LTM4651IY#PBF [Linear]

LTM4651 - EN55022B Compliant 58V, 24W Inverting-Output DC/DC µModule Regulator; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C;
LTM4651IY#PBF
型号: LTM4651IY#PBF
厂家: Linear    Linear
描述:

LTM4651 - EN55022B Compliant 58V, 24W Inverting-Output DC/DC µModule Regulator; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C

开关
文件: 总34页 (文件大小:1301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4651  
EN55022B Compliant 58V, 24W  
Inverting-Output DC/DC μModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®4651 is an ultralow noise, 58V, 24W DC/DC  
n
Complete Low EMI Switch Mode Power Supply  
EN55022 Class B Compliant  
μModule® inverting topology regulator. It regulates a nega-  
n
n
n
Wide Input Voltage Range: 3.6V to 58V  
tive output voltage (V  
) from a positive input supply  
OUT  
Up to 4A Output Current  
voltage(V ),andisdesignedtomeettheradiatedemissions  
IN  
n
24W Output from 12V to –24V , P  
A
= 5W,  
requirements of EN55022. Conducted emission require-  
ments can be met by adding standard filter components.  
Included in the package are the switching controller, power  
MOSFETs, inductor, filters and support components.  
IN  
OUT LOSS  
T = 60°C, t  
= 60°C, 200LFM  
RISE  
n
n
Output Voltage Range: –26.5V ≤ V  
0.5V  
OUT  
n
Safe Operating Area: V + |V  
| ≤ 58V  
IN  
OUT  
1.6ꢀ7 Total DC Output Voltage Error Over Line,  
Load and Temperature (–40°C to 125°C)  
The LTM4651 can regulate V  
to a value between  
OUT  
–0.5V and –26.5V, provided that its input and output  
n
n
n
n
n
n
Parallel and Current Share with Multiple LTM4651s  
Constant-Frequency Current Mode Control  
Frequency Synchronization Range: 250kHz to 3MHz  
Power Good Indicator and Programmable Soft-Start  
Overcurrent/Overvoltage/Overtemperature Protection  
15mm × 9mm × 5.01mm BGA Package  
voltages adhere to the safe operating area criteria of the  
LTM4651: V + |V  
| 58V. A switching frequency  
IN  
OUT  
range of 250kHz to 3MHz is supported (400kHz default)  
and the module can synchronize to an external clock.  
Despite being an inverting topology regulator, no level shift  
circuitry is needed to interface to the LTM4651’s RUN,  
PGOOD or CLKIN pins; those pins are referenced to GND.  
APPLICATIONS  
TheLTM4651isofferedina15mm×9mm×5.01mmBGA  
package with SnPb or RoHS compliant terminal finish.  
L, LT, LTC, LTM, Linear Technology , the Linear logo, LTpowerCAD and μModule are registered  
trademarks of Analog Devices, Inc. All other trademarks are the property of their respective  
owners. Protected by U.S. Patents, including 5481178, 5705919, 5847554, 6580258.  
n
Avionics, Industrial Control and Test Equipment  
n
Video, Imaging and Instrumentation  
n
48V Telecom and Network Power Supplies  
RF Systems  
n
TYPICAL APPLICATION  
–24V, 2.25A* Ultralow Noise** DC/DC μModule Regulator  
Output Current Capability*  
4.0  
V
IN  
V
PGND  
IN  
3.6V  
3.5  
4.7μF  
TO 34V  
SV  
GND  
IN  
SNS  
10µF  
×2  
3.0  
LOAD  
V
D
2.5  
RUN  
INTV  
SV  
V
OUT  
4.7μF  
–24V  
UP TO 2.25A  
,
OUT  
CC  
2.0  
1.5  
1.0  
0.5  
0
V
V
V
V
V
V
V
V
= –0.5V  
= –3.3V  
= –5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
LTM4651  
VINREG  
COMPa  
COMPb  
= –8V  
= –12V  
= –15V  
= –20V  
= –24V  
PINS NOT USED IN  
THIS CIRCUIT:  
f
SET  
CLKIN, PGOOD,  
PGDFB, SW, EXTV  
GND  
ISETa ISETb  
0
10  
20  
30  
40  
50  
60  
CC  
4651 TA01a  
+
INPUT VOLTAGE (V)  
TEMP , TEMP , NC  
90.9k  
4651 TA01b  
481k  
*Current limit frequency-foldback activates at load currents higher than indicated  
curves. Continuous output current capability subject to details of application  
implementation. Switching frequency set per Table 1. See Notes 2 and 3.  
**See Figures 5 – 8 for DC2328A Radiated Emission Performance against EN55022B limits.  
4651f  
1
For more information www.linear.com/LTM4651  
LTM4651  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1) (All Voltages Relative to VOUTUnless Otherwise Indicated)  
TOP VIEW  
Terminal Voltages  
1
2
3
4
5
6
7
V
V , V , SV , SW, PGND, GND , ISETa ..–0.3V to 60V  
IN  
IN  
D
IN  
SNS  
A
B
GND, EXTV ........................................ –0.3V to 28V  
CC  
V
CLKIN NC  
V
D
RUN.................................GND – 0.3V to V  
+ 60V  
OUT  
V
OUT  
SV  
IN  
INTV , PGDFB, VINREG, COMPa .......... –0.3V to 4V  
NC  
OUT  
CC  
C
D
E
f
..................................................–0.3V to INTV  
SET  
CC  
VINREG GND  
PGOOD PGDFB  
COMPb COMPa  
COMPb ................................................... –0.3V to 5V  
ISETb .................................................... –0.3V to 28V  
CLKIN, PGOOD (Relative to GND) ........... –0.3V to 6V  
Terminal Currents  
f
NC  
SV  
SET  
OUT  
ISETb ISETa EXTV  
RUN  
CC  
F
INTV Peak Output Current (Note 8)................30mA  
INTV  
CC  
CC  
G
+
TEMP ..................................................–1mA to 10mA  
GND  
SV  
SNS  
OUT  
SW  
V
TEMP .................................................–10mA to 1mA  
H
+
+
TEMP  
TEMP  
TEMP  
Temperatures  
TEMP  
J
Internal Operating Temperature  
OUT  
K
Range (Notes 2, 7).......................... –40°C to 125°C  
Storage Temperature Range .............. –55°C to 125°C  
Peak Solder Reflow Package  
PGND  
NC  
L
BGA PACKAGE  
77-PIN (15mm × 9mm × 5.01mm)  
= 125°C  
Body Temperature ............................................ 245°C  
T
JMAX  
θ
JCtop  
= 22.4°C/W, θ  
= 7.9°C/W, θ = 9.6°C/W, θ = 20.8°C/W  
JCbottom  
JB  
JA  
θ VALUES DETERMINED PER JESD51-12  
WEIGHT = 1.8 GRAMS  
http://www.linear.com/product/LTM4651#orderinfo  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM4651EY#PBF  
LTM4651IY#PBF  
LTM4651IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
TYPE  
RATING  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
e1  
LTM4651Y  
BGA  
3
e0  
• Device temperature grade is indicated by a label on the shipping container. Recommended BGA PCB Assembly and Manufacturing Procedures:  
www.linear.com/BGA-assy  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• BGA Package and Tray Drawings: www.linear.com/packaging  
• Terminal Finish Part Marking: www.linear.com/leadfree  
This product is moisture sensitive. For more information, go to:  
This product is not recommended for second side reflow. For more  
www.linear.com/BGA-assy  
information, go to www.linear.com/BGA-assy  
4651f  
2
For more information www.linear.com/LTM4651  
LTM4651  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
24V, EXTVCC = PGND, CLKIN open circuit, RfSET = 5ꢀ.6kΩ and RISET = 480kΩ and voltages referred to PGND unless otherwise noted.  
operating temperature range (Note 2). TA = 25°C, Test Circuit 1, VIN = 24V and electrically connected to SVIN and RUN, ISETa – SVOUT  
=
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3.6  
TYP MAX UNITS  
+
l
l
l
SV  
, V  
Input DC Voltage  
V
|V | ≤ 58V  
OUT  
58  
V
IN(DC) IN(DC)  
IN  
V
V
Range of Output Voltage Regulation  
0.5V ≤ ISETa – SV  
≤ 26.5V  
OUT  
–26.5  
–0.5  
V
V
OUT(RANGE)  
Output Voltage Total Variation with  
Line and Load at V  
3.6V ≤ V ≤ 34V, 0A ≤ I  
≤ 0.3A, CLKIN Driven per  
–24.4 –24 –23.6  
OUT(–24VDC)  
IN  
OUT  
= –24V  
Note 6, C = 4.7μF, C = 4.7μF × 2,  
OUT  
INH  
= 47μF × 2  
D
C
OUTH  
l
l
V
Output Voltage Total Variation with  
Measuring GND  
– ISETa  
–15  
–15  
0
0
15  
15  
mV  
mV  
OUT(–5VDC)  
SNS  
Line and Load at V  
= –5V  
12V ≤ V ≤ 53V, 0A ≤ I  
≤ 3A, CLKIN Driven by  
OUT  
OUT  
IN  
550kHz Clock, C = 4.7μF, C = 4.7μF × 2, C  
INH  
D
OUTH  
= 47μF × 2, ISETa – SV  
= 5V  
OUT  
V
Output Voltage Total Variation with  
Measuring GND  
– ISETa  
OUT(–0.5VDC)  
SNS  
Line and Load at V  
= –0.5V  
3.6V ≤ V ≤ 28V, 0A ≤ I  
≤ 2A, C = 4.7μF,  
OUT  
IN  
OUT INH  
C = 4.7μF × 2, C  
= 47μF × 2, R  
= N/U,  
D
OUTH  
fSET  
ISETa – SV  
= 500mV, CLKIN Driven by 200kHz  
OUT  
Clock (Note 5)  
Input Specifications  
l
l
l
V
SV Undervoltage Lockout Threshold SV Rising  
3.2  
2.5  
700  
3.6  
2.8  
V
V
mV  
IN(UVLO)  
IN  
IN  
SV Falling  
2.1  
400  
IN  
Hysteresis  
V
V
SV Overvoltage Lockout Rising  
(Note 4)  
64  
68  
2
V
V
A
IN(OVLO)  
IN  
SV Overvoltage Lockout Hysteresis (Note 4)  
IN  
4
IN(HYS)  
I
Input Inrush Current at Start-Up  
C
= 4.7μF, C = 4.7μF × 2, C = 47μF × 2;  
OUTH  
1.1  
INRUSH(VIN)  
INH  
D
I
= 0A, ISETa Electrically Connected to ISETb  
OUT  
I
Input Supply Bias Current  
Shutdown, RUN = GND  
RUN = V  
16  
450  
30  
μA  
μA  
Q(SVIN)  
IN  
I
I
Input Supply Power Converter  
CLKIN Open Circuit, I  
= 2A  
OUT  
2.3  
4
A
S(VIN)  
Input Supply Current in Shutdown  
Shutdown, RUN = GND  
µA  
S(VIN, SHUTDOWN)  
Output Specifications  
I
V
Output Continuous  
From V = 24V, Regulating V  
= –24V at f = 1.5MHz  
0
0
2
3
A
A
OUT  
OUT  
IN  
OUT  
OUT  
SW  
Current Range  
From V = 12V, Regulating V  
= –5V at f = 550kHz  
SW  
IN  
(See Note 3, Capable of Up to 4A Output Current for  
Some Combinations of V , V  
, and f )  
SW  
IN OUT  
l
l
∆V  
∆V  
/V  
Line Regulation Accuracy  
Load Regulation Accuracy  
I
= 0A, 3.6V ≤ V ≤ 34V, ISETa – SV  
= 24V,  
0.05 0.25  
%
%
OUT(LINE) OUT  
OUT  
IN  
OUT  
CLKIN Driven by 1.8MHz Clock  
/V  
V
= 24V, 0A ≤ I  
Clock, R  
≤ 2A, CLKIN Driven by 1.5MHz  
0.05  
0.5  
OUT(LOAD) OUT  
IN  
OUT  
= 57.6kΩ, and R  
= 480kΩ  
fSET  
ISET  
V
Output Voltage Ripple, V  
V
IN  
V
IN  
= 12V, ISETa – SV  
= 12V, ISETa – SV  
= 5V  
10  
1.95  
8
mV  
P–P  
OUT(AC)  
OUT  
OUT  
OUT  
l
l
f
s
V
OUT  
Ripple Frequency  
= 5V  
1.7  
2.2  
9
MHz  
mV  
ms  
∆V  
Turn-On Overshoot  
OUT(START)  
t
Turn-On Start-Up Time  
Delay Measured from V Toggling from 0V to 24V to  
4
START  
IN  
PGOOD Exceeding 3V Above GND; PGOOD Having a  
100kΩ Pull-Up to 3.3V with Respect to GND, VPGFB  
Resistor-Divider Network as Shown in Test Circuit 1,  
R
= 480kΩ, ISETa Electrically Connected to ISETb,  
ISETa  
and CLKIN Driven with 1.2MHz Clock  
∆V  
Peak Output Voltage Deviation for  
Dynamic Load Step  
I
: 0A to 1A and 1A to 0A Load Steps in 1μs,  
400  
50  
mV  
µs  
OUT(LS)  
OUT  
C
= 47µF × 2 X5R  
OUTH  
t
Settling Time for Dynamic Load Step  
I
C
: 0A to 0.5A and 0.5A to 0A Load Steps in 1μs,  
= 47µF × 2 X5R  
SETTLE  
OUT  
OUTH  
4651f  
3
For more information www.linear.com/LTM4651  
LTM4651  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). TA = 25°C, Test Circuit 1, VIN = 24V and electrically connected to SVIN and RUN, ISETa – SVOUT  
24V, EXTVCC = PGND, CLKIN open circuit, RfSET = 5ꢀ.6kΩ and RISET = 480kΩ and voltages referred to PGND unless otherwise noted.  
=
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
I
I
Output Current Limit  
2.45  
A
OUT(OCL)  
OUT  
Control Section  
l
l
I
I
t
Reference Current of ISETa Pin  
GND Leakage Current  
V
– SV  
ISETa  
= 0.5V, 3.6V ≤ V ≤ 28V  
49.3  
49  
50  
50  
50.7  
51  
µA  
µA  
ISETa  
ISETa  
OUT  
IN  
0.1V ≤ V  
– SV  
≤ V – SV  
≤ 58V  
OUT  
OUT  
IN  
V
– SV  
= SV – SV  
= RUN – GND =  
600  
μA  
GNDSNS  
ON(MIN)  
SNS  
IN  
OUT  
IN  
= 58V  
OUT  
ISETa – SV  
OUT  
Minimum On-Time  
(Note 4 )  
60  
ns  
l
l
V
RUN Turn-On/-Off Thresholds  
RUN Input Turn-On Threshold, RUN Rising  
RUN Hysteresis  
1.08  
360  
1.2  
1.32  
50  
V
RUN  
130  
mV  
(RUN Thresholds Measured with Respect to GND)  
I
RUN Leakage Current  
V
– 48V, RUN – GND = 3.3V  
0.1  
nA  
RUN  
IN  
Oscillator and Phase-Locked Loop (PLL)  
f
Oscillator Frequency Accuracy  
V
= 12V, ISETa – SV  
= 5V, and:  
OSC  
IN  
OUT  
f
Open Circuit  
l
400  
1.95  
440  
kHz  
MHz  
SET  
R
= 57.6kΩ (See f Specification)  
fSET  
s
f
PLL Synchronization Capture Range  
V
= 12V, ISETa – SV  
= 5V, CLKIN Driven with a  
SYNC  
IN  
OUT  
GND-Referred Clock Toggling from 0.4V to 1.2V and  
Having a Clock Duty Cycle:  
From 10% to 90%; f Open Circuit  
250  
1.3  
550  
3
kHz  
MHz  
SET  
From 40% to 60%; R  
= 57.6kΩ  
fSET  
V
CLKIN Input Threshold  
CLKIN Input Current  
V
V
Rising, with Respect to GND  
Falling, with Respect to GND  
1.2  
V
V
CLKIN  
CLKIN  
CLKIN  
0.4  
I
V
V
= 5V with Respect to GND  
= 0V with Respect to GND  
230  
–5  
500  
μA  
μA  
CLKIN  
CLKIN  
CLKIN  
–20  
Power Good Feedback Input and Power Good Output  
l
l
OV  
UV  
∆V  
Output Overvoltage PGOOD Upper  
Threshold  
PGDFB Rising, Differential Voltage from PGDFB  
620  
525  
645  
555  
8
675  
580  
mV  
mV  
PGDFB  
to SV  
OUT  
Output Undervoltage PGOOD Lower  
Threshold  
PGDFB Falling, Differential Voltage from  
PGDFB  
PGDFB to SV  
OUT  
PGOOD Hysteresis  
PGDFB Returning  
mV  
kΩ  
Ω
PGDFB  
PGDFB  
R
R
Resistor Between PGDFB and SV  
PGOOD Pull-Down Resistance  
4.94 4.99 5.04  
700 1500  
OUT  
V
= 0.1V with Respect to GND, V  
SV  
<
PGOOD  
PGOOD  
PGDFB  
OUT  
UV  
or V  
– SV  
> OV  
PGDFB  
PGDFB  
PGDFB  
OUT  
I
PGOOD Leakage Current  
PGOOD Delay  
V
V
= 3.3V with Respect to GND, UV  
<
0.1  
1
μA  
PGOOD(LEAK)  
PGOOD(DELAY)  
PGOOD  
PGDFB  
PGDFB  
– SV  
< OV  
PGDFB  
OUT  
t
PGOOD Low to High (Note 4)  
PGOOD High to Low (Note 4)  
16/f  
s
s
SW(HZ)  
SW(HZ)  
64/f  
4651f  
4
For more information www.linear.com/LTM4651  
LTM4651  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
24V, EXTVCC = PGND, CLKIN open circuit, RfSET = 5ꢀ.6kΩ and RISET = 480kΩ and voltages referred to PGND unless otherwise noted.  
operating temperature range (Note 2). TA = 25°C, Test Circuit 1, VIN = 24V and electrically connected to SVIN and RUN, ISETa – SVOUT  
=
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
Input Voltage Regulation Pin  
l
V
VINREG Servo Voltage  
VINREG Voltage During Output Current Regulation,  
1.8  
2.0  
1
2.2  
V
VINREG  
Measured with Respect to SV  
OUT  
I
VINREG Leakage Current  
VINREG – SV  
= 2V  
nA  
VINREG  
OUT  
INTV Regulator  
CC  
V
Channel Internal V Voltage, No  
3.6V ≤ SV – SV  
≤ 58V, EXTV = Open Circuit  
3.15  
2.85  
3.4  
3.0  
3.65  
3.15  
V
V
V
INTVCC  
CC  
IN  
OUT  
CC  
INTV Loading (I  
= 0mA)  
5V ≤ SV – SV  
≤ 58V, 3.2V ≤ EXTV – V  
(INTV Measured with Respect to V  
≤ 26.5V  
CC  
INTVCC  
IN  
OUT  
CC  
OUT  
)
CC  
OUT  
V
EXTV Switchover Voltage  
(Note 4)  
3.15  
0.5  
V
EXTVCC(TH)  
CC  
∆V  
/
INTV Load Regulation  
0mA ≤ I ≤ 30mA  
INTVCC  
–2  
2
%
INTVCC(LOAD)  
INTVCC  
CC  
V
Temperature Sensor  
+
∆V  
TEMP  
Temperature Sensor Forward Voltage,  
TEMP  
I
= 100µA and I  
= –100μA at T = 25°C  
0.6  
V
TEMP  
TEMP  
A
+
V
– V  
TEMP  
TC  
∆V(TEMP)  
∆V  
TEMP  
Temperature Coefficient  
–2.0  
mV/°C  
Note 1: Stresses beyond those listing under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating conditions for extended periods may affect device  
reliability and lifetime.  
Note 5: V  
low line regulation is tested at 3.6V , with f and  
OUT(–0.5VDC)  
IN  
SET  
CLKIN open circuit. High line regulation is tested at 28V , and with CLKIN  
IN  
driven at 200kHz—so as to ensure minimum on time criteria is met. The  
LTM4651 is not recommended for applications where the minimum on-  
time criteria (guardband to 90ns) is continuously violated. The LTM4651  
Note 2: The LTM4651 is tested under pulsed load conditions such that  
can ride through events (such as V surge) where the on-time criteria is  
IN  
T ≈ T . The LTM4651E is guaranteed to meet performance specifications  
J
A
transiently violated. See the Applications Information section.  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4651I is guaranteed to meet specifications over the full  
internal operating temperature range. Note that the maximum ambient  
temperature consistent with these specifications is determined by specific  
operating conditions in conjunction with board layout, the rated package  
thermal resistance and other environmental factors.  
Note 6: V  
is tested at 3.6V and 34V , with CLKIN driven  
OUT(–24VDC)  
IN IN  
with a 1.8MHz clock, ISETa – SV  
tested at 24V , with CLKIN driven with a 1.5MHz clock, R  
= 24V, and R  
= 57.6kΩ. It is also  
OUT  
fSET  
= 57.6kΩ,  
IN  
fSET  
and R  
= 480kΩ.  
ISET  
Note ꢀ: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 3: See output current derating curves for different V , V , and T ,  
IN OUT  
A
located in the Applications Information section.  
Note 4: Minimum on-time, V Overvoltage Lockout and Overvoltage  
Note 8: The INTV Abs Max peak output current is specified as the sum  
IN  
CC  
Lockout Hysteresis, PGOOD Delay, and EXTV Switchover Threshold are  
of current drawn by circuits internal to the module biased off of INTV  
CC  
CC  
tested at wafer sort.  
and current drawn by external circuits biased off of INTV . See the  
Applications Information section.  
CC  
4651f  
5
For more information www.linear.com/LTM4651  
LTM4651  
TA = 25°C, unless otherwise noted.  
–5V Efficiency vs Load Current  
TYPICAL PERFORMANCE CHARACTERISTICS  
–3.3V Efficiency vs Load Current  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
5V , 400kHz  
IN  
12V , 400kHz  
IN  
24V , 450kHz  
IN  
36V , 500kHz  
IN  
48V , 500kHz  
IN  
5V , 400kHz  
IN  
12V , 550kHz  
IN  
24V , 600kHz  
IN  
36V , 600kHz  
IN  
48V , 600kHz  
IN  
0
1
2
3
4
0
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4651 G01  
4651 G02  
–12V Efficiency vs Load Current  
–15V Efficiency vs Load Current  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
5V , 475kHz  
IN  
5V , 500kHz  
IN  
12V , 825kHz  
IN  
12V , 875kHz  
IN  
24V , 1.1MHz  
IN  
24V , 1.2MHz  
IN  
36V , 1.2MHz  
IN  
36V , 1.4MHz  
IN  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4651G03  
4651 G04  
–24V Efficiency vs Load Current  
Rated Operating Output Voltage  
95  
90  
85  
80  
75  
70  
0
–5  
–10  
–15  
–20  
–25  
–30  
SAFE OPERATING AREA  
5V , 550kHz  
IN  
12V , 1MHz  
IN  
24V , 1.5MHz  
IN  
0
0.5  
1
1.5  
2
0
10  
20  
30  
40  
50  
60  
LOAD CURRENT (A)  
INPUT VOLTAGE (V)  
4651 G05  
4651 G06  
4651f  
6
For more information www.linear.com/LTM4651  
LTM4651  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
–5V Transient Response, 24VIN  
–24V Transient Response, 12VIN  
Start-Up, No Load  
V
IN  
V
V
OUT  
OUT  
5V/DIV  
100mV/DIV  
AC-COUPLED  
100mV/DIV  
AC-COUPLED  
V
OUT  
10V/DIV  
I
I
OUT  
RUN  
2V/DIV  
OUT  
0.4A/DIV  
1A/DIV  
PGOOD  
5V/DIV  
4651 G09  
4651 G08  
4651 G07  
20μs/DIV  
FIGURE 32 CIRCUIT,  
1ms/DIV  
40μs/DIV  
FIGURE 32 CIRCUIT, 24V  
FIGURE 32 CIRCUIT, APPLICATION OF 12V  
START-UP INTO NO LOAD  
,
,
IN  
IN  
0.625A TO 1.25A LOAD STEP AT 0.625A/μs  
C
C
R
R
= C = C = C = 4.7μF,  
DGND D  
INOUT  
OUT  
ISET  
IN  
= 47μF ×2, R  
= 665kΩ,  
= 36.5kΩ,  
PGDFB  
fSET  
= 100kΩ, R  
= 20Ω, 1.8A TO 3.8A LOAD STEP AT 2A/μs  
EXTVCC  
Start-Up, 1.25A Load  
Start-Up, Pre-Bias  
V
V
OUT  
IN  
5V/DIV  
10V/DIV  
V
I
DIODE  
100mA/DIV  
OUT  
10V/DIV  
I
RUN  
2V/DIV  
OUT  
500mA/DIV  
PGOOD  
5V/DIV  
PGOOD  
2V/DIV  
4651 G10  
4651 G11  
1ms/DIV  
1ms/DIV  
FIGURE 32 CIRCUIT, APPLICATION OF 12V  
START-UP INTO 19.2Ω LOAD  
,
FIGURE 32 CIRCUIT, V  
PRE-BIASED  
IN  
OUT  
TO –5V THROUGH A 1N4148 DIODE PRIOR  
TO RUN TOGGLING HIGH  
Short Circuit, No Load  
Short Circuit, 1.25A Load  
V
V
OUT  
OUT  
10V/DIV  
10V/DIV  
I
I
IN  
IN  
10A/DIV  
10A/DIV  
4651 G13  
4651 G12  
10μs/DIV  
FIGURE 32 CIRCUIT,  
10μs/DIV  
FIGURE 32 CIRCUIT,  
19.2Ω LOAD PRIOR TO APPLICATION OF  
NO LOAD PRIOR TO APPLICATION OF  
V
OUT  
SHORT-CIRCUIT  
V
OUT  
SHORT-CIRCUIT  
4651f  
7
For more information www.linear.com/LTM4651  
LTM4651  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
RUN (F4): Run Control Pin. A voltage above 1.2V (with  
respect to GND) commands the module to regulate its  
output voltage. Undervoltage lockout (UVLO) can be  
implemented by connecting RUN to the midpoint node  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
V (A1 – A3, B3): Power Input Pins. Apply input voltage  
IN  
and input decoupling capacitance directly between V  
IN  
formed by a resistor-divider between V and GND. RUN  
IN  
and a power ground (PGND) plane.  
features 130mV of hysteresis. See the Applications In-  
formation section.  
V (A4,B4,C4):DrainoftheConverter’sPrimarySwitching  
D
MOSFET. Apply at least one 4.7μF high frequency ceramic  
INTV (G3): Internal Regulator, 3.3V Output with Re-  
CC  
decoupling capacitor directly from V to V  
. Give this  
D
OUT  
spect to V  
. Internal control circuits and MOSFET-  
OUT  
capacitor higher layout priority (closer proximity to the  
module) than any V decoupling capacitors.  
drivers derive power from INTV bias. When operating  
CC  
IN  
3.6V < SV ≤ 58V, an LDO generates INTV from SV  
IN  
CC  
IN  
whenRUNislogichigh(RUN>1.2V).Noexternaldecoupling  
SV (C3): Input Voltage Supply for Small-Signal Circuits.  
IN  
is required. When RUN is logic low (RUN – GND < 1.2V),  
SV is the input to the INTV LDO. Connect SV directly  
IN  
CC  
IN  
the INTV LDO is off, i.e., INTV is unregulated. (Also  
CC  
CC  
CC  
to V . No decoupling capacitor is needed on this pin.  
IN  
see EXTV .) It is not recommended to load INTV with  
CC  
V
(A5, B5, C2, C5, D5, E5, F5, G4 – 5, H3, H5,  
OUT  
external circuits exceeding ~10mA. See the Applications  
J3 – 5, K4 – 5, L4 – 5): Negative Power Output of the  
Information section and Note 8.  
LTM4651. Connect all V  
pins to the application’s  
OUT  
EXTV (F3): External Bias, Auxiliary Input to the INTV  
CC  
CC  
V
plane. Apply the output filter capacitor and the  
OUT  
Regulator. When EXTV – V  
exceeds 3.2V and  
CC  
OUT  
output load between these and the PGND pins.  
SV – V  
exceeds 5V, the INTV LDO derives power  
IN  
OUT  
CC  
IN  
PGND(K13,L13):PowerGroundPinsoftheLTM4651.  
Electricallyconnectallpinstotheapplication’sPGNDplane.  
from EXTV bias instead of the SV path. This technique  
CC  
can reduce LDO losses considerably, resulting in a cor-  
respondingreductioninmodulejunctiontemperature.For  
GND(D4):GroundReferenceforRUN,CLKIN,andPGOOD  
Signals. Connect GND directly to the PGND power ground  
plane.  
applications where |V  
| > 4V, realize this benefit by  
OUT  
connecting EXTV to PGND through a resistor. (See the  
CC  
Application Information section for resistor value.) When  
GND  
(G1, H1): Voltage Sense, PGND Input and Feed-  
SNS  
taking advantage of this EXTV feature, locally decouple  
CC  
back Signal. Connect GND  
to PGND at the point of  
SNS  
EXTV toV  
witha1µFceramiccapacitor—otherwise,  
CC  
OUT  
load (POL). Pins G1 and H1 are electronically connected  
to each other internal to the module, and thus it is only  
necessarytoconnectoneGND  
leave EXTV open circuit.  
CC  
ISETb (F1): 1.5nF Soft-Start Capacitor. Connect ISETb  
to ISETa to achieve default soft-start characteristics, if  
desired—otherwise, leave ISETb open circuit. See ISETa.  
pintoPGNDatthePOL.  
SNS  
TheremainingGND  
pincanbeusedforredundantcon-  
SNS  
nectivity or routed to an ICT test point for design-for-test  
considerations, as desired.  
ISETa (F2): Accurate 50µA Current Source. Positive input  
to the error amplifier. Connect a resistor (R ) from this  
SV  
(E4,G2,H2):VoltageSense,V  
Input.Connect  
SET  
OUT  
OUT  
pintoSV  
age, V  
toprogramthedesiredLTM4651outputvolt-  
Pin H2 to V  
directly under the LTM4651. The SV  
OUT  
OUT  
OUT  
OUT  
= –R • 50µA. A capacitor can be connected  
pins at locations E4 and G2 are electrically connected  
SET  
OUT  
from ISETa to SV  
to soft-start the output voltage and  
to each other internal to the module, and thus it is only  
reduce start-up inrush current. Connect ISETa to ISETb in  
order to achieve default soft-start, if desired. See ISETb.  
necessary to connect one SV  
the module. The remaining SV  
redundant connectivity or routed to an ICT test point for  
design-for-test considerations, as desired.  
pin to V  
under  
OUT  
OUT  
OUT  
pins can be used for  
4651f  
8
For more information www.linear.com/LTM4651  
LTM4651  
PIN FUNCTIONS  
In addition, the output of the LTM4651 can track a voltage  
applied between the ISETa pin and the SV  
the Applications Information section.  
COMPa (E2): Current Control Threshold and Error Ampli-  
fier Compensation Node. The trip threshold of LTM4651’s  
current comparator increases with a respective rise in  
COMPa voltage. A small filter capacitor (10pF) internal  
to the LTM4651 on this pin introduces a high-frequency  
roll-offoftheerror-amplifierresponse,yieldinggoodnoise  
rejection in the control-loop. COMPa is usually electrically  
connected to COMPb in one’s application, thus applying  
default loop compensation. Loop compensation (a series  
resistor-capacitor) can be applied externally to COMPa if  
desired or needed, instead. See COMPb.  
pins. See  
OUT  
PGOOD (D1): Power Good Indicator, Open-Drain Output  
Pin. PGOOD is high impedance when PGDFB – SV  
is  
OUT  
within approximately 7.5% of 0.6V. PGOOD is pulled to  
GND when PGDFB – SV  
is outside this range.  
OUT  
PGDFB (D2): Power Good Feedback Programming Pin.  
Connect PGDFB to GND  
PGDFB  
through a resistor, R  
.
SNS  
PGDFB  
R
configures the voltage threshold of V  
for  
OUT  
which PGOOD toggles its state. If the PGOOD feature is  
COMPb (E1): Internal Loop Compensation Network.  
For a majority of applications, the internal, default loop  
compensation of the LTM4651 is suitable to apply “as is”  
and yields very satisfactory results: apply the default loop  
compensation to the control loop by simply connecting  
COMPa to COMPb. When more specialized applications  
requireapersonaltouchtotheoptimizationofcontrolloop  
used, set R  
to:  
PGDFB  
|V  
|
OUT  
RPGDFB  
=
–1 •4.99k  
0.6V  
otherwise, leave PGDFB open circuit.  
response,thiscanbeaccomplishedbyconnectingaseries  
A small filter capacitor (220pF) internal to the LTM4651  
on this pin provides high frequency noise immunity for  
the PGOOD output indicator.  
resistor-capacitor network from COMPa to SV  
leaving COMPb open circuit.  
—and  
OUT  
VINREG(D3):InputVoltageRegulationProgrammingPin.  
f
(E3): Oscillator Frequency Programming Pin. The  
SET  
Optionally connect this pin to the midpoint node formed  
default switching frequency of the LTM4651 is 400kHz.  
by a resistor-divider between V and SV  
. When the  
D
OUT  
Often, it is necessary to increase the programmed fre-  
quencybyconnectingaresistorbetweenf andSV  
(See the Applications Information section.) Note that the  
synchronization range of CLKIN is approximately 40%  
of the oscillator frequency programmed by the f pin.  
voltage on VINREG falls below approximately 2V with  
.
SET  
OUT  
respect to SV  
, a VINREG control loop servos COMPa  
OUT  
so as to decrease the power inductor current and thus  
regulate VINREG at 2V with respect to SV  
Applications Information section.  
. See the  
OUT  
SET  
CLKIN(B1):OscillatorSynchronizationInput.LeaveCLKIN  
open circuit for forced continuous mode operation.  
If this input voltage regulation feature is not desired, con-  
nect VINREG to INTV .  
CC  
Alternatively,thispincanbedrivensoastosynchronizethe  
switching frequency of the LTM4651 to a clock signal. In  
thiscondition,theLTM4651operatesinforced-continuous  
mode and the cycle-by-cycle turn-on of the Primary MOS-  
FET is coincident with the rising edge of the clock applied  
to CLKIN. Note the synchronization range of CLKIN is ap-  
proximately 40%oftheoscillatorfrequencyprogrammed  
+
TEMP (J1, J6): Temperature Sensor, Positive Input.  
Emitterofa2N3906-genrePNPbipolarjunctiontransistor  
(BJT). Optionally interface to temperature monitoring cir-  
cuitrysuchasLTC®2997, LTC2990, LTC2974orLTC2975.  
Otherwise leave electrically open. Pins J1 and J6 are  
electrically connected together internal to the LTM4651,  
and thus it is only necessary to connect one TEMP pin  
to monitoring circuitry. The remaining TEMP pin can be  
+
by the f pin. See the Applications Information section.  
SET  
+
used for redundant connectivity or routed to an ICT test  
point for design-for-test considerations, as desired.  
4651f  
9
For more information www.linear.com/LTM4651  
LTM4651  
PIN FUNCTIONS  
TEMP (J2, J7): Temperature Sensor, Negative Input.  
with a thin trace to a local test point to monitor switching  
actionoftheconverter, ifdesired, butdonotroutenearany  
sensitivesignals;otherwise,leaveelectricallyopencircuit.  
Collector and base of a 2N3906-genre PNP bipolar junc-  
tion transistor (BJT). Optionally interface to temperature  
monitoringcircuitrysuchasLTC2997,LTC2990,LTC2974  
or LTC2975. Otherwise leave electrically open. Pins J2  
and J7 are electrically connected together internal to the  
LTM4651, and thus it is only necessary to connect one  
NC (A6 – 7, B2, B6 – 7, C1, C6 – 7, D6 – 7, E6 – 7, F6 – 7,  
G6 – 7, H6 – 7, K6 – 7, L6 – 7): No Connect Pins, i.e., Pins  
with No Internal Connection. The NC pins predominantly  
serve to provide improved mounting of the module to the  
board. In one’s layout, NC pins are permitted to remain  
TEMP pin to monitoring circuitry. The remaining TEMP  
pin can be used for redundant connectivity or routed to an  
ICTtestpointfordesign-for-testconsiderations,asdesired.  
electrically unconnected or can be connected as desired,  
e.g., connected to a V  
plane for heat-spreading pur-  
OUT  
SW (H4): Switching Node of Switching Converter Stage.  
Used for test purposes. May be routed a short distance  
poses and/or to facilitate routing.  
SIMPLIFIED BLOCK DIAGRAM  
1Ω  
V
SV  
IN  
IN  
RUN:  
NC  
3.6V  
>1.2V  
= ON  
TYP  
+
TO 58V  
400nH  
0.1μF  
<1.07V  
= OFF  
RUN  
V
IN  
C
INH  
TYP  
C
I
INL  
SVIN  
V
OUT  
(REFERRED  
TO GND)  
C
*
INOUT  
V
D
POWER CONTROL  
AND ANALOG CIRCUITS  
CLKIN  
(REFERRED  
TO GND)  
C
C
*
D
DGND  
V
OUT  
4.7μF  
×2  
0.1μF  
TO CURRENT COMPARATORS,  
PWM AND FET DRIVERS  
M
T
SW  
EXTV  
CC  
4μH  
PGND  
50μA  
ISETa  
I
L
M
B
COMP  
BUFFER  
ISETb  
COMPa  
COMPb  
0.1μF  
+
GND  
LOAD-LOCAL  
MLCCs (HIGH-  
FREQUENCY  
DECOUPLING)  
ERROR  
AMPLIFIER  
(CENTRALLY  
LOCATED PNP  
TEMP SENSOR)  
C
LOAD  
10nF  
50Ω  
1.5nF  
10pF  
OUTH  
| VOUT  
|
RISET  
=
V
OUT  
50µA  
V
OUT  
UP TO 0A  
DOWN TO (V –58V),  
NO EXCEEDING 26V  
BELOW PGND  
R
ISET  
IN  
INTV  
CC  
I
SV  
SVOUT  
OUT  
1µF  
PGOOD  
(REFERRED  
TO GND)  
V
OUT  
VINREG  
400kHz  
HI-Z WHEN  
– SV  
IS WITHIN  
+
V
PGDFB  
OUT  
0.6V 7.5ꢀ  
DEFAULT  
f
SET  
R
PGDFB  
+
2V  
PGDFB  
PGOOD  
LOGIC  
249k  
+
100Ω  
GND  
TEMP  
4.99k  
220pF  
SV  
OUT  
TEMP  
*C  
INOUT  
and C  
OPTIONAL, FOR REDUCED  
DGND  
RADIATED EMI. SEE FIGURES 5 THROUGH 8.  
4651 BD  
4651f  
10  
For more information www.linear.com/LTM4651  
LTM4651  
TEST CIRCUIT  
V
IN  
V
PGOOD  
PGDFB  
NC  
SW  
IN  
3.6V  
C
4.7μF  
INH  
TO 34V  
SV  
IN  
R
PGDFB  
RUN  
196k  
GND  
SNS  
GND  
CLKIN  
PGND  
+
C
C
*
OUTL  
LOAD  
OUTH  
LTM4651  
V
D
27µF  
68µF  
C
4.7μF  
2x  
D
V
V
OUT  
OUT  
INTV  
CC  
–24V  
SV  
OUT  
UP TO 2A  
AT V = 24V  
VINREG  
COMPa  
COMPb  
+
IN  
TEMP  
TEMP  
EXTV  
R
**  
EXTVCC  
0Ω  
C
TH  
f
ISETa ISETb  
0.1μF  
SET  
CC  
4651 TC01  
R
499Ω  
C
EXTVCC  
1μF  
TH  
R
57.6k  
fSET  
R
480k  
SET  
*Polarized output capacitors C  
, if used, must be rated to withstand ~0.3V typical reverse polarity prior to LTM4651 start-up,  
OUTL  
stemming from a weakly forward-biased body diode. In such cases, a Schottky diode should be connected between PGND and  
V
to limit the voltage. See the Applications Information section and Figures 33a and 33b.  
OUT  
**Outside the ATE Test environment, R  
, if used, should not be 0Ω. See the Applications Information section.  
EXTVCC  
TA = 25°C. Refer to Test Circuit 1.  
DECOUPLING REQUIREMENTS  
APPLICATION SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Test Circuit 1  
C , C  
INH  
External High Frequency Input Capacitor Requirement,  
2A  
9.4  
µF  
D
24V ≤ V ≤ 34V, V  
= –24V  
IN  
OUT  
C
External High Frequency Output Capacitor Requirement  
2A  
22  
µF  
OUTH  
24V ≤ V ≤ 34V, V  
= –24V  
IN  
OUT  
4651f  
11  
For more information www.linear.com/LTM4651  
LTM4651  
OPERATION  
Power Module Description  
margins and good transient performance with a wide  
range of output capacitors, even ceramic-only output  
capacitors. For external loop compensation, see the Ap-  
plications Information section. LTpowerCAD® is available  
for transient load step and stability analysis.  
The LTM4651 is a non-isolated switch mode DC/DC  
power supply. It can provide up to 4A output current  
with a few external input and output capacitors. Set by a  
single resistor, R , the LTM4651 regulates a negative  
SET  
output voltage, V  
. V  
can be set to as low as  
Input filter and noise cancellation circuitry reduces noise-  
coupling to the module’s inputs and outputs, ensuring the  
module’s electromagnetic interference (EMI) meets the  
limits of EN55022 Class B (see Figures 5 to 8).  
OUT  
OUT  
–26.5V to as high as –0.5V. The LTM4651 operates from  
a positive input supply rail, V , between 3.6V and 58V.  
IN  
The LTM4651’s safe operating area is defined by: V +  
IN  
|V  
OUT  
| 58V. The typical application schematic is shown  
Pulling the RUN pin below 1.2V forces the LTM4651 into  
in Figure 32. The output current capability of the LTM4651  
is dependent on V and V , as indicated in the page 1  
a shutdown state. A capacitor can be applied from ISETa  
IN  
OUT  
to SV  
to program the output voltage ramp-rate; or,  
OUT  
graph. Though the LTM4651 is a ground-referred buck  
converter topology—also known as a two-switch buck-  
boost converter—it contains built-in level-shift circuitry  
sothattheRUN, CLKIN, andPGOODpinsareconveniently  
referred to GND (not V  
the default LTM4651 ramp-rate can be set by connecting  
ISETa to ISETb; or, voltage tracking can be implemented  
by interfacing rail voltages to the ISETa pin. See the Ap-  
plication Information section.  
).  
OUT  
Multiphase operation can be employed by applying an  
external clock source to the LTM4651’s synchronization  
input, the CLKIN pin. See the Typical Applications section.  
The LTM4651 contains an integrated constant-frequency  
current mode regulator, power MOSFETs, power inductor,  
EMI filter and other supporting discrete components. The  
nominal switching frequency range is from 400kHz to  
3MHz, and the default operating frequency is 400kHz. It  
can be externally synchronized to a clock, from 250kHz to  
3MHz. See the Applications Information section.  
LDO losses within the module are reduced by connecting  
EXTV to PGND through an RC-filter or by connecting  
CC  
EXTV to a suitable voltage source.  
CC  
The LTM4651 also features a spare control pin called  
VINREG which can be used to reduce the input current  
draw during input line sag (“brownout”) conditions. Con-  
The LTM4651 supports internal and external control loop  
compensation. Internal loop compensation is selected by  
connecting the COMPa and COMPb pins. Using internal  
loop compensation, the LTM4651 has sufficient stability  
nect VINREG to INTV when this feature is not needed.  
CC  
4651f  
12  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
The typical LTM4651 application circuit is shown in Test For completeness, ∆I  
Circuit 1. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
Refer to Table 8 for recommended external component  
values.  
is given by:  
PK-PK  
Output Current Capability Varies as a Function of V  
where:  
L is 4μH, the LTM4651’s power inductor value, and f is  
IN  
to V  
Conversion Ratios  
OUT  
SW  
The output current capability of the LTM4651 has a strong the switching frequency of the LTM4651, in MHz.  
dependencyontheoperatinginput(V )andoutput(V  
)
IN  
OUT  
For a practical design, ∆I  
is designed to be less than  
PK-PK  
voltages, as highlighted in the page 1 graph.  
~2A  
.
PK-PK  
The reason for this is inherent in the two-switch buck-  
boost topology employed by the LTM4651. To protect  
For a practical design, the LTM4651’s on-time of M  
T
each switching cycle should be designed to exceed the  
the primary power MOSFET (M ) from overstress (see  
T
LTM4651 control loop’s specified minimum on-time of  
Simplified Block Diagram), its peak current (I ) is limited  
PK  
60ns, t , (guardband to 90ns) i.e.:  
ON(MIN)  
by control circuitry to 6A. When M is on, observe that no  
T
D
fSW  
current flows to LTM4651’s output; furthermore, observe  
> TON(MIN)  
(3)  
(4)  
that only when M is off does current flow to the output  
T
of the LTM4651. As a consequence of this arrangement:  
for agiven outputvoltage, currentlimitinception activates  
sooner at low line (higher, larger duty cycle) than at high  
line (lower, smaller duty cycle). A further consequence is:  
where D (unitless) is the duty-cycle of M , given by:  
T
VOUT  
D=  
V – V  
for a given input voltage, the output power capability of  
IN  
OUT  
the LTM4651 is higher for lower-magnitude V  
(lower,  
OUT  
OUT  
Combining EQ. 4 with EQ. 1, it can be illustrative to see:  
smaller duty cycle) than for higher-magnitude V  
(higher,largerdutycycle).Thecombinationoftheseeffects  
is shown the plots in the page 1 graph and described by  
the following equation:  
IPK–PK  
IOUT(CAPABILITY) =(1D)IPK  
η  
(5)  
2
I  
In rare cases where the minimum on-time restriction is  
violated, the frequency of the LTM4651 automatically and  
PK–PK   
V • IPK –  
η  
IN  
2
IOUT(CAPABILITY)  
=
(1)  
gradually folds back down to one-fifth of its programmed  
V – V  
IN  
OUT  
switchingfrequencytoallowV  
toremaininregulation.  
OUT  
Be reminded of Notes 2, 3 and 5 in the Electrical Char-  
acteristics section regarding output current guidelines.  
where:  
∆I  
is the inductor ripple current, in amps, and η (unit  
PK-PK  
less) is the efficiency of the LTM4651.  
4651f  
13  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
Input Capacitors  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM4651’s V ,  
TheLTM4651achieveslowinputconductedEMInoisedue  
to tight layout and high-frequency bypassing of MOSFETs  
IN  
SV ,andV pins.Aceramicinputcapacitorcombinedwith  
IN  
D
trace or cable inductance forms a high Q (underdamped)  
tank circuit. If the LTM4651 circuit is plugged into a live  
supply, the input voltage can ring to twice its nominal  
value, possibly exceeding the device’s rating. This situa-  
tioniseasilyavoided;seetheHot-PluggingSafelysection.  
M and M within the module itself. A small filter induc-  
T
B
tor (400nH) is integrated in the input line (from V to V )  
IN  
D
provides further noise attenuation—again, local to the  
switching MOSFETs. The V and V pins are available  
D
IN  
for external input capacitors—V and V —to form a  
D
INH  
high-frequency � filter. As shown in the Simplified Block  
Diagram, the ceramic capacitor C on the LTM4651’s V  
pins handles the majority of the RMS current into the DC/  
DC converter power stage and requires careful selection,  
for that reason.  
Output Capacitors  
D
D
OutputcapacitorsC  
theLTM4651:sufficientcapacitanceandlowESRarecalled  
for, to meet the output voltage ripple, loop stability, and  
transient requirements. C  
or polymer capacitor. C  
typical output capacitance is 22μF (type X5R material, or  
better), if ceramic-only output capacitors are used.  
andC  
areappliedtoV  
of  
OUTH  
OUTL  
OUT  
can be a low ESR tantalum  
is a ceramic capacitor. The  
OUTL  
OUTH  
TomeettheradiatedemissionsrequirementsofEN55022B,  
anadditionalfiltercapacitor,C  
,isneeded—connecting  
INOUT  
fromV toV  
.SeeFigures5to 8forEMIperformance.  
IN  
OUT  
The input capacitance, C , is needed to filter the pulsed  
D
For highest reliability designs, polarized output capacitors  
current drawn by M . To prevent excessive voltage sag  
T
(V  
) are not recommended, as there is a possibility of  
OUTL  
on V , a low-effective series resistance (low-ESR) input  
D
a diode-drop of reverse voltage appearing transiently on  
capacitor should be used, sized appropriately for the  
V
during rapid application of input voltage or when  
OUT  
maximum C RMS ripple current:  
D
RUNistoggledlogichigh(seeFigures33).Whenpolarized  
ICD(RMS) =IPK D(1D)  
(6)  
capacitorsareusedonV  
,contactthecapacitorvendor  
OUT  
to understand what reverse voltage their polarized capaci-  
tor can withstand. Be advised, polarized capacitor reverse  
voltage rating is sometimes temperature-dependent.  
I
I
is maximum for D = 1/2. For D = 1/2,  
CD(RMS)  
CD(RMS)  
= 1/2 • I or 3A. This simplification of the worst-  
PK  
case condition is commonly used for design purposes  
becauseevensignificantdeviationsinDdonotoffermuch  
relief, in practice. Furthermore: note that ripple current  
ratings from capacitor manufacturers are often based on  
2000 hours of life; therefore, it is advisable to significantly  
Output voltage ripple (∆V  
) is governed by  
OUT(PK-PK)  
charge lost in C  
and C  
while M is on, in addition  
OUTL T  
OUTH  
to the contribution of a resistive drop across the ESR of  
the output capacitors. This is expressed by:  
ILOAD •D ILOAD •ESR  
over-designC ,and/orchooseacapacitorratedatahigher  
D
VOUT(PK–PK)  
+
(7)  
temperature than required. Err on the side of caution and  
contact the capacitor manufacturer to understand the  
capacitor vendor’s derating methodology.  
COUT fSW  
D
Table 8 shows a matrix of suggested output capacitors  
optimized for transient step-loads that are 50% of the full  
Several capacitors may be paralleled to meet the applica-  
loadcapabilityforthatcombinationofV , V  
, andf  
.
IN OUT  
SW  
tion’s targetsize,height,andC RMSripplecurrentrating.  
D
The table optimizes total equivalent ESR and total bulk  
capacitancetoyieldthestatedtransient-loadperformance.  
Additional output filtering may be required by the system  
designer, if further reduction of output ripple or dynamic  
transient spike is required. The LTpowerCAD design tool  
is available for transient and stability analysis.  
For lower input voltage applications, sufficient bulk input  
capacitance is needed for C to counteract line sag and  
INL  
transient effects during output load changes. Suggested  
values for C and C  
are found in Table 8. Take note  
D
INH  
that C is connected from V to V  
, whereas C and  
D
D
OUT  
INH  
C
are connected from V to PGND; this is deliberate.  
INL  
IN  
4651f  
14  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
Forced Continuous Operation  
equals V  
—after which, the DC/DC converter com-  
GNDSNS  
mences switching action and V  
is ramped according  
OUT  
LeavetheCLKINpinopencircuittocommandtheLTM4651  
for forced continuous operation. In this mode, the control  
loop is allowed to command the inductor peak current  
to approximately –1A, allowing for significant negative  
average current.  
to the voltage commanded by ISETa.  
Since the LTM4651 control loop servos its GND  
SNS  
voltage to match that of ISETa’s, the LTM4651’s output  
can be configured to track any voltage applied to ISETa,  
referenced to SV  
.
OUT  
Clocking the CLKIN pin at a frequency within 40% of  
The LTM4651 can track the mirror-image of a positive rail  
to generate the negative half of a split-supply, as seen in  
Figure 37.  
the target switching frequency commanded by the f  
SET  
pin synchronizes M ’s turn-on to the rising edge of the  
T
CLKIN pin.  
Optional Diodes to Guard Against Overstress  
Output Voltage Programming, Tracking and Soft-Start  
Just prior to output voltage start-up, a mechanism exists  
TheLTM4651regulatesitsoutputvoltage,V  
,according  
OUT  
whereby a diode-drop of reverse polarity can appear on  
tothedifferentialvoltagepresentacrossISETaandSV  
.
OUT  
V
. See the simplified Block Diagram and observe: just  
OUT  
Inmostapplications,theoutputvoltageissetbysimplycon-  
prior to output voltage start-up, SV bias current (I  
)
IN  
SVIN  
nectingaresistor,R ,fromISETatoSV  
,accordingto:  
SET  
OUT  
flows through the module’s control IC, to SV  
; from  
OUT  
VOUT  
there, the bias current (now I  
) flows into V  
and  
SVOUT  
OUT  
RSET  
=
(8)  
50µA  
through M ’s body diode, to SW. This current (now I )  
B
L
continues to flow—though the 4μH power inductor—to  
Since the LTM4651 control loop servos its output volt-  
age according to the voltage between ISETa and SV  
configures the  
. In the time domain,  
the output voltage ramp-up after the RUN pin is toggled  
from low to high (t = 0s) is given by:  
PGND and ground, closing the control IC bias circuit’s  
:
OUT  
path. It is this current through M ’s body diode that cre-  
B
placing a capacitor, C , parallel to R  
SS  
SET  
ates a diode-drop of reverse polarity (positive voltage) on  
ramp-up rate of ISETa and thus V  
OUT  
V
, as shown in Figure 33. The voltage excursion is  
OUT  
highest when RUN toggles high because that is the instant  
when INTV powers-up, with a corresponding increase  
CC  
t
in I  
/I  
/I current flow. With higher current flow,  
L
SVIN SVOUT  
R
SET •C  
VOUT(t)=IISETa •RSET • 1e  
(9)  
SET   
the forward voltage drop (V ) of M ’s body diode—and  
thus, the positive voltage excursion on V  
F
B
—is higher.  
OUT  
If this transient voltage excursion is unwelcome for the  
The soft-start time, t , is defined as the time it takes for  
OUT  
SS  
load or polarized output capacitors, minimize it with a  
V
to ramp from 0V to 90% of its final value:  
lowV SchottkydiodethatstraddlesV  
andPGND(see  
F
OUT  
TSS = –RSET CSET •In(10.9)  
(10)  
Figure 32 circuit and Figure 33 performance). Addition-  
ally, the voltage excursion can be empirically reduced by  
increasing output capacitance.  
or  
TSS =2.3 RSET CSET  
(11)  
Lastly: in applications where it is anticipated that V may  
IN  
be rapidly applied (e.g., <10μs) and C  
is used, the  
INOUT  
positive.Itisrecom-  
INOUT  
A default value of C  
= 1.5nF can be implemented by  
SET  
resulting capacitor-divider network formed by C  
and  
connecting ISETa to ISETb. For other ramp-up rates, con-  
C
||C maytransientlydragV  
INL INH  
OUT  
nect an external C capacitor parallel to R  
.
SET  
SET  
mended to apply a low V Schottky diode from V  
to  
F
OUT  
When starting up into a pre-biased V  
, the LTM4651  
OUT  
PGND, in such applications. The reverse mechanism ap-  
plies, as well: in applications where it is anticipated that  
stays in a sleep mode, keeping M and M off until V  
T
B
ISETa  
4651f  
15  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
V
may be rapidly discharged and C  
is used, the  
current capability of the LTM4651 is reduced, according  
to EQ. 5.  
IN  
INOUT  
resulting capacitor-divider network formed by C  
and  
INOUT  
C
||C maytransientlydragV  
excessivelynegative.  
andPGNDwithaTVS  
INL INH  
OUT  
ToconfiguretheLTM4651forahigherswitchingfrequency  
ItisrecommendedtostraddleV  
OUT  
than 400kHz default, apply a resistor, R , between the  
fSET  
diode, if output voltage excursions during V -discharge  
IN  
f
pin and SV  
. R  
is given (in MΩ) by:  
SET  
OUT  
fSET  
are anticipated.  
1
RfSET(MΩ)=  
(14)  
Frequency Adjustment  
10pF •[fSW (MHz)0.4(MHz)]  
The default switching frequency (f ) of the LTM4651 is  
SW  
The relationship of R  
in Figure 2.  
to programmed f is shown  
SW  
fSET  
400kHz. This is suitable for mainly low-V or low-V  
IN  
OUT  
applications (V < 5V or |V  
| < 5V). For a practical  
IN  
OUT  
See Table 1 and Table 8 for Recommended f and as-  
design, the LTM4651’s inductor ripple current (∆  
) is  
PK-PK  
SW  
sociated R  
values for various combinations of V  
suggested to be less than ~2A  
. From EQ. 2, it follows  
fSET  
IN  
PK-PK  
and V  
.
that f should be chosen such that:  
OUT  
SW  
1
(12)  
10  
1
1
VOUT  
L•IPK-PK  
  
V
IN  
In some cases, the value of f yielded by EQ. 12 violates  
SW  
Rf  
NOT USED  
1
SET  
the supported minimum on time of the LTM4651 (see  
EQ. 3). If this occurs, choose f instead according to:  
SW  
D
fSW  
<
(13)  
TON(MIN)  
0.1  
10  
100  
1k  
10k  
Rf  
(kΩ)  
SET  
The primary consequence of using a lower switching  
frequency than that dictated by EQ. 12 is that the output  
4651 F02  
Figure 2. Relationship Between RfSET and Target fSW  
Table 1. Recommended Switching Frequency (fSW) and RfSET Values for Common Combinations of VIN and VOUT  
V
OUT  
(V)  
–0.5  
–3.3  
–5  
–8  
–12  
–15  
–20  
–24  
3.6  
5
400kHz,  
400kHz,  
400kHz,  
425kHz,  
4.3MΩ  
450kHz,  
2.2MΩ  
No R  
No R  
No R  
fSET  
fSET  
fSET  
400kHz,  
No R  
fSET  
400kHz,  
400kHz,  
No R  
fSET  
450kHz,  
2.2MΩ  
475kHz,  
1.3MΩ  
500kHz,  
1MΩ  
525kHz,  
806kΩ  
550kHz,  
665kΩ  
No R  
fSET  
12  
24  
550kHz,  
665kΩ  
700kHz,  
332kΩ  
825kHz,  
237kΩ  
875kHz,  
210kΩ  
900kHz,  
200kΩ  
1MHz,  
165kΩ  
Drive CLKIN  
800kHz,  
249kΩ  
1.1MHz,  
143kΩ  
1.2MHz,  
124kΩ  
1.4MHz,  
100kΩ  
1.5MHz,  
90.9kΩ  
450kHz,  
2.2MΩ  
with a 200kHz  
Clock, No R  
fSET  
600kHz,  
499kΩ  
36  
48  
Not  
850kHz,  
221kΩ  
1.2MHz,  
124kΩ  
1.4MHz,  
100kΩ  
1.6MHz,  
82.5kΩ  
N/A  
Recommended  
Due to On-  
Time Criteria  
Violation  
500kHz,  
1MΩ  
900kHz,  
200kΩ  
N/A Due to SOA Criteria Violation  
4651f  
16  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
Power Module Protection  
V
SUPPLY  
R
R
A
TheLTM4651’scurrentmodecontrolarchitectureprovides  
fast cycle-by-cycle current limit in an overcurrent condi-  
tion, as shown in the Typical Performance Characteristics  
section. If the output voltage collapses sufficiently due to  
an overload or short-circuit condition, minimum on-time  
will be violated (EQ. 3) and the internal oscillator will then  
fold-back automatically to one-fifth of the LTM4651’s  
programmed switching frequency—hereby reducing the  
output current and affording the load a chance to recover.  
RUN PIN  
B
4651 F03  
Figure 3. Undervoltage Lockout Resistive Divider  
the user. The RUN pin hysteresis voltage prevents noise  
from falsely tripping UVLO. Resistors are chosen by first  
selecting R (refer to Figure 3). Then:  
The LTM4651 features input overvoltage shutdown  
B
protection: when V +|V  
| > 68V, switching action  
IN  
OUT  
V
ceases (with 4V of hysteresis)—however, be advised that  
this protection is only active outside the LTM4651’s safe  
operating area (see Note 1 and Note 4 of the Electrical  
Characteristics table).  
IN(ON)  
R =R •  
–1  
(15)  
A
B
1.2V  
where V  
is the input voltage at which the undervolt-  
IN(ON)  
age lockout is overcome and the supply turns on. R may  
A
The LTM4651 ceases switching action if internal tempera-  
tures exceed 165°C. The control IC resumes operation  
after a 10°C cool-down hysteresis. Note that these typical  
parameters are based on measurements in a lab oven and  
arenotproductiontested.Thisovertemperatureprotection  
is intended to protect the device during momentary over-  
loadconditions.Themaximumratedjunctiontemperature  
will be exceeded when this overtemperature protection is  
active. Continuous operation above the specified absolute  
maximum operating junction temperature may impair  
device reliability or permanently damage the device.  
be replaced with a hardwired connection from V to RUN.  
D
The V turn-off voltage, V  
is given by:  
IN  
IN(OFF)  
RA  
RB  
V
=1.07V •  
+1  
(16)  
IN(OFF)  
IfUVLOisnotneeded,RUNcanbeconnectedtoLTM4651’s  
V or V pins.  
D
IN  
When RUN is below its threshold, UVLO is engaged, M  
T
and M are turned off, INTV ceases to be regulated,  
B
CC  
OUT  
and ISETa is discharged to SV  
by internal circuitry.  
The LTM4651 does not feature any specialized output  
overvoltage protection beyond what is inherent to the  
control loop’s servo mechanism.  
Loop Compensation  
External loop compensation may be preferred for some  
applications and can be implemented easily, as follows:  
RUN Pin Enable  
leave COMPb open circuit; connect a series-R network  
C
The RUN pin is used to enable the power module or se-  
quencethepowermodule. Thethresholdis1.2V. TheRUN  
pincanbeusedtoprovideanundervoltagelockout(UVLO)  
function by connecting a resistor divider from the input  
supply to the RUN pin, as shown in Figure 3. Undervoltage  
lockout keeps the LTM4651 in shutdown until the supply  
input voltage is above a certain voltage programmed by  
(R and C ) from COMPa to SV  
; in some instances,  
TH  
TH  
OUT  
connect a capacitor (C ) from COMPa to SV  
(par-  
THP  
OUT  
alleling the R  
series-R network). See Table 8 for  
TH-CTH  
C
suggested input and output capacitances for a variety of  
operatingconditions.Additionally,theLTpowerCADdesign  
tool is available for transient and stability analysis.  
4651f  
17  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
Hot-Plugging Safely  
TherecommendedvalueoftheresistorbetweenPGNDand  
EXTV is roughly |V  
| • 4Ω/V. This resistor, R  
,
.
CC  
CC  
OUT  
EXTVCC  
EXTVCC  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
²
must be rated to continually dissipate (0.02A) • R  
The primary purpose of this resistor is to prevent EXTV  
bypasscapacitors(C andC )oftheLTM4651.However,  
D
INH  
overstress under a fault condition. For example, when an  
these capacitors can cause problems if the LTM4651 is  
plugged into a live supply (see Linear Technology Ap-  
plication Note 88 for a complete discussion). The low  
loss ceramic capacitor combined with stray inductance  
in series with the power source forms an under damped  
inductive short-circuit is applied to the module’s output,  
V
OUT  
may be briefly dragged above EXTV — forward-  
CC  
biasing the V  
-to-EXTV body diode. This resistor  
OUT  
CC  
limits the magnitude of current flow into EXTV . Bypass  
CC  
EXTV to V  
with 1μF of X5R (or better) MLCC.  
CC  
OUT  
tank circuit, and the voltage at the V pin of the LTM4651  
IN  
can ring to twice the nominal input voltage, possibly ex-  
ceeding the LTM4651’s rating and damaging the part. If  
the input supply is poorly controlled or the user will be  
plugging the LTM4651 into an energized supply, the input  
network should be designed to prevent this overshoot by  
introducing a damping element into the path of current  
flow. This is often done by adding an inexpensive elec-  
Multiphase Operation  
Multiple LTM4651 devices can be paralleled for higher  
output current applications. For lowest input and output  
voltage and current ripples, it is advisable to synchronize  
paralleled LTM4651s to an external clock (within 40%  
of the target switching frequency set by f —see Test  
SET  
Circuit 1). See Figure 34 for an example of a synchroniz-  
trolytic bulk capacitor (C ) across the input terminals  
INL  
ing circuit.  
of the LTM4651. The selection criteria for C calls for:  
INL  
an ESR high enough to damp the ringing; a capacitance  
LTM4651modulescanbeparalleledwithoutsynchronizing  
circuits:justbeawarethatsomebeat-frequencyripplewill  
bepresentintheoutputvoltageandreflectedinputcurrent  
by virtue of the fact that such modules are not operating  
at identical, synchronized switching frequencies.  
value several times larger than C . C does not need  
INH INL  
to be located physically close to the LTM4651; it should  
be located close to the application board’s input connec-  
tor, instead.  
The LTM4651 device is an inherently current mode con-  
trolled device, so parallel modules will have good current  
sharing’s shown in Figure 35. This helps balance the  
thermals on the design.  
INTV and EXTV Connection  
CC  
CC  
When RUN is logic high, an internal low dropout regula-  
tor regulates an internal supply, INTV , that powers the  
CC  
controlcircuitryfordrivingLTM4651’sinternalMOSFETs.  
To parallel LTM4651s, connect the respective COMPa,  
INTV is regulated at 3.3V above V  
. In this manner,  
CC  
OUT  
ISETa, and GND  
pins of each LTM4651 together to  
the LTM4651’s INTV is directly powered from SV , by  
SNS  
CC  
IN  
sharethecurrentevenly.Inaddition,tietherespectiveRUN  
pins of paralleled LTM4651 devices together, to ensure  
proper start-up and shutdown behavior. Figure 34 shows  
a schematic of LTM4651 devices operating in parallel.  
default. The gate driver current through the LDO is about  
20mA for a typical 1MHz application. The internal LDO  
power dissipation can be calculated as:  
P
=20mA •(SV +|V  
|3.3V)  
(17)  
IN  
LDO_LOSS(INTVCC)  
OUT  
Note that for parallel applications, EQ. 8 becomes:  
TheLDOdrawscurrentoffofEXTV insteadofSV when  
CC  
IN  
VOUT  
EXTV istiedtoavoltagehigherthan3.2VaboveV  
and  
RSET  
=
(19)  
CC  
OUT  
50µA •N  
SV is 5V above V  
. For output voltages at or below  
IN  
OUT  
–4V, this pin can be connected to PGND through an RC-  
filter. When the internal LDO derives power from EXTV  
CC  
instead of SV , the internal LDO power dissipation is:  
IN  
P
=20mA •(|V  
|3V)  
(18)  
LDO_LOSS(EXTVCC)  
OUT  
4651f  
18  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
where N is the number of LTM4651 modules in parallel  
The motivation for providing these thermal coefficients is  
found in JESD51-12 (“Guidelines for Reporting and Using  
Electronic Package Thermal Information”).  
configuration.  
Depending on the duty cycle of operation (EQ. 4), the  
outputvoltagerippleachievedbyparalleled, synchronized  
LTM4651modulesmaybeconsiderablysmallerthanwhat  
isyieldedbyEQ. 7. ApplicationNote77 provides a detailed  
explanation of multiphase operation (relevant to parallel  
LTM4651 applications) pertaining to noise reduction and  
output and input ripple current cancellation. Regardless  
of ripple current cancellation, it remains important for the  
output capacitance of paralleled LTM4651 applications  
to be designed for loop stability and transient response.  
LTpowerCAD is available for such analysis.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to predict the  
µModule regulator’s thermal performance in their appli-  
cation at various electrical and environmental operating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figurationsectionare,inandofthemselves,notrelevantto  
providing guidance of thermal performance; instead, the  
derating curves provided in this data sheet can be used  
in a manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
Figure 4 illustrates the RMS ripple current reduction as  
a function of the number of interleaved (paralleled and  
synchronized) LTM4651 modules—derived from Ap-  
plication Note 77.  
The Pin Configuration section gives four thermal coeffi-  
cients explicitly defined in JESD51-12; these coefficients  
are quoted or paraphrased below:  
Radiated EMI Noise  
1. θ , the thermal resistance from junction to ambient, is  
JA  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted  
toaJESD51-9definedtestboard,whichdoesnotreflect  
an actual application or viable operating condition.  
The generation of radiated EMI noise is an inherent disad-  
vantageofswitchingregulators.Fastswitchingturn-onand  
turn-off of the power MOSFETs—necessary for achieving  
high efficiency—create high-frequency (~30MHz+) ∆l/∆t  
changes within DC/DC converters. This activity tends to  
be the dominant source of high-frequency EMI radiation  
in such systems. The high level of device integration  
within LTM4651—including optimized gate-driver and  
critical front-end � filter inductor—delivers low radiated  
EMI noise performance. Figures 5 to 8 show typical ex-  
amples of LTM4651 meeting the radiated emission limits  
established by EN55022 Class B.  
2. θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottomofthepackage.InthetypicalµModuleregulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment. As a result, this thermal resistance value  
may be useful for comparing packages but the test  
conditionsdon’tgenerallymatchtheuser’sapplication.  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configuration  
section of this data sheet are consistent with those pa-  
rameters defined by JESD51-12 and are intended for use  
with finite element analysis (FEA) software modeling tools  
that leverage the outcome of thermal modeling, simula-  
tion, and correlation to hardware evaluation performed on  
a µModule package mounted to a hardware test board.  
3. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
4651f  
19  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
0.60  
1-PHASE  
2-PHASE  
0.55  
3-PHASE  
4-PHASE  
6-PHASE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (–V  
/ V – V )  
IN OUT  
OUT  
4651 F04  
Figure 4. Normalized Input RMS Ripple Current vs Duty Cycle for One to Six LTM4651s (Phases)  
70  
60  
50  
40  
30  
20  
10  
0
70  
MEAS DIST 10m  
SPEC DIST 10m  
MEAS DIST 10m  
SPEC DIST 10m  
60  
50  
40  
30  
20  
10  
0
[1] HORIZONTAL  
[2] VERTICAL  
QPK LIMIT  
[1] HORIZONTAL  
[2] VERTICAL  
QPK LIMIT  
+
+
FORMAL  
FORMAL  
–10  
–10  
30  
130 230 330 430 530 630 730 830 930 1000  
30  
130 230 330 430 530 630 730 830 930 1000  
4651 F06  
4651 F05  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Radiated Emissions Scan of the LTM4651. Producing  
–24VOUT at 1A, from 12VIN. DC2328A Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
Figure 6. Radiated Emissions Scan of the LTM4651 Producing  
–24VOUT at 2A, from 25VIN. DC2328 Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
70  
70  
MEAS DIST 10m  
MEAS DIST 10m  
SPEC DIST 10m  
60  
50  
40  
30  
20  
10  
0
60  
SPEC DIST 10m  
50  
40  
30  
20  
10  
0
[1] HORIZONTAL  
[2] VERTICAL  
QPK LIMIT  
[1] HORIZONTAL  
[2] VERTICAL  
QPK LIMIT  
+
+
FORMAL  
FORMAL  
–10  
–10  
30  
130 230 330 430 530 630 730 830 930 1000  
30  
130 230 330 430 530 630 730 830 930 1000  
4651 F07  
4651 F08  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Radiated Emissions Scan of the LTM4651. Producing  
–24VOUT at 2A, from 34VIN. DC2328A Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
Figure 8. Radiated Emissions Scan of the LTM4651. Producing  
–12VOUT at 2A, from 12VIN. DC2328A Hardware. fSW = 700kHz.  
Measured in a 10m Chamber. Peak Detect Method  
4651f  
20  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
componentpowerdissipationflowingthroughthetopof  
the package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
for θ  
and θ  
, respectively. In practice, power  
JCtop  
JCbottom  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
Within the LTM4651, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complicationwithoutsacrificingmodelingsimplicity—but  
alsonotignoringpracticalrealities—anapproachhasbeen  
taken using FEA software modeling along with laboratory  
testing in a controlled-environment chamber to reason-  
ably define and correlate the thermal resistance values  
supplied in this data sheet: (1) Initially, FEA software is  
used to accurately build the mechanical geometry of the  
LTM4651 and the specified PCB with all of the correct  
material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
definedJEDECenvironmentconsistentwithJESD51-9and  
JESD51-12topredictpowerlossheatflowandtemperature  
readings at different interfaces that enable the calculation  
of the JEDEC-defined thermal resistance values; (3) the  
model and FEA software is used to evaluate the LTM4651  
with heat sink and airflow; (4) having solved for and  
analyzed these thermal resistance values and simulated  
various operating conditions in the software model, a  
thorough laboratory evaluation replicates the simulated  
4. θ , the thermal resistance from junction to the printed  
JB  
circuit board, is the junction-to-board thermal resis-  
tance where almost all of the heat flows through the  
bottom of the µModule regulator and into the board,  
and is really the sum of the θ  
and the thermal  
JCbottom  
resistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from the  
package, using a two sided, two layer board. This board  
is described in JESD51-9.  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 9; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule package.  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operating conditions of a µModule regulator. For example,  
in normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
JUNCTION-TO-AMBIENT THERMAL RESISTANCE COMPONENTS  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4651 F09  
µModule DEVICE  
Figure 9. Graphical Representation of JESD51-12 Thermal Coefficients  
4651f  
21  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
conditions with thermocouples within a controlled envi-  
ronment chamber while operating the device at the same  
power loss as that which was simulated. The outcome of  
this process and due diligence yields the set of derating  
curves provided in later sections of this data sheet, along  
withwell-correlatedJESD51-12-definedθvaluesprovided  
in the Pin Configuration section of this data sheet.  
temperaturerisecanbeallowed.AsanexampleinFigure26,  
the load current is derated to 1A at 60°C ambient with  
200LFMairflowandnoheatsinkandtheroomtemperature  
(25°C) power loss for this 12V to –24V  
at 1A out  
IN  
OUT  
conditionis3.55W.A3.9Wlossiscalculatedbymultiplying  
the 3.55W room temperature loss from the 12V to  
IN  
–24V  
power loss curve at 1A (Figure 12), with the 1.1  
OUT  
multiplying factor at 60°C ambient (from Table 2). If the  
60°C ambient temperature is subtracted from the 120°C  
junction temperature, then the difference of 60°C divided  
The –5V, –15V and –24V power loss curves in Figures 10,  
11 and 12 respectively can be used in coordination with  
the load current derating curves in Figures 13 to 30 for  
by 3.9W yieldsathermalresistance, θ , of15.4°C/W—in  
JA  
calculating an approximate θ thermal resistance for the  
JA  
good agreement with Table 4. Tables 3, 4 and 5 provide  
equivalent thermal resistances for –5V, –15V and –24V  
outputs with and without air flow and heat sinking. The  
derived thermal resistances in Tables 3, 4 and 5 for the  
various conditions can be multiplied by the calculated  
power loss as a function of ambient temperature to  
derive temperature rise above ambient, thus maximum  
junction temperature. Room temperature power loss  
can be derived from the efficiency curves in the Typical  
Performance Characteristics section and adjusted with  
ambient temperature multiplicative factors from Table 2.  
LTM4651 withvariousheatsinkingandairflowconditions.  
These thermal resistances represent demonstrated  
performance of the LTM4651 on DC2328A hardware; a  
4-layerFR4PCBmeasuring99mm×133mm ×1.6mm using  
outerandinnercopperweightsof2ozand1oz,respectively.  
The power loss curves are taken at room temperature,  
and are increased with multiplicative factors with ambient  
temperature.TheseapproximatefactorsarelistedinTable2.  
(Compute the factor by interpolation, for intermediate  
temperatures.) The derating curves are plotted with the  
LTM4651’s output initially sourcing its maximum output  
capability(seeEq.5)andtheambienttemperatureat30°C.  
The output voltages are –5V, –15V and –24V. These are  
chosen to include the lower and higher output voltage  
ranges for correlating the thermal resistance. In all derat-  
ing curves, the switching frequency of operation follows  
guidanceprovidedbyTable1. Thermalmodelsarederived  
from several temperature measurements in a controlled  
temperaturechamberalongwiththermalmodelinganalysis.  
The junction temperatures are monitored while ambient  
temperatureisincreasedwithandwithoutairflow,andwith  
andwithoutaheatsinkattachedwiththermallyconductive  
adhesive tape. The power loss increase with ambient  
temperature change is factored into the derating curves.  
The junctions are maintained at 120°C maximum while  
loweringoutputcurrentorpowerwhileincreasingambient  
temperature. The decreased output current decreases the  
internal module loss as ambient temperature is increased.  
The monitored junction temperature of 120°C minus the  
ambientoperatingtemperaturespecifieshowmuchmodule  
Table 2. Power Loss Multiplicative Factors vs Ambient  
Temperature  
POWER LOSS MULTIPLICATIVE  
AMBIENT TEMPERATURE  
FACTOR  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
Up to 40°C  
50°C  
60°C  
70°C  
80°C  
90°C  
100°C  
110°C  
120°C  
4651f  
22  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
Table 3. –5V Output  
DERATING CURVE  
Figures 13, 14, 15  
Figures 13, 14, 15  
Figures 13, 14, 15  
Figures 16, 17, 18  
Figures 16, 17, 18  
Figures 16, 17, 18  
V
(V)  
POWER LOSS CURVE  
Figure 10  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
20.8  
17.0  
16.3  
18.7  
16.1  
14.2  
Figure 10  
200  
400  
0
None  
Figure 10  
None  
Figure 10  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 10  
200  
400  
Figure 10  
Table 4. –15V Output  
DERATING CURVE  
Figures 19, 20, 21  
Figures 19, 20, 21  
Figures 19, 20, 21  
Figures 22, 23, 24  
Figures 22, 23, 24  
Figures 22, 23, 24  
V
(V)  
POWER LOSS CURVE  
Figure 11  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
20.0  
16.6  
14.4  
19.0  
14.2  
12.6  
Figure 11  
200  
400  
0
None  
Figure 11  
None  
Figure 11  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 11  
200  
400  
Figure 11  
Table 5. –24V Output  
DERATING CURVE  
Figures 25, 26, 27  
Figures 25, 26, 27  
Figures 25, 26, 27  
Figures 28, 29, 30  
Figures 28, 29, 30  
Figures 28, 29, 30  
V
(V)  
POWER LOSS CURVE  
Figure 12  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
18.3  
15.2  
14.4  
17.6  
14.7  
13.9  
Figure 12  
200  
400  
0
None  
Figure 12  
None  
Figure 12  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 12  
200  
400  
Figure 12  
Table 6. Heat Sink Manufacturer (Thermally Conductive Adhesive Tape Pre-Attached)  
HEAT SINK MANUFACTURER  
PART NUMBER  
WEBSITE  
Cool Innovations  
3-0504035UT411  
www.coolinnovations.com  
Table 7. Thermally Conductive Adhesive Tape Vendor  
THERMALLY CONDUCTIVE ADHESIVE  
TAPE MANUFACTURER  
PART NUMBER  
WEBSITE  
Chomerics  
T411  
www.chomerics.com  
4651f  
23  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
Table 8. LTM4651 Output Voltage Response vs Component Matrix. Performance of Figure 32 Circuit with Values Here Indicated,  
COMPa Connected to COMPb, CEXTVCC = 1μF, and the Following Components Not Used: CTH, RTH and COUTL. Load-Stepping from 50%  
of Full Scale (F.S.) to 100% of F.S. Load Current, in 1μs. Typical Measured Values  
C
OUTH  
VENDORS  
PART NUMBER  
C
IN  
/C VENDORS  
PART NUMBER  
D
AVX  
12066D107MAT2A (100µF, 6.3V, 1206 Case Size)  
GRM31CR60J107M (100µF, 6.3V, 1206 Case Size)  
JMK316BBJ107MLHT (100µF, 6.3V, 1206 Case Size)  
C3216X5R0J107M (100µF, 6.3V, 1206 Case Size)  
1210YD476MAT2A (47µF, 16V, 1210 Case Size)  
GRM32ER61C476M (47µF, 16V, 1210 Case Size)  
EMK325BJ476MM (47µF, 16V, 1210 Case Size)  
12103D226MAT2A (22µF, 25V, 1210 Case Size)  
TMK325BJ226MM (22µF, 25V, 1210 Case Size)  
C3225X5R1E226M (22µF, 25V, 1210 Case Size)  
12105D106MAT2A (10µF, 50V, 1210 Case Size)  
GRM32ER61H106M (10µF, 50V, 1210 Case Size)  
UMK325BJ106M (10µF, 50V, 1210 Case Size)  
C3225X5R1H106M (10µF, 50V, 1210 Case Size)  
Murata  
AVX  
GRM32ER71K475M (4.7µF, 80V, 1210 Case Size)  
12065C475MAT2A (4.7µF, 50V, 1206 Case Size)  
GRM31CR71H475M (4.7µF, 50V, 1206 Case Size)  
UMK316AB7475ML (4.7µF, 50V, 1206 Case Size)  
C3216X5R1H475M (4.7µF, 50V, 1206 Case Size)  
Murata  
Taiyo Yuden  
TDK  
Murata  
Taiyo Yuden  
TDK  
AVX  
Murata  
Taiyo Yuden  
AVX  
Taiyo Yuden  
TDK  
AVX  
Murata  
Taiyo Yuden  
TDK  
LOAD STEP LOAD STEP  
F. S.  
C
C
C
CDGND  
C
TRANSIENT  
DROOP  
(mV)  
PK-PK  
DEVIATION  
(mV)  
RECOVERY  
TIME  
IN  
INOUT  
D
OUTH  
(CERAMIC  
V
OUT  
(V)  
V
LOAD (V TO GND  
(V TO V  
(V TO V  
(V TO GND  
D
R
R
f
R
R
IN  
(V)  
IN  
IN  
OUT  
D
OUT  
ISET  
PGDFB  
(kΩ) (kHz) (kΩ)  
SW  
fSET  
EXTVCC  
(Ω)  
(A)  
3.2  
4
BYPASS CAP)  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
BYPASS CAP)  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
BYPASS CAP) BYPASS CAP) OUTPUT CAP) (kΩ)  
(μs)  
–0.5  
–0.5  
5
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF × 2  
4.7µF × 2  
4.7µF × 2  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF  
4.7µF × 2  
4.7µF × 2  
4.7µF × 2  
100µF × 4  
100µF × 4  
100µF × 4  
100µF  
10  
10  
N/A  
N/A  
N/A  
400  
400  
N/A  
N/A  
2.2  
2.2  
75  
150  
190  
190  
130  
330  
355  
310  
300  
235  
340  
380  
360  
330  
235  
340  
330  
400  
370  
270  
290  
325  
400  
170  
380  
400  
415  
220  
275  
280  
55  
60  
60  
25  
50  
50  
40  
35  
45  
60  
55  
45  
38  
30  
30  
27  
27  
25  
32  
25  
25  
25  
25  
32  
28  
28  
45  
30  
27  
12  
90  
–0.5* 24  
4
10  
200* N/A  
2.2  
90  
–3.3  
–3.3  
–3.3  
–3.3  
–3.3  
–5  
5
2.2  
3.5  
4
66.5  
66.5  
66.5  
66.5  
66.5  
100  
100  
100  
100  
100  
160  
160  
160  
160  
160  
240  
240  
240  
240  
301  
301  
301  
301  
481  
481  
481  
22.6  
22.6  
22.6  
22.6  
22.6  
36.5  
36.5  
36.5  
36.5  
36.5  
61.9  
61.9  
61.9  
61.9  
61.9  
95.3  
95.3  
95.3  
95.3  
121  
400  
400  
N/A  
N/A  
15  
65  
12  
24  
36  
48  
5
100µF × 2  
100µF × 2  
100µF × 2  
100µF × 2  
47µF × 2  
47µF × 2  
47µF × 2  
47µF × 2  
47µF × 2  
47µF  
15  
165  
175  
160  
152  
125  
175  
185  
180  
165  
125  
185  
180  
205  
185  
140  
157  
170  
200  
90  
450 2200  
500 1000  
500 1000  
15  
4
15  
4
15  
1.75  
3.2  
3.85  
4
400  
550  
600  
600  
600  
N/A  
665  
499  
499  
499  
20  
–5  
12  
24  
36  
48  
5
20  
–5  
20  
–5  
20  
–5  
4
20  
–8  
1.2  
2.3  
3.1  
3.4  
3.6  
0.9  
1.9  
2.75  
3.2  
0.75  
1.75  
2.5  
3
450 2200  
32.4  
32.4  
32.4  
32.4  
32.4  
49.9  
49.9  
49.9  
49.9  
60.4  
60.4  
60.4  
60.4  
100  
100  
100  
–8  
12  
24  
36  
48  
5
47µF  
700  
800  
850  
900  
332  
249  
221  
200  
–8  
47µF  
–8  
47µF  
–8  
47µF  
–12  
–12  
–12  
–12  
–15  
–15  
–15  
–15  
–24  
–24  
–24  
22µF  
475 1300  
825 237  
12  
24  
36  
5
22µF  
22µF  
1100 143  
1200 124  
500 1000  
22µF  
22µF  
12  
24  
36  
5
22µF  
121  
875  
210  
200  
205  
210  
105  
140  
140  
22µF  
121  
1200 124  
1400 100  
22µF  
121  
0.55  
1.25  
2
10µF × 2  
10µF × 2  
10µF × 2  
196  
550  
665  
12  
24  
196  
1000 165  
1500 90.9  
196  
*To avoid violating minimum on-time criteria, drive CLKIN with a 200kHz, 50% duty cycle clock. Consider using LTC6908-1, for example.  
4651f  
24  
For more information www.linear.com/LTM4651  
LTM4651  
See Table 1 for fSW.  
APPLICATIONS INFORMATION—DERATING CURVES  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
5V , 400kHz  
IN  
5V , 500kHZ  
IN  
12V , 550kHz  
IN  
5V , 550kHz  
IN  
12V , 875HZ  
IN  
24V , 600kHz  
IN  
12V , 1MHz  
IN  
24V , 1.2MHZ  
IN  
36V , 1.4MHZ  
IN  
36V , 600kHz  
IN  
24V ,1.5MHz  
IN  
48V , 600kHz  
IN  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4651 F10  
4651 F12  
4651 F11  
Figure 10. –5VOUT Power  
Loss Curve  
Figure 11. –15VOUT Power Loss  
Curve  
Figure 12. –24VOUT Power  
Loss Curve  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.85  
3.50  
3.15  
2.80  
2.45  
2.10  
1.75  
1.40  
1.05  
0.70  
0.35  
0
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4651 F14  
4651 F15  
4651 G13  
Figure 13. 5V to –5V Derating  
Curve, No Heat Sink  
Figure 14. 12V to –5V  
Derating Curve, No Heat Sink  
Figure 15. 24V to –5V  
Derating Curve, No Heat Sink  
3.85  
3.50  
3.15  
2.80  
2.45  
2.10  
1.75  
1.40  
1.05  
0.70  
0.35  
0
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
1.75  
1.53  
1.31  
1.09  
0.88  
0.66  
0.44  
0.22  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4651 F18  
4651 F17  
4651 F16  
Figure 17. 12V to –5V Derating  
Curve, with BGA Heat Sink  
Figure 16. 5V to –5V Derating  
Curve, with BGA Heat Sink  
Figure 18. 24V to –5V Derating  
Curve, with BGA Heat Sink  
4651f  
25  
For more information www.linear.com/LTM4651  
LTM4651  
See Table 1 for fSW.  
APPLICATIONS INFORMATION—DERATING CURVES  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.750  
0.625  
0.500  
0.375  
0.250  
0.125  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4651 F21  
4651 F20  
4651 F19  
Figure 19. 5V to –15V  
Derating Curve, No Heat Sink  
Figure 20. 12V to –15V  
Derating Curve, No Heat Sink  
Figure 21. 24V to –15V Derating  
Curve, No Heat Sink  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.750  
0.625  
0.500  
0.375  
0.250  
0.125  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4651 F23  
4651 F24  
4651 F22  
Figure 24. 24V to –15V Derating  
Curve, with BGA Heat Sink  
Figure 22. 5V to –15V Derating  
Curve, with BGA Heat Sink  
Figure 23. 12V to –15V Derating  
Curve, with BGA Heat Sink  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.250  
1.125  
1.000  
0.875  
0.750  
0.625  
0.500  
0.375  
0.250  
0.125  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (oC)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4651 F27  
4651 F25  
4651 F26  
Figure 26. 12V to –24V Derating  
Curve, No Heat Sink  
Figure 27. 24V to –24V Derating  
Curve, No Heat Sink  
Figure 25. 5V to –24V Derating  
Curve, No Heat Sink  
4651f  
26  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION—DERATING CURVES  
1.250  
1.125  
1.000  
0.875  
0.750  
0.625  
0.500  
0.375  
0.250  
0.125  
0
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4651 F29  
4651 F30  
4651 F28  
Figure 29. 12V to –24V Derating  
Curve, with BGA Heat Sink  
Figure 30. 24V to –24V Derating  
Curve, with BGA Heat Sink  
Figure 28. 5V to –24V Derating  
Curve, with BGA Heat Sink  
APPLICATIONS INFORMATION  
Safety Considerations  
• Place high frequency ceramic input and output (and, if  
used, input-to-output) capacitors next to the V , V ,  
IN  
D
TheLTM4651doesnotprovidegalvanicisolationfromV  
IN  
PGNDandV  
pinstominimizehighfrequencynoise.  
OUT  
to V  
. There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
tobeprovidedtoprotecttheunitfromcatastrophicfailure.  
• Place a dedicated power ground layer underneath the  
LTM4651.  
The fuse or circuit breaker, if used, should be selected to  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
limit the current to the regulator in case of a M MOSFET  
T
fault. If M fails, the system’s input supply will source  
T
very large currents to PGND through M . This can cause  
T
• Do not put vias directly on pads, unless they are capped  
or plated over.  
excessive heat and board damage depending on how  
much power the input voltage can deliver to this system.  
A fuse or circuit breaker can be used as a secondary fault  
protector in this situation. The LTM4651 does feature  
overcurrent and overtemperature protection.  
• Use a separate SV  
copper plane for components  
OUT  
connected to signal pins. Connect SV  
directly under the module.  
to V  
OUT  
OUT  
• For parallel module applications, connect the V  
,
OUT  
Layout Checklist/Example  
GND ,RUN,ISETa,COMPaandPGOODpinstogether  
SNS  
The high integration of LTM4651 makes the PCB board  
layout straightforward. However, to optimize its electrical  
and thermal performance, some layout considerations  
are still necessary.  
as shown in Figure 41.  
• Bring out test points on the signal pins for monitoring.  
Figure 31 gives a good example of the recommended  
LTM4651 layout.  
• Use large PCB copper areas for high current paths,  
including V , PGND and V  
. Doing so helps to  
IN  
OUT  
minimize the PCB conduction loss and thermal stress.  
4651f  
27  
For more information www.linear.com/LTM4651  
LTM4651  
APPLICATIONS INFORMATION  
GND  
V
OUT  
V
D
V
IN  
GND  
4650 F31  
Figure 31. Recommend PCB Layout, Package Top View  
TYPICAL APPLICATIONS  
R
100k  
PGDFB  
V
IN  
3.3V  
V
PGOOD  
IN  
12V  
C
4.7μF  
C
4.7μF  
IN  
INOUT  
SV  
GND  
SNS  
IN  
GND  
V
D
C
10µF  
×2  
PGND  
OUT  
D1*  
RUN  
LOAD  
C
DGND  
–24V  
OUT  
V
OUT  
CLKIN  
INTV  
4.7μF  
UP TO 1.25A  
LTM4651  
C
4.7μF  
D
SV  
CC  
OUT  
R
PGDFB  
196k  
VINREG  
COMPa  
COMPb  
PGDFB  
R
100Ω  
EXTVCC  
EXTV  
CC  
+
TEMP  
TEMP  
f
SET  
ISETa  
ISETb  
C
1µF  
EXTVCC  
4651 F32  
R
165k  
fSET  
R
ISET  
481k  
*D1 optional (see effect in Figure 33): Central Semiconductor P/N CMMSH1-40L  
Figure 32. 1.25A, –24V Output DC/DC μModule Regulator  
4651f  
28  
For more information www.linear.com/LTM4651  
LTM4651  
TYPICAL APPLICATIONS  
RUN, 5V/DIV  
PGOOD, 5V/DIV  
V
OUT  
10V/DIV  
V
OUT  
200mV/DIV  
4651 F33a  
1ms/DIV  
(a) Start-up Performance with D1 Not Installed.  
V
Reverse-Polarity at Start-Up Transiently  
OUT  
Reaches 500mV  
RUN, 5V/DIV  
PGOOD, 5V/DIV  
V
OUT  
10V/DIV  
V
OUT  
200mV/DIV  
4651 F33b  
1ms/DIV  
(b) Start-up Performance with D1 Installed.  
V
Reverse-Polarity at Start-Up is Transiently  
OUT  
Limited to 360mV  
Figure 33. Start-Up Waveforms at 12VIN, Figure 32 Circuit  
4651f  
29  
For more information www.linear.com/LTM4651  
LTM4651  
TYPICAL APPLICATIONS  
R
PGDFB  
100k  
V
IN  
24V  
3.3V  
V
PGOOD  
IN  
C
4.7μF  
IN1  
SV  
GND  
SNS  
IN  
C
INOUT1  
4.7μF  
GND  
V
D
PGND  
C
10µF  
×4  
C
OUT  
DGND1  
4.7μF  
LTC6908-1  
C
4.7μF  
RUN  
LOAD  
D1  
3.3V  
–24V  
OUT  
UP TO 4A  
+
V
OUT  
V
OUT1  
OUT2  
MOD  
CLKIN  
INTV  
R
SET  
66.5k  
U1  
LTM4651  
SV  
OUT  
CC  
R
SET  
PGDFB1  
196k  
VINREG  
COMPa  
COMPb  
R
EXTVCC1  
100Ω  
PGDFB  
GND  
EXTV  
CC  
+
TEMP  
TEMP  
C
EXTVCC1  
1µF  
f
SET  
ISETa  
ISETb  
R
fSET1  
90.9k  
V
PGOOD  
IN  
C
4.7μF  
IN2  
SV  
GND  
SNS  
IN  
GND  
C
INOUT2  
4.7μF  
V
D
PGND  
C
DGND2  
4.7μF  
C
4.7μF  
D2  
RUN  
V
CLKIN  
INTV  
OUT  
U2  
LTM4651  
SV  
CC  
OUT  
R
PGDFB2  
196k  
VINREG  
COMPa  
COMPb  
R
100Ω  
EXTVCC2  
PGDFB  
EXTV  
CC  
+
f
TEMP  
TEMP  
SET  
C
EXTVCC2  
1µF  
ISETa  
ISETb  
4651 F34  
R
fSET2  
90.9k  
R
ISET2  
240k  
Figure 34. –24V Output at Up to 4A from 24V Input, 2-Phase Interleaved, Parallel Application at fSW = 1.5MHz  
4651f  
30  
For more information www.linear.com/LTM4651  
LTM4651  
TYPICAL APPLICATIONS  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
U1 OUTPUT CURRENT  
U2 OUTPUT CURRENT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
LOAD CURRENT (A)  
4651 F35  
Figure 35. Current Sharing Performance of LTM4651s in Figure 34 Circuit  
RUN, 5V/DIV  
PGOOD, 5V/DIV  
+
V
OUT  
5V/DIV  
V
OUT  
5V/DIV  
4651 F36  
10ms/DIV  
Figure 36. Concurrent 12V Supply, Output Voltage Start-Up Waveforms. Figure 37 Circuit  
4651f  
31  
For more information www.linear.com/LTM4651  
LTM4651  
PACKAGE PHOTOGRAPH  
PACKAGE DESCRIPTION  
Table 9. LTM4651 Component BGA Pinout  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION  
CLKIN  
NC  
PIN ID  
C1  
FUNCTION  
PIN ID  
D1  
FUNCTION  
PGOOD  
PGDFB  
PIN ID  
E1  
FUNCTION  
COMPb  
PIN ID  
F1  
FUNCTION  
ISETb  
V
IN  
V
IN  
V
IN  
NC  
A2  
B2  
C2  
V
D2  
E2  
COMPa  
F2  
ISETa  
OUT  
A3  
B3  
V
C3  
SV  
D3  
VINREG  
E3  
f
F3  
EXTV  
CC  
IN  
IN  
SET  
A4  
V
D
B4  
V
D
C4  
V
D
D4  
GND  
E4  
SV  
OUT  
F4  
RUN  
A5  
V
B5  
V
C5  
V
D5  
V
OUT  
E5  
V
F5  
V
OUT  
OUT  
OUT  
OUT  
OUT  
A6  
NC  
B6  
NC  
C6  
NC  
D6  
NC  
E6  
NC  
F6  
NC  
A7  
NC  
B7  
NC  
C7  
NC  
D7  
NC  
E7  
NC  
F7  
NC  
PIN ID  
G1  
FUNCTION  
PIN ID  
H1  
FUNCTION  
PIN ID  
J1  
FUNCTION  
PIN ID  
K1  
FUNCTION  
PGND  
PIN ID  
L1  
FUNCTION  
PGND  
+
GND  
GND  
TEMP  
SNS  
SNS  
G2  
SV  
H2  
SV  
OUT  
J2  
TEMP  
K2  
PGND  
L2  
PGND  
OUT  
G3  
INTV  
H3  
V
J3  
V
V
V
K3  
PGND  
L3  
PGND  
CC  
OUT  
OUT  
OUT  
OUT  
G4  
V
V
H4  
SW  
J4  
K4  
V
V
L4  
V
V
OUT  
OUT  
OUT  
G5  
H5  
V
OUT  
J5  
K5  
L5  
OUT  
OUT  
OUT  
+
G6  
NC  
H6  
NC  
J6  
TEMP  
TEMP  
K6  
NC  
L6  
NC  
G7  
NC  
H7  
NC  
J7  
K7  
NC  
L7  
NC  
4651f  
32  
For more information www.linear.com/LTM4651  
LTM4651  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM4651#packaging for the most recent package drawings.  
Z
Z
/ / b b b  
Z
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
1 . 2 7 0  
0 . 0 0 0  
2 . 5 4 0  
3 . 8 1 0  
4651f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
33  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM4651  
TYPICAL APPLICATION  
PULL-UP SUPPLY ≤ 5V  
V
IN  
22V TO 36V  
C1 TO C3  
10µF  
50V  
R4  
51k  
R3  
51k  
×3  
V
V
PLLIN  
D
IN  
+
V
OUT  
12V  
V
OUT  
PGOOD  
RUN  
COMP  
INTV  
DRV  
C5  
C
47µF  
×4  
OUT1  
UP TO 8A  
22pF  
V
C
10µF  
50V  
FB  
IN1  
LTM4613  
R
FB  
5.23k  
CC  
CC  
FCB  
MARG0  
MARG1  
MPGM  
f
MARGIN  
CONTROL  
SET  
TRACK/SS  
C4  
0.1µF  
SGND  
PGND  
R1  
392k  
5% MARGIN  
V
PGOOD  
GND  
IN  
C
4.7μF  
IN2  
SV  
IN  
SNS  
V
D
GND  
C
DGND  
4.7μF  
C
C
D
4.7μF  
INOUT  
4.7μF  
PGND  
C
OUT2  
22µF  
LOAD  
RUN  
V
OUT  
V
OUT  
–12  
CLKIN  
LTM4651  
UP TO 3.15A  
SV  
OUT  
INTV  
CC  
R
PGDFB  
95.3k  
VINREG  
COMPa  
COMPb  
PGDFB  
R
R
EXTVCC  
49.9Ω  
TRACK  
10k  
EXTV  
CC  
+
TEMP  
TEMP  
f
SET  
ISETa  
R
ISETb  
4651 F37  
R
fSET  
124k  
C
EXTVCC  
1µF  
ISET  
240k||10k  
Figure 37. Concurrent 1ꢀ2 ꢁuppl. ee Figure 36 for Output 2oltage ꢁtart-Up Waveforms  
RELATED PARTS  
PART NUMBER DEꢁCRIPTION  
COMMENTꢁ  
LTM8045  
SEPIC or Inverting µModule DC/DC Converter  
2.8V ≤ V ≤ 18V, 2.5V ≤ V  
≤ 15V. I  
≤ 24V. I  
≤ 700mA. 6.25mm ×  
≤ 1A/Channel. 9mm ×  
IN  
OUT  
OUT(DC)  
11.25mm × 4.92mm BGA  
LTM8049  
Dual, SEPIC and/or Inverting µModule DC/DC Converter 2.6V ≤ V ≤ 20V, 2.5V ≤ V  
IN  
OUT  
OUT(DC)  
15mm × 2.42mm BGA  
LTM8073  
LTM8064  
LTM4613  
60V, 3A Step-Down µModule Regulator  
3.4V ≤ V ≤ 60V, 0.8V ≤ V  
≤ 15V. 6.25mm × 9mm × 3.32mm BGA  
IN  
OUT  
58V, 6A CVCC Step-Down µModule Regulator  
EN55022B Compliant, 36V, 8A µModule Regulator  
6V ≤ V ≤ 58V, 1.2V ≤ V  
≤ 36V. 11.9mm x 16mm × 4.92mm BGA  
≤ 15V. 15mm × 15mm × 4.32mm LGA, and  
IN  
OUT  
5V ≤ V ≤ 36V, 3.3V ≤ V  
IN  
OUT  
15mm × 15mm × 4.92mm BGA  
4651f  
LT 0817 • PRINTED IN USA  
www.linear.com/LTM4651  
34  
LINEAR TECHNOLOGY CORPORATION 2017  

相关型号:

LTM4653

EN55022B Compliant 58V, 4A Step-Down DC/DC μModule Regulator
Linear

LTM4655

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator
ADI

LTM4655IY

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator
ADI

LTM4655MPY

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator
ADI

LTM4656

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656EY

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656EY-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656IY

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656IY-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4657

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI

LTM4657IY

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI