MAX1107 [MAXIM]

Single-Supply, Low-Power, Serial 8-Bit ADCs; 单电源,低功耗,串行8位ADC
MAX1107
型号: MAX1107
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single-Supply, Low-Power, Serial 8-Bit ADCs
单电源,低功耗,串行8位ADC

文件: 总16页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1432; Rev 0; 3/99  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX1106/MAX1107 low-power, 8-bit, single-channel,  
analog-to-digital converters (ADCs) feature an internal  
track/hold (T/H), voltage reference, clock, and serial inter-  
face. The MAX1106 is specified from +2.7V to +3.6V and  
consumes only 96µA. The MAX1107 is specified from  
+4.5V to +5.5V and consumes only 107µA. The analog  
inputs are pin-configurable, allowing unipolar and single-  
ended or differential operation.  
Single Supply: +2.7V to +3.6V (MAX1106)  
+4.5V to +5.5V (MAX1107)  
Low Power: 96µA at +3V and 25ksps  
0.5µA in Power-Down Mode  
Pin-Programmable Configuration  
0 to V  
Input Voltage Range  
DD  
The full-scale analog input range is determined by the  
internal reference of +2.048V (MAX1106) or +4.096V  
(MAX1107), or by an externally applied reference rang-  
Internal Track/Hold  
Internal Reference: +2.048V (MAX1106)  
+4.096V (MAX1107)  
ing from 1V to V . The MAX1106/MAX1107 also feature  
DD  
a pin-selectable power-down mode that reduces power  
consumption to 0.5µA when the device is not in use. The  
3-wire serial interface directly connects to SPI™, QSPI™,  
a nd MICROWIRE™ d e vic e s without e xte rna l log ic .  
Conversions up to 25ksps are performed using the inter-  
nal clock.  
1V to V  
Reference Input Range  
DD  
SPI/QSPI/MICROWIRE-Compatible Serial Interface  
Small 10-Pin µMAX Package  
Ord e rin g In fo rm a t io n  
The MAX1106/MAX1107 are available in a 10-pin µMAX  
p a c ka g e with a footp rint tha t is jus t 20% of a n  
8-pin plastic DIP.  
PART  
TEMP. RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
10 µMAX  
MAX1106CUB  
MAX1106EUB  
MAX1107CUB  
MAX1107EUB  
10 µMAX  
Ap p lic a t io n s  
Portable Data Logging  
10 µMAX  
10 µMAX  
Hand-Held Measurement Devices  
Medical Instruments  
System Diagnostics  
Fu n c t io n a l Dia g ra m  
Solar-Powered Remote Systems  
4–20mA-Powered Remote Systems  
Receive-Signal-Strength Indicators  
V
DD  
CONVST  
SCLK  
OUTPUT  
SHIFT  
REGISTER  
P in Co n fig u ra t io n  
DOUT  
SHDN  
MAX1106  
MAX1107  
TOP VIEW  
INTERNAL  
OSCILLATOR  
V
1
2
3
4
5
10 SCLK  
DD  
CONTROL  
LOGIC  
IN+  
IN-  
9
8
7
6
DOUT  
MAX1106  
MAX1107  
SAR  
IN+  
T/H  
ANALOG  
SHDN  
CONVST  
REFIN  
INPUT  
MUX  
GND  
IN-  
CHARGE  
REDISTRIBUTION  
DAC  
REFOUT  
REFOUT  
INTERNAL  
REFERENCE  
µMAX  
REFIN  
GND  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
IN+, IN-, REFIN, REFOUT,  
DOUT to GND..........................................-0.3V to (V + 0.3V)  
SHDN, SCLK, CONVST to GND...............................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
MAX110_CUB ......................................................0°C to +70°C  
MAX110_EUB ...................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
A
10-pin µMAX (derate 5.6mW/°C above +70°C) ............444mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX1106  
(V = +2.7V to +3.6V; IN- to GND; f  
= 2MHz; 25ksps conversion rate; 1µF capacitor at REFOUT; external +2.048V reference at  
DD  
SCLK  
REFIN; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
6/MAX107  
Resolution  
8
Bits  
LSB  
LSB  
LSB  
V
= 2.7V to 3.6V  
±0.15  
±0.2  
±0.5  
DD  
Relative Accuracy (Note 1)  
Differential Nonlinearity  
Offset Error  
INL  
V
DD  
= 5.5V (Note 2)  
DNL  
No missing codes over temperature  
±1  
±1  
V
DD  
= 2.7V to 3.6V  
= 5.5V (Note 2)  
±0.2  
±0.5  
V
DD  
Gain Error (Note 3)  
±1  
±1  
LSB  
Gain Temperature Coefficient  
±0.8  
±0.5  
ppm/°C  
T
= +25°C  
A
Total Unadjusted Error  
TUE  
LSB  
T
A
= T to T  
MIN MAX  
DYNAMIC PERFORMANCE (10kHz sine-wave input, 2.048Vp-p, 25ksps conversion rate)  
Signal-to-Noise Plus Distortion  
SINAD  
49  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-70  
Spurious-Free Dynamic Range  
Small-Signal Bandwidth  
Full-Power Bandwidth  
SFDR  
68  
1.5  
0.8  
dB  
BW  
-3dB rolloff  
MHz  
MHz  
-3dB  
ANALOG INPUTS  
Input Voltage Range (Note 4)  
V
IN_  
V
IN+  
to V  
0
V
REFIN  
V
IN-  
On/off-leakage current,  
or V = 0 or V  
Input Leakage Current  
Input Capacitance  
±0.01  
18  
±1  
µA  
pF  
V
IN+  
IN-  
DD  
C
IN  
2
_______________________________________________________________________________________  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
ELECTRICAL CHARACTERISTICS—MAX1106 (continued)  
(V = +2.7V to +3.6V; IN- to GND; f  
= 2MHz; 25ksps conversion rate; 1µF capacitor at REFOUT; external +2.048V reference at  
DD  
SCLK  
REFIN; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
TRACK/HOLD  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Time  
t
Figure 7  
35  
µs  
µs  
CONV  
Track/Hold Acquisition Time  
Aperture Delay  
t
1
ACQ  
10  
ns  
Aperture Jitter  
<50  
400  
ps  
Internal Clock Frequency  
External Clock Frequency Range  
INTERNAL REFERENCE  
Output Voltage  
kHz  
MHz  
For data transfer only  
2
V
1.968  
2.048  
150  
±50  
4
2.128  
V
µA  
REFOUT  
REF Short-Circuit Current  
REF Tempco  
I
(Note 5)  
REFSC  
ppm/°C  
mV  
Load Regulation  
0 to 0.5mA (Note 6)  
Capacitive Bypass at REFOUT  
EXTERNAL REFERENCE  
Input Voltage Range  
Input Current  
1
µF  
V
REFIN  
1.0  
V
DD  
+ 0.05  
20  
V
+2.048V at REFIN, full scale  
1
µA  
POWER REQUIREMENTS  
Supply Voltage  
V
DD  
2.7  
3
5.5  
V
V
DD  
= 3.6V, C = 10pF  
96  
250  
L
Supply Current (Notes 2, 7)  
I
µA  
mV  
DD  
V
= 5.5V, C = 10pF  
115  
DD  
L
Power down, V = 3.6V  
0.5  
2.5  
±4  
DD  
Power-Supply Rejection (Note 8)  
PSR  
Full-scale input, V = 2.7V to 3.6V  
±0.4  
DD  
DIGITAL INPUTS (SHDN, SCLK, and CONVST)  
V
3.6V  
2
3
V
DD  
Threshold Voltage High  
V
IH  
V
DD  
> 3.6V  
Threshold Voltage Low  
Input Hysteresis  
V
0.8  
V
V
IL  
V
HYST  
0.2  
15  
Input Current High  
Input Current Low  
Input Capacitance  
I
IH  
±1  
±1  
µA  
µA  
pF  
I
IL  
C
IN  
_______________________________________________________________________________________  
3
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX1106 (continued)  
(V = +2.7V to +3.6V; IN- to GND; f  
= 2MHz; 25ksps conversion rate; 1µF capacitor at REFOUT; external +2.048V reference at  
DD  
SCLK  
REFIN; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
DIGITAL OUTPUT (DOUT)  
Output High Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OH  
I
= 0.5mA  
V - 0.5  
DD  
V
SOURCE  
I
= 5mA  
0.4  
V
SINK  
Output Low Voltage  
V
OL  
I
= 16mA  
0.8  
±0.01  
15  
SINK  
Three-State Leakage Current  
I
L
Figure 6, DOUT High-Z  
Figure 6, DOUT High-Z  
±10  
µA  
pF  
Three-State Output Capacitance  
C
OUT  
TIMING CHARACTERISTICS (Figures 6 and 7)  
Acquisition Time  
t
1
µs  
µs  
ACQ  
CONVST Pulse Width High  
t
t
1
CSPW  
CONVST Fall to Output Data  
Valid  
35  
µs  
CONV  
6/MAX107  
CONVST Rise to Output Enable  
SCLK Fall to Output Data Valid  
SCLK Pulse Width High  
t
Figure 1, C  
Figure 1, C  
= 100pF  
= 100pF  
240  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
DV  
LOAD  
LOAD  
t
20  
DO  
t
200  
200  
CH  
SCLK Pulse Width Low  
t
CL  
SCLK Low to Output Disable  
SCLK Low to CONVST Rise  
SHDN Fall to Output Disable  
t
Figure 2, C  
Figure 2, C  
= 100pF  
= 100pF  
240  
240  
TR  
LOAD  
LOAD  
t
100  
SCC  
t
SHDN  
External reference  
20  
12  
Wake-Up Time  
t
WAKE  
Internal reference (Note 9)  
4
_______________________________________________________________________________________  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
ELECTRICAL CHARACTERISTICS—MAX1107  
(V = +4.5V to +5.5V; IN- = GND; f  
= 2MHz; 25ksps conversion rate; 1µF capacitor at REFOUT; external +4.096V reference at  
DD  
SCLK  
REFIN; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
8
Bits  
LSB  
Relative Accuracy (Note 1)  
Differential Nonlinearity  
Offset Error  
INL  
±0.15  
±0.2  
±0.8  
±0.5  
±0.5  
±1  
DNL  
No missing codes over temperature  
LSB  
±1  
LSB  
Gain Error (Note 3)  
Gain Temperature Coefficient  
±1  
LSB  
ppm/°C  
T
A
= +25°C  
±1  
Total Unadjusted Error  
TUE  
LSB  
T
A
= T to T  
MIN MAX  
DYNAMIC PERFORMANCE (10kHz sine-wave input, 4.096Vp-p, 25ksps conversion rate)  
Signal-to-Noise Plus Distortion  
SINAD  
49  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-70  
Spurious-Free Dynamic Range  
Small-Signal Bandwidth  
Full-Power Bandwidth  
SFDR  
68  
1.5  
0.8  
dB  
BW  
-3dB rolloff  
MHz  
MHz  
-3dB  
ANALOG INPUTS  
Input Voltage Range (Note 4)  
V
V
to V  
0
1
V
V
IN_  
IN+  
IN-  
REFIN  
On/off-leakage current,  
or V = 0 or V  
Input Leakage Current  
±0.01  
18  
±1  
µA  
pF  
V
IN+  
IN-  
DD  
Input Capacitance  
C
IN  
TRACK/HOLD  
Conversion Time  
t
Figure 7  
35  
µs  
µs  
CONV  
Track/Hold Acquisition Time  
Aperture Delay  
t
ACQ  
10  
ns  
Aperture Jitter  
<50  
400  
ps  
Internal Clock Frequency  
External Clock Frequency Range  
INTERNAL REFERENCE  
Output Voltage  
kHz  
MHz  
For data transfer only  
2
V
3.936  
4.096  
5
4.256  
V
mA  
REFOUT  
REF Short-Circuit Current  
REF Tempco  
I
REFSC  
±50  
4
ppm/°C  
mV  
Load Regulation  
0 to 0.5mA (Note 6)  
Capacitive Bypass at REFOUT  
1
µF  
_______________________________________________________________________________________  
5
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX1107 (continued)  
(V = +4.5V to +5.5V; IN- = GND; f  
= 2MHz; 25ksps conversion rate; 1µF capacitor at REFOUT; external +4.096V reference at  
DD  
SCLK  
REFIN; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
EXTERNAL REFERENCE  
Input Voltage Range  
Input Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
REFIN  
1.0  
V
+ 0.05  
20  
V
DD  
4.096V at REFIN, full scale  
1
µA  
POWER REQUIREMENTS  
Supply Voltage  
V
4.5  
5
5.5  
250  
2.5  
±4  
V
DD  
V
= 5.5V, C = 10pF,  
L
DD  
115  
0.5  
full-scale input  
Supply Current (Notes 2, 7)  
I
DD  
µA  
Power down, V = 4.5V to 5.5V  
DD  
External reference = 4.096V,  
full-scale input, V = 4.5V to 5.5V  
Power-Supply Rejection (Note 8)  
PSR  
±0.4  
mV  
DD  
DIGITAL INPUTS (SHDN, SCLK, and CONVST)  
6/MAX107  
Threshold Voltage High  
Threshold Voltage Low  
Input Hysteresis  
V
3
V
V
IH  
V
IL  
0.8  
V
HYST  
0.2  
15  
V
Input Current High  
I
IH  
±1  
±1  
µA  
µA  
pF  
Input Current Low  
I
IL  
Input Capacitance  
C
IN  
DIGITAL OUTPUT (DOUT)  
Output High Voltage  
V
I
= 0.5mA  
V - 0.5  
DD  
V
V
OH  
SOURCE  
I
= 5mA  
0.4  
SINK  
Output Low Voltage  
V
OL  
I
= 16mA  
0.8  
±0.01  
15  
SINK  
Three-State Leakage Current  
I
Figure 6, DOUT High-Z  
Figure 6, DOUT High-Z  
±10  
µA  
pF  
L
Three-State Output Capacitance  
C
OUT  
TIMING CHARACTERISTICS (Figures 6 and 7)  
Acquisition Time  
t
1
µs  
µs  
ACQ  
CONVST Pulse Width High  
t
t
1
CSPW  
CONVST Fall to Output Data  
Valid  
35  
µs  
CONV  
CONVST Rise to Output Enable  
SCLK Fall to Output Data Valid  
SCLK Pulse Width High  
t
Figure 1, C  
Figure 1, C  
= 100pF  
= 100pF  
240  
200  
ns  
ns  
ns  
DV  
LOAD  
LOAD  
t
20  
DO  
t
200  
CH  
6
_______________________________________________________________________________________  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
ELECTRICAL CHARACTERISTICS—MAX1107 (continued)  
(V = +4.5V to +5.5V; IN- = GND; f  
= 2MHz; 25ksps conversion rate; 1µF capacitor at REFOUT; external +4.096V reference at  
DD  
SCLK  
REFIN; T = T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
240  
UNITS  
ns  
SCLK Pulse Width Low  
t
200  
CL  
SCLK Low to Output Disable  
SCLK Low to CONVST Rise  
SHDN Fall to Output Disable  
t
TR  
Figure 2, C  
Figure 2, C  
= 100pF  
= 100pF  
ns  
LOAD  
LOAD  
t
100  
ns  
SCC  
t
240  
ns  
µs  
SHDN  
External reference  
20  
12  
Wake-Up Time  
t
WAKE  
Internal reference (Note 9)  
ms  
Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 2: See Typical Operating Characteristics.  
Note 3:  
V
= +2.048V (MAX1106), V  
= +4.096V (MAX1107), offset nulled.  
REFOUT  
REFOUT  
Note 4: Common-mode range (IN+, IN-) GND to V  
.
DD  
Note 5: REFOUT supplies typically 2.5mA under normal operating conditions.  
Note 6: External load should not change during the conversion for specified accuracy.  
Note 7: Power consumption with CMOS levels.  
Note 8: Measured as  
V
FS  
(2.7V) - V (3.6V) for MAX1106, and measured as  
V (4.5V) - V (5.5V) for MAX1107.  
FS FS  
FS  
Note 9: 1µF at REFOUT, internal reference settling to 0.5LSB.  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
= +5.0V (MAX1107); f = 2MHz; 25ksps conversion rate; external reference; 1µF at REFOUT;  
SCLK  
(V  
DD  
= +3.0V (MAX1106), V  
DD  
T
A
= +25°C; unless otherwise noted.)  
SHUTDOWN SUPPLY CURRENT  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
vs. SUPPLY VOLTAGE  
0.50  
0.45  
200  
200  
175  
150  
125  
100  
75  
DOUT = 10101010  
= 10pF  
INTERNAL REFERENCE  
MAX1106 (V = 2.7V TO 5.5V)  
DD  
C
LOAD  
MAX1107 (V = 4.5V TO 5.5V)  
DD  
175  
150  
125  
100  
75  
INTERNAL REFERENCE  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
C
LOAD  
= 10pF  
DOUT = 10101010  
MAX1107, V = 5.0V  
DD  
C
= 47pF  
LOAD  
MAX1106, V = 3.0V  
DD  
DOUT = 10101010  
C
LOAD  
= 10pF  
DOUT = 11111111  
50  
50  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +3.0V (MAX1106), V  
= +5.0V (MAX1107); f  
= 2MHz; 25ksps conversion rate; external reference; 1µF at REFOUT;  
DD  
SCLK  
T
A
= +25°C; unless otherwise noted.)  
OFFSET ERROR vs. TEMPERATURE  
OFFSET ERROR vs. REFERENCE VOLTAGE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
0.5  
0.5  
0.4  
0.20  
0.4  
0.3  
0.15  
0.10  
0.05  
0
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.05  
-0.10  
-0.15  
-0.20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE VOLTAGE (V)  
6/MAX107  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
GAIN ERROR vs. REFERENCE VOLTAGE  
0.5  
0.4  
1.0  
0.8  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.3  
0.2  
0.6  
0.4  
0.1  
0.2  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL CODE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
50  
100  
150  
200  
250  
300  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
DIGITAL CODE  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
8
_______________________________________________________________________________________  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= +3.0V (MAX1106), V  
= +5.0V (MAX1107); f  
= 2MHz; 25ksps conversion rate; external reference; 1µF at REFOUT;  
DD  
SCLK  
T
A
= +25°C; unless otherwise noted.)  
INTEGRAL NONLINEARITY  
vs. DIGITAL CODE  
FFT PLOT  
CONVERSION TIME vs. SUPPLY VOLTAGE  
0.5  
20  
0
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
f
= 10.34kHz, 2Vp-p  
IN+  
0.4  
0.3  
0.2  
0.1  
0
f
= 25088Hz  
SAMPLE  
-20  
-40  
-60  
-80  
-100  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
12  
14  
0
1
2
3
4
5
6
DIGITAL CODE  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
NORMALIZED REFERENCE VOLTAGE  
vs. TEMPERATURE  
CONVERSION TIME vs. TEMPERATURE  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1.0010  
1.0005  
1.0000  
0.9995  
0.9990  
V
DD  
= 3V  
V
DD  
= 5V  
0.9985  
0.9980  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
P in De s c rip t io n  
PIN  
1
NAME  
FUNCTION  
V
DD  
Positive Supply Voltage  
Positive Analog Input. Sampled. Input range from GND to V  
2
IN+  
IN-  
.
DD  
3
Negative Analog Input. Input range from GND to V  
.
DD  
4
GND  
Ground.  
5
REFOUT  
Internal Reference Output. Bypass with 1µF to ground. 2.048V for MAX1106, 4.096V for MAX1107.  
Reference Voltage Input. Reference voltage for analog-to-digital conversion. Connect REFOUT to REFIN  
6
REFIN  
for internal reference. Input range from 1V to V  
.
DD  
Conversion Start Input. Toggle CONVST high for 1µs minimum and then low to start internal conversion.  
Data is not clocked out unless CONVST is low.  
7
8
CONVST  
SHDN  
Active-Low Shutdown. Connect to V for normal operation.  
DD  
Serial Data Output. Data is clocked out on the falling edge of SCLK. DOUT is high impedance in shutdown  
or after all data is clocked out.  
9
DOUT  
SCLK  
10  
Serial Clock Input. Clocks data out of serial interface.  
_______________________________________________________________________________________  
9
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
V
DD  
VDD  
3k  
C
3k  
DOUT  
DOUT  
DOUT  
DOUT  
3k  
3k  
C
LOAD  
C
LOAD  
C
LOAD  
LOAD  
GND  
GND  
GND  
GND  
b) High-Z to V and V to V  
OL  
a) V to V  
OL  
OH  
OL  
OH  
a) V to High-Z  
b) V to High-Z  
OL  
OH  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
_______________De t a ile d De s c rip t io n  
V
DD  
The MAX1106/MAX1107 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to an 8-bit digital output. A simple ser-  
ial interface provides easy interface to microprocessors  
(µPs). No external hold capacitors are required. All of  
the MAX1106/MAX1107 operating modes are pin con-  
figurable: internal or external reference, single-ended  
or pseudo-differential unipolar conversion, and power  
down. Figure 3 shows the typical operating circuit.  
V
V
IN+  
DD  
DD  
6/MAX107  
0.1µF  
1µF  
ANALOG  
INPUTS  
MAX1106  
MAX1107  
GND  
IN-  
CPU  
ON  
OFF  
SHDN  
I/O  
CONVST  
SCLK  
REFOUT  
REFIN  
SCK (SK)  
1µF  
An a lo g In p u t s  
DOUT  
MISO (SI)  
Track/Hold  
The inp ut a rc hite c ture of the ADCs is illus tra te d in  
Figure 4s equivalent-input circuit of and is composed  
of the T/H, the input multiplexer, the input comparator,  
the switched capacitor DAC, and the auto-zero rail.  
GND  
Figure 3. Typical Operating Circuit  
The device is in acquisition mode most of the time.  
During the acquisition interval, the positive input (IN+)  
is tracked and is connected to the holding capacitor  
GND  
CAPACITIVE DAC  
REFIN  
(C  
). The acquisition interval ends with the falling  
HOLD  
edge of CONVST. At this point the T/H switch opens  
and C is connected to the negative input (IN-),  
HOLD  
retaining charge on C  
IN+. Onc e c onve rs ion is c omp le te the T/H re turns  
immediately to its tracking mode.  
as a sample of the signal at  
HOLD  
IN+  
IN-  
C
HOLD  
COMPARATOR  
18pF  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
R
6.5k  
IN  
HOLD  
TRACK  
t
, is the minimum time needed for the signal to be  
ACQ  
acquired. It is calculated by:  
AUTOZERO  
RAIL  
t
= 6(R + R )18pF  
ACQ  
S
IN  
Figure 4. Equivalent Input Circuit  
10 ______________________________________________________________________________________  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
where R = 6.5k, R = the source impedance of the  
from (GND - 0.3V) to (V  
+ 0.3V) without damage.  
IN  
S
DD  
input signal, and t  
must never be less than 1µs.  
However, for accurate conversions, the inputs must not  
ACQ  
This is easily achieved by respecting the minimum  
CONVST high interval required and the time required to  
clock the data out.  
exceed (V + 50mV) or be less than (GND - 50mV).  
DD  
The MAX1106/MAX1107 input range is from GND to  
V
DD  
. The output code is invalid (code zero) when a  
negative input voltage (or a negative differential input  
voltage) is applied. The reference input-voltage range  
Pseudo-Differential Input  
The MAX1106/MAX1107 input configuration is pseudo-  
differential to the extent that only the signal at the sam-  
p le d inp ut (IN+) is s tore d in the hold ing c a p a c itor  
at REFIN is from 1V to (V + 50mV).  
DD  
Input Bandwidth  
(C  
). IN- mus t re ma in s ta b le within ± 0.5LSB  
HOLD  
The ADCs input tracking circuitry has a 1.5MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
(±0.1LSB for best results) in relation to GND during a  
conversion.  
If a varying signal is applied at the IN- input, its ampli-  
tude and frequency need to be limited. The following  
equations determine the relationship between the maxi-  
mum signal amplitude and its frequency to maintain  
±0.5LSB accuracy:  
S e ria l In t e rfa c e  
The MAX1106/MAX1107 have a 3-wire serial interface.  
The CONVST and SCLK inputs are used to control the  
d e vic e , while the thre e -s ta te DOUT p in is us e d to  
access the result of conversion.  
Assuming a sinusoidal signal at the IN- input,  
υIN-  
=
V
sin(2πft)  
(
)
IN-  
under the maximum voltage variation is determined by  
The serial interface provides easy connection to micro-  
controllers with SPI, QSPI, and MICROWIRE serial inter-  
faces at clock rates up to 2MHz. For SPI and QSPI, set  
CPOL = CPHA = 0 in the SPI control registers of the  
microcontroller. Figure 5 shows the MAX1106/MAX1107  
common serial-interface connections.  
∆υ  
V
REFIN  
1 LSB  
IN-  
max  
= 2πf V  
=
IN-  
(
)
8
t  
t
CONV  
2 t  
CONV  
a 60Hz signal at IN- with an amplitude of 1.2V will  
generate ±0.5LSB of error. This is with a 35µs conver-  
sion time (maximum t  
) and a reference voltage of  
CONV  
Digital Inputs and Outputs  
The log ic le ve ls of the MAX1106/MAX1107 d ig ita l  
inputs are set to accept voltage levels from both 3V  
and 5V systems regardless of the supply voltages.  
4.096V. When a DC reference voltage is used at IN-,  
connect a 0.1µF capacitor from IN_ to GND to minimize  
noise at the input.  
The common-mode input range of IN+ and IN- is GND  
A conversion is started by toggling CONVST. CONVST  
idles low and needs to be set high for at least 1µs to  
perform the autozero adjustment. CONVST must remain  
low during conversion and until the result of conversion  
has been clocked out.  
to +V . Full-scale is achieved when (V - V ) =  
DD  
IN-  
IN+  
V
. V  
must be higher than V  
.
REFIN IN+  
IN-  
Conversion Process  
The comparator negative input is connected to the auto-  
zero rail. Since the device requires only a single supply,  
the ZERO node at the input of the comparator equals  
After CONVST is set low, allow 35µs for the conversion  
to be completed. While the internal conversion is in  
progress DOUT is low. Conversion is controlled by an  
internal 400kHz oscillator. The MSB is present at the  
DOUT pin immediately after conversion is completed.  
The conversion result is clocked out at the DOUT pin  
a nd is c od e d in s tra ig ht b ina ry (Fig ure 9). Da ta is  
clocked out at SCLK’s falling edge in MSB-first format  
at rates up to 2MHz. Once all data bits are clocked out,  
DOUT goes high impedance at the falling edge of the  
eighth SCLK pulse.  
V /2. The capacitive DAC restores node ZERO to have  
DD  
0V difference at the comparator inputs within the limits  
of 8-bit resolution. This action is equivalent to transfer-  
ring a charge of 18pF(V  
- V ) from C  
to the  
HOLD  
IN+  
IN-  
binary-weighted capacitive DAC which, in turn, forms a  
digital representation of the analog-input signal.  
Input Voltage Range  
Internal protection diodes that clamp the analog input to  
V
DD  
and GND allow the input pins (IN+ and IN-) to swing  
______________________________________________________________________________________ 11  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
Starting SCLK before conversion is complete corrupts  
the conversion in progress, and the data clocked out at  
DOUT does not represent the input signal. Bringing  
CONVST high at anytime during a conversion or while  
the data is clocked out will result in an incorrect conver-  
sion. A new conversion can be restarted only if all eight  
data bits of conversion have been clocked out. Toggle  
CONVST after all data is clocked out to restart a new  
conversion.  
I/O  
SCK  
CONVST  
SCLK  
MISO  
DOUT  
+3V  
MAX1106  
MAX1107  
SS  
SHDN is used to place the MAX1106/MAX1107 in low-  
power mode (see Power-Down section). In this mode  
DOUT is hig h imp e d a nc e a nd a ny c onve rs ion in  
progress is stopped immediately. If a conversion is  
stopped by SHDN going low, the device must be reset  
by waiting 35µs and clearing the output register with  
eight SCLKs before the next conversion.  
a) SPI  
CS  
SCK  
CONVST  
SCLK  
DOUT  
MISO  
+3V  
Ho w t o P e rfo rm a Co n ve rs io n  
The MAX1106/MAX1107 converts an input signal using  
the internal clock. This frees the µP from the burden of  
running the SAR conversion clock, and allows the con-  
version results to be read back at the µPs convenience  
at any clock rate up to 2MHz.  
MAX1106  
MAX1107  
6/MAX107  
SS  
b) QSPI  
CONVST  
I/O  
SK  
SI  
SCLK  
DOUT  
Figures 6 and 7 show the serial interface timing charac-  
teristics. CONVST idles low. Toggle CONVST high for at  
least 1µs to perform the autozero adjustment. After  
CONVST g oe s low, c onve rs ion s ta rts imme d ia te ly.  
Allow 35µs for the internal conversion to complete and  
issue the MSB of the conversion at DOUT. CONVST  
needs to be held low once a conversion is started,  
while SCLK should remain low during conversion for  
best noise performance. An internal register stores data  
when the conversion is in progress. SCLK clocks the  
MAX1106  
MAX1107  
c) MICROWIRE  
Figure 5. Common Serial-Interface Connections  
t
CSPW  
1µs  
(MIN)  
CONVST  
SCLK  
100µs (MAX)  
1
8
MSB  
D7  
LSB  
HIGH-Z  
HIGH-Z  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DOUT  
ACQ  
ACQUISITION  
CONVERSION  
= 35µs (MAX)  
A/D STATE  
t
CONV  
Figure 6. Conversion Timing Diagram  
12 ______________________________________________________________________________________  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
t
CSPW  
CONVST  
SCLK  
t
SCC  
t
CH  
t
CL  
#8  
#1  
t
CONV  
t
DV  
t
TR  
t
DV  
t
DO  
DOUT  
Figure 7. Detailed Serial Interface Timing  
data out of this register at any time after the conversion  
is complete. After the eighth data-bit has clocked out,  
DOUT goes high impedance and remains so with addi-  
tional SCLKs.  
Normally leave CONVST low until a new conversion  
needs to be started. CONVST should be high for a  
maximum of 100µs to maintain the 8-bit accuracy of the  
Autozero Circuit.  
CONVST  
5V/div  
SCLK  
5V/div  
The acquisition time, t  
, starts immediately after the  
ACQ  
end of conversion and a new conversion can be started  
immediately after all data has been clocked out by tog-  
gling CONVST high. Figure 8 shows a timing diagram  
for a conversion at the data rate of 40ksps. Typically  
20µs are necessary for the conversion to complete, 4µs  
for reading the eight bits of data with a serial clock of  
2MHz, and 1µs to complete the zero rail adjustment  
and acquisition. The conversion time is guaranteed to  
be less than 35µs, therefore the data rate should be  
limited to 25ksps unless the conversion time for the  
specific condition is known. Conversion time can be  
determined by measuring the time between CONVST  
falling edge and DOUT rising edge with a full-scale  
input voltage.  
t
CONV  
DOUT  
5V/div  
5µs/div  
Figure 8. 40ksps Timing Diagram  
CONVST low will not start a conversion. No conversions  
should be performed until the reference voltage (inter-  
nal or external) has stabilized.  
S h u t d o w n Op e ra t io n  
Pulling SHDN low places the converter in low-current  
power-down mode. In this state the converter draws  
typically 0.5µA. In shutdown the analog biasing circuit  
and the internal bandgap reference are powered down,  
and DOUT goes high impedance.  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e r-On Re s e t  
When power is first applied with SHDN high or connect-  
ed to V , the MAX1106/MAX1107 is in track mode.  
DD  
Conversion can be started by toggling CONVST high to  
low as soon as the reference is settled when using the  
internal reference, or after 20µs when an external refer-  
ence is used. Powering up the MAX1106/MAX1107 with  
The conversion stops coincidentally with SHDN going  
low. If shutdown occurs during a conversion, power up,  
wait 35µs, and clock SCLK eight times.  
______________________________________________________________________________________ 13  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
When operating at speeds below the maximum sam-  
pling rate, the MAX1106/MAX1107s power-down mode  
can save considerable power by placing the converter  
in a low-current shutdown state between conversions.  
Pull SHDN low after the conversion byte has been read  
to shut down the device completely.  
OUTPUT CODE  
11111111  
FULL-SCALE  
TRANSITION  
11111110  
11111101  
CONVST should remain low most of the time and tog-  
gled high for 1µs (100µs max) for the autozero adjust-  
ment. An external reference is recommended for best  
a c c ura c y whe n us ing the s hutd own fe a ture . This  
requires only 20µs for the internal biasing circuit to sta-  
bilize before starting a new conversion. Alternatively,  
the internal reference can be used, but additional time  
is re q uire d for the re fe re nc e to s ta b ilize (whe n  
byp a sse d by a 1µF c a p a c itor; a t da ta ra te s a b ove  
1ksps, the reference stabilizes within 1LSB in 200µs). If  
the re fe re nc e is c omp le te ly d is c ha rg e d it re q uire s  
12ms to settle. No conversions should be performed  
until the reference voltage has stabilized.  
FS = V  
1LSB = V  
+ V  
REFIN IN-  
REFIN  
256  
00000011  
00000010  
00000001  
00000000  
0
1
2
3
FS  
FS - 1LSB  
(IN-)  
INPUT VOLTAGE (LSB)  
6/MAX107  
Figure 9. Input/Output Transfer Function  
In t e rn a l o r Ex t e rn a l Vo lt a g e Re fe re n c e  
An external reference between 1V and V should be  
DD  
Tra n s fe r Fu n c t io n  
Fig ure 9 d e pic ts the input/output tra nsfe r func tion.  
Code transitions occur at integer LSB values. Output  
coding is binary; with a 2.048V reference 1LSB = 8mV  
connected directly at the REFIN pin. To use the internal  
re fe re nc e , c onne c t REFOUT d ire c tly to REFIN a nd  
bypass REFOUT with a 1µF capacitor. The DC input  
impedance at REFIN is extremely high, consisting of  
leakage current only (typically 10nA). During a conver-  
sion, the reference must be able to deliver up to 20µA  
average load current and have an output impedance of  
1kor less at the conversion clock frequency. If the  
reference has higher output impedance or is noisy,  
bypass it close to the REFIN pin with a 0.1µF capacitor.  
The internal reference is active as long as SHDN is high  
and powers down when SHDN is low.  
(V  
REFIN  
/ 256). For single-ended operation connect IN-  
to GND. Full-scale is achieved at V  
= V  
- 1LSB.  
IN+  
REFIN  
For pseudo-differential operation the V voltage range  
IN-  
is from GND to V , where full-scale is achieved at  
DD  
V
IN+  
= V  
+ V - 1LSB. V  
should not be higher  
REFIN  
IN-  
IN+  
than V  
+ 50mV. Negative input voltages are invalid  
DD  
and give a zero output code. Voltages greater than full-  
scale give an all ones output code.  
14 ______________________________________________________________________________________  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
6/MAX107  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For best performance, use printed circuit boards. Wire-  
wra p b oa rd s a re not re c omme nd e d . Boa rd la yout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another or run  
digital lines underneath the ADC package.  
SYSTEM POWER SUPPLIES  
GND  
+3V/+5V  
Figure 10 shows the recommended system-ground  
connections. A single-point analog ground (star-ground  
p oint) s hould b e e s ta b lis he d a t the A/D g round .  
Connect all analog grounds to the star ground. No digi-  
tal-system ground should be connected to this point.  
The ground return to the power supply for the star  
ground should be low impedance and as short as pos-  
sible for noise-free operation.  
1µF  
10Ω  
0.1µF  
GND  
IN-  
V
DGND  
V
DD  
DD  
High-frequency noise in the V  
affect the comparator in the ADC. Bypass the supply to  
the star ground with 0.1µF and 1µF capacitors close to  
power supply may  
DD  
DIGITAL  
CIRCUITRY  
MAX1106  
MAX1107  
the V  
p in of the MAX1106/MAX1107. Minimize  
DD  
capacitor lead lengths for best supply-noise rejection. If  
the power supply is very noisy, a 10resistor can be  
connected to form a lowpass filter.  
Figure 10. Power-Supply Connections  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2373  
______________________________________________________________________________________ 15  
S in g le -S u p p ly, Lo w -P o w e r,  
S e ria l 8 -Bit ADCs  
P a c k a g e In fo rm a t io n  
6/MAX107  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1107CUB

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1107CUB+

暂无描述
MAXIM

MAX1107CUB+T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO10, UMAX-10
MAXIM

MAX1107CUB-T

暂无描述
MAXIM

MAX1107EUB

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1108

Single-Supply, Low-Power, 2-Channel, Serial 8-Bit ADCs
MAXIM

MAX1108-MAX1109

Single-Supply, Low-Power, 2-Channel, Serial 8-Bit ADCs
MAXIM

MAX11080

12-Channel, High-Voltage Battery-Pack Fault Monitor
MAXIM

MAX11080GUU+

12-Channel, High-Voltage Battery-Pack Fault Monitor
MAXIM

MAX11080GUU/V+

12-Channel, High-Voltage Battery-Pack Fault Monitor
MAXIM

MAX11080GUU/V+T

Analog Circuit, 1 Func, PDSO38, 9.70 X 4.40 MM, 0.50 MM PITCH, ROHS COMPLIANT, TSSOP-38
MAXIM

MAX11080IUU+T

Analog Circuit,
MAXIM