MAX1040_08 [MAXIM]

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports; 10位,多通道ADC / DAC,带有FIFO ,温度传感器和GPIO端口
MAX1040_08
型号: MAX1040_08
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
10位,多通道ADC / DAC,带有FIFO ,温度传感器和GPIO端口

传感器 温度传感器 先进先出芯片
文件: 总39页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3294; Rev 3; 3/08  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
General Description  
Features  
10-Bit, 225ksps ADC  
The MAX1040/MAX1042/MAX1046/MAX1048 integrate a  
multichannel, 10-bit, analog-to-digital converter (ADC)  
and a quad, 10-bit, digital-to-analog converter (DAC) in a  
single IC. The devices also include a temperature sensor  
and configurable general-purpose I/O ports (GPIOs) with  
a 25MHz SPI™-/QSPI™-/MICROWIRE™-compatible seri-  
al interface. The ADC is available in a four or an eight  
input-channel version. The four DAC outputs settle within  
2.0µs, and the ADC has a 225ksps conversion rate.  
Analog Multiplexer with True-Differential  
Track/Hold (T/H)  
Eight Single-Ended Channels or Four  
Differential  
Channels (Unipolar or Bipolar)  
(MAX1040/MAX1042)  
Four Single-Ended Channels or Two Differential  
Channels (Unipolar or Bipolar)  
(MAX1046/MAX1048)  
Excellent Accuracy: 0ꢀ5 ꢁSB ꢂIꢁ, 0ꢀ5 ꢁSB  
DIꢁ, Io Missing Codes Over Temperature  
All devices include an internal reference (4.096V) provid-  
ing a well-regulated, low-noise reference for both the  
ADC and DAC. Programmable reference modes for the  
ADC and DAC allow the use of an internal reference, an  
external reference, or a combination of both. Features  
such as an internal 1ꢀC accurate temperature sensor,  
FIFO, scan modes, programmable internal or external  
clock modes, data averaging, and AutoShutdown™ allow  
users to minimize both power consumption and proces-  
sor requirements. The low glitch energy (4nVs) and low  
digital feedthrough (0.5nVs) of the integrated quad  
DACs make these devices ideal for digital control of fast-  
response closed-loop systems.  
10-Bit, Quad, 2µs Settling DAC  
Ultra-ꢁow-Glitch Energy (4nVs)  
Power-Up Options from Zero Scale or Full Scale  
Excellent Accuracy: 0ꢀ5 ꢁSB ꢂIꢁ  
ꢂnternal Reference or External Single-Ended/  
Differential Reference  
ꢂnternal Reference Voltage (4ꢀ096V)  
ꢂnternal 1ꢃC Accurate Temperature Sensor  
On-Chip FꢂFO Capable of Storing 16 ADC  
Conversion Results and One Temperature Result  
On-Chip Channel-Scan Mode and ꢂnternal  
Data-Averaging Features  
The devices are guaranteed to operate with a supply volt-  
age from +4.75V to +5.25V. These devices consume  
2.5mA at 225ksps throughput, only 22µA at 1ksps  
throughput, and under 0.2µA in the shutdown mode. The  
MAX1042/MAX1048 offer four GPIOs that can be config-  
ured as inputs or outputs.  
Analog Single-Supply Operation: +4ꢀ75V to +5ꢀ25V  
Digital Supply: +2ꢀ7V to AV  
DD  
25MHz, SPꢂ/QSPꢂ/MꢂCROWꢂRE Serial ꢂnterface  
AutoShutdown Between Conversions  
ꢁow-Power ADC  
2ꢀ5mA at 225ksps  
22µA at 1ksps  
The MAX1040/MAX1042/MAX1046/MAX1048 are avail-  
able in 36-pin thin QFN packages. All devices are speci-  
fied over the -40ꢀC to +85ꢀC temperature range.  
0ꢀ2µA at Shutdown  
ꢁow-Power DAC: 1ꢀ5mA  
Applications  
Evaluation Kit Available (Order MAX1258EVKꢂT)  
Closed-Loop Controls for Optical Components  
and Base Stations  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
System Supervision and Control  
Data-Acquisition Systems  
Pin Configurations appear at end of data sheetꢀ  
Ordering Information/Selector Guide  
REF  
VOꢁTAGE (V)  
AIAꢁOG SUPPꢁY RESOꢁUTꢂOI  
ADC  
CHAIIEꢁS  
DAC  
CHAIIEꢁS  
PART  
PꢂI-PACKAGE  
GPꢂOs  
VOꢁTAGE (V)  
BꢂTS**  
MAX1040BETX  
MAX1042BETX  
MAX1046BETX  
MAX1048BETX  
36 Thin QFN-EP*  
36 Thin QFN-EP*  
36 Thin QFN-EP*  
36 Thin QFN-EP*  
4.096  
4.096  
4.096  
4.096  
4.75 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
10  
10  
10  
10  
8
8
4
4
4
4
4
4
0
4
0
4
Iote: All devices are specified over the -40ꢀC to +85ꢀC operating temperature range.  
*EP = Exposed pad.  
**Number of resolution bits refers to both DAC and ADC.  
________________________________________________________________ Maxim ꢂntegrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at wwwꢀmaxim-icꢀcomꢀ  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
ABSOꢁUTE MAXꢂMUM RATꢂIGS  
AV  
to AGND .........................................................-0.3V to +6V  
Maximum Current into OUT_.............................................100mA  
DD  
DGND to AGND.....................................................-0.3V to +0.3V  
DV to AV .......................................................-3.0V to +0.3V  
Digital Inputs to DGND.............................................-0.3V to +6V  
Continuous Power Dissipation (T = +70ꢀC)  
36-Pin Thin QFN (6mm x 6mm)  
(derate 26.3mW/ꢀC above +70ꢀC)..........................2105.3mW  
Operating Temperature Range ...........................-40ꢀC to +85ꢀC  
Storage Temperature Range.............................-60ꢀC to +150ꢀC  
Junction Temperature......................................................+150ꢀC  
Lead Temperature (soldering, 10s) .................................+300ꢀC  
A
DD  
DD  
Digital Outputs to DGND .........................-0.3V to (DV + 0.3V)  
DD  
Analog Inputs, Analog Outputs and REF_  
to AGND...............................................-0.3V to (AV + 0.3V)  
DD  
Maximum Current into Any Pin (except AGND, DGND, AV  
,
DD  
DV , and OUT_) ...........................................................50mA  
DD  
Iote: If the package power dissipation is not exceeded, one output at a time can be shorted to AV , DV , AGND, or DGND  
DD  
DD  
indefinitely.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS  
(AV  
= DV  
= 4.75V to 5.25V, external reference V  
= 4.096V, f = 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless  
CLK A  
DD  
DD  
REF  
otherwise noted. Typical values are at AV  
= DV  
= 5V, T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
ADC  
MꢂI  
TYP  
MAX  
UIꢂTS  
DC ACCURACY (Iote 1)  
Resolution  
10  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
0.5  
1.0  
1
DNL  
LSB  
0.25  
0.025  
1.4  
2.0  
2.0  
LSB  
Gain Error  
(Note 2)  
LSB  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
ppm/ꢀC  
LSB  
0.1  
DYIAMꢂC SPECꢂFꢂCATꢂOIS (10kHz sine-wave input, V = 4ꢀ096V  
225ksps, f = 3ꢀ6MHz)  
CꢁK  
ꢂI  
P-P,  
Signal-to-Noise Plus Distortion  
SINAD  
61  
dB  
Total Harmonic Distortion  
(Up to the Fifth Harmonic)  
THD  
-70  
dBc  
26/MAX1048  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Linear Bandwidth  
SFDR  
IMD  
66  
72  
100  
1
dBc  
dBc  
kHz  
f
= 9.9kHz, f  
= 10.2kHz  
IN1  
IN2  
SINAD > 70dB  
-3dB point  
Full-Power Bandwidth  
MHz  
COIVERSꢂOI RATE (Iote 3)  
External reference  
0.8  
µs  
Conversion  
clock  
Power-Up Time  
t
PU  
Internal reference (Note 4)  
218  
cycles  
2
_______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 4.75V to 5.25V, external reference V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless  
DD  
DD  
REF  
CLK A  
otherwise noted. Typical values are at AV  
= DV  
= 5V, T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
Acquisition Time  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
MAX  
UIꢂTS  
t
(Note 5)  
0.6  
µs  
ACQ  
Internally clocked  
5.5  
Conversion Time  
t
µs  
CONV  
Externally clocked  
3.6  
0.1  
40  
External Clock Frequency  
Duty Cycle  
f
Externally clocked conversion (Note 5)  
3.6  
60  
MHz  
%
CLK  
Aperture Delay  
30  
ns  
Aperture Jitter  
< 50  
ps  
AIAꢁOG ꢂIPUTS  
Unipolar  
Bipolar  
0
V
REF  
Input Voltage Range (Note 6)  
V
-V  
/ 2  
+V  
/ 2  
REF  
REF  
1
Input Leakage Current  
Input Capacitance  
0.01  
24  
µA  
pF  
ꢂITERIAꢁ TEMPERATURE SEISOR  
T
T
= +25ꢀC  
0.7  
1.0  
1/8  
A
Measurement Error (Notes 5, 7)  
ꢀC  
= T  
to T  
3.0  
A
MIN  
MAX  
Temperature Resolution  
ꢂITERIAꢁ REFEREICE  
REF1 Output Voltage  
ꢀC/LSB  
(Note 8)  
V
4.066  
4.096  
30  
4.126  
REF1 Voltage Temperature  
Coefficient  
TC  
ppm/ꢀC  
REF  
REF1 Output Impedance  
REF1 Short-Circuit Current  
EXTERIAꢁ REFEREICE  
6.5  
kΩ  
mA  
V
= 4.096V  
0.63  
REF  
AV  
0.05  
+
DD  
REF1 Input Voltage Range  
V
V
REF mode 11 (Note 4)  
1
V
V
REF1  
REF2  
AV  
+
DD  
REF mode 01  
REF mode 11  
1
0
REF2 Input Voltage Range  
(Note 4)  
0.05  
1
80  
1
V
= 4.096V, f  
= 225ksps  
SAMPLE  
40  
REF  
REF1 Input Current (Note 9)  
REF2 Input Current  
I
I
µA  
µA  
REF1  
REF2  
Acquisition between conversions  
= 4.096V, f = 225ksps  
0.01  
40  
V
80  
1
REF  
SAMPLE  
Acquisition between conversions  
0.01  
_______________________________________________________________________________________  
3
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 4.75V to 5.25V, external reference V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless  
DD  
DD  
REF  
CLK A  
otherwise noted. Typical values are at AV  
= DV  
= 5V, T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
DAC  
MꢂI  
TYP  
MAX  
UIꢂTS  
DC ACCURACY (Iote 10)  
Resolution  
10  
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
1
DNL  
Guaranteed monotonic  
0.5  
10  
V
3
10  
1.25  
8
OS  
ppm of  
FS/ꢀC  
Offset-Error Drift  
Gain Error  
GE  
10  
LSB  
ppm of  
FS/ꢀC  
Gain Temperature Coefficient  
DAC OUTPUT  
AV  
0.02  
-
-
DD  
No load  
0.02  
0.1  
Output Voltage Range  
V
AV  
DD  
10kΩ load to either rail  
0.1  
DC Output Impedance  
Capacitive Load  
0.5  
Ω
(Note 11)  
1
nF  
AV = 4.75V, V  
DD  
gain error < 2%  
= 4.096V,  
REF  
Resistive Load to AGND  
R
500  
Ω
L
From power-down mode, AV  
From power-down mode, AV  
= 5V  
25  
21  
1
DD  
Wake-Up Time (Note 12)  
1kΩ Output Termination  
100kΩ Output Termination  
µs  
kΩ  
kΩ  
= 2.7V  
DD  
Programmed in power-down mode  
At wake-up or programmed in  
power-down mode  
100  
DYIAMꢂC PERFORMAICE (Iotes 5, 13)  
Output-Voltage Slew Rate  
Output-Voltage Settling Time  
Digital Feedthrough  
SR  
Positive and negative  
3
V/µs  
µs  
26/MAX1048  
t
To 1 LSB, 400 - C00 hex (Note 7)  
Code 0, all digital inputs from 0 to DV  
2
5
S
0.5  
nVs  
DD  
Major Code Transition Glitch  
Impulse  
Between codes 2047 and 2048  
4
nVs  
From V  
660  
720  
260  
320  
REF  
Output Noise (0.1Hz to 50MHz)  
Output Noise (0.1Hz to 500kHz)  
µV  
µV  
P-P  
P-P  
Using internal reference  
From V  
REF  
Using internal reference  
DAC-to-DAC Transition  
Crosstalk  
0.5  
nVs  
4
_______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 4.75V to 5.25V, external reference V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless  
DD  
DD  
REF  
CLK A  
otherwise noted. Typical values are at AV  
= DV  
= 5V, T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
MAX  
UIꢂTS  
ꢂITERIAꢁ REFEREICE  
REF1 Output Voltage  
V
4.066  
4.096  
30  
4.126  
REF1 Temperature Coefficient  
REF1 Short-Circuit Current  
EXTERIAꢁ REFEREICE ꢂIPUT  
REF1 Input Voltage Range  
REF1 Input Impedance  
TC  
ppm/ꢀC  
mA  
REF  
V
= 4.096V  
0.63  
REF  
V
R
REF modes 01, 10, and 11 (Note 4)  
0.7  
70  
AV  
V
REF1  
DD  
100  
130  
kΩ  
REF1  
DꢂGꢂTAꢁ ꢂITERFACE  
DꢂGꢂTAꢁ ꢂIPUTS (SCꢁK, DꢂI, CS, CNVST, LDAC)  
DV = 2.7V to 5.25V  
2.4  
2.0  
DD  
Input-Voltage High  
V
V
V
IH  
DV = 3.6V to 5.25V  
DD  
DV = 2.7V to 3.6V  
DD  
0.8  
0.6  
0.5  
10  
Input-Voltage Low  
V
DV = 3V to 3.6V  
DD  
IL  
DV = 2.7V to 3V  
DD  
Input Leakage Current  
Input Capacitance  
I
0.01  
15  
µA  
pF  
L
C
IN  
DꢂGꢂTAꢁ OUTPUT (DOUT) (Iote 14)  
Output-Voltage Low  
V
I
I
= 2mA  
0.4  
10  
V
V
OL  
SINK  
DV  
0.5  
-
-
DD  
Output-Voltage High  
V
= 2mA  
= 2mA  
OH  
SOURCE  
Tri-State Leakage Current  
µA  
pF  
Tri-State Output Capacitance  
DꢂGꢂTAꢁ OUTPUT (EOC) (Iote 14)  
Output-Voltage Low  
C
15  
15  
OUT  
V
I
I
= 2mA  
0.4  
10  
V
V
OL  
SINK  
DV  
0.5  
DD  
Output-Voltage High  
V
OH  
SOURCE  
Tri-State Leakage Current  
µA  
pF  
Tri-State Output Capacitance  
C
OUT  
DꢂGꢂTAꢁ OUTPUTS (GPꢂO_) (Iote 14)  
I
I
= 2mA  
0.4  
0.8  
SINK  
GPIOC_ Output-Voltage Low  
V
= 4mA  
SINK  
DV  
0.5  
-
-
DD  
GPIOC_ Output-Voltage High  
GPIOA_ Output-Voltage Low  
GPIOA_ Output-Voltage High  
Tri-State Leakage Current  
I
I
I
= 2mA  
V
V
V
SOURCE  
= 15mA  
0.8  
10  
SINK  
DV  
0.8  
DD  
= 15mA  
SOURCE  
µA  
pF  
Tri-State Output Capacitance  
C
15  
OUT  
_______________________________________________________________________________________  
5
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 4.75V to 5.25V, external reference V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless  
DD  
DD  
REF  
CLK A  
otherwise noted. Typical values are at AV  
= DV  
= 5V, T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
MAX  
UIꢂTS  
POWER REQUꢂREMEITS (Iote 15)  
Digital Positive-Supply Voltage  
Digital Positive-Supply Current  
Analog Positive-Supply Voltage  
DV  
2.7  
AV  
V
µA  
mA  
V
DD  
DD  
Idle, all blocks shut down  
0.2  
1
4
DI  
AV  
DD  
Only ADC on, external reference  
4.75  
5.25  
2
DD  
Idle, all blocks shut down  
0.2  
2.8  
2.6  
1.5  
-80  
µA  
f
f
= 225ksps  
= 100ksps  
4.2  
SAMPLE  
SAMPLE  
Only ADC on,  
external reference  
Analog Positive-Supply Current  
A
IDD  
mA  
All DACs on, no load, internal reference  
AV = 4.75V  
4.0  
REF1 Positive-Supply Rejection  
DAC Positive-Supply Rejection  
ADC Positive-Supply Rejection  
PSRR  
PSRD  
PSRA  
dB  
mV  
mV  
DD  
Output code = FFFhex, AV = 4.75V to  
DD  
5.25V  
0.1  
0.5  
0.5  
Full-scale input, AV = 4.75V to 5.25V  
DD  
0.06  
TꢂMꢂIG CHARACTERꢂSTꢂCS (Figures 6–13)  
SCLK Clock Period  
t
40  
16  
16  
ns  
ns  
ns  
CP  
CH  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
t
40/60 duty cycle  
60/40 duty cycle  
t
CL  
GPIO Output Rise/Fall After  
CS Rise  
t
C
= 20pF  
100  
ns  
GOD  
LOAD  
GPIO Input Setup Before CS Fall  
LDAC Pulse Width  
t
0
ns  
ns  
GSU  
t
20  
1.8  
10  
1.8  
10  
10  
LDACPWL  
C
C
C
C
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
12.0  
40  
LOAD  
LOAD  
LOAD  
LOAD  
SCLK Fall to DOUT Transition  
(Note 16)  
t
t
ns  
DOT  
12.0  
40  
SCLK Rise to DOUT Transition  
(Notes 16, 17)  
ns  
ns  
ns  
DOT  
CS Fall to SCLK Fall Setup Time  
t
CSS  
CSH  
26/MAX1048  
SCLK Fall to CS Rise Setup  
Time  
t
0
2000  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
CS Pulse-Width High  
t
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
DS  
t
DH  
t
50  
CSPWH  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
EOC Fall to CS Fall  
t
C
C
= 20pF  
= 20pF  
25  
DOD  
LOAD  
LOAD  
t
1.5  
30  
25.0  
DOE  
t
RDS  
6
_______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(AV  
= DV  
= 4.75V to 5.25V, external reference V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), T = -40ꢀC to +85ꢀC, unless  
DD  
DD  
REF  
CLK A  
otherwise noted. Typical values are at AV  
= DV  
= 5V, T = +25ꢀC. Outputs are unloaded, unless otherwise noted.)  
DD A  
DD  
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
MꢂI  
TYP  
MAX  
UIꢂTS  
CKSEL = 01 (temp sense) or CKSEL =  
10 (temp sense), internal reference on  
65  
CKSEL = 01 (temp sense) or CKSEL =  
10 (temp sense), internal reference  
initially off  
140  
CS or CNVST Rise to EOC  
Fall—Internally Clocked  
Conversion Time  
t
µs  
DOV  
CKSEL = 01 (voltage conversion)  
9
9
CKSEL = 10 (voltage conversion),  
internal reference on  
CKSEL = 10 (voltage conversion),  
internal reference initially off  
80  
CKSEL = 00, CKSEL = 01 (temp sense)  
CKSEL = 01 (voltage conversion)  
40  
ns  
µs  
CNVST Pulse Width  
t
CSW  
1.4  
Iote 1: Tested at DV  
= AV  
= 5.25V.  
DD  
DD  
Iote 2: Offset nulled.  
Iote 3: No bus activity during conversion. Conversion time is defined as the number of conversion clock cycles multiplied by the  
clock period.  
Iote 4: See Table 5 for reference-mode details.  
Iote 5: Not production tested. Guaranteed by design.  
Iote 6: See the ADC/DAC References section.  
Iote 7: Fast automated test, excludes self-heating effects.  
Iote 8: Specified over the -40ꢀC to +85ꢀC temperature range.  
Iote 9: REFSEL[1:0] = 00 or when DACs are not powered up.  
Iote 10: DAC linearity, gain, and offset measurements are made between codes 115 and 3981.  
Iote 11: The DAC buffers are guaranteed by design to be stable with a 1nF load.  
Iote 12: Time required by the DAC output to power up and settle within 1 LSB in the external reference mode.  
Iote 13: All DAC dynamic specifications are valid for a load of 100pF and 10kΩ.  
Iote 14: Only one digital output (either DOUT, EOC, or the GPIOs) can be indefinitely shorted to either supply at one time.  
Iote 15: All digital inputs at either DV  
or DGND. DV  
should not exceed AV  
.
DD  
DD  
DD  
Iote 16: See the Reset Register section and Table 9 for details on programming the SLOW bit.  
Iote 17: Clock mode 11 only.  
_______________________________________________________________________________________  
7
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics  
(AV  
= DV  
= 5V, external V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor  
LOAD  
DD  
DD  
REF  
CLK  
SAMPLE  
at REF, T = +25ꢀC, unless otherwise noted.)  
A
ANALOG SHUTDOWN CURRENT  
vs. TEMPERATURE  
ANALOG SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ADC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
0.4  
0.5  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-40  
-15  
10  
35  
60  
85  
4.750  
4.875  
5.000  
5.125  
5.250  
0
256  
512  
768  
1024  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OUTPUT CODE  
ADC OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC OFFSET ERROR  
vs. TEMPERATURE  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.5  
0
-0.1  
-0.2  
-0.3  
-0.5  
-1.0  
4.750  
4.875  
5.000  
5.125  
5.250  
-40  
-15  
10  
35  
60  
85  
0
256  
512  
768  
1024  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT CODE  
ADC GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC GAIN ERROR  
vs. TEMPERATURE  
ADC EXTERNAL REFERENCE  
INPUT CURRENT vs. SAMPLING RATE  
26/MAX1048  
60  
50  
40  
30  
20  
10  
0
0.50  
0.25  
0
1.0  
0.5  
0
-0.25  
-0.5  
-1.0  
-0.50  
4.750  
4.875  
5.000  
5.125  
5.250  
-40  
-15  
10  
35  
60  
85  
0
50  
100  
150  
200  
250  
300  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SAMPLING RATE (ksps)  
8
_______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 5V, external V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor  
LOAD  
DD  
DD  
REF  
CLK  
SAMPLE  
at REF, T = +25ꢀC, unless otherwise noted.)  
A
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
ANALOG SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
vs. SAMPLING RATE  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
3.0  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.88  
-40  
-15  
10  
35  
60  
85  
0
50  
100  
150  
200  
250  
300  
4.750  
4.875  
5.000  
5.125  
5.250  
TEMPERATURE (°C)  
SAMPLING RATE (ksps)  
SUPPLY VOLTAGE (V)  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
DAC FULL-SCALE ERROR  
vs. ANALOG SUPPLY VOLTAGE  
DAC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
0.10  
0.05  
0
0.3  
0.2  
0.1  
0
0.25  
0.20  
0.15  
0.10  
0.05  
-0.1  
-0.2  
-0.3  
-0.05  
-0.10  
0
1023  
1026  
1029  
1032  
1035  
1038  
4.750  
4.875  
5.000  
5.125  
5.250  
0
256  
512  
768  
1024  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
OUTPUT CODE  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
DAC FULL-SCALE ERROR  
vs. LOAD CURRENT  
DAC FULL-SCALE ERROR  
vs. REFERENCE VOLTAGE  
1
0
3
2
1.00  
0.75  
0.50  
0.25  
0
INTERNAL  
REFERENCE  
1
-1  
-2  
-3  
0
EXTERNAL  
REFERENCE  
-0.25  
-0.50  
-0.75  
-1.00  
-1  
-2  
-3  
-4  
0
-40  
-15  
10  
35  
60  
85  
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
REFERENCE VOLTAGE (V)  
_______________________________________________________________________________________  
9
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 5V, external V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor  
LOAD  
DD  
DD  
REF  
CLK  
SAMPLE  
at REF, T = +25ꢀC, unless otherwise noted.)  
A
ADC REFERENCE SUPPLY CURRENT  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
ADC REFERENCE SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
vs. TEMPERATURE  
4.12  
41.0  
40.9  
40.8  
40.7  
40.6  
40.5  
24.96  
24.94  
24.92  
24.90  
24.88  
24.86  
24.84  
4.11  
4.10  
4.09  
4.08  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
4.750  
4.875  
5.000  
5.125  
5.250  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
ADC FFT PLOT  
ADC IMD PLOT  
ADC CROSSTALK PLOT  
0
-20  
0
-20  
0
-20  
f
f
f
= 32.768kHz  
= 10.080kHz  
= 5.24288MHz  
f
f
f
= 5.24288MHz  
f
f
f
= 5.24288MHz  
= 10.080kHz  
= 8.0801kHz  
SAMPLE  
ANALOG_)N  
CLK  
CLK  
IN1  
IN2  
CLK  
IN1  
IN2  
= 9.0kHz  
= 11.0kHz  
= -6dBFS  
SINAD = 61.21dBc  
SNR = 61.21dBc  
THD = 73.32dBc  
SFDR = 81.25dBc  
A
SNR = 61.11dBc  
THD = 73.32dBc  
ENOB = 9.86 BITS  
SFDR = 86.34dBc  
-40  
-40  
-40  
IN  
IMD = 78.0dBc  
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SINK CURRENT  
26/MAX1048  
2.08  
2.07  
2.06  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
5
4
3
2
1
0
1500  
1200  
900  
600  
300  
0
GPIOB0–B3, C0–C3  
OUTPUTS  
GPIOA0–A3 OUTPUTS  
GPIOB0–B3,  
C0–C3 OUTPUTS  
SINKING  
GPIOA0–A3 OUTPUTS  
SOURCING  
DAC OUTPUT = MIDSCALE  
-30  
0
30  
60  
90  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
OUTPUT CURRENT (mA)  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
10 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 5V, external V  
= 4.096V, f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor  
LOAD  
DD  
DD  
REF  
CLK  
SAMPLE  
at REF, T = +25ꢀC, unless otherwise noted.)  
A
TEMPERATURE SENSOR ERROR  
DAC-TO-DAC CROSSTALK  
DYNAMIC RESPONSE RISE TIME  
= 10kΩ, C = 100pF  
vs. TEMPERATURE  
R
= 10kΩ, C  
= 100pF  
R
LOAD  
LOAD  
LOAD  
LOAD  
MAX1040 toc29  
MAX1040 toc30  
1.00  
0.75  
0.50  
0.25  
0
CS  
2V/div  
V
OUTA  
2V/div  
-0.25  
-0.50  
-0.75  
-1.00  
V
OUTB  
V
10mV/div  
AC-COUPLED  
OUT  
2V/div  
-40  
-15  
10  
35  
60  
85  
100μs  
1μs  
TEMPERATURE (°C)  
MAJOR CARRY TRANSITION  
= 10kΩ, C = 100pF  
DAC DIGITAL FEEDTHROUGH R  
= 10kΩ,  
LOAD  
DYNAMIC RESPONSE FALL TIME  
= 10kΩ, C = 100pF  
R
C = 100pF, CS = HIGH, DIN = LOW  
LOAD  
MAX1040 toc33  
R
LOAD  
LOAD  
LOAD  
LOAD  
MAX1040 toc32  
MAX1040 toc31  
SCLK  
2V/div  
CS  
2V/div  
CS  
2V/div  
V
V
OUT  
100mV/div  
AC-COUPLED  
OUT  
V
OUT  
20mV/div  
AC-COUPLED  
2V/div  
1μs  
200ns  
1μs  
NEGATIVE FULL-SCALE SETTLING TIME  
= 10kΩ, C = 100pF  
POSITIVE FULL-SCALE SETTLING TIME  
= 10kΩ, C = 100pF  
ADC REFERENCE FEEDTHROUGH  
= 10kΩ, C = 100pF  
MAX1040 toc36  
R
R
R
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1040 toc34  
MAX1040 toc35  
V
REF2  
V
LDAC  
V
LDAC  
2V/div  
2V/div  
2V/div  
V
OUT_  
V
OUT_  
2V/div  
2V/div  
V
DAC-OUT  
2mV/div  
AC-COUPLED  
ADC REFERENCE SWITCHING  
2μs  
1μs  
200μs  
______________________________________________________________________________________ 11  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Description  
PꢂI  
IAME  
D.C.  
FUICTꢂOI  
MAX1040  
MAX1042  
MAX1046  
MAX1048  
1, 2, 16–19,  
24, 25, 31,  
34  
1, 2, 16–19,  
24, 25  
16–19, 31,  
34  
16–19  
Do Not Connect. Do not connect to this pin.  
Active-Low End-of-Conversion Output. Data is valid after the  
falling edge of EOC.  
3
3
3
3
EOC  
Digital Positive Power Input. Bypass DV  
0.1µF capacitor.  
to DGND with a  
DD  
4
5
4
5
4
5
4
5
DV  
DD  
DGND  
DOUT  
Digital Ground. Connect DGND to AGND.  
Serial Data Output. Data is clocked out on the falling edge of  
the SCLK clock in clock modes 00, 01, and 10. Data is  
clocked out on the rising edge of the SCLK clock in clock  
mode 11. High impedance when CS is high.  
6
7
6
7
6
7
6
7
Serial Clock Input. Clocks data in and out of the serial  
interface. (Duty cycle must be 40% to 60%.) See Table 4 for  
details on programming the clock mode.  
SCLK  
DIN  
Serial Data Input. DIN data is latched into the serial interface  
on the falling edge of SCLK.  
8
8
8
8
OUT0–  
OUT3  
9–12  
9–12  
9–12  
9–12  
DAC Outputs  
Positive Analog Power Input. Bypass AV  
0.1µF capacitor.  
to AGND with a  
DD  
13  
14  
13  
14  
13  
14  
13  
14  
AV  
DD  
AGND  
N.C.  
Analog Ground  
15, 23, 32, 15, 23, 32, 15, 23, 32, 15, 23, 32,  
No Connection. Not internally connected.  
33  
33  
33  
33  
Active-Low Load DAC. LDAC is an asynchronous active-low  
input that updates the DAC outputs. Drive LDAC low to make  
the DAC registers transparent.  
20  
20  
20  
20  
LDAC  
CS  
Active-Low Chip-Select Input. When CS is low, the serial  
interface is enabled. When CS is high, DOUT is high  
impedance.  
21  
21  
21  
21  
26/MAX1048  
12 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Pin Description (continued)  
PꢂI  
IAME  
FUICTꢂOI  
MAX1040  
MAX1042  
MAX1046  
MAX1048  
Reset Select. Selects DAC wake-up mode. Set RES_SEL low  
to wake up the DAC outputs with a 100kΩ resistor to GND or  
set RES_SEL high to wake up the DAC outputs with a 100kΩ  
22  
22  
22  
22  
RES_SEL  
resistor to V  
. Set RES_SEL high to power up the DAC input  
REF  
register to FFFh. Set RES_SEL low to power up the DAC input  
register to 000h.  
Reference 1 Input. Reference voltage. Leave unconnected to  
use the internal 4.096V reference, REF1 is the positive  
reference in ADC external differential mode. Bypass REF1 to  
AGND with a 0.1µF capacitor in external reference mode only.  
See the ADC/DAC References section.  
26  
26  
26  
26  
REF1  
27–31, 34  
35  
27–31, 34  
35  
AIN0–AIN5 Analog Inputs  
Reference 2 Input/Analog Input Channel 6. See Table 5 for  
details on programming the setup register. REF2 is the negative  
reference in the ADC external differential reference mode.  
REF2/AIN6  
CNVST/  
AIN7  
Active-Low Conversion Start Input/Analog Input 7. See Table 5  
for details on programming the setup register.  
36  
36  
GPIOA0,  
GPIOA1  
General-Purpose I/O A0, A1. GPIOA0, GPIOA1 can sink and  
source 15mA.  
1, 2  
1, 2  
GPIOC0,  
GPIOC1  
General-Purpose I/O C0, C1. GPIOC0, GPIOC1 can sink 4mA  
and source 2mA.  
24, 25  
24, 25  
27–30  
27–30  
AIN0–AIN3 Analog Inputs  
Reference 2 Input. See Table 5 for details on programming the  
setup register. REF2 is the negative reference in the ADC  
external differential reference mode.  
35  
36  
35  
36  
REF2  
Active-Low Conversion Start Input. See Table 5 details on  
programming the setup register.  
CNVST  
______________________________________________________________________________________ 13  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
CPOL = CPHA = 1. Set CS low to latch any input data  
Detailed Description  
at DIN on the falling edge of SCLK. Output data at  
The MAX1040/MAX1042/MAX1046/MAX1048 integrate  
DOUT is updated on the falling edge of SCLK in clock  
a multichannel 10-bit ADC and a quad 10-bit DAC in a  
modes 00, 01, and 10. Output data at DOUT is updated  
single IC. These devices also include a temperature  
on the rising edge of SCLK in clock mode 11. See  
sensor and configurable GPIOs with a 25MHz SPI-  
Figures 6–11. Bipolar true-differential results and tem-  
/QSPI-/MICROWIRE-compatible serial interface. The  
perature-sensor results are available in two’s comple-  
ADC is available in a 4 or an 8 input-channel version.  
ment format, while all other results are in binary.  
The four DAC outputs settle within 2.0µs, and the ADC  
has a 225ksps conversion rate.  
A high-to-low transition on CS initiates the data-input  
operation. Serial communications to the ADC always  
begin with an 8-bit command byte (MSB first) loaded  
from DIN. The command byte and the subsequent data  
bytes are clocked from DIN into the serial interface on  
the falling edge of SCLK. The serial-interface and fast-  
interface circuitry is common to the ADC, DAC, and  
GPIO sections. The content of the command byte  
determines whether the SPI port should expect 8, 16, or  
24 bits and whether the data is intended for the ADC,  
DAC, or GPIOs (if applicable). See Table 1. Driving CS  
high resets the serial interface.  
All devices include an internal reference (4.096V) pro-  
viding a well-regulated, low-noise reference for both the  
ADC and DAC. Programmable reference modes for the  
ADC and DAC allow the use of an internal reference, an  
external reference, or a combination of both. Features  
such as an internal 1ꢀC accurate temperature sensor,  
FIFO, scan modes, programmable internal or external  
clock modes, data averaging, and AutoShutdown allow  
users to minimize both power consumption and proces-  
sor requirements. The low glitch energy (4nVs) and  
low digital feedthrough (0.5nVs) of the integrated quad  
DACs make these devices ideal for digital control of  
fast-response closed-loop systems.  
The conversion register controls ADC channel selec-  
tion, ADC scan mode, and temperature-measurement  
requests. See Table 4 for information on writing to the  
conversion register. The setup register controls the  
clock mode, reference, and unipolar/bipolar ADC con-  
figuration. Use a second byte, following the first, to  
write to the unipolar-mode or bipolar-mode registers.  
See Table 5 for details of the setup register and see  
Tables 6, 7, and 8 for setting the unipolar- and bipolar-  
mode registers. Hold CS low between the command  
byte and the second and third byte. The ADC averag-  
ing register is specific to the ADC. See Table 9 to  
address that register. Table 11 shows the details of the  
reset register.  
The devices are guaranteed to operate with a supply  
voltage from +4.75V to +5.25V. These devices con-  
sume 2.5mA at 225ksps throughput, only 0.22µA at  
1ksps throughput, and under 0.2µA in the shutdown  
mode. The MAX1042/MAX1048 offer four GPIOs that  
can be configured as inputs or outputs.  
Figure 1 shows the MAX1042 functional diagram. The  
MAX1042/MAX1048 only include the GPIOA0, GPIOA1  
and GPIOC0, GPIOC1 blocks. The MAX1040/MAX1046  
exclude the GPIOs. The output-conditioning circuitry  
takes the internal parallel data bus and converts it to a  
serial data format at DOUT, with the appropriate wake-up  
timing. The arithmetic logic unit (ALU) performs the aver-  
aging function.  
Begin a write to the DAC by writing 0001XXXX as a  
command byte. The last 4 bits of this command byte  
are don’t-care bits. Write another 2 bytes (holding CS  
low) to the DAC interface register following the com-  
mand byte to select the appropriate DAC and the data  
to be written to it. See the DAC Serial Interface section  
and Tables 10, 17, and 18.  
26/MAX1048  
SPI-Compatible Serial Interface  
The MAX1040/MAX1042/MAX1046/MAX1048 feature a  
serial interface that is compatible with SPI and  
MICROWIRE devices. For SPI, ensure the SPI bus mas-  
ter (typically a microcontroller (µC)) runs in master  
mode so that it generates the serial clock signal. Select  
the SCLK frequency of 25MHz or less, and set the  
clock polarity (CPOL) and phase (CPHA) in the µC con-  
trol registers to the same value. The MAX1040/  
MAX1042/MAX1046/MAX1048 operate with SCLK idling  
high or low, and thus operate with CPOL = CPHA = 0 or  
Write to the GPIOs (if applicable) by issuing a com-  
mand byte to the appropriate register. Writing to the  
MAX1042/MAX1048 GPIOs requires 1 additional byte  
following the command byte. See Tables 12–16 for  
details on GPIO configuration, writes, and reads. See  
the GPIO Command section. Command bytes written to  
the GPIOs on devices without GPIOs are ignored.  
14 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
DV  
DD  
AV  
DD  
GPIOC0,  
GPIOC1  
GPIOA0,  
GPIOA1  
MAX1042  
GPIO  
CONTROL  
USER-PROGRAMMABLE  
I/O  
OUTPUT  
CONDITIONING  
10-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
OUT0  
OUT1  
OUT2  
OUT3  
BUFFER  
OSCILLATOR  
SCLK  
CS  
OUTPUT  
CONDITIONING  
10-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
BUFFER  
BUFFER  
BUFFER  
SPI  
PORT  
DIN  
DOUT  
OUTPUT  
CONDITIONING  
10-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
TEMPERATURE  
SENSOR  
OUTPUT  
CONDITIONING  
10-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
EOC  
LOGIC  
CONTROL  
CNVST  
AIN0  
10-BIT  
SAR  
ADC  
FIFO AND  
ALU  
T/H  
AIN5  
REF2/  
AIN6  
CNVST/  
AIN7  
REF2  
INTERNAL  
REFERENCE  
REF1  
RES_SEL  
LDAC  
AGND  
DGND  
Figure 1. MAX1042 Functional Diagram  
______________________________________________________________________________________ 15  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 1ꢀ Command Byte (MSB First)  
REGꢂSTER IAME  
Conversion*  
Setup  
BꢂT 7  
BꢂT 6  
BꢂT 5  
BꢂT 4  
BꢂT 3  
BꢂT 2  
BꢂT 1  
BꢂT 0  
1
0
0
0
0
0
0
0
0
X
1
0
0
0
0
0
0
0
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
TEMP  
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
ADC Averaging  
DAC Select  
Reset  
1
0
0
0
0
0
0
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
1
0
0
0
0
0
X
1
0
0
0
0
X
X
X
RESET  
SLOW  
FBGON  
GPIO Configure**  
GPIO Write**  
GPIO Read**  
No Operation  
0
0
0
0
1
1
0
0
1
0
1
0
X = Don’t care.  
*CHESL2 bit is only valid on the MAX1040/MAX1042. Set CHSEL2 to 0 on the MAX1046/MAX1048.  
**Only applicable on the MAX1042/MAX1048.  
Power-Up Default State  
The MAX1040/MAX1042/MAX1046/MAX1048 power up  
with all blocks in shutdown (including the reference). All  
registers power up in state 00000000, except for the  
setup register and the DAC input register. The setup  
register powers up at 0010 1000 with CKSEL1 = 1 and  
REFSEL1 = 1. The DAC input register powers up to  
FFFh when RES_SEL is high, and it powers up to 000h  
when RES_SEL is low.  
timed conversions through the serial interface by writ-  
ing to the conversion register in the default clock mode,  
10. Use clock mode 11 with SCLK up to 3.6MHz for  
externally timed acquisitions to achieve sampling rates  
up to 225ksps. Clock mode 11 disables scanning and  
averaging. See Figures 6–9 for timing specifications on  
how to begin a conversion.  
These devices feature an active-low, end-of-conversion  
output. EOC goes low when the ADC completes the last  
requested operation and is waiting for the next com-  
mand byte. EOC goes high when CS or CNVST go low.  
EOC is always high in clock mode 11.  
10-Bit ADC  
The MAX1040/MAX1042/MAX1046/MAX1048 ADCs use  
a fully differential successive-approximation register  
(SAR) conversion technique and on-chip track-and-  
hold (T/H) circuitry to convert temperature and voltage  
signals into 10-bit digital results. The analog inputs  
accept both single-ended and differential input signals.  
Single-ended signals are converted using a unipolar  
transfer function, and differential signals are converted  
using a selectable bipolar or unipolar transfer function.  
See the ADC Transfer Functions section for more data.  
Single-Ended or Differential Conversions  
The MAX1040/MAX1042/MAX1046/MAX1048 use a fully  
differential ADC for all conversions. When a pair of  
inputs are connected as a differential pair, each input is  
connected to the ADC. When configured in single-  
ended mode, the positive input is the single-ended  
channel and the negative input is referred to AGND.  
See Figure 2.  
26/MAX1048  
In differential mode, the T/H samples the difference  
between two analog inputs, eliminating common-mode  
DC offsets and noise. IN+ and IN- are selected from the  
following pairs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,  
AIN6/AIN7. AIN0–AIN3 are available on all devices.  
AIN0–AIN7 are available on the MAX1040/MAX1042.  
See Tables 5–8 for more details on configuring the  
inputs. For the inputs that are configurable as CNVST,  
REF2, and an analog input, only one function can be  
used at a time.  
ADC Clock Modes  
When addressing the setup, register bits 5 and 4 of the  
command byte (CKSEL1 and CKSEL0, respectively)  
control the ADC clock modes. See Table 5. Choose  
between four different clock modes for various ways to  
start a conversion and determine whether the acquisi-  
tions are internally or externally timed. Select clock  
mode 00 to configure CNVST/AIN_ to act as a conver-  
sion start and use it to request internally timed conver-  
sions, without tying up the serial bus. In clock mode 01,  
use CNVST to request conversions one channel at a  
time, thereby controlling the sampling speed without  
tying up the serial bus. Request and start internally  
16 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Unipolar or Bipolar Conversions  
Address the unipolar- and bipolar-mode registers  
through the setup register (bits 1 and 0). See Table 5 for  
the setup register. See Figures 3 and 4 for the transfer-  
function graphs. Program a pair of analog inputs for dif-  
ferential operation by writing a one to the appropriate bit  
of the bipolar- or unipolar-mode register. Unipolar mode  
determines the time required for the T/H to acquire an  
input signal. If the input signal’s source impedance is  
high, the required acquisition time lengthens.  
Any source impedance below 300Ω does not signifi-  
cantly affect the ADC’s AC performance. A high-imped-  
ance source can be accommodated either by  
lengthening t  
(only in clock mode 01) or by placing  
ACQ  
sets the differential input range from 0 to V  
A nega-  
REF1.  
a 1µF capacitor between the positive and negative ana-  
log inputs. The combination of the analog-input source  
impedance and the capacitance at the analog input cre-  
ates an RC filter that limits the analog input bandwidth.  
tive differential analog input in unipolar mode causes the  
digital output code to be zero. Selecting bipolar mode  
sets the differential input range to  
V
REF1  
/ 2. The digital  
output code is binary in unipolar mode and two’s com-  
plement in bipolar mode.  
ꢂnput Bandwidth  
The ADC’s input-tracking circuitry has a 1MHz small-sig-  
nal bandwidth, making it possible to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Anti-alias prefiltering  
of the input signals is necessary to avoid high-frequency  
signals aliasing into the frequency band of interest.  
In single-ended mode, the MAX1040/MAX1042/  
MAX1046/MAX1048 always operate in unipolar mode.  
The analog inputs are internally referenced to AGND  
with a full-scale input range from 0 to the selected refer-  
ence voltage.  
Analog ꢂnput (T/H)  
The equivalent circuit of Figure 2 shows the ADC input  
architecture of the MAX1040/MAX1042/MAX1046/  
MAX1048. In track mode, a positive input capacitor is  
connected to AIN0–AIN7 in single-ended mode and  
AIN0, AIN2, AIN4, and AIN6 in differential mode.  
A negative input capacitor is connected to AGND in  
single-ended mode or AIN1, AIN3, AIN5, and AIN7 in  
differential mode. For external T/H timing, use clock  
mode 01. After the T/H enters hold mode, the difference  
between the sampled positive and negative input volt-  
ages is converted. The input capacitance charging rate  
Analog ꢂnput Protection  
Internal electrostatic-discharge (ESD) protection diodes  
clamp all analog inputs to AV  
and AGND, allowing  
DD  
the inputs to swing from (AGND - 0.3V) to (AV  
+
DD  
0.3V) without damage. However, for accurate conver-  
sions near full scale, the inputs must not exceed AV  
DD  
by more than 50mV or be lower than AGND by 50mV. If  
an analog input voltage exceeds the supplies, limit the  
input current to 2mA.  
ꢂnternal FꢂFO  
The MAX1040/MAX1042/MAX1046/MAX1048 contain a  
first-in/first-out (FIFO) buffer that holds up to 16 ADC  
results plus one temperature result. The internal FIFO  
allows the ADC to process and store multiple internally  
clocked conversions and a temperature measurement  
without being serviced by the serial bus.  
AIN0–AIN7  
(SINGLE-ENDED),  
AIN0, AIN2,  
REF1  
DAC  
ACQ  
AGND  
AIN4, AIN6  
(DIFFERENTIAL)  
CIN+  
If the FIFO is filled and further conversions are request-  
ed without reading from the FIFO, the oldest ADC  
results are overwritten by the new ADC results. Each  
result contains 2 bytes, with the MSB preceded by four  
leading zeros. After each falling edge of CS, the oldest  
available pair of bytes of data is available at DOUT,  
MSB first. When the FIFO is empty, DOUT is zero.  
COMPARATOR  
HOLD  
CIN-  
AGND  
(SINGLE-ENDED),  
AIN1, AIN3,  
AIN5, AIN7  
(DIFFERENTIAL)  
ACQ  
The first 2 bytes of data read out after a temperature  
measurement always contain the 10-bit temperature  
result, preceded by four leading zeros, MSB first. The  
LSB is followed by 2 sub-bits. If another temperature  
measurement is performed before the first temperature  
result is read out, the old measurement is overwritten  
by the new result. Temperature results are in degrees  
ACQ  
HOLD  
HOLD  
AV / 2  
DD  
Figure 2. Equivalent Input Circuit  
______________________________________________________________________________________ 17  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Celsius (two’s complement), at a resolution of 8 LSB  
per degree. See the Temperature Measurements sec-  
tion for details on converting the digital code to a tem-  
perature.  
DAC Transfer Function  
See Table 2 for various analog outputs from the DAC.  
DAC Power-On Wake-Up Modes  
The state of the RES_SEL input determines the wake-up  
10-Bit DAC  
In addition to the 10-bit ADC, the MAX1040/MAX1042/  
MAX1046/MAX1048 also include four voltage-output,  
10-bit, monotonic DACs with less than 1 LSB integral  
nonlinearity error and less than 0.5 LSB differential non-  
linearity error. Each DAC has a 2µs settling time and  
ultra-low glitch energy (4nVs). The 10-bit DAC code is  
state of the DAC outputs. Connect RES_SEL to AV  
or  
DD  
AGND upon power-up to be sure the DAC outputs  
wake up to a known state. Connect RES_SEL to AGND  
to wake up all DAC outputs at 000h. While RES_SEL is  
low, the 100kΩ internal resistor pulls the DAC outputs to  
AGND and the output buffers are powered down.  
Connect RES_SEL to AV  
to wake up all DAC outputs  
at FFFh. While RES_SEL is high, the 100kΩ pullup  
DD  
unipolar binary with 1 LSB = V  
/ 1024.  
REF  
resistor pulls the DAC outputs to V  
buffers are powered down.  
and the output  
REF1  
DAC Digital ꢂnterface  
Figure 1 shows the functional diagram of the MAX1042.  
The shift register converts a serial 16-bit word to parallel  
data for each input register operating with a clock rate  
up to 25MHz. The SPI-compatible digital interface to the  
shift register consists of CS, SCLK, DIN, and DOUT.  
Serial data at DIN is loaded on the falling edge of SCLK.  
Pull CS low to begin a write sequence. Begin a write to  
the DAC by writing 0001XXXX as a command byte. The  
last 4 bits of the DAC select register are don’t-care bits.  
See Table 10. Write another 2 bytes to the DAC inter-  
face register following the command byte to select the  
appropriate DAC and the data to be written to it. See  
Tables 17 and 18.  
DAC Power-Up Modes  
See Table 18 for a description of the DAC power-up  
and power-down modes.  
GPIOs  
In addition to the internal ADC and DAC, the  
MAX1042/MAX1048 also provide four GPIO channels,  
GPIOA0, GPIOA1, GPIOC0, and GPIOC1. Read and write  
to the GPIOs as detailed in Table 1 and Tables 12–16.  
Also, see the GPIO Command section. See Figures 11 and  
12 for GPIO timing.  
The four double-buffered DACs include an input and a  
DAC register. The input registers are directly connect-  
ed to the shift register and hold the result of the most  
recent write operation. The four 10-bit DAC registers  
hold the current output code for the respective DAC.  
Data can be transferred from the input registers to the  
DAC registers by pulling LDAC low or by writing the  
appropriate DAC command sequence at DIN. See  
Table 17. The outputs of the DACs are buffered through  
four rail-to-rail op amps.  
Table 2ꢀ DAC Output Code Table  
DAC COITEITS  
AIAꢁOG OUTPUT  
MSB  
ꢁSB  
1023  
1024  
+V  
11  
1111  
0000  
0000  
0111  
1111  
REF  
1023  
1024  
26/MAX1048  
10  
10  
01  
0001  
0000  
0111  
+V  
REF  
The MAX1040/MAX1042/MAX1046/MAX1048 DAC out-  
put voltage range is based on the internal reference or  
an external reference. Write to the setup register (see  
Table 5) to program the reference. If using an external  
voltage reference, bypass REF1 with a 0.1µF capacitor  
to AGND. The internal reference is 4.096V. When using  
512  
+V  
REF  
+V  
=
REF  
1024  
2
an external reference, the voltage range is 0.7V to AV  
.
DD  
511  
+V  
REF  
1024  
1
1024  
0
00  
00  
0000  
0000  
0001  
0000  
+V  
REF  
18 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Write to the GPIOs by writing a command byte to the  
GPIO command register. Write a single data byte to the  
MAX1042/MAX1048 following the command byte.  
When REFSEL[1:0] = 00 or 10, REF2/AIN_ functions as  
an analog input channel. When REFSEL[1:0] = 01 or 11,  
REF2/AIN_ functions as the device’s negative reference.  
The GPIOs can sink and source current. The  
MAX1042/MAX1048 GPIOA0 and GPIOA1 can sink and  
source up to 15mA. GPIOC0 and GPIOC1 can sink 4mA  
and source 2mA. See Table 3.  
Temperature Measurements  
Issue a command byte setting bit 0 of the conversion  
register to one to take a temperature measurement.  
See Table 4. The MAX1040/MAX1042/MAX1046/  
MAX1048 perform temperature measurements with an  
internal diode-connected transistor. The diode bias cur-  
rent changes from 68µA to 4µA to produce a tempera-  
ture-dependent bias voltage difference. The second  
conversion result at 4µA is subtracted from the first at  
68µA to calculate a digital value that is proportional to  
absolute temperature. The output data appearing at  
DOUT is the digital code above, minus an offset to  
adjust from Kelvin to Celsius.  
Clock Modes  
ꢂnternal Clock  
The MAX1040/MAX1042/MAX1046/MAX1048 can oper-  
ate from an internal oscillator. The internal oscillator is  
active in clock modes 00, 01, and 10. Figures 6, 7, and  
8 show how to start an ADC conversion in the three  
internally timed conversion modes.  
Read out the data at clock speeds up to 25MHz  
through the SPI interface.  
The reference voltage used for the temperature mea-  
surements is always derived from the internal reference  
source to ensure that 1 LSB corresponds to 1/8th of a  
degree Celsius. On every scan where a temperature  
measurement is requested, the 12-bit temperature con-  
version is carried out first. The first 2 bytes of data read  
from the FIFO contain the result of the 12-bit tempera-  
ture measurement. If another temperature measure-  
ment is performed before the first temperature result is  
read out, the old measurement is overwritten by the  
new result. Temperature results are in degrees Celsius  
(two’s complement). See the Applications Information  
section for information on how to perform temperature  
measurements in each clock mode.  
External Clock  
Set CKSEL1 and CKSEL0 in the setup register to 11 to  
set up the interface for external clock mode 11. See  
Table 5. Pulse SCLK at speeds from 0.1MHz to  
3.6MHz. Write to SCLK with a 40% to 60% duty cycle.  
The SCLK frequency controls the conversion timing.  
See Figure 9 for clock mode 11 timing. See the ADC  
Conversions in Clock Mode 11 section.  
ADC/DAC References  
Address the reference through the setup register, bits 3  
and 2. See Table 5. Following a wake-up delay, set  
REFSEL[1:0] = 00 to program both the ADC and DAC  
for internal reference use. Set REFSEL[1:0] = 10 to pro-  
gram the ADC for internal reference. Set REFSEL[1:0] =  
10 to program the DAC for external reference, REF1.  
When using REF1 or REF2/AIN_ in external-reference  
mode, connect a 0.1µF capacitor to AGND. Set  
REFSEL[1:0] = 01 to program the ADC and DAC for  
external-reference mode. The DAC uses REF1 as its  
external reference, while the ADC uses REF2 as its  
external reference. Set REFSEL[1:0] = 11 to program  
the ADC for external differential-reference mode. REF1  
is the positive reference and REF2 is the negative refer-  
ence in the ADC external differential mode.  
Register Descriptions  
The MAX1040/MAX1042/MAX1046/MAX1048 communi-  
cate between the internal registers and the external cir-  
cuitry through the SPI-compatible serial interface. Table  
1 details the command byte, the registers, and the bit  
names. Tables 4–12 show the various functions within  
the conversion register, setup register, unipolar-mode  
register, bipolar-mode register, ADC averaging regis-  
ter, DAC select register, reset register, and GPIO com-  
mand register, respectively.  
Conversion Register  
Select active analog input channels, scan modes, and  
a single temperature measurement per scan by issuing  
a command byte to the conversion register. Table 4  
details channel selection, the four scan modes, and  
how to request a temperature measurement. Start a  
scan by writing to the conversion register when in clock  
mode 10 or 11, or by applying a low pulse to the  
CNVST pin when in clock mode 00 or 01. See Figures 6  
Table 3ꢀ GPꢂO Maximum Sink/Source  
Current  
MAX1042/MAX1048  
(mA)  
CURREIT  
GPꢂOA0, GPꢂOA1 GPꢂOC0, GPꢂOC1  
Sink  
15  
15  
4
2
Source  
______________________________________________________________________________________ 19  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
and 7 for timing specifications for starting a scan with  
Table 4ꢀ Conversion Register*  
CNVST.  
BꢂT  
IAME  
BꢂT  
FUICTꢂOI  
A conversion is not performed if it is requested on a  
channel or one of the channel pairs that has been con-  
figured as CNVST or REF2. For channels configured as  
differential pairs, the CHSEL0 bit is ignored and the two  
pins are treated as a single differential channel. For the  
MAX1046/MAX1048, the CHSEL2 bit must be zero.  
Channels 4–7 are invalid. Any scans or averages on  
these channels can cause corrupt data.  
X
7 (MSB)  
6
Set to one to select conversion register.  
Don’t care.  
Analog-input channel select  
(MAX1040/MAX1042). Set to 0 on  
MAX1046/MAX1048.  
CHSEL2  
5
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
4
3
2
1
Analog-input channel select.  
Analog-input channel select.  
Scan-mode select.  
Select scan mode 00 or 01 to return one result per sin-  
gle-ended channel and one result per differential pair  
within the selected scanning range (set by bits 2 and 1,  
SCAN1 and SCAN0), plus one temperature result if  
selected. Select scan mode 10 to scan a single input  
channel numerous times, depending on NSCAN1 and  
NSCAN0 in the ADC averaging register (Table 9).  
Select scan mode 11 to return only one result from a  
single channel.  
Scan-mode select.  
Set to one to take a single temp-  
erature measurement. The first  
conversion result of a scan contains  
temperature information.  
TEMP  
0 (LSB)  
*See below for bit details.  
Setup Register  
Issue a command byte to the setup register to config-  
ure the clock, reference, power-down modes, and ADC  
single-ended/differential modes. Table 5 details the bits  
in the setup-register command byte. Bits 5 and 4  
(CKSEL1 and CKSEL0) control the clock mode, acqui-  
sition and sampling, and the conversion start. Bits 3  
and 2 (REFSEL1 and REFSEL0) set the device for either  
internal or external reference. Bits 1 and 0 (DIFFSEL1  
and DIFFSEL0) address the ADC unipolar-mode and  
bipolar-mode registers and configure the analog input  
channels for differential operation.  
SEꢁECTED  
CHAIIEꢁ  
(I)  
CHSEꢁ2**  
CHSEꢁ1  
CHSEꢁ0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
The ADC reference is always on if any of the following  
conditions are true:  
**Channels 4–7 are invalid on the MAX1046/MAX1048. Set  
CHSEL2 bit to 0 on those devices.  
1)The FBGON bit is set to one in the reset register.  
2)At least one DAC output is powered up and  
REFSEL[1:0] (in the setup register) = 00.  
SCAI MODE  
26/MAX1048  
SCAI1 SCAI0  
(CHAIIEꢁ I ꢂS SEꢁECTED BY  
3)At least one DAC is powered down through the  
BꢂTS CHSEꢁ2, CHSEꢁ1, AID CHSEꢁ0)  
100kΩ to V  
and REFSEL[1:0] = 00.  
REF  
0
0
0
1
Scans channels 0 through N.  
If any of the above conditions exist, the ADC reference  
is always on, but there is a 188 clock-cycle delay  
before temperature-sensor measurements begin, if  
requested.  
Scans channels N through the highest  
numbered channel.  
Scans channel N repeatedly. The ADC  
averaging register sets the number of  
results.  
1
1
0
1
No scan. Converts channel N once only.  
20 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Table 5ꢀ Setup Register*  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
7 (MSB)  
Set to zero to select setup register.  
Set to one to select setup register.  
6
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
5
Clock mode and CNVST configuration; resets to one at power-up.  
Clock mode and CNVST configuration.  
4
3
Reference-mode configuration.  
2
1
Reference-mode configuration.  
Unipolar-/bipolar-mode register configuration for differential mode.  
Unipolar-/bipolar-mode register configuration for differential mode.  
0 (LSB)  
*See below for bit details.  
Table 5aꢀ Clock Modes (see the Clock Modes section)  
CKSEꢁ1  
CKSEꢁ0  
COIVERSꢂOI CꢁOCK  
Internal  
ACQUꢂSꢂTꢂOI/SAMPꢁꢂIG  
Internally timed.  
CNVST COIFꢂGURATꢂOI  
0
0
1
1
0
1
0
1
CNVST  
CNVST  
AIN7  
Internal  
Externally timed by CNVST.  
Internally timed.  
Internal  
External (3.6MHz max)  
Externally timed by SCLK.  
AIN7  
Table 5bꢀ Clock Modes 00, 01, and 10  
VOꢁTAGE  
REFEREICE COIDꢂTꢂOIS  
OVERRꢂDE  
REF2  
COIFꢂGURATꢂOI  
REFSEꢁ1 REFSEꢁ0  
AUTOSHUTDOWI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 internal-conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN6  
REF2  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
AIN  
Internal reference not used.  
External single-  
ended (REF1  
for DAC and  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2 for ADC)  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 internal-  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
conversion clock cycles.  
1
1
0
1
AIN6  
Internal reference required. There is a programmed  
delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
Temperature  
AIN  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2  
Temperature  
______________________________________________________________________________________ 21  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 5cꢀ Clock Mode 11  
VOꢁTAGE  
REFEREICE COIDꢂTꢂOIS  
OVERRꢂDE  
REF2  
COIFꢂGURATꢂOI  
REFSEꢁ1 REFSEꢁ0  
AUTOSHUTDOWI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 external conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN6  
REF2  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
External single-  
ended (REF1  
Internal reference not used.  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
for DAC and  
Temperature  
REF2 for ADC)  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 external  
conversion clock cycles.  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
1
1
0
1
AIN6  
REF2  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
Table 5dꢀ Differential Select Modes  
26/MAX1048  
DꢂFFSEꢁ1 DꢂFFSEꢁ0  
FUICTꢂOI  
0
0
1
1
0
1
0
1
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
1 byte of data follows the command setup byte and is written to the unipolar-mode register.  
1 byte of data follows the command setup byte and is written to the bipolar-mode register.  
22 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Table 6ꢀ Unipolar-Mode Register (Addressed Through the Setup Register)  
BꢂT IAME  
UCH0/1  
BꢂT  
7 (MSB)  
6
FUICTꢂOI  
Configure AIN0 and AIN1 for unipolar differential conversion.  
Configure AIN2 and AIN3 for unipolar differential conversion.  
UCH2/3  
Configure AIN4 and AIN5 for unipolar differential conversion (MAX1040/MAX1042). Set UCH4/5 to 0  
on the MAX1046/MAX1048.  
UCH4/5  
UCH6/7  
5
4
Configure AIN6 and AIN7 for unipolar differential conversion (MAX1040/MAX1042). Set UCH6/7 to 0  
on the MAX1046/MAX1048.  
X
X
X
X
3
Don’t care.  
Don’t care.  
Don’t care.  
Don’t care.  
2
1
0 (LSB)  
Table 7ꢀ Bipolar-Mode Register (Addressed Through the Setup Register)  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
Set to one to configure AIN0 and AIN1 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN0 and AIN1 for unipolar  
single-ended conversion.  
BCH0/1  
7 (MSB)  
Set to one to configure AIN2 and AIN3 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN2 and AIN3 for unipolar  
single-ended conversion.  
BCH2/3  
BCH4/5  
BCH6/7  
6
5
4
Set to one to configure AIN4 and AIN5 for bipolar differential conversion (MAX1040/MAX1042). Set  
the corresponding bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN4  
and AIN5 for unipolar single-ended conversion. Set BCH4/5 to 0 on the MAX1046/MAX1048.  
Set to one to configure AIN6 and AIN7 for bipolar differential conversion (MAX1040/MAX1042). Set  
the corresponding bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN6  
and AIN7 for unipolar single-ended conversion. Set BCH6/7 to 0 on the MAX1046/MAX1048.  
X
X
X
X
3
Don’t care.  
Don’t care.  
Don’t care.  
Don’t care.  
2
1
0 (LSB)  
______________________________________________________________________________________ 23  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Unipolar/Bipolar Registers  
The final 2 bits (LSBs) of the setup register control the  
unipolar-/bipolar-mode address registers. Set  
DIFFSEL[1:0] = 10 to write to the unipolar-mode regis-  
ter. Set bits DIFFSEL[1:0] = 11 to write to the bipolar-  
mode register. In both cases, the setup command byte  
must be followed by 1 byte of data that is written to the  
unipolar-mode register or bipolar-mode register. Hold  
CS low and run 16 SCLK cycles before pulling CS high.  
If the last 2 bits of the setup register are 00 or 01, nei-  
ther the unipolar-mode register nor the bipolar-mode  
register is written. Any subsequent byte is recognized  
as a new command byte. See Tables 6, 7, and 8 to pro-  
gram the unipolar- and bipolar-mode registers.  
Both registers power up at all zeros to set the inputs as  
eight unipolar single-ended channels. To configure a  
channel pair as single-ended unipolar, bipolar differen-  
tial, or unipolar differential, see Table 8.  
In unipolar mode, AIN+ can exceed AIN- by up to  
REF  
bipolar mode, either input can exceed the other by up  
Table 8ꢀ Unipolar/Bipolar Channel Function  
V
. The output format in unipolar mode is binary. In  
UIꢂPOꢁAR-  
to V  
/ 2. The output format in bipolar mode is two’s  
REF  
BꢂPOꢁAR-MODE  
REGꢂSTER BꢂT  
CHAIIEꢁ PAꢂR  
FUICTꢂOI  
MODE  
complement (see the ADC Transfer Functions section).  
REGꢂSTER BꢂT  
ADC Averaging Register  
Write a command byte to the ADC averaging register to  
configure the ADC to average up to 32 samples for  
each requested result, and to independently control the  
number of results requested for single-channel scans.  
0
0
1
1
0
1
0
1
Unipolar single ended  
Bipolar differential  
Unipolar differential  
Unipolar differential  
Table 9ꢀ ADC Averaging Register*  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
7 (MSB)  
Set to zero to select ADC averaging register.  
6
Set to zero to select ADC averaging register.  
5
Set to one to select ADC averaging register.  
AVGON  
4
Set to one to turn averaging on. Set to zero to turn averaging off.  
Configures the number of conversions for single-channel scans.  
Configures the number of conversions for single-channel scans.  
Single-channel scan count. (Scan mode 10 only.)  
Single-channel scan count. (Scan mode 10 only.)  
NAVG1  
3
NAVG0  
2
1
NSCAN1  
NSCAN0  
0 (LSB)  
*See below for bit details.  
AVGOI  
IAVG1  
IAVG0  
FUICTꢂOI  
26/MAX1048  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Performs one conversion for each requested result.  
Performs four conversions and returns the average for each requested result.  
Performs eight conversions and returns the average for each requested result.  
Performs 16 conversions and returns the average for each requested result.  
Performs 32 conversions and returns the average for each requested result.  
ISCAI1  
ISCAI0  
FUICTꢂOI (APPꢁꢂES OIꢁY ꢂF SCAI MODE 10 ꢂS SEꢁECTED)  
Scans channel N and returns four results.  
0
0
1
1
0
1
0
1
Scans channel N and returns eight results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
24 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Table 9 details the four scan modes available in the  
ADC conversion register. All four scan modes allow  
averaging as long as the AVGON bit, bit 4 in the  
averaging register, is set to 1. Select scan mode 10 to  
scan the same channel multiple times. Clock mode 11  
disables averaging. For example, if AVGON = 1,  
NAVG[1:0] = 00, NSCAN[1:0] = 11, and SCAN[1:0] =  
10, 16 results are written to the FIFO, with each result  
being the average of four conversions of channel N.  
byte controls the DAC serial interface. See Table 17  
and the DAC Serial Interface section.  
Reset Register  
Write to the reset register (as shown in Table 11) to  
clear the FIFO or reset all registers (excluding the DAC  
and GPIO registers) to their default states. When the  
RESET bit in the reset register is set to 0, the FIFO is  
cleared. Set the RESET bit to one to return all the  
device registers to their default power-up state. All reg-  
isters power up in state 00000000, except for the setup  
register that powers up in clock mode 10 (CKSEL1 = 1  
and REFSEL1 = 1). The DAC and GPIO registers are  
not reset by writing to the reset register. Set the SLOW  
bit to one to add a 15ns delay in the DOUT signal path  
to provide a longer hold time. Writing a one to the  
SLOW bit also clears the contents of the FIFO. Set the  
FBGON bit to one to force the bias block and bandgap  
reference to power up regardless of the state of the  
DAC and activity of the ADC block. Setting the FBGON  
bit high also removes the programmed wake-up delay  
between conversions in clock modes 01 and 11.  
Setting the FBGON bit high also clears the FIFO.  
DAC Select Register  
Write a command byte 0001XXXX to the DAC select  
register (as shown in Table 9) to set up the DAC inter-  
face and indicate that another word will follow. The last  
4 bits of the DAC select register are don’t-care bits. The  
word that follows the DAC select-register command  
Table 10ꢀ DAC Select Register  
BꢂT  
IAME  
BꢂT  
FUICTꢂOI  
X
7 (MSB) Set to zero to select DAC select register.  
GPꢂO Command  
Write a command byte to the GPIO command register  
to configure, write, or read the GPIOs, as detailed in  
Table 12.  
6
5
4
3
2
1
0
Set to zero to select DAC select register.  
Set to zero to select DAC select register.  
Set to one to select DAC select register.  
Don’t care.  
Table 12ꢀ GPꢂO Command Register  
X
Don’t care.  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
X
Don’t care.  
7 (MSB)  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
GPIO configuration bit.  
X
Don’t care.  
6
5
Table 11ꢀ Reset Register  
4
3
BꢂT  
BꢂT  
FUICTꢂOI  
2
1
IAME  
GPIOSEL1  
GPIOSEL2  
7 (MSB) Set to zero to select ADC reset register.  
0 (LSB)  
GPIO write bit.  
6
5
4
3
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to one to select ADC reset register.  
GPꢂOSEꢁ1 GPꢂOSEꢁ2  
FUICTꢂOI  
GPIO configuration; written data is  
entered in the GPIO configuration  
register.  
1
1
0
1
0
1
Set to zero to clear the FIFO only. Set to  
one to set the device in its power-on  
condition.  
RESET  
SLOW  
2
1
GPIO write; written data is entered  
in the GPIO write register.  
Set to one to turn on slow mode.  
GPIO read; the next 8 SCLK cycles  
transfer the state of all GPIO  
drivers into DOUT.  
Set to one to force internal bias block and  
bandgap reference to be always powered  
up.  
FBGON 0 (LSB)  
______________________________________________________________________________________ 25  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Write the command byte 00000011 to configure the  
GPIOs. The eight SCLK cycles following the command  
byte load data from DIN to the GPIO configuration reg-  
ister in the MAX1042/MAX1048. See Tables 13 and 14.  
The register bits are updated after the last CS rising  
edge. All GPIOs default to inputs upon power-up.  
DAC Serial ꢂnterface  
Write a command byte 0001XXXX to the DAC select  
register to indicate the word to follow is written to the  
DAC serial interface, as detailed in Tables 1, 10, 17, and  
18. Write the next 16 bits to the DAC interface register,  
as shown in Tables 17 and 18. Following the high-to-low  
transition of CS, the data is shifted synchronously and  
latched into the input register on each falling edge of  
SCLK. Each word is 16 bits. The first 4 bits are the con-  
trol bits, followed by 10 data bits (MSB first), followed by  
2 sub-bits. See Figures 9–12 for DAC timing specifica-  
tions.  
The data in the register controls the function of each  
GPIO, as shown in Tables 13, 14, and 16.  
GPꢂO Write  
Write the command byte 00000010 to indicate a GPIO  
write operation. The eight SCLK cycles following the  
command byte load data from DIN into the GPIO write  
register in the MAX1042/MAX1048. See Tables 14 and  
15. The register bits are updated after the last CS rising  
edge.  
If CS goes high prior to completing 16 SCLK cycles, the  
command is discarded. To initiate a new transfer, drive  
CS low again.  
For example, writing the DAC serial interface word 1111  
0000 and 0011 0100 disconnects DAC outputs 2 and 3  
and forces them to a high-impedance state. DAC out-  
puts 0 and 1 remain in their previous state.  
GPꢂO Read  
Write the command byte 00000001 to indicate a GPIO  
read operation. The eight SCLK cycles following the  
command byte transfer the state of the GPIOs to DOUT  
in the MAX1042/MAX1048. See Table 16.  
Table 13ꢀ MAX1042/MAX1048 GPꢂO Configuration  
DATA PꢂI  
DꢂI  
DOUT  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
GPIOC1  
0
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
0
X
0
X
0
Table 14ꢀ MAX1042/MAX1048 GPꢂO Write  
DATA PꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE  
DꢂI  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
GPIOC1  
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
X
X
0
DOUT  
0
0
0
Table 15ꢀ GPꢂO-Mode Control  
26/MAX1048  
COIFꢂGURATꢂOI  
BꢂT  
WRꢂTE  
BꢂT  
OUTPUT  
STATE  
GPꢂO  
FUICTꢂOI  
1
1
0
1
0
1
1
0
Output  
Output  
Input  
Tri-state  
Pulldown  
(open drain)  
0
0
0
Table 16ꢀ MAX1042/MAX1048 GPꢂO Read  
DATA PꢂI  
DꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
X
0
X
0
X
0
X
0
X
X
X
X
DOUT  
GPIOC1  
GPIOC0  
GPIOA1  
GPIOA0  
26 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Table 17ꢀ DAC Serial-ꢂnterface Configuration  
16-BꢂT SERꢂAꢁ WORD  
MSB  
COITROꢁ  
BꢂTS  
C3 C2 C1 C0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
ꢁSB  
DESCRꢂPTꢂOI  
FUICTꢂOI  
DATA BꢂTS  
X
X
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
No Operation.  
Reset all internal registers to 000h and  
leave output buffers in their present  
state.  
Preset all internal registers to FFFh and  
leave output buffers in their present  
state.  
0
0
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
RESET  
0
0
0
1
1
X
X
X
X
X
X
X
X
X
Pull-High  
D9–D0 to input register 0, DAC output  
unchanged.  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
X
X
X
X
X
X
X
X
DAC0  
DAC1  
DAC2  
DAC3  
D9–D0 to input register 1, DAC output  
unchanged.  
D9–D0 to input register 2, DAC output  
unchanged.  
D9–D0 to input register 3, DAC output  
unchanged.  
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
NOP  
NOP  
NOP  
No Operation.  
No Operation.  
No Operation.  
No Operation.  
D9–D0 to input registers 0–3 and DAC  
1
1
1
0
0
1
1
1
0
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DAC0–DAC3 register 0–3. DAC outputs updated  
(write-through).  
NOP  
No Operation.  
D9–D0 to input registers 0–3 and DAC  
DAC0–DAC3 Register 0–3. DAC outputs updated  
(write-through).  
D9–D0 to input registers 0–3. DAC  
DAC0–DAC3  
1
1
1
1
0
1
1
0
X
X
X
X
X
X
X
X
X
X
outputs unchanged.  
Input registers to DAC registers  
indicated by ones, DAC outputs  
updated, equivalent to software LDAC  
DAC0–DAC3  
.
(No effect on DACs indicated by zeros.)  
______________________________________________________________________________________ 27  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 18ꢀ DAC Power-Up and Power-Down Commands  
COITROꢁ  
DATA BꢂTS  
BꢂTS  
DESCRꢂPTꢂOI  
FUICTꢂOI  
C3 C2 C1 C0 X  
X
X
X
D3 D2 D1 D0  
Power up individual DAC buffers indicated by data  
in DAC0 through DAC3. A one indicates the DAC  
output is connected and active. A zero does not  
affect the DAC’s present state.  
1
1
1
1
1
1
1
1
X
X
X
X
X
— — — —  
— — — —  
0
0
0
1
1
0
X
X
Power-Up  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
DAC output is disconnected and high impedance.  
A zero does not affect the DAC’s present state.  
X
X
X
X
X
X
Power-Down 1  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
DAC output is disconnected and pulled to AGND  
1
1
1
1
1
1
1
1
1
1
1
1
X
X
X
— — — —  
— — — —  
— — — —  
1
0
1
0
0
1
0
0
1
X
X
X
Power-Down 2  
with a 1kΩ resistor. A zero does not affect the DAC’s  
present state.  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
X
X
X
X
X
X
Power-Down 3 DAC output is disconnected and pulled to AGND  
with a 100k resistor. A zero does not affect the  
Ω
DAC’s present state.  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC3. A one indicates the  
Power-Down 4 DAC output is disconnected and pulled to REF1 with  
a 100kΩ resistor. A zero does not affect the DAC’s  
present state.  
transfer function for differential inputs. Code transitions  
occur halfway between successive-integer LSB values.  
Output-Data Format  
Figures 6–9 illustrate the conversion timing for the  
MAX1040/MAX1042/MAX1046/MAX1048. All 10-bit con-  
version results are output in 2-byte format, MSB first,  
with four leading zeros and the LSB followed by 2 sub-  
bits. Data appears on DOUT on the falling edges of  
SCLK. Data is binary for unipolar mode and two’s com-  
plement for bipolar mode and temperature results. See  
Figures 3, 4, and 5 for input/output and temperature-  
transfer functions.  
Output coding is binary, with 1 LSB = V  
/ 1024 for  
REF1  
26/MAX1048  
unipolar and bipolar operation, and 1 LSB = +0.125ꢀC  
for temperature measurements. Bipolar true-differential  
results and temperature-sensor results are available in  
two’s complement format, while all others are in binary.  
See Tables 6, 7, and 8 for details on which setting  
(unipolar or bipolar) takes precedence.  
In unipolar mode, AIN+ can exceed AIN- by up to  
V
. In bipolar mode, either input can exceed the  
REF1  
other by up to V  
ADC Transfer Functions  
Figure 3 shows the unipolar transfer function for single-  
ended or differential inputs. Figure 4 shows the bipolar  
/2.  
REF1  
28 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
MAX1046/MAX1048 then wake up, scan all requested  
channels, store the results in the FIFO, and shut down.  
After the scan is complete, EOC is pulled low and the  
results are available in the FIFO. Wait until EOC goes  
low before pulling CS low to communicate with the seri-  
al interface. EOC stays low until CS or CNVST is pulled  
low again. A temperature-conversion result, if request-  
ed, precedes all other FIFO results. Temperature  
results are available in 12-bit format.  
Partial Reads and Partial Writes  
If the first byte of an entry in the FIFO is partially read  
(CS is pulled high after fewer than eight SCLK cycles),  
the remaining bits are lost for that byte. The next byte of  
data that is read out contains the next 8 bits. If the first  
byte of an entry in the FIFO is read out fully, but the  
second byte is read out partially, the rest of that byte is  
lost. The remaining data in the FIFO is unaffected and  
can be read out normally after taking CS low again, as  
long as the 4 leading bits (normally zeros) are ignored.  
If CS is pulled low before EOC goes low, a conversion  
may not be completed and the FIFO data may not be  
correct. Incorrect writes (pulling CS high before com-  
pleting eight SCLK cycles) are ignored and the register  
remains unchanged.  
V
= V  
- V  
REF+ REF-  
REF  
V
V
REF  
REF  
011....111  
011....110  
011....101  
FS = V / 2 + V  
REF  
COM  
ZS = COM  
-FS = -V / 2  
REF  
V
REF  
Applications Information  
1 LSB = V / 1024  
REF  
000....001  
000....000  
111....111  
Internally Timed Acquisitions and  
(COM)  
Conversions Using CNVST  
ADC Conversions in Clock Mode 00  
In clock mode 00, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated through CNVST  
and performed automatically using the internal oscilla-  
tor. Results are added to the internal FIFO to be read  
out later. See Figure 6 for clock mode 00 timing after a  
command byte is issued. See Table 5 for details on  
programming the clock mode in the setup register.  
V
REF  
100....011  
100....010  
100....001  
100....000  
-FS  
-1 0 +1  
(COM)  
+FS - 1 LSB  
INPUT VOLTAGE (LSB)  
Initiate a scan by setting CNVST low for at least 40ns  
before pulling it high again. The MAX1040/MAX1042/  
Figure 4. Bipolar Transfer Function—Full Scale ( FS) =  
V
REF  
/ 2  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
111....111  
011....111  
011....110  
FS = V  
REF  
111....110  
111....101  
1 LSB = V / 1024  
REF  
000....010  
000....001  
000....000  
111....111  
111....110  
111....101  
000....011  
000....010  
000....001  
000....000  
100....001  
100....000  
0
1
2
3
FS  
INPUT VOLTAGE (LSB)  
0
-256  
+255.5  
FS - 3/2 LSB  
TEMPERATURE (°C)  
Figure 5. Temperature Transfer Function  
Figure 3. Unipolar Transfer Function—Full Scale (FS) = V  
REF  
______________________________________________________________________________________ 29  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
CNVST  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
LSB1  
MSB2  
MSB1  
t
RDS  
EOC  
Figure 6. Clock Mode 00—After writing a command byte, set CNVST low for at least 40ns to begin a conversion.  
t
CSW  
CNVST  
(CONVERSION 2)  
(ACQUISITION 1)  
(ACQUISITION 2)  
CS  
t
DOV  
(CONVERSION 1)  
SCLK  
DOUT  
LSB1  
MSB2  
MSB1  
EOC  
Figure 7. Clock Mode 01—After writing a command byte, request multiple conversions by setting CNVST low for each conversion.  
mode 00 or 10 is selected, an additional 45µs is  
required for the internal reference to power up. If a tem-  
perature measurement is being requested, reference  
power-up and temperature measurement is internally  
timed. In this case, hold CNVST low for at least 40ns.  
Do not issue a second CNVST signal before EOC goes  
low; otherwise, the FIFO can be corrupted. Wait until all  
conversions are complete before reading the FIFO. SPI  
communications to the DAC and GPIO registers are per-  
mitted during conversion. However, coupled noise may  
result in degraded ADC signal-to-noise ratio (SNR).  
26/MAX1048  
Set CNVST high to begin a conversion. Sampling is  
completed approximately 500ns after CNVST goes  
high. After the conversion is complete, the ADC shuts  
down and pulls EOC low. EOC stays low until CS or  
CNVST is pulled low again. Wait until EOC goes low  
before pulling CS or CNVST low. The number of CNVST  
signals must equal the number of conversions request-  
ed by the scan and averaging registers to correctly  
update the FIFO. Wait until all conversions are com-  
plete before reading the FIFO. SPI communications to  
the DAC and GPIO registers are permitted during con-  
Externally Timed Acquisitions and  
Internally Timed Conversions with CNVST  
ADC Conversions in Clock Mode 01  
In clock mode 01, conversions are requested one at a  
time using CNVST and performed automatically using  
the internal oscillator. See Figure 7 for clock mode 01  
timing after a command byte is issued.  
Setting CNVST low begins an acquisition, wakes up the  
ADC, and places it in track mode. Hold CNVST low for  
at least 1.4µs to complete the acquisition. If reference  
30 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
(CONVERSION BYTE)  
DIN  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
t
DOV  
Figure 8. Clock Mode 10—The command byte to the conversion register begins the acquisition (CNVST is not required).  
version. However, coupled noise may result in degrad-  
ed ADC SNR.  
Internally Timed Acquisitions and  
Conversions Using the Serial Interface  
If averaging is turned on, multiple CNVST pulses need to  
be performed before a result is written to the FIFO. Once  
the proper number of conversions has been performed  
to generate an averaged FIFO result (as specified to the  
averaging register), the scan logic automatically switch-  
es the analog input multiplexer to the next requested  
channel. If a temperature measurement is programmed,  
it is performed after the first rising edge of CNVST follow-  
ing the command byte written to the conversion register.  
The temperature-conversion result is available on DOUT  
once EOC has been pulled low. Temperature results are  
available in 12-bit format.  
ADC Conversions in Clock Mode 10  
In clock mode 10, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated by writing a com-  
mand byte to the conversion register, and is performed  
automatically using the internal oscillator. This is the  
default clock mode upon power-up. See Figure 8 for  
clock mode 10 timing.  
Initiate a scan by writing a command byte to the conver-  
sion register. The MAX1040/MAX1042/MAX1046/  
MAX1048 then power up, scan all requested channels,  
store the results in the FIFO, and shut down. After the  
scan is complete, EOC is pulled low and the results are  
available in the FIFO. If a temperature measurement is  
requested, the temperature result precedes all other  
FIFO results. Temperature results are available in 12-bit  
format. EOC stays low until CS is pulled low again. Wait  
until all conversions are complete before reading the  
FIFO. SPI communications to the DAC and GPIO regis-  
ters are permitted during conversion. However, coupled  
noise may result in degraded ADC SNR.  
______________________________________________________________________________________ 31  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
(CONVERSION BYTE)  
(ACQUISITION1)  
DIN  
(CONVERSION1)  
(ACQUISITION2)  
CS  
SCLK  
DOUT  
MSB1  
LSB1  
MSB2  
EOC  
X = DON'T CARE.  
Figure 9. Clock Mode 11—Externally Timed Acquisition, Sampling, and Conversion without CNVST  
Conversion-Time Calculations  
The conversion time for each scan is based on a num-  
ber of different factors: conversion time per sample,  
samples per result, results per scan, if a temperature  
measurement is requested, and if the external refer-  
ence is in use. Use the following formula to calculate  
the total conversion time for an internally timed conver-  
sion in clock mode 00 and 10 (see the Electrical  
Characteristics, as applicable):  
Externally Clocked Acquisitions and  
Conversions Using the Serial Interface  
ADC Conversions in Clock Mode 11  
In clock mode 11, acquisitions and conversions are ini-  
tiated by writing a command byte to the conversion  
register and are performed one at a time using SCLK  
as the conversion clock. Scanning, averaging and the  
FIFO are disabled, and the conversion result is avail-  
able at DOUT during the conversion. Output data is  
updated on the rising edge of SCLK in clock mode 11.  
See Figure 9 for clock mode 11 timing.  
Total conversion time =  
t
x n  
x n + t + t  
SCAN TS INT-REF,SU  
CNV  
AVG  
where:  
= t  
Initiate a conversion by writing a command byte to the  
conversion register followed by 16 SCLK cycles. If CS  
is pulsed high between the eighth and ninth cycles, the  
pulse width must be less than 100µs. To continuously  
convert at 16 cycles per conversion, alternate 1 byte of  
zeros (NOP byte) between each conversion byte. If 2  
NOP bytes follow a conversion byte, the analog cells  
power down at the end of the second NOP. Set the  
FBGON bit to one in the reset register to keep the inter-  
nal bias block powered.  
t
(where t  
is dependent on clock mode  
DOV  
CNV  
DOV  
and reference mode selected)  
n
AVG  
= samples per result (amount of averaging)  
n
= number of times each channel is scanned; set  
SCAN  
to one unless [SCAN1, SCAN0] = 10  
t
= time required for temperature measurement  
TS  
(53.1µs); set to zero if temperature measurement is not  
requested  
26/MAX1048  
If reference mode 00 is requested, or if an external refer-  
ence is selected but a temperature measurement is being  
requested, wait 45µs with CS high after writing the con-  
version byte to extend the acquisition and allow the inter-  
nal reference to power up. To perform a temperature  
measurement, write 24 bytes (192 cycles) of zeros after  
the conversion byte. The temperature result appears on  
DOUT during the last 2 bytes of the 192 cycles.  
Temperature results are available in 12-bit format.  
t
= t  
(external-reference wake-up); if a  
WU  
INT-REF,SU  
conversion using the external reference is requested  
In clock mode 01, the total conversion time depends on  
how long CNVST is held low or high. Conversion time in  
externally clocked mode (CKSEL1, CKSEL0 = 11)  
depends on the SCLK period and how long CS is held  
high between each set of eight SCLK cycles. In clock  
mode 01, the total conversion time does not include the  
time required to turn on the internal reference.  
32 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
t
CH  
t
CL  
32  
16  
8
SCLK  
DIN  
5
1
2
3
4
t
DH  
t
DS  
D13  
D12  
D11  
D15  
D14  
D1  
D0  
t
DOT  
t
DOD  
t
DOE  
D15  
D7  
D14  
D6  
D12  
D4  
D13  
D5  
DOUT  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
CS  
Figure 10. DAC/GPIO Serial-Interface Timing (Clock Modes 00, 01, and 10)  
DAC/GPꢂO Timing  
Figures 10–13 detail the timing diagrams for writing to  
the DAC and GPIOs. Figure 10 shows the timing speci-  
fications for clock modes 00, 01, and 10. Figure 11  
shows the timing specifications for clock mode 11.  
Figure 12 details the timing specifications for the DAC  
input select register and 2 bytes to follow. Output data  
is updated on the rising edge of SCLK in clock mode  
11. Figure 13 shows the GPIO timing. Figure 14 shows  
the timing details of a hardware LDAC command DAC-  
register update. For a software-command DAC-register  
update, t is valid from the rising edge of CS, which fol-  
S
lows the last data bit in the software command word.  
______________________________________________________________________________________ 33  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
t
CH  
t
CL  
32  
16  
8
SCLK  
5
1
2
3
4
t
DH  
t
DS  
D15  
D14  
D13  
D12  
D11  
D1  
D0  
DIN  
DOUT  
CS  
t
t
DOT  
DOE  
t
DOD  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
Figure 11. DAC/GPIO Serial-Interface Timing (Clock Mode 11)  
SCLK  
10  
24  
1
2
8
9
26/MAX1048  
DIN  
BIT 7 (MSB)  
BIT 6  
BIT 0 (LSB)  
BIT 15  
BIT 14  
BIT 1  
BIT 0  
DOUT  
CS  
THE COMMAND BYTE  
INITIALIZES THE DAC SELECT  
REGISTER  
THE NEXT 16 BITS SELECT THE DAC  
AND THE DATA WRITTEN TO IT  
Figure 12. DAC-Select Register Byte and DAC Serial-Interface Word  
34 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
CS  
t
GOD  
t
GSU  
GPIO INPUT/OUTPUT  
Figure 13. GPIO Timing  
t
LDACPWL  
LDAC  
t
S
1 LSB  
OUT_  
Figure 14. LDAC Functionality  
The MAX1040/MAX1042/MAX1046/MAX1048 thin QFN  
packages contain an exposed pad on the underside of  
the device. Connect this exposed pad to AGND. Refer to  
the MAX1258EVKIT for an example of proper layout.  
LDAC Functionality  
Drive LDAC low to transfer the content of the input reg-  
isters to the DAC registers. Drive LDAC permanently  
low to make the DAC register transparent. The DAC  
output typically settles from zero to full scale within  
LSB after 2µs. See Figure 14.  
1
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. INL for  
the MAX1040/MAX1042/MAX1046/MAX1048 is mea-  
sured using the end-point method.  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Ensure that digi-  
tal and analog signal lines are separated from each  
other. Do not run analog and digital signals parallel to  
one another (especially clock signals) or do not run dig-  
ital lines underneath the MAX1040/MAX1042/  
MAX1046/MAX1048 package. High-frequency noise in  
the AV  
power supply may affect performance.  
DD  
Bypass the AV  
AGND, close to the AV  
with a 0.1µF capacitor to DGND, close to the DV  
supply with a 0.1µF capacitor to  
DD  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
pin. Bypass the DV  
supply  
DD  
DD  
pin.  
DD  
Minimize capacitor lead lengths for best supply-noise  
rejection. If the power supply is very noisy, connect a  
10Ω resistor in series with the supply to improve power-  
supply filtering.  
______________________________________________________________________________________ 35  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Unipolar ADC Offset Error  
For an ideal converter, the first transition occurs at 0.5  
LSB, above zero. Offset error is the amount of deviation  
between the measured first transition point and the  
ideal first transition point.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
SINAD(dB) = 20 x log (Signal  
/ Noise  
)
RMS  
RMS  
Bipolar ADC Offset Error  
While in bipolar mode, the ADC’s ideal midscale transi-  
tion occurs at AGND -0.5 LSB. Bipolar offset error is the  
measured deviation from this ideal value.  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the ENOB as follows:  
ADC Gain Error  
Gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed and with  
a full-scale analog input voltage applied to the ADC,  
resulting in all ones at DOUT.  
ENOB = (SINAD - 1.76) / 6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
DAC Offset Error  
DAC offset error is determined by loading a code of  
all zeros into the DAC and measuring the analog  
output voltage.  
2
2
2
2
2
THD = 20 x log  
V
+ V3 + V4 + V5 + V6 /V  
2 1  
(
)
DAC Gain Error  
DAC gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed, when  
loading a code of all ones into the DAC.  
where V is the fundamental amplitude, and V through  
6
1
2
V are the amplitudes of the first five harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest distortion  
component.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
ADC Channel-to-Channel Crosstalk  
Bias the ON channel to midscale. Apply a full-scale sine  
wave test tone to all OFF channels. Perform an FFT on  
the ON channel. ADC channel-to-channel crosstalk is  
expressed in dB as the amplitude of the FFT spur at the  
frequency associated with the OFF channel test tone.  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge of the sampling clock and the instant when an  
actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-  
to-digital noise is caused by quantization error only and  
results directly from the ADC’s resolution (N bits):  
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
relative to the total input power when two tones, f1 and  
f2, are present at the inputs. The intermodulation prod-  
ucts are (f1 f2), (2 x f1), (2 x f2), (2 x f1 f2), (2 x f2  
f1). The individual input tone levels are at -7dBFS.  
26/MAX1048  
SNR = (6.02 x N + 1.76)dB  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC so the signal’s slew rate does not limit the ADC’s  
performance. The input frequency is then swept up to  
the point where the amplitude of the digitized conver-  
sion result has decreased by -3dB. Note that the T/H  
performance is usually the limiting factor for the small-  
signal input bandwidth.  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise. RMS noise  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first five har-  
monics, and the DC offset.  
36 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
DAC Power-Supply Rejection  
DAC PSR is the amount of change in the converter’s  
value at full-scale as the power-supply voltage changes  
from its nominal value. PSR assumes the converter’s lin-  
earity is unaffected by changes in the power-  
supply voltage.  
DAC Digital Feedthrough  
DAC digital feedthrough is the amount of noise that  
appears on the DAC output when the DAC digital con-  
trol lines are toggled.  
Chip Information  
TRANSISTOR COUNT: 58,141  
PROCESS: BiCMOS  
ADC Power-Supply Rejection  
ADC power-supply rejection (PSR) is defined as the  
shift in offset error when the power supply is moved  
from the minimum operating voltage to the maximum  
operating voltage.  
Package Information  
For the latest package outline information, go to  
wwwꢀmaxim-icꢀcom/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMEIT IOꢀ  
36 TQFN  
T3666-3  
21-0141  
______________________________________________________________________________________ 37  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Configurations  
TOP VIEW  
TOP VIEW  
36 35 34 33 32 31 30 29 28  
36 35 34 33 32 31 30 29 28  
D.C.  
D.C.  
EOC  
1
2
3
4
5
6
7
8
9
27 AIN0  
26 REF1  
25 D.C.  
24 D.C.  
23 N.C.  
22 RES_SEL  
21 CS  
GPIOA0  
1
2
3
4
5
6
7
8
9
27 AIN0  
GPIOA1  
EOC  
26 REF1  
25 GPIOC1  
24 GPIOC0  
23 N.C.  
DV  
DV  
DD  
DD  
DGND  
DOUT  
SCLK  
DIN  
DGND  
DOUT  
SCLK  
DIN  
MAX1040  
MAX1042  
22 RES_SEL  
21 CS  
20 LDAC  
19 D.C.  
20 LDAC  
19 D.C.  
OUT0  
OUT0  
10 11 12 13 14 15 16 17 18  
10 11 12 13 14 15 16 17 18  
THꢂI QFI  
6mm x 6mm x 0ꢀ8mm  
THꢂI QFI  
6mm x 6mm x 0ꢀ8mm  
TOP VIEW  
TOP VIEW  
36 35 34 33 32 31 30 29 28  
36 35 34 33 32 31 30 29 28  
D.C.  
D.C.  
EOC  
1
2
3
4
5
6
7
8
9
27 AIN0  
26 REF1  
25 D.C.  
24 D.C.  
23 N.C.  
22 RES_SEL  
21 CS  
GPIOA0  
GPIOA1  
EOC  
1
2
3
4
5
6
7
8
9
27 AIN0  
26 REF1  
25 GPIOC1  
24 GPIOC0  
23 N.C.  
DV  
DV  
DD  
DD  
DGND  
DOUT  
SCLK  
DIN  
DGND  
DOUT  
SCLK  
DIN  
MAX1046  
MAX1048  
22 RES_SEL  
21 CS  
26/MAX1048  
20 LDAC  
19 D.C.  
20 LDAC  
19 D.C.  
OUT0  
OUT0  
10 11 12 13 14 15 16 17 18  
10 11 12 13 14 15 16 17 18  
THꢂI QFI  
6mm x 6mm x 0ꢀ8mm  
THꢂI QFI  
6mm x 6mm x 0ꢀ8mm  
38 ______________________________________________________________________________________  
10-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
26/MAX1048  
Revision History  
REVꢂSꢂOI  
IUMBER  
REVꢂSꢂOI  
DATE  
DESCRꢂPTꢂOI  
PAGES CHAIGED  
4
3/08  
Changed timing characteristic specification  
7
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 39  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1041BETX

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1042

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1042BETX

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1042BETX+

暂无描述
MAXIM

MAX1042BETX+T

暂无描述
MAXIM

MAX1042BETX-T

暂无描述
MAXIM

MAX1043

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1043BETX

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1044

Switched-Capacitor Voltage Converters
MAXIM

MAX1044AMJA

Analog IC
MAXIM

MAX1044C

Switched-Capacitor Voltage Converters
MAXIM