only and not on the entire board.  
Ensure that digital and analog signal lines are kept sepa-  
rate. Do not run digital (especially the SCLK and DOUT)  
lines parallel to any analog lines or under the devices.  
______________________________________________________________________________________ 33  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
to www.maximꢁic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffiꢁ character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
LAND  
PATTERN NO.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLꢂNE  
NO.  
90ꢁ0140  
38 TSSOP  
U38+3  
21ꢁ0081  
4K/MAX160  
34 ______________________________________________________________________________________  
24-/16-Bit, 4-Channel, Simultaneous-Sampling,  
Cascadable, Sigma-Delta ADCs  
4K/MAX160  
Revision History  
REꢀꢂSꢂON REꢀꢂSꢂON  
PAGES  
CHANGED  
DESCRꢂPTꢂON  
NUMBER  
DATE  
0
1
2/11  
4/11  
Initial release of the MAX11040K  
Initial release of the MAX11060  
1
Maꢁim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maꢁim product. No circuit patent licenses are  
implied. Maꢁim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35  
© 2011 Maꢁim Integrated Products  
Maꢁim is a registered trademark of Maꢁim Integrated Products, Inc.  

相关型号:

MAX11068

12-Channel, High-Voltage Sensor, Smart Data-Acquisition Interface
MAXIM

MAX11068GUU+

12-Channel, High-Voltage Sensor, Smart Data-Acquisition Interface
MAXIM

MAX11068GUU/V+

12-Channel, High-Voltage Sensor, Smart Data-Acquisition Interface
MAXIM

MAX1106CUB

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1106CUB+

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO10, UMAX-10
MAXIM

MAX1106CUB-T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO10, UMAX-10
MAXIM

MAX1106EUB

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1106EUB+

暂无描述
MAXIM

MAX1106EUB-T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO10, UMAX-10
MAXIM

MAX1107

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1107CUB

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1107CUB+

暂无描述
MAXIM