MAX11058ECB+T [MAXIM]

暂无描述;
MAX11058ECB+T
型号: MAX11058ECB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

转换器 模数转换器 信息通信管理
文件: 总25页 (文件大小:1926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5106; Rev 2; 1/11  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
General Description  
Features  
o 16-Bit ADC (MAX11047/MAX11048/MAX11049)  
The MAX11047/MAX11048/MAX11049 and MAX11057/  
MAX11058/MAX11059 16-bit/14-bit ADCs offer 4, 6, or 8  
independent input channels. Featuring independent track  
and hold (T/H) and SAR circuitry, these parts provide  
simultaneous sampling at 250ksps for each channel.  
o 14-Bit ADC (MAX11057/MAX11058/MAX11059)  
o 8-Channel ADC (MAX11047/MAX11057)  
o 6-Channel ADC (MAX11048/MAX11058)  
o 4-Channel ADC (MAX11049/MAX11059)  
o Single Analog and Digital Supply  
o High-Impedance Inputs Up to 1G  
o On-Chip T/H Circuit for Each Channel  
o Fast 3µs Conversion Time  
The devices accept a 0 to +5V input. All inputs are  
overrange protected with internal 20mA input clamps  
providing overrange protection with a simple external  
resistor. Other features include a 4MHz T/H input band-  
width, internal clock, and internal or external reference.  
A 20MHz, bidirectional, parallel interface provides the  
conversion results and accepts digital configuration  
inputs.  
o High Throughput: 250ksps for Each Channel  
o 16-/14-Bit, High-Speed, Parallel Interface  
o Internal Clocked Conversions  
The devices operate with a 4.75V to 5.25V analog supply  
and a separate flexible 2.7V to 5.25V digital supply for  
interfacing with the host without a level shifter. The  
MAX11047/MAX11048/MAX11049 are available in a 56-pin  
TQFN and 64-pin TQFP packages while the MAX11057/  
MAX11058/MAX11059 are available in TQFP only. All  
devices operate over the extended -40°C to +85°C tem-  
perature range.  
o 10ns Aperture Delay  
o 100ps Channel-to-Channel T/H Matching  
o Low Drift, Accurate 4.096V Internal Reference  
Providing an Input Range of 0 to 5V  
o External Reference Range of 3.0V to 4.25V,  
Allowing Full-Scale Input Ranges of +3.7V to  
+5.2V  
o 56-Pin TQFN (8mm x 8mm) and 64-Pin TQFP  
Applications  
Automatic Test Equipment  
(10mm x 10mm) Packages  
o Evaluation Kit Available (MAX11046EVKIT+)  
Power-Factor Monitoring and Correction  
Power-Grid Protection  
Functional Diagram  
Multiphase Motor Control  
AVDD  
CH0  
DVDD  
Vibration and Waveform Analysis  
DB15**  
16-/14-BIT ADCs  
16-/14-BIT ADCs  
CLAMP  
CLAMP  
S/H  
S/H  
Ordering Information  
DB4  
PART  
PIN-PACKAGE  
56 TQFN-EP*  
64 TQFP-EP*  
56 TQFN-EP*  
64 TQFP-EP*  
56 TQFN-EP*  
64 TQFP-EP*  
64 TQFP-EP*  
64 TQFP-EP*  
64 TQFP-EP*  
CHANNELS  
DB3/CR3  
MAX11047ETN+  
MAX11047ECB+  
MAX11048ETN+  
MAX11048ECB+  
MAX11049ETN+  
MAX11049ECB+  
MAX11057ECB+  
MAX11058ECB+  
MAX11059ECB+  
4
4
6
6
8
8
4
6
8
DB0/CR0  
CH7  
CONFIGURATION  
REGISTERS  
WRb  
AGNDS  
AGND  
RDb  
CSb  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
EOCb  
MAX11047/MAX11048/MAX11049/  
MAX11057/MAX11058/MAX11059  
DGND  
RDC  
INT REF  
10k  
BANDGAP  
REFERENCE  
REF  
BUF  
Note: All devices are specified over the -40°C to +85°C operating  
temperature range.  
EXT REF  
REFIO  
RDC_SENSE*  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
*CONNECTED INTERNALLY ON THE TQFN PARTS  
**MAX11047/MAX11048/MAX11049  
MAX11049/MAX11059  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
ABSOLUTE MAXIMUM RATINGS  
AVDD to AGND ........................................................-0.3V to +6V  
DVDD to AGND and DGND .....................................-0.3V to +6V  
DGND to AGND.....................................................-0.3V to +0.3V  
AGNDS to AGND...................................................-0.3V to +0.3V  
CH0–CH7 to AGND...............................................-2.5V to +7.5V  
REFIO, RDC to AGND ..................................-0.3V to the lower of  
(AVDD + 0.3V) and +6V  
Maximum Current into Any Pin Except AVDD, DVDD, AGND,  
DGND ........................................................................... 50mA  
Continuous Power Dissipation (T = +70°C)  
A
56-Pin TQFN (derated 47.6mW/°C above +70°C)..3809.5mW  
64-Pin TQFP (derate 43.5mW/°C above +70°C.........3478mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
EOC, WR, RD, CS, CONVST to AGND.........-0.3V to the lower of  
(DVDD + 0.3V) and +6V  
DB0–DB15 to AGND ....................................-0.3V to the lower of  
(DVDD + 0.3V) and +6V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 4.75V to 5.25V, V  
= +2.7V to 5.25V, V  
= V  
= V = 0V, V  
DGND  
= internal reference, C  
= 4 x 33µF,  
AVDD  
DVDD  
AGNDS  
AGND  
REFIO  
RDC  
C
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise noted.  
REFIO  
AVDD  
DVDD  
T
A
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE (Note 1)  
MAX11047/MAX11048/MAX11049  
MAX11057/MAX11058/MAX11059  
MAX11047/MAX11048/MAX11049  
MAX11057/MAX11058/MAX11059  
16  
14  
Resolution  
N
Bits  
LSB  
-2  
0ꢀ65  
0ꢀ2  
+2  
+0ꢀ9  
Integral Nonlinearity  
Differential Nonlinearity  
No Missing Codes  
INL  
-0ꢀ9  
MAX11047/MAX11048/MAX11049  
> -1  
0ꢀ7  
< +1ꢀ2  
+0ꢀ7  
DNL  
LSB  
Bits  
MAX11057/MAX11058/MAX11059  
MAX11047/MAX11048/MAX11049  
MAX11057/MAX11058/MAX11059  
-0ꢀ6  
16  
0ꢀ2  
14  
Offset Error  
±0ꢀ001  
±0ꢀ012  
%FSR  
µV/°C  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
ppm/°C  
Offset Temperature Coefficient  
Channel Offset Matching  
Gain Error  
0ꢀ8  
0ꢀ01  
0ꢀ012  
0ꢀ017  
0ꢀ01  
Positive Full-Scale Error  
Positive Full-Scale Error Matching  
Channel Gain-Error Matching  
Gain Temperature Coefficient  
DYNAMIC PERFORMANCE  
Between all channels  
0ꢀ01  
0ꢀ6  
4/7–MAX1059  
MAX11047/MAX11048/MAX11049,  
90ꢀ7  
84ꢀ5  
92ꢀ3  
85ꢀ3  
f
= 10kHz, full-scale input  
IN  
Signal-to-Noise Ratio  
SNR  
dB  
MAX11057/MAX11058/MAX11059,  
= 10kHz, full-scale input  
f
IN  
2
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
ELECTRICAL CHARACTERISTICS (continued)  
V
= 4.75V to 5.25V, V  
= +2.7V to 5.25V, V  
= V  
= V = 0V, V  
DGND  
= internal reference, C  
= 4 x 33µF,  
AVDD  
DVDD  
AGNDS  
AGND  
REFIO  
RDC  
C
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise noted.  
REFIO  
AVDD  
DVDD  
T
A
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX11047/MAX11048/MAX11049,  
90.5  
92  
f
= 10kHz, full-scale input  
IN  
Signal-to-Noise and Distortion  
Ratio  
SINAD  
dB  
MAX11057/MAX11058/MAX11059,  
84.5  
85.2  
f
= 10kHz, full-scale input  
IN  
MAX11047/MAX11048/  
MAX11049  
MAX11057/MAX11058/  
MAX11059  
98  
95  
108  
108  
f
= 10kHz,  
IN  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
SFDR  
THD  
dB  
full-scale input  
MAX11047/MAX11048/  
MAX11049  
MAX11057/MAX11058/  
MAX11059  
-108  
-108  
-98  
-95  
f
= 10kHz,  
IN  
dB  
dB  
full-scale input  
f
= 60Hz, full scale and ground on  
IN  
Channel-to-Channel Crosstalk  
ANALOG INPUTS (CH0–CH7)  
Input Voltage Range  
-126  
-100  
adjacent channel (Note 2)  
1.22 x  
REFIO  
(Note 3)  
0
V
V
Input Leakage Current  
Input Capacitance  
-1  
+1  
µA  
pF  
15  
Input-Clamp Protection Current  
TRACK AND HOLD  
Throughput Rate  
Each input simultaneously  
Per channel  
-20  
1
+20  
250  
mA  
ksps  
µs  
Acquisition Time  
t
ACQ  
-3dB point  
4
> 0.2  
10  
Full-Power Bandwidth  
MHz  
-0.1dB point  
Aperture Delay  
ns  
ps  
Aperture-Delay Matching  
Aperture Jitter  
100  
50  
ps  
RMS  
INTERNAL REFERENCE  
REFIO Voltage  
V
V
4.080  
4.096  
4
4.112  
V
REF  
REFIO Temperature Coefficient  
EXTERNAL REFERENCE  
Input Current  
ppm/°C  
-10  
+10  
4.25  
µA  
V
REF Voltage Input Range  
REF Input Capacitance  
3.00  
REF  
15  
10  
pF  
DIGITAL INPUTS (CR0–CR3, RD, WR, CS, CONVST)  
Input-Voltage High  
Input-Voltage Low  
Input Capacitance  
Input Current  
V
V
V
= 2.7V to 5.25V  
= 2.7V to 5.25V  
2
V
V
IH  
DVDD  
DVDD  
V
0.8  
10  
IL  
IN  
IN  
C
pF  
µA  
I
V
= 0 or V  
DVDD  
IN  
_______________________________________________________________________________________  
3
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
V
= 4.75V to 5.25V, V  
= +2.7V to 5.25V, V  
= V  
= V = 0V, V  
DGND  
= internal reference, C  
= 4 x 33µF,  
AVDD  
DVDD  
AGNDS  
AGND  
REFIO  
RDC  
C
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise noted.  
REFIO  
AVDD  
DVDD  
T
A
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUTS (DB0–DB15, EOC)  
V
DVDD  
0.4  
-
Output-Voltage High  
V
I
I
= 1.2mA  
SOURCE  
V
OH  
Output-Voltage Low  
V
= 1mA  
SINK  
0.4  
10  
V
OL  
Three-State Leakage Current  
Three-State Output Capacitance  
DB0–DB15, V V or V V  
µA  
pF  
RD  
IH  
CS  
IH  
IH  
DB0–DB15, V V or V V  
15  
RD  
IH  
CS  
POWER SUPPLIES (MAX11047/MAX11057)  
Analog Supply Voltage  
Digital Supply Voltage  
Analog Supply Current  
Digital Supply Current  
Shutdown Current  
AVDD  
DVDD  
4.75  
2.70  
5.25  
5.25  
25  
V
V
I
I
mA  
mA  
µA  
µA  
AVDD  
DVDD  
V
= 3.3V (Note 4)  
5.5  
10  
DVDD  
For DVDD  
For AVDD  
Shutdown Current  
10  
MAX11047  
MAX11057  
±1.2  
±0.3  
V
= 4.9V to 5.1V  
AVDD  
Power-Supply Rejection  
PSR  
LSB  
(Note 5)  
POWER SUPPLIES (MAX11048/MAX11058)  
Analog Supply Voltage  
Digital Supply Voltage  
Analog Supply Current  
Digital Supply Current  
Shutdown Current  
AVDD  
DVDD  
4.75  
2.70  
5.25  
5.25  
32  
V
V
I
I
mA  
mA  
µA  
µA  
AVDD  
DVDD  
V
= 3.3V (Note 4)  
6.5  
10  
DVDD  
For DVDD  
For AVDD  
Shutdown Current  
10  
MAX11048  
MAX11058  
±1.2  
±0.3  
V
= 4.9V to 5.1V  
AVDD  
Power-Supply Rejection  
PSR  
LSB  
(Note 5)  
POWER SUPPLIES (MAX11049/MAX11059)  
Analog Supply Voltage  
Digital Supply Voltage  
Analog Supply Current  
Digital Supply Current  
Shutdown Current  
AVDD  
DVDD  
4.75  
2.70  
5.25  
5.25  
39  
V
V
I
mA  
mA  
µA  
µA  
AVDD  
DVDD  
I
V
= 3.3V (Note 4)  
7
DVDD  
For DVDD  
For AVDD  
10  
4/7–MAX1059  
Shutdown Current  
10  
MAX11049  
MAX11059  
±1.2  
±0.3  
V
= 4.9V to 5.1V  
AVDD  
Power-Supply Rejection  
PSR  
LSB  
(Note 5)  
TIMING CHARACTERISTICS (Note 4)  
CONVST Rise to EOC Fall  
Acquisition Time  
t
Conversion time (Note 6)  
3
µs  
µs  
ns  
CON  
t
1
ACQ  
CS Rise to CONVST Rise  
t
Sample quiet time (Note 6)  
500  
Q
4
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
ELECTRICAL CHARACTERISTICS (continued)  
V
= 4.75V to 5.25V, V  
= +2.7V to 5.25V, V  
= V  
= V = 0V, V  
DGND  
= internal reference, C  
= 4 x 33µF,  
AVDD  
DVDD  
AGNDS  
AGND  
REFIO  
RDC  
C
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DVDD or DGND, unless otherwise noted.  
REFIO  
AVDD  
DVDD  
T
A
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
CONVST Rise to EOC Rise  
EOC Fall to CONVST Fall  
t
65  
140  
0
1
t
CONVST mode B0 = 0 only (Note 7)  
CONVST mode B0 = 1 only  
0
ns  
CONVST Low Time  
CS Fall to WR Fall  
WR Low Time  
t
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
0
CS Rise to WR Rise  
Input Data Setup Time  
Input Data Hold Time  
CS Fall to RD Fall  
RD Low Time  
10  
0
0
30  
0
RD Rise to CS Rise  
RD High Time  
t
10  
t
11  
t
12  
t
13  
10  
RD Fall to Data Valid  
RD Rise to Data Hold Time  
35  
(Note 7)  
5
Note 1: See the Definitions section at the end of the data sheet.  
Note 2: Tested with alternating channels modulated at full scale and ground.  
Note 3: See the Input Range and Protection section.  
Note 4: C  
= 30pF on DB0–DB15 and EOC. Inputs (CH0–CH7) alternate between full scale and zero scale. f  
= 250ksps. All  
LOAD  
CONV  
data is read out.  
Note 5: Defined as the change in positive full scale caused by a 2ꢀ variation in the nominal supply voltage.  
Note 6: It is recommended that RD, WR, and CS are kept high for the quiet time (t ) and conversion time (t  
).  
CON  
Q
Note 7: Guaranteed by design.  
Typical Operating Characteristics  
(V  
= 5V, V  
= 3.3V, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
AVDD  
DVDD  
A
SAMPLE  
DIFFERENTIAL NONLINEARITY (DNL)  
vs. CODE FOR MAX1104_  
INTEGRAL NONLINEARITY (INL)  
vs. CODE FOR MAX1104_  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
V
f
= 5.0V  
= 3.3V  
V
V
f
= 5.0V  
= 3.3V  
AVDD  
DVDD  
AVDD  
DVDD  
= 250ksps  
= 250ksps  
SAMPLE  
SAMPLE  
T
A
= +25°C  
= 4.096V  
T
A
= +25°C  
= 4.096V  
V
V
RDC  
RDC  
0
16384  
32768  
49152  
65536  
57344  
0
16384  
32768  
49152  
65536  
57344  
8192  
24576  
40960  
8192  
24576  
40960  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
_______________________________________________________________________________________  
5
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(V  
= 5V, V  
= 3.3V, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
SAMPLE  
AVDD  
DVDD  
A
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
INL AND DNL vs. ANALOG SUPPLY  
VOLTAGE FOR MAX1104_  
INL AND DNL vs. TEMPERATURE  
FOR MAX1104_  
1.5  
1.0  
0.5  
0
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
1.5  
MAX INL  
MAX DNL  
MAX11049 CONVERTING  
1.0  
0.5  
0
MAX11049 STATIC  
MAX11048 CONVERTING  
MAX DNL  
MIN INL  
MIN INL  
MAX INL  
MIN DNL  
MAX11048 STATIC  
T
= +25°C  
A
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
f
= 250ksps  
SAMPLE  
MAX11047 CONVERTING  
V
= 3.3V  
DVDD  
V
V
f
= 5.0V  
= 3.3V  
AVDD  
DVDD  
f
= 250ksps  
SAMPLE  
MIN DNL  
T
= +25°C  
A
= 250ksps  
SAMPLE  
V
= 4.096V  
MAX11047 STATIC  
RDC  
V
RDC  
= 4.096V  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
V
AVDD  
V
AVDD  
TEMPERATURE (°C)  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
7.2  
6.0  
4.8  
3.6  
2.4  
1.2  
0
12  
10  
8
T
= +25°C  
MAX11049 CONVERTING  
A
34  
30  
26  
22  
18  
f
= 250ksps  
SAMPLE  
MAX11049 CONVERTING  
C
= 15pF  
DBxx  
MAX11049 STATIC  
MAX11049 CONVERTING  
MAX11048 CONVERTING  
MAX11048 CONVERTING  
MAX11047 CONVERTING  
6
MAX11048 STATIC  
V
f
= 5.0V  
AVDD  
4
= 250ksps  
MAX11048 CONVERTING  
SAMPLE  
MAX11047 CONVERTING  
MAX11049/MAX11048/  
MAX11047 STATIC  
V
f
= 3.3V  
MAX11049/MAX11048/  
MAX11047 STATIC  
DVDD  
2
= 250ksps  
SAMPLE  
C
DBxx  
= 15pF  
MAX11047 CONVERTING  
MAX11047 STATIC  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
2.75  
3.25 3.75  
4.25  
(V)  
4.75  
5.25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
DVDD  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. TEMPERATURE  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. SUPPY VOLTAGE  
INTERNAL REFERENCE VOLTAGES  
vs. SUPPLY VOLTAGE  
5
4
3
2
1
0
5
4
3
2
1
0
4.09630  
4.09625  
4.09620  
4.09615  
4.09610  
4.09605  
4.09600  
4.09595  
4.09590  
V
V
= 5.0V  
AVDD  
T
= +25°C  
T
= +25°C  
A
V
A
RDC  
= 3.3V  
DVDD  
I
I
AVDD  
AVDD  
4/7–MAX1059  
I
DVDD  
I
DVDD  
V
REFIO  
-40  
-15  
10  
35  
60  
85  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
AVDD OR DVDD (V)  
V
AVDD  
6
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
Typical Operating Characteristics (continued)  
(V  
= 5V, V  
= 3.3V, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
AVDD  
DVDD  
A
SAMPLE  
INTERNAL REFERENCE VOLTAGES  
vs. TEMPERATURE  
OFFSET ERROR AND OFFSET ERROR  
MATCHING vs. TEMPERATURE  
OFFSET ERROR AND OFFSET ERROR  
MATCHING vs. SUPPLY VOLTAGE  
4.112  
4.108  
4.104  
4.100  
4.096  
4.092  
4.088  
4.084  
4.080  
0.010  
0.006  
0.010  
f = 250ksps  
SAMPLE  
f
= 250ksps  
SAMPLE  
V
= 5.0V  
AVDD  
V
AVDD  
V
REFIO  
= 5.0V  
= 4.096V  
T
A
= +25°C  
V
= 4.096V  
RDC  
0.006  
0.002  
UPPER TYPICAL LIMIT  
LOWER TYPICAL LIMIT  
OFFSET ERROR MATCHING  
OFFSET ERROR MATCHING  
0.002  
-0.002  
-0.006  
-0.010  
-0.002  
-0.006  
-0.010  
OFFSET ERROR  
OFFSET ERROR  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
AVDD  
GAIN ERROR AND GAIN ERROR  
MATCHING vs. SUPPLY VOLTAGE  
GAIN ERROR AND GAIN ERROR  
MATCHING vs. TEMPERATURE  
FFT PLOT FOR MAX1104_  
0.010  
0.006  
0.010  
0.006  
0
f
= 250ksps  
f
= 250ksps  
f
f
T
= 10kHz  
= 250ksps  
SAMPLE  
= +25°C  
SAMPLE  
SAMPLE  
IN  
T
A
= +25°C  
V
AVDD  
V
REFIO  
= 5.0V  
= 4.096V  
-20  
-40  
V
= 4.096V  
RDC  
A
V
AVDD  
= 5.0V  
GAIN ERROR MATCHING  
GAIN ERROR MATCHING  
0.002  
0.002  
-60  
-80  
-0.002  
-0.006  
-0.010  
-0.002  
-0.006  
-0.010  
-100  
-120  
-140  
GAIN ERROR  
GAIN ERROR  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
AVDD  
SIGNAL-TO-NOISE RATIO (SNR) AND  
SIGNAL-TO-NOISE AND DISTORTION RATIO  
(SINAD) vs. TEMPERATURE FOR MAX1104_  
TOTAL HARMONIC DISTORTION (THD)  
vs. TEMPERATURE FOR MAX1104_  
TWO-TONE IMD PLOT FOR MAX1104_  
0
-20  
93.0  
-108.0  
-108.5  
-109.0  
-109.5  
-110.0  
f
f
f
= 9834Hz  
= 10384Hz  
V
= 5.0V  
AVDD  
IN1  
IN2  
f
f
T
= 10kHz  
= 250ksps  
SAMPLE  
= +25°C  
A
IN  
= 250ksps  
SAMPLE  
SNR  
92.5  
92.0  
91.5  
91.0  
T
A
= +25°C  
-40  
V
V
V
= 5.0V  
= 4.096V  
= -0.01dBFS  
V
RDC  
= 4.096V  
AVDD  
V = -0.025dB FROM FS  
IN  
RDC  
-60  
IN  
-80  
V
= 5.0V  
= 10kHz  
= 250ksps  
= +25°C  
= 4.096V  
AVDD  
f
f
IN  
SAMPLE  
SINAD  
-100  
-120  
-140  
T
A
V
V
RDC  
= -0.025dB FROM FS  
IN  
7.6  
8.4  
9.2  
10.0 10.8 11.6 12.4  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(V  
= 5V, V  
= 3.3V, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
SAMPLE  
AVDD  
DVDD  
A
THD vs. ANALOG SUPPLY VOLTAGE  
FOR MAX1104_  
SIGNAL-TO-NOISE AND DISTORTION RATIO  
(SINAD) vs. FREQUENCY FOR MAX1104_  
SNR AND SINAD vs. ANALOG SUPPLY  
VOLTAGE FOR MAX1104_  
-108.0  
94  
93  
92  
91  
90  
89  
88  
93.0  
92.5  
92.0  
91.5  
91.0  
f
f
= 10kHz  
IN  
f
f
T
= 10kHz  
= 250ksps  
SAMPLE  
= +25°C  
IN  
= 250ksps  
SAMPLE  
T
A
= +25°C  
A
-108.5  
-109.0  
-109.5  
-110.0  
V
V
= 4.096V  
= -0.025dB FROM FS  
V
V
= 4.096V  
= -0.025dB FROM FS  
SNR  
RDC  
RDC  
IN  
IN  
SINAD  
V
f
= 5.0V  
AVDD  
= 250ksps  
SAMPLE  
T
A
= +25°C  
V
= 4.096V  
RDC  
V
IN  
= -0.025dB FROM FS  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
0.1  
1.0  
10.0  
100.0  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
FREQUENCY (kHz)  
AVDD  
AVDD  
THD vs. INPUT FREQUENCY  
FOR MAX1104_  
OUTPUT NOISE HISTOGRAM WITH INPUT  
CONNECTED TO 2.5V FOR MAX1104_  
CROSSTALK vs. FREQUENCY  
-85  
-90  
24000  
20000  
16000  
12000  
8000  
4000  
0
-90  
-100  
-110  
-120  
-130  
-140  
V
f
= 5.0V  
V
V
f
= 2.500270V  
= 5.0V  
AVDD  
f
f
T
V
V
V
= 60Hz  
CHX  
AVDD  
IN  
= 250ksps  
SAMPLE  
= 250ksps  
= +25°C  
SAMPLE  
T
A
= +25°C  
= 4.096V  
= -0.025dB FROM FS  
= 250ksps  
SAMPLE  
A
V
V
T
A
= +25°C  
RDC  
= 5.0V  
AVDD  
-95  
IN  
= 4.096V  
RDC  
= -0.025dB FROM FS  
INACTIVE CHANNEL AT GND  
IN  
-100  
-105  
-110  
-115  
-120  
0.1  
1.0  
10.0  
100.0  
32768 32769 32770 32771 32772 32773 32774  
OUTPUT CODE (DECIMAL)  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
CONVERSION TIME vs. ANALOG  
SUPPLY VOLTAGE  
CONVERSION TIME vs. TEMPERATURE  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
3.00  
T
= +25°C  
V
= 5.0V  
AVDD  
A
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
4/7–MAX1059  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
AVDD  
8
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
Pin Configurations  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
TOP VIEW  
RDC  
AGNDS  
CH0*/I.C.  
AGND  
32  
31  
30  
AGNDS  
49  
50  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
†‡  
†‡  
I.C. /CH7*  
28  
27  
26  
25  
24  
23  
22  
21  
RDC  
43  
44  
AGND 51  
AVDD 52  
AGNDS  
†‡  
AGNDS  
CH0*/I.C.  
AGND  
AVDD  
AGNDS  
RDC  
29 AVDD  
†‡  
I.C. /CH7* 45  
AGND 46  
AVDD 47  
AGNDS 48  
RDC 49  
AGNDS  
RDC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AGNDS 53  
RDC 54  
RDC_SENSE  
AGND  
RDC_SENSE 55  
AGND 56  
MAX11047  
MAX11048  
MAX11049  
MAX11047  
MAX11048  
MAX11049  
AVDD  
AVDD 57  
DGND 50  
DVDD 51  
WR 52  
DGND  
AGNDS  
58  
AGNDS  
DGND  
20 DVDD  
DGND  
DVDD  
WR  
59  
60  
61  
62  
63  
19 SHDN  
DVDD  
CS 53  
18 CONVST  
17 EOC  
SHDN  
RD 54  
CONVST  
EOC  
CS  
*EP  
DB15 55  
DB14 56  
16 DB0/CR0  
15 DB1/CR1  
+
*EP  
RD  
+
DB15 64  
17 DB0/CR0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
MAX11047  
MAX11048  
TQFN  
8mm x 8mm  
*MAX11049  
TQFP  
10mm x 10mm  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
AGNDS  
CH0*/I.C.  
AGND  
32  
31  
30  
AGNDS  
49  
50  
†‡  
†‡  
I.C. /CH7*  
AGND 51  
AVDD 52  
29 AVDD  
AGNDS  
RDC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AGNDS 53  
RDC 54  
RDC_SENSE  
AGND  
RDC_SENSE 55  
AGND 56  
MAX11057  
MAX11058  
MAX11059  
AVDD  
AVDD 57  
AGNDS  
58  
AGNDS  
DGND  
DGND  
DVDD  
WR  
59  
60  
61  
62  
63  
DVDD  
SHDN  
CONVST  
EOC  
CS  
*EP  
RD  
+
DB13 64  
17 CR0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
MAX11057  
MAX11058  
TQFP  
10mm x 10mm  
*MAX11059  
_______________________________________________________________________________________  
9
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX11047 MAX11048 MAX11049  
(TQFN-EP) (TQFN-EP) (TQFN-EP)  
1
1
1
DB13  
DB12  
DB11  
DB10  
DB9  
16-Bit Parallel Data Bus Digital Output Bit 13  
16-Bit Parallel Data Bus Digital Output Bit 12  
16-Bit Parallel Data Bus Digital Output Bit 11  
16-Bit Parallel Data Bus Digital Output Bit 10  
16-Bit Parallel Data Bus Digital Output Bit 9  
16-Bit Parallel Data Bus Digital Output Bit 8  
Digital Ground  
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
DB8  
7, 21, 50  
7, 21, 50  
7, 21, 50  
DGND  
DVDD  
DB7  
8, 20, 51  
8, 20, 51  
8, 20, 51  
Digital Supply. Bypass to DGND with a 0.1µF capacitor at each DV input.  
DD  
9
9
9
16-Bit Parallel Data Bus Digital Output Bit 7  
16-Bit Parallel Data Bus Digital Output Bit 6  
16-Bit Parallel Data Bus Digital Output Bit 5  
16-Bit Parallel Data Bus Digital Output Bit 4  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
DB6  
DB5  
DB4  
DB3/CR3 16-Bit Parallel Data Bus Digital Output Bit 3/Configuration Register Input Bit 3  
DB2/CR2 16-Bit Parallel Data Bus Digital Output Bit 2/Configuration Register Input Bit 2  
DB1/CR1 16-Bit Parallel Data Bus Digital Output Bit 1/Configuration Register Input Bit 1  
DB0/CR0 16-Bit Parallel Data Bus Digital Output Bit 0/Configuration Register Input Bit 0  
Active-Low End of Conversion Output. EOC goes low when conversion is  
completed. EOC goes high when a conversion is initiated.  
17  
17  
17  
EOC  
Convert Start Input. Rising edge of CONVST ends sample and starts a  
CONVST conversion on the captured sample. The ADC is in acquisition mode when  
CONVST is low and CONVST mode = 0.  
18  
18  
18  
Shutdown Input. If SHDN is held high, the entire device enters and stays in a  
19  
19  
19  
SHDN  
RDC  
low-current state. Contents of the Configuration register are not lost when in  
the shutdown state.  
Reference Buffer Decoupling. Connect all RDC outputs together. Bypass to  
AGND with at least an 80µF total capacitance. See the Layout, Grounding,  
and Bypassing section.  
22, 28, 35, 22, 28, 35, 22, 28, 35,  
43, 49 43, 49 43, 49  
23, 27, 33, 23, 27, 33, 23, 27, 33,  
AGNDS  
AVDD  
AGND  
I.C.  
Signal Ground. Connect all AGND and AGNDS inputs together on PWB.  
38, 44, 48  
38, 44, 48  
38, 44, 48  
24, 30,  
41, 47  
24, 30,  
41, 47  
24, 30,  
41, 47  
Analog Supply Input. Bypass AV  
to AGND with a 0.1µF capacitor at each  
DD  
AV  
input.  
DD  
25, 31,  
40, 46  
25, 31,  
40, 46  
25, 31,  
40, 46  
4/7–MAX1059  
Analog Ground. Connect all AGND inputs together.  
Internally Connected. Connect to AGND  
26, 29,  
42, 45  
26, 45  
32  
34  
29  
32  
26  
29  
CH0  
CH1  
Channel 0 Analog Input  
Channel 1 Analog Input  
External Reference Input/Internal Reference Output. Place a 0.1µF capacitor  
from REFIO to AGND.  
36  
36  
36  
REFIO  
10 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11047 MAX11048 MAX11049  
(TQFN-EP) (TQFN-EP) (TQFN-EP)  
37  
39  
34  
37  
39  
42  
32  
34  
37  
39  
42  
45  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Channel 2 Analog Input  
Channel 3 Analog Input  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
Active-Low Write Input. Drive WR low to write to the ADC. Configuration  
registers are loaded on the rising edge of WR.  
52  
53  
54  
52  
53  
54  
52  
53  
54  
WR  
CS  
RD  
Active Low-Chip Select Input. Drive CS low when reading from or writing to  
the ADC.  
Active-Low Read Input. Drive RD low to read from the ADC. Each rising edge  
of RD advances the channel output on the data bus.  
55  
56  
55  
56  
55  
56  
DB15  
DB14  
16-Bit Parallel Data Bus Digital Output Bit 15  
16-Bit Parallel Data Bus Digital Output Bit 14  
Exposed Pad. Internally connected to AGND. Connect to a large ground  
plane to maximize thermal performance. Not intended as an electrical  
connection point.  
EP  
PIN  
NAME  
FUNCTION  
MAX11047 MAX11048 MAX11049  
(TQFP-EP) (TQFP-EP) (TQFP-EP)  
1
1
1
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
16-Bit Parallel Data Bus Digital Output Bit 14  
16-Bit Parallel Data Bus Digital Output Bit 13  
16-Bit Parallel Data Bus Digital Output Bit 12  
16-Bit Parallel Data Bus Digital Output Bit 11  
16-Bit Parallel Data Bus Digital Output Bit 10  
16-Bit Parallel Data Bus Digital Output Bit 9  
16-Bit Parallel Data Bus Digital Output Bit 8  
Digital Ground  
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
8, 22, 59  
9, 21, 60  
10  
7
8, 22, 59  
9, 21, 60  
10  
7
8, 22, 59  
9, 21, 60  
10  
DB8  
DGND  
DV  
Digital Supply. Bypass to DGND with a 0.µF capacitor at each DVDD input.  
16-Bit Parallel Data Bus Digital Output Bit 7  
16-Bit Parallel Data Bus Digital Output Bit 6  
16-Bit Parallel Data Bus Digital Output Bit 5  
16-Bit Parallel Data Bus Digital Output Bit 4  
DD  
DB7  
DB6  
DB5  
DB4  
11  
11  
11  
12  
12  
12  
13  
13  
13  
14  
14  
14  
DB3/CR3 16-Bit Parallel Data Bus Digital Output Bit 3/Configuration Register Input Bit 3  
DB2/CR2 16-Bit Parallel Data Bus Digital Output Bit 2/Configuration Register Input Bit 2  
DB1/CR1 16-Bit Parallel Data Bus Digital Output Bit 1/Configuration Register Input Bit 1  
DB0/CR0 16-Bit Parallel Data Bus Digital Output Bit 0/Configuration Register Input Bit 0  
15  
15  
15  
16  
16  
16  
17  
17  
17  
______________________________________________________________________________________ 11  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11047 MAX11048 MAX11049  
(TQFP-EP) (TQFP-EP) (TQFP-EP)  
Active-Low, End-of-Conversion Output. EOC goes low when a conversion is  
completed. EOC goes high when a conversion is initiated.  
18  
19  
18  
19  
18  
19  
EOC  
Convert Start Input. The rising edge of CONVST ends sample and starts a  
conversion on the captured sample. The ADC is in acquisition mode when  
CONVST is low and CONVST mode = 0.  
CONVST  
Shutdown Input. If SHDN is held high, the entire device enters and stays in a  
low-current state. Contents of the Configuration register are not lost when in  
the shutdown state.  
20  
20  
20  
SHDN  
23, 28, 32, 23, 28, 32, 23, 28, 32,  
38, 43, 49, 38, 43, 49, 38, 43, 49,  
AGNDS  
Signal Ground. Connect all AGND and AGNDS inputs together.  
53, 58  
24, 29, 35, 24, 29, 35, 24, 29, 35,  
46, 52, 57 46, 52, 57 46, 52, 57  
25, 30, 36, 25, 30, 36, 25, 30, 36,  
53, 58  
53, 58  
Analog Supply Input. Bypass AVDD to AGND with a 0.1µF capacitor at each  
AVDD input.  
AV  
DD  
AGND  
Analog Ground. Connect all AGND inputs together.  
45, 51, 56  
45, 51, 56  
45, 51, 56  
26, 55  
26, 55  
26, 55  
RDC_SENSE Reference Buffer Sense Feedback. Connect to RDC plane.  
Reference Buffer Decoupling. Connect all RDC outputs together. Bypass to  
27, 33, 40, 27, 33, 40, 27, 33, 40,  
48, 54  
RDC  
AGND with at least an 80µF total capacitance. See the Layout, Grounding,  
and Bypassing section.  
48, 54  
48, 54  
31, 34,  
47, 50  
31, 50  
I.C.  
Internally Connected. Connect to AGND.  
37  
39  
34  
37  
31  
34  
CH0  
CH1  
Channel 0 Analog Input  
Channel 1 Analog Input  
External Reference Input/Internal Reference Output. Place a 0.1µF capacitor  
from REFIO to AGND.  
41  
41  
41  
REFIO  
42  
44  
39  
42  
44  
47  
37  
39  
42  
44  
47  
50  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Channel 2 Analog Input  
Channel 3 Analog Input  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
Active-Low Write Input. Drive WR low to write to the ADC. Configuration  
registers are loaded on the rising edge of WR.  
61  
62  
61  
62  
61  
62  
WR  
CS  
4/7–MAX1059  
Active-Low Chip-Select Input. Drive CS low when reading from or writing to  
the ADC.  
Active-Low Read Input. Drive RD low to read from the ADC. Each rising edge  
of RD advances the channel output on the data bus.  
63  
64  
63  
64  
63  
64  
RD  
DB15  
16-Bit Parallel Data Bus Digital Out Bit 15  
Exposed Pad. Internally connected to AGND. Connect to a large ground  
plane to maximize thermal performance. Not intended as an electrical  
connection point.  
EP  
12 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11057 MAX11058 MAX11059  
(TQFP-EP) (TQFP-EP) (TQFP-EP)  
1
1
1
DB12  
DB11  
DB10  
DB9  
14-Bit Parallel Data Bus Digital Output Bit 12  
14-Bit Parallel Data Bus Digital Output Bit 11  
14-Bit Parallel Data Bus Digital Output Bit 10  
14-Bit Parallel Data Bus Digital Output Bit 9  
14-Bit Parallel Data Bus Digital Output Bit 8  
14-Bit Parallel Data Bus Digital Output Bit 7  
14-Bit Parallel Data Bus Digital Output Bit 6  
Digital Ground  
2
2
2
3
3
3
4
4
4
5
5
5
DB8  
6
6
6
DB7  
7
8, 22, 59  
9, 21, 60  
10  
7
8, 22, 59  
9, 21, 60  
10  
7
8, 22, 59  
9, 21, 60  
10  
DB6  
DGND  
DV  
Digital Supply. Bypass to DGND with a 0.1µF capacitor at each DVDD input.  
14-Bit Parallel Data Bus Digital Output Bit 5  
14-Bit Parallel Data Bus Digital Output Bit 4  
14-Bit Parallel Data Bus Digital Output Bit 3  
14-Bit Parallel Data Bus Digital Output Bit 2  
DD  
DB5  
DB4  
DB3  
DB2  
11  
11  
11  
12  
12  
12  
13  
13  
13  
14  
14  
14  
DB1/CR3 14-Bit Parallel Data Bus Digital Output Bit 1/Configuration Register Input Bit 3  
DB0/CR2 14-Bit Parallel Data Bus Digital Output Bit 0/Configuration Register Input Bit 2  
15  
15  
15  
16  
16  
16  
CR1  
CR0  
Configuration Register Input Bit 1  
Configuration Register Input Bit 0  
17  
17  
17  
Active-Low, End-of-Conversion Output. EOC goes low when a conversion is  
completed. EOC goes high when a conversion is initiated.  
18  
18  
18  
EOC  
Convert Start Input. The rising edge of CONVST ends sample and starts a  
conversion on the captured sample. The ADC is in acquisition mode when  
CONVST is low and CONVST mode = 0.  
19  
19  
19  
CONVST  
Shutdown Input. If SHDN is held high, the entire device enters and stays in a  
low-current state. Contents of the Configuration register are not lost when in  
the shutdown state.  
20  
20  
20  
SHDN  
23, 28, 32, 23, 28, 32, 23, 28, 32,  
38, 43, 49, 38, 43, 49, 38, 43, 49,  
AGNDS  
Signal Ground. Connect all AGND and AGNDS inputs together.  
53, 58  
24, 29, 35, 24, 29, 35, 24, 29, 35,  
46, 52, 57 46, 52, 57 46, 52, 57  
25, 30, 36, 25, 30, 36, 25, 30, 36,  
53, 58  
53, 58  
Analog Supply Input. Bypass AVDD to AGND with a 0.1µF capacitor at each  
AVDD input.  
AV  
DD  
AGND  
Analog Ground. Connect all AGND inputs together.  
45, 51, 56  
45, 51, 56  
45, 51, 56  
26, 55  
26, 55  
26, 55  
RDC_SENSE Reference Buffer Sense Feedback. Connect to RDC plane.  
Reference Buffer Decoupling. Connect all RDC outputs together. Bypass to  
27, 33,  
40,48, 54  
27, 33,  
40,48, 54  
27, 33,  
40,48, 54  
RDC  
AGND with at least an 80µF total capacitance. See the Layout, Grounding,  
and Bypassing section.  
31, 34,  
47, 50  
31, 50  
I.C.  
Internally Connected. Connect to AGND.  
37  
39  
34  
37  
31  
34  
CH0  
CH1  
Channel 0 Analog Input  
Channel 1 Analog Input  
______________________________________________________________________________________ 13  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11057 MAX11058 MAX11059  
(TQFP-EP) (TQFP-EP) (TQFP-EP)  
External Reference Input/Internal Reference Output. Place a 0.1µF capacitor  
from REFIO to AGND.  
41  
41  
41  
REFIO  
42  
44  
39  
42  
44  
47  
37  
39  
42  
44  
47  
50  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Channel 2 Analog Input  
Channel 3 Analog Input  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
Active-Low Write Input. Drive WR low to write to the ADC. Configuration  
registers are loaded on the rising edge of WR.  
61  
62  
61  
62  
61  
62  
WR  
CS  
Active-Low Chip-Select Input. Drive CS low when reading from or writing to  
the ADC.  
Active-Low Read Input. Drive RD low to read from the ADC. Each rising edge  
of RD advances the channel output on the data bus.  
63  
64  
63  
64  
63  
64  
RD  
DB13  
14-Bit Parallel Data Bus Digital Out Bit 13  
Exposed Pad. Internally connected to AGND. Connect to a large ground  
plane to maximize thermal performance. Not intended as an electrical  
connection point.  
EP  
data bus is bidirectional and allows for easy program-  
Detailed Description  
ming of the configuration register. The devices feature a  
reference buffer, which is driven by an internal bandgap  
The MAX11047/MAX11048/MAX11049 and MAX11057/  
MAX11058/MAX11059 are fast, low-power ADCs that  
combine 4, 6, or 8 independent ADC channels in a sin-  
gle IC. Each channel includes simultaneously sampling  
independent T/H circuitry that preserves relative phase  
information between inputs making the devices ideal for  
motor control and power monitoring. The devices are  
available with a 0 to 5V input range that features  
20mA overrange, fault-tolerant inputs. The devices  
operate with a single 4.75V to 5.25V supply. A separate  
2.7V to 5.25V supply for digital circuitry makes the  
devices compatible with low-voltage processors.  
reference circuit (V  
= 4.096V). Drive REFIO with an  
REFIO  
external reference or bypass with a 0.1µF capacitor to  
ground when using the internal reference.  
Analog Inputs  
Track and Hold (T/H)  
To preserve phase information across all channels,  
each input includes a dedicated T/H circuitry. The input  
tracking circuitry provides a 4MHz small-signal band-  
width, enabling the device to digitize high-speed tran-  
sient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Use anti-alias filtering  
to avoid high-frequency signals being aliased into the  
frequency band of interest.  
4/7–MAX1059  
The devices perform conversions for all channels in paral-  
lel by activating independent ADCs. Results are available  
through a high-speed, 20MHz, parallel data bus after a  
conversion time of 3µs following the end of a sample. The  
14 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
of 0V to +V  
, the clamps begin to turn on.  
Input Range and Protection  
The full-scale analog input voltage is a product of the  
reference voltage. For the devices, the input is unipolar  
in the range of:  
AVDD  
Consequently, to obtain the highest accuracy, ensure  
that the input voltage does not exceed the range of 0V  
to +V  
.
AVDD  
To make use of the input clamps, connect a resistor  
5.0  
4.096  
(R ) between the analog input and the voltage source  
S
0 to +V  
x
REFIO  
to limit the voltage at the analog input so that the fault  
current into the devices does not exceed 20mA. Note  
that the voltage at the analog input pin limits to approxi-  
mately 7V during a fault condition so the following  
In external reference mode, drive V  
with a 3.0V to  
REFIO  
4.25V source, resulting in a full-scale input range of  
3.662V to 5.188V, respectively.  
equation can be used to calculate the value of R :  
S
All analog inputs are fault-protected up to 20mA. The  
devices include an input clamping circuit that activates  
when the input voltage at the analog input is above  
V
7V  
FAULT_MAX  
R
=
S
20mA  
(V  
+ 300mV) or below -300mV. The clamp circuit  
AVDD  
where V  
is the maximum voltage that the  
source produces during a fault condition.  
FAULT_MAX  
remains high impedance while the input signal is within  
the range of 0V to +V  
and draws little to no cur-  
AVDD  
rent. However, when the input signal exceeds the range  
PIN  
VOLTAGE  
INPUT  
SIGNAL  
DVDD  
AVDD  
DB15**  
R
S
CH0  
16-/14-BIT ADC  
S/H  
S/H  
CLAMP  
CLAMP  
SOURCE  
DB4  
DB3/CR3  
DB0/CR0  
CH7  
16-/14-BIT ADC  
CONFIGURATION  
REGISTERS  
WRb  
AGNDS  
AGND  
RDb  
CSb  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
EOCb  
MAX11047/MAX11048/MAX11049/  
MAX11057/MAX11058/MAX11059  
INT REF  
DGND  
RDC  
10k  
BANDGAP  
REFERENCE  
REF  
BUF  
EXT REF  
REFIO  
RDC_SENSE*  
*CONNECTED INTERNALLY ON THE TQFN PARTS  
**MAX11047/MAX11048/MAX11049  
MAX11049/MAX11059  
Figure 1. Required Setup for Clamp Circuit  
______________________________________________________________________________________ 15  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
25  
20  
15  
10  
5
25  
R
V
= 1170I  
R
V
= 1170I  
S
S
20  
15  
10  
5
= 5.0V  
= 5.0V  
AVDD  
AVDD  
AT CH_ INPUT  
AT SOURCE  
AT CH_ INPUT  
AT SOURCE  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-30 -20 -10  
0
10  
20  
30  
40  
-4  
-2  
0
2
4
6
8
SIGNAL VOLTAGE AT SOURCE AND CH_ INPUT (V)  
SIGNAL VOLTAGE AT SOURCE AND CH_ INPUT (V)  
Figure 2. Input Clamp Characteristics  
Figure 3. Input Clamp Characteristics (Zoom In)  
Figures 2 and 3 illustrate the clamp circuit voltage-cur-  
CR1 (Reserved)  
rent characteristics for a source impedance R  
=
CR1 must be set to 0.  
S
1280. While the input voltage is within the -300mV to  
CR0 (CONVST Mode)  
CR0 selects the acquisition mode. The POR default = 0.  
+(V + 300mV) range, no current flows in the input  
AVDD  
clamps. Once the input voltage goes beyond this volt-  
age range, the clamps turn on and limit the voltage at  
the input pin.  
0 = CONVST controls the acquisition and conversion.  
Drive CONVST low to start acquisition. The rising edge  
of CONVST begins the conversion.  
Applications Information  
1 = acquisition mode starts as soon as previous con-  
version is complete. The rising edge of CONVST begins  
the conversion.  
Digital Interface  
The bidirectional, parallel, digital interface, CR0–CR3,  
sets the 4-bit configuration register. This interface  
configures the following control signals: chip select  
(CS), read (RD), write (WR), end of conversion (EOC),  
and convert start (CONVST). Figures 6 and 7 and the  
Timing Characteristics in the Electrical Characteristics  
table show the operation of the interface.  
Programming the Configuration Register  
To program the configuration register, bring the CS and  
WR low and apply the required configuration data on  
CR3–CR0 of the bus and then raise WR once to save  
changes.  
CAUTION: The host driving CR3–CR0 must relin-  
quish the bus when the conversion results of the  
ADC are being read.  
DB0–DB15/13, output the 16-/14-bit conversion result.  
All bits are high impedance when RD = 1 or CS = 1.  
CR3 (Int/Ext Reference)  
CR3 selects the internal or external reference. The POR  
default = 0.  
Starting a Conversion  
CONVST initiates conversions. The devices provide two  
acquisition modes set through the configuration regis-  
ter. Allow a quiet time (t ) of 500ns prior to the start of  
Q
conversion to avoid any noise interference during read-  
out or write operations from corrupting a sample.  
0 = internal reference, REFIO internally driven through a  
10kresistor, bypass with 0.1µF capacitor to AGND.  
1 = external reference, drive REFIO with a high quality  
reference.  
4/7–MAX1059  
Table 1. Configuration Register  
CR2 (Output Data Format)  
CR2 selects the output data format. The POR default = 0.  
CR3  
CR2  
CR1  
CR0  
0 = offset binary.  
Int/Ext  
Reference  
Output  
Data Format  
Must be set  
to 0  
CONVST  
Mode  
1 = two’s complement.  
16 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
In default mode (CR0 = 0), drive CONVST low to place  
together. The reference buffer is externally compensat-  
ed and requires at least 10µF on the RDC node for sta-  
bility. For best performance, provide a total of at least  
80µF on the RDC outputs.  
the devices into acquisition mode. All the input switch-  
es are closed and the internal T/H circuits track the  
respective input voltage. Keep the CONVST signal low  
for at least 1µs (t  
) to enable proper settling of the  
ACQ  
Transfer Functions  
Figures 8 and 9 show the transfer functions for all the  
formats and devices. Code transitions occur halfway  
between successive-integer LSB values.  
sampled voltages. On the rising edge of CONVST, the  
switches are opened and the devices begin the conver-  
sion on all the samples in parallel. EOC remains high  
until the conversion is completed.  
In the second mode (CR0 = 1), the devices enter acqui-  
sition mode as soon as the previous conversion is com-  
pleted. CONVST rising edge initiates the next sample  
and conversion sequence. Drive CONVST low for at least  
20ns to be valid.  
Layout, Grounding, and Bypassing  
For best performance, use PCBs with ground planes.  
Ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital lines par-  
allel to one another (especially clock lines), and avoid  
running digital lines underneath the ADC package. A  
single solid GND plane configuration with digital signals  
routed from one direction and analog signals from the  
other provides the best performance. Connect DGND,  
AGND, and AGNDS pins on the devices to this ground  
plane. Keep the ground return to the power supply for  
this ground low impedance and as short as possible for  
noise-free operation.  
Provide adequate time for acquisition and the requisite  
quiet time in both modes to achieve accurate sampling  
and maximum performance of the devices.  
Reading Conversion Results  
The CS and RD are active-low, digital inputs that control  
the readout through the 16-/14-bit, parallel, 20MHz data  
bus (D0–D15/13). After EOC transitions low, read the  
conversion data by driving CS and RD low. Each low  
period of RD presents the next channel’s result. When  
CS or RD are high, the data bus is high impedance. CS  
may be driven high between individual channel read-  
outs or left low during the entire 8-channel readout.  
To achieve the highest performance, connect all the  
RDC pins 22, 28, 35, 43, and 49 for the TQFN package  
or pins 27, 33, 40, 48, and 54 for the TQFP package to  
a local RDC plane on the PCB. In addition, on the TQFP  
package, the RDC_SENSE pins 26 and 55 should be  
directly connected to this RDC plane as well. Bypass  
the RDC outputs with a total of at least 80µF of capaci-  
tance. For example, if two capacitors are used, place  
two 47µF, 10V X5R capacitors in 1210 case size as  
close as possible to pins 22 and 49 (TQFN), or pins 27  
and 54 (TQFP). Alternatively, if four capacitors are  
used, place four 22µF, 10V X5R capacitors in 1210  
case size as close as possible to pins 22, 28, 43, and  
49 (TQFN), or pins 27, 33, 48, and 54 (TQFP). Ensure  
that each capacitor is connected directly into the GND  
plane with an independent via.  
Reference  
Internal Reference  
The devices feature a precision, low-drift, internal  
bandgap reference. Bypass REFIO with a 0.1µF capaci-  
tor to AGND to reduce noise. The REFIO output voltage  
may be used as a reference for other circuits. The output  
impedance of REFIO is 10k. Drive only high-impedance  
circuits or buffer externally when using REFIO to drive  
external circuitry.  
External Reference  
Set the configuration register to disable the internal ref-  
erence and drive REFIO with a high-quality external ref-  
erence. To avoid signal degradation, ensure that the  
integrated reference noise applied to REFIO is less  
than 10µV in the bandwidth of up to 50kHz.  
In cases where Y5U or Z5U ceramics are used, select  
higher voltage rating capacitors to compensate for the  
high-voltage coefficient of these ceramic capacitors,  
thus ensuring that at least 80µF of capacitance is on  
the RDC plane when the plane is driven to 4.096V by  
the internal reference buffer. For example, at 4.096V, a  
22µF X5R ceramic capacitor with a 10V rating diminish-  
es to only 20µF, whereas the same capacitor in Y5U  
ceramic at 4.096V decreases to about 13µF. However,  
a 22µF Y5U ceramic capacitor with a 25V rating capac-  
itor is approximately 20µF at 4.096V.  
Reference Buffer  
The devices have a built- in reference buffer to provide  
a low-impedance reference source to the SAR convert-  
ers. This buffer is used in both internal and external ref-  
erence modes. The internal reference buffer output  
feeds five RDC outputs. Connect all RDC outputs  
______________________________________________________________________________________ 17  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Bypass AVDD and DVDD to the ground plane with  
0.1µF ceramic chip capacitors on each pin as close as  
possible to the device to minimize parasitic inductance.  
Add at least one bulk 10µF decoupling capacitor to  
AVDD and DVDD per PCB. Interconnect all of the  
AVDD inputs and DVDD inputs using two solid power  
planes. For best performance, bring the AVDD power  
plane in on the analog interface side of the devices and  
the DVDD power plane from the digital interface side of  
the devices.  
For sampling periods near minimum (1µs) use a 1nF  
C0G ceramic chip capacitor between each of the chan-  
nel inputs to the ground plane as close as possible to the  
devices. This capacitor reduces the inductance seen by  
the sampling circuitry and reduces the voltage transient  
seen by the input source circuit.  
CS  
(USER SUPPLIED)  
t
5
t
t
4
3
WR  
(USER SUPPLIED)  
t
7
t
6
CONFIGURATION  
REGISTER  
CR0–CR3  
(USER SUPPLIED)  
Figure 4. Programming Configuration-Register Timing Requirements  
CS  
(USER SUPPLIED)  
t
10  
t
t
t
8
9
11  
RD  
(USER SUPPLIED)  
t
13  
t
12  
4/7–MAX1059  
S
n
S
n + 1  
DB0–DB15  
Figure 5. Readout Timing Requirements  
18 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
SAMPLE  
t
t
CON  
ACQ  
CONVST  
EOC  
t
1
t
O
t
Q
CS  
RD  
DB0–DB15  
S
S
S
S
7
0
1
6
Figure 6. Conversion Timing Diagram (CR0 = 0)  
SAMPLE  
t
t
CON  
ACQ  
CONVST  
EOC  
t
2
t
O
t
Q
CS  
RD  
DB0–DB15  
S
S
S
S
7
0
1
6
Figure 7. Conversion Timing Diagram (CR0 = 1)  
______________________________________________________________________________________ 19  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
FS  
65536  
FULL-SCALE  
TRANSITION  
FS  
16384  
FULL-SCALE  
TRANSITION  
7FFF  
7FFE  
1FFF  
1FFE  
V
LSB  
=
V
LSB  
=
0001  
0000  
FFFF  
FFFE  
0001  
0000  
3FFF  
3FFE  
8001  
8000  
2001  
2000  
0
FS/2  
INPUT VOLTAGE (LSB)  
0
FS/2  
INPUT VOLTAGE (LSB)  
+FS  
+FS  
V
x 65536  
5
4.096  
5 x V  
V
x 16384  
5
4.096  
5 x V  
REF  
IN  
REF  
IN  
OUTPUT CODE =  
- 32768, FS =  
OUTPUT CODE =  
- 8192, FS =  
4.096  
4.096  
V
REFIO  
x
V
REFIO  
x
Figure 8a. Two’s Complement Transfer Function for 16-Bit  
Devices  
Figure 8b. Two’s Complement Transfer Function for 14-Bit  
Devices  
FS  
65536  
FULL-SCALE  
TRANSITION  
FS  
16384  
FULL-SCALE  
TRANSITION  
FFFF  
FFFE  
3FFF  
3FFE  
V
LSB  
=
V
LSB  
=
8001  
8000  
7FFF  
7FFE  
2001  
2000  
1FFF  
1FFE  
0001  
0000  
0001  
0000  
4/7–MAX1059  
0
FS/2  
+FS  
0
FS/2  
+FS  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
V
x 65536  
5
4.096  
5 x V  
4.096  
V
x 16384  
5
4.096  
5 x V  
REF  
4.096  
IN  
REF  
IN  
OUTPUT CODE =  
,
FS =  
OUTPUT CODE =  
,
FS =  
V
x
V
x
REFIO  
REFIO  
Figure 9a. Offset-Binary Transfer Function for 16-Bit Devices  
Figure 9b. Offset-Binary Transfer Function for 14-Bit Devices  
20 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
DSP Motor Control  
Figure 11 shows a typical DSP motor control application.  
Typical Application Circuits  
Power-Grid Protection  
Figure 10 shows a typical power-grid protection application.  
VOLTAGE  
TRANSFORMER  
PHASE 1  
OPT  
2.5V  
ADC  
OPT  
ADC  
CURRENT  
TRANSFORMER  
2.5V  
VN  
IN  
ADC  
ADC  
NEUTRAL  
LOAD 1  
MAX11049  
MAX11059  
LOAD 2  
LOAD 3  
I3  
ADC  
V3  
ADC  
I2  
PHASE 2  
V2  
ADC  
ADC  
PHASE 3  
Figure 10. Power-Grid Protection  
______________________________________________________________________________________ 21  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
DSP-BASED DIGITAL  
PROCESSING ENGINE  
MAX1104x  
MAX1105x  
16-/14-BIT  
ADCs  
IGBT CURRENT DRIVERS  
16-/14-BIT  
ADCs  
16-/14-BIT  
ADCs  
16-/14-BIT  
ADCs  
16-/14-BIT  
ADCs  
I
PHASE1  
I
PHASE3  
I
PHASE2  
3-PHASE ELECTRIC MOTOR  
POSITION  
ENCODER  
Figure 11. DSP Motor Control  
4/7–MAX1059  
22 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
complement mode and 0x0000 to 0x0001 in offset  
binary mode. For the devices, the analog input voltage  
to produce these code transitions is measured and the  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. For these devices, this  
straight line is a line drawn between the end points of  
the transfer function, once offset and gain errors have  
been nullified.  
gain error is computed by subtracting (5/4.096) x V  
REF  
x (65,534/65,536) or (5/4.096) x V  
x (16382/16384),  
REF  
respectively, from this measurement.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, SNR is the ratio of the full-scale analog input  
(RMS value) to the RMS quantization error (residual  
error). The ideal, theoretical minimum analog-to-digital  
noise is caused by quantization noise error only and  
results directly from the ADC’s resolution (N bits):  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. For these devices, the DNL of  
each digital output code is measured and the worst-case  
value is reported in the Electrical Characteristics table. A  
DNL error specification of greater than -1 LSB guaran-  
tees no missing codes and a monotonic transfer function  
for an SAR ADC. For example, -0.9 LSB guarantees no  
missing code while -1.1 LSB results in missing code.  
SNR = (6.02 x N + 1.76)dB  
where N = 16/14 bits. In reality, there are other noise  
sources besides quantization noise: thermal noise, ref-  
erence noise, clock jitter, etc. SNR is computed by tak-  
ing the ratio of the RMS signal to the RMS noise, which  
includes all spectral components not including the fun-  
damental, the first five harmonics, and the DC offset.  
Offset Error  
For the MAX11047/MAX11048/MAX11049, the offset  
error is defined at code transition 0x0000 to 0x0001 in  
offset binary encoding and 0x8000 to 0x8001 for two’s  
complement encoding. For the MAX11057/MAX11058/  
MAX11059, the offset error is defined at code transition  
0x0000 to 0x0001 in offset binary encoding and 0x2000  
to 0x2001 for two’s complement encoding. The offset  
code transitions should occur with an analog input volt-  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is the ratio of the fundamental input frequency’s  
RMS amplitude to the RMS equivalent of all the other  
ADC output signals:  
Signal  
(Noise + Distortion)  
RMS  
age of exactly 0.5 x (5/4.096) x V  
/65,536 above  
REF  
SINAD(dB) = 10 × log  
GND for 16-bit devices or 0.5 x (5/4.096) x V  
/16384  
REF  
RMS  
above GND for 14-bit devices. The offset error is  
defined as the deviation between the actual analog  
input voltage required to produce the offset code transi-  
tion and the ideal analog input of 0.5 x (5/4.096) x  
Effective Number of Bits (ENOB)  
The ENOB indicates the global accuracy of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. With an  
input range equal to the full-scale range of the ADC,  
calculate the ENOB as follows:  
V
/65,536 above GND for 16-bit devices or 0.5 x  
REF  
(5/4.096) x V  
/16384 above GND for 14-bit devices,  
REF  
expressed in LSBs.  
Gain Error  
SINAD 1.76  
Gain error is defined as the difference between the  
change in analog input voltage required to produce a  
top code transition minus a bottom code transition,  
subtracted from the ideal change in analog input volt-  
ENOB =  
6.02  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS of the first five harmonics of  
the input signal to the fundamental itself. This is  
expressed as:  
age on (5/4.096) x V  
x (65,534/65,536) for 16-bit or  
x (16382/16384) for 14-bit devices.  
REF  
(5/4.096) x V  
REF  
For the devices, top code transition is 0x7FFE to  
0x7FFF in two’s complement mode and 0xFFFE to  
0xFFFF in offset binary mode. The bottom code transi-  
tion is 0x8000 and 0x8001 in two’s complement mode  
and 0x0000 and 0x0001 in offset binary mode. For the  
MAX11057/MAX11058/MAX11059, top code transition  
is 0x1FFE to 0x1FFF in two’s complement mode and  
0x3FFE to 0x3FFF in offset binary mode. The bottom  
code transition is 0x2000 and 0x2001 in two’s  
2
2
2
2
V2 + V3 + V4 + V5  
THD = 20 × log  
V
1
where V is the fundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
1
2
5
______________________________________________________________________________________ 23  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Spurious-Free Dynamic Range (SFDR)  
Full-Power Bandwidth  
SFDR is the ratio of the RMS amplitude of the funda-  
mental (maximum signal component) to the RMS value  
of the next-largest frequency component.  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as full-  
power input bandwidth frequency.  
Aperture Delay  
Aperture delay (t ) is the time delay from the sampling  
AD  
clock edge to the instant when an actual sample is taken.  
Chip Information  
Aperture Jitter  
PROCESS: BiCMOS  
Aperture Jitter (t ) is the sample-to-sample variation in  
AJ  
aperture delay.  
Channel-to-Channel Isolation  
Channel-to-channel isolation indicates how well each  
analog input is isolated from the other channels. Channel-  
to-channel isolation is measured by applying DC to chan-  
nels 1 to 7, while a -0.4dBFS sine wave at 60Hz is applied  
to channel 0. A 10ksps FFT is taken for channel 0 and  
channel 1. Channel-to-channel isolation is expressed in  
dB as the power ratio of the two 60Hz magnitudes.  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in a manner that ensures that the signal’s slew  
rate does not limit the ADC’s performance. The input  
frequency is then swept up to the point where the  
amplitude of the digitized conversion result has  
decreased 3dB.  
56 TQFN-EP  
64 TQFP-EP  
T5688+2  
C64E+6  
21-0135  
21-0084  
90-0046  
90-0328  
4/7–MAX1059  
24 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
4/7–MAX1059  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
12/09  
6/10  
Initial release  
Released MAX11047, MAX11048, and MAX11049 in TQFP packages  
1–20  
Released MAX11057, MAX11058, and MAX11059. Updated Electrical  
Characteristics and Typical Operating Characteristics.  
2
1/11  
1–8  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX11059ECB+

4-/6-/8-Channel, 16-/14-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX1106

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1106-MAX1107

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX11060GUU

24-/16-Bit, 4-Channel, Simultaneous-Sampling, Cascadable, Sigma-Delta ADCs
MAXIM

MAX11060GUU+

24-/16-Bit, 4-Channel, Simultaneous-Sampling, 24-/16-Bit, 4-Channel, Simultaneous-Sampling,
MAXIM

MAX11060GUU+T

暂无描述
MAXIM

MAX11068

12-Channel, High-Voltage Sensor, Smart Data-Acquisition Interface
MAXIM

MAX11068GUU+

12-Channel, High-Voltage Sensor, Smart Data-Acquisition Interface
MAXIM

MAX11068GUU/V+

12-Channel, High-Voltage Sensor, Smart Data-Acquisition Interface
MAXIM

MAX1106CUB

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1106CUB+

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO10, UMAX-10
MAXIM

MAX1106CUB-T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO10, UMAX-10
MAXIM