LTM4653 [Linear]

EN55022B Compliant 58V, 4A Step-Down DC/DC μModule Regulator;
LTM4653
型号: LTM4653
厂家: Linear    Linear
描述:

EN55022B Compliant 58V, 4A Step-Down DC/DC μModule Regulator

文件: 总32页 (文件大小:1422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4653  
EN55022B Compliant 58V, 4A  
Step-Down DC/DC μModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®4653 is an ultralow noise 58V, 4A DC/DC step-  
down μModule® regulator designed to meet the radiated  
emissions requirements of EN55022. Conducted emis-  
sion requirements can be met by adding standard filter  
components. Included in the package are the switching  
controller, power MOSFETs, inductor, filters and support  
components.  
n
Complete Low EMI Switch Mode Power Supply  
EN55022 Class B Compliant  
Wide Input Voltage Range: 3.1V to 58V  
Up to 4A Output Current  
Output Voltage Range: 0.5V ≤ V  
n
n
n
n
n
≤ 0.94 • V  
OUT  
IN  
1.ꢀ67 Total DC Output Voltage Error Over Line,  
Load and Temperature (–40°C to 125°C)  
Parallel and Current Share with Multiple LTM4ꢀ53s  
Analog Output Current Indicator  
n
n
n
n
n
n
n
Operating over an input voltage range of 3.1V to 58V, the  
LTM4653 supports an output voltage range of 0.5V to  
Programmable Input Voltage Limiting  
94% of V , and a switching frequency range of 250kHz  
IN  
Constant-Frequency Current Mode Control  
Power Good Indicator and Programmable Soft-Start  
Overcurrent/Overvoltage/Overtemperature Protection  
15mm × 9mm × 5.01mm BGA Package  
to 3MHz (400kHz default), each set by a single resistor.  
For high load currents, the LTM4653 can be paralleled in  
PolyPhase® operation and synchronized to an external  
clock. Only the bulk input and output filter capacitors are  
needed to finish the design.  
APPLICATIONS  
The LTM4653 is offered in a 15mm × 9mm × 5.01mm  
BGApackagewithSnPborRoHScompliantterminalfinish.  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. Patents, including 5481178, 5705919, 5847554, 6580258.  
n
Avionics, Industrial Control and Test Equipment  
n
Video, Imaging and Instrumentation  
n
48V Telecom and Network Power Supplies  
RF Systems  
n
TYPICAL APPLICATION  
4A, 24V Output Low EMI DC/DC μModule Regulator  
with Analog Output Current Indicator  
Radiated Emission Scan in a 10m Chamber  
LTM4ꢀ53 Delivering 24VOUT at 3.5A, from 48VIN  
I
ꢓ0  
OUT  
V
24V  
,
IN  
ꢁꢈꢀꢨ ꢇꢄꢨꢅ ꢗ0ꢏ  
ꢨꢂꢈꢜ ꢇꢄꢨꢅ ꢗ0ꢏ  
OUT  
V
V
OUT  
IN  
28V TO 58V  
UP TO 4A  
10µF  
×2  
ꢒ0  
ꢑ0  
ꢔ0  
ꢕ0  
ꢖ0  
ꢗ0  
0
4.7μF  
4.7μF  
V
OSNS  
SV  
IN  
LOAD  
V
D
SGND  
PGND  
RUN  
INTV  
CC  
LTM4653  
VINREG  
COMPa  
ANALOG OUTPUT  
ꢣꢗꢤ ꢞꢥRꢄꢦꢥꢛꢅꢀꢃ  
ꢣꢖꢤ ꢍꢈRꢅꢄꢜꢀꢃ  
ꢚꢂꢧ ꢃꢄꢁꢄꢅ  
IMONa  
IMONb  
CURRENT INDICATOR  
10nF  
V
= 0.25Ω • I  
IMON  
OUT  
499Ω  
ꢙꢥRꢁꢀꢃ  
f
ꢘꢗ0  
SET  
PINS NOT USED IN  
THIS CIRCUIT:  
ꢕ0  
ꢗꢕ0  
ꢖꢕ0  
ꢕꢕ0  
ꢔꢕ0  
ꢑꢕ0  
ꢒꢕ0  
ꢓꢕ0  
ꢠꢕ0  
ꢡꢕ0 ꢗ000  
124k  
GND  
ISETa ISETb  
ꢔꢒꢑꢕ ꢅꢀ0ꢗꢢ  
ꢙRꢈꢚꢆꢈꢛꢜꢝ ꢉꢁꢞꢟꢐ  
CLKIN, PGOOD, COMPb  
PGDFB, SW, EXTV  
4653 TA01a  
CC  
+
TEMP , TEMP , NC  
481k  
Rev 0  
1
Document Feedback  
For more information www.analog.com  
LTM4653  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1) (All Voltages Relative to VOUTUnless Otherwise Indicated)  
ꢏꢐꢑ ꢒꢓꢅꢔ  
Terminal Voltages  
V , V , SV , SW, V , V , ISETa....–0.3V to 60V  
IN  
D
IN  
OUT OSNS  
ꢓꢗ  
GND, ISETb, EXTV ............................ –0.3V to 28V  
CC  
ꢃꢋꢊꢓꢗ  
ꢗꢃ  
RUN.................................... GND–0.3V to PGND+60V  
ꢑꢇꢗꢄ  
INTV , PGDFB, VINREG, COMPa, COMPb,  
ꢓꢠꢐꢗꢦ ꢓꢠꢐꢗꢢ ꢣꢒ  
CC  
ꢓꢗ  
IMONa, IMONb ........................................ –0.3V to 4V  
ꢑꢇꢐꢐꢄ ꢑꢇꢄꢆꢂ ꢒꢓꢗRꢅꢇ ꢇꢗꢄ  
f
...................................................–0.3V to INTV  
SET  
CC  
CLKIN, PGOOD (Relative to GND) ........... –0.3V to 6V  
ꢗꢃ  
ꢃꢐꢠꢑꢦ ꢃꢐꢠꢑꢢ  
ꢣꢇꢗꢄ  
Rꢟꢗ  
ꢣꢅꢏ  
Terminal Currents  
ꢓꢣꢅꢏꢦ ꢓꢣꢅꢏꢢ ꢅꢥꢏꢒ  
ꢃꢃ  
INTV Peak Output Current (Note 8)................30mA  
CC  
+
TEMP ..................................................–1mA to 10mA  
ꢓꢗꢏꢒ  
ꢃꢃ  
TEMP .................................................–10mA to 1mA  
ꢣꢇꢗꢄ  
ꢐꢣꢗꢣ  
ꢣꢔ  
Temperatures  
Internal Operating Temperature Range  
(Note 2) ............................................. –40°C to 125°C  
Storage Temperature Range .............. –55°C to 125°C  
Peak Solder Reflow Package  
ꢏꢅꢠꢑ  
ꢏꢅꢠꢑ  
ꢏꢅꢠꢑ  
ꢏꢅꢠꢑ  
ꢑꢇꢗꢄ  
ꢗꢃ  
ꢐꢟꢏ  
Body Temperature ............................................ 245°C  
ꢂꢇꢁ ꢑꢁꢃꢊꢁꢇꢅ  
ꢕꢕꢖꢑꢓꢗ ꢘꢀꢙꢚꢚ × ꢛꢚꢚ × ꢙꢜ0ꢀꢚꢚꢝ  
= 125°C  
T
JMAX  
θ
= 20.6°C/W, θ  
= 5.1°C/W, θ = 6.0°C/W, θ = 15.5°C/W  
JCtop  
JCbottom  
JB  
JA  
θ VALUES DETERMINED PER JESD51-12  
WEIGHT = 1.8 GRAMS  
http://www.linear.com/product/LTM4ꢀ53#orderinfo  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM4653EY#PBF  
LTM4653IY#PBF  
LTM4653IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
TYPE  
RATING  
e1  
e1  
e0  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTM4653Y  
BGA  
3
• Device temperature grade is indicated by a label on the shipping container. Recommended BGA PCB Assembly and Manufacturing Procedures:  
www.linear.com/BGA-assy  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• BGA Package and Tray Drawings: www.linear.com/packaging  
• Terminal Finish Part Marking: www.linear.com/leadfree  
This product is moisture sensitive. For more information, go to:  
This product is not recommended for second side reflow. For more  
www.linear.com/BGA-assy  
information, go to www.linear.com/BGA-assy  
Rev 0  
2
For more information www.analog.com  
LTM4653  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). TA = 25°C, Test Circuit, VIN = SVIN = 48V, EXTVCC = 24V, RUN = 3.3V, RISET = 480k,  
RfSET = 56.ꢀkΩ, fSW = 1.5MHz (CLKIN driven with 1.2MHz clock signal) unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3.1  
TYP MAX UNITS  
l
l
l
SV  
, V  
Input DC Voltage  
58  
0.94V  
V
V
V
IN(DC) IN(DC)  
V
V
Range of Output Voltage Regulation  
0.5V ≤ ISETa - SGND ≤ 0.94V , I  
= 0A (See Note 6)  
0.5  
OUT(RANGE)  
OUT(24VDC)  
IN OUT  
IN  
Output Voltage Total Variation with  
Line and Load at V  
28V ≤ V ≤ 58V, 0A ≤ I  
≤ 4A, C = 4.7μF,  
23.6  
24  
0
24.4  
IN  
OUT  
INH  
= 24V  
C = 4.7μF, C = 2 × 47μF, CLKIN driven with  
OUTH  
OUT  
D
1.5MHz Clock  
l
V
Output Voltage Total Variation with  
Line and Load at V = 0.5V  
Measuring V  
- ISETa  
OSNS  
–15  
15  
mV  
OUT(0.5VDC)  
3.1V ≤ V ≤ 13.2V, 0A ≤ I  
≤ 4A, C = 4.7μF,  
INH  
= 2 × 47μF, ISETa = 500mV,  
OUT  
IN  
OUT  
C = 4.7μF, C  
D
fSET  
OUTH  
R
= N/U (Note 5)  
Input Specifications  
l
l
l
V
SV Undervoltage Lockout Threshold SV Rising  
2.85  
2.6  
250  
3.1  
2.9  
V
V
mV  
IN(UVLO)  
IN  
IN  
SV Falling  
2.4  
150  
IN  
Hysteresis  
V
V
SV Overvoltage Lockout Rising  
(Note 4)  
64  
68  
2
V
V
IN(OVLO)  
IN(HYS)  
IN  
SV Overvoltage Lockout Hysteresis (Note 4)  
IN  
4
I
Input Inrush Current at Start-Up  
C
= 4.7μF, C = 4.7μF, C  
= 2 × 47μF; I = 0A,  
OUT  
300  
mA  
INRUSH(VIN)  
INH  
D
OUTH  
ISETa Electrically Connected to ISETb  
I
Input Supply Bias Current  
Shutdown, RUN = GND  
16  
450  
30  
μA  
μA  
Q(SVIN)  
RUN = V  
IN  
I
I
Input Supply Current  
CLKIN Open Circuit, I  
= 4A  
OUT  
2.1  
4
A
S(VIN, FCM)  
Input Supply Current in Shutdown  
Shutdown, RUN = GND  
µA  
S(VIN, SHUTDOWN)  
Output Specifications  
I
V
Output Continuous Current  
OUT  
(Note 3)  
0
4
A
OUT  
Range  
l
l
∆V  
∆V  
/V  
Line Regulation Accuracy  
Load Regulation Accuracy  
I
= 0A, 28V ≤ V ≤58V  
0.05  
0.1  
%
%
OUT(LINE) OUT  
OUT  
IN  
/V  
V
V
= 48V, 0A ≤ I  
≤ 4A  
0.05 0.75  
2
OUT(LOAD) OUT  
IN  
OUT  
V
Output Voltage Ripple, V  
= 12V, ISETa = 5V  
= 57.6k, CLKIN Open Circuit  
mV  
P–P  
OUT(AC)  
OUT  
IN  
l
l
f
V
Ripple Frequency  
ISETa = 5V, R  
fSET  
1.7  
1.95  
8
2.2  
MHz  
mV  
ms  
s
OUT  
∆V  
Turn-On Overshoot  
OUT(START)  
t
Turn-On Start-Up Time  
Delay Measured from V Toggling from 0V to 48V to  
4
9
START  
IN  
PGOOD Exceeding 3V; PGOOD Having a 100k Pull-Up  
to 3.3V, VPGFB Resistor-Divider Network as Shown in  
Test Circuit, R  
to ISETb and CLKIN Driven with 1.5MHz Clock  
= 480k, ISETa Electrically Connected  
ISETa  
∆V  
Peak Output Voltage Deviation for  
Dynamic Load Step  
I
: 0A to 2A and 2A to 0A Load Steps in 1μs,  
OUTH  
400  
50  
mV  
µs  
A
OUT(LS)  
OUT  
C
= 47µF × 2  
t
I
Settling Time for Dynamic Load Step  
I
C
: 0A to 2A and 2A to 0A Load Steps in 1μs,  
OUTH  
SETTLE  
OUT  
= 47µF × 2  
I
Output Current Limit  
5.5  
OUT(OCL)  
OUT  
Control Section  
l
l
I
Reference Current of ISETa Pin  
Leakage Current  
V
V
= 0.5V, 3.1V ≤ V ≤ 13.2V  
49.3  
49  
50  
50  
50.7  
51  
µA  
µA  
ISETa  
ISETa  
ISETa  
IN  
= 24V, 28V ≤ V ≤ 58V  
IN  
I
t
V
V
= SV = RUN = ISETa = 58V  
600  
60  
µA  
ns  
VOSNS  
OSNS  
IN  
IN  
Minimum On-Time  
(Note 4 )  
ON(MIN)  
Rev 0  
3
For more information www.analog.com  
LTM4653  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). TA = 25°C, Test Circuit, VIN = SVIN = 48V, EXTVCC = 24V, RUN = 3.3V, RISET = 480k,  
RfSET = 56.ꢀkΩ, fSW = 1.5MHz (CLKIN driven with 1.2MHz clock signal) unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
l
l
V
RUN Turn-On/-Off Thresholds  
RUN Input Turn-On Threshold, RUN Rising  
RUN Hysteresis  
1.08  
1.2  
1.32  
V
RUN  
130  
mV  
I
RUN Leakage Current  
RUN = 3.3V  
0.1  
50  
nA  
RUN  
Oscillator and Phase-Locked Loop (PLL)  
f
Oscillator Frequency Accuracy  
V
= 12V, ISETa = 5V, and:  
OSC  
IN  
f
Open Circuit  
l
360  
400  
1.95  
440  
kHz  
MHz  
SET  
R
= 57.6kΩ (See f Specification)  
fSET  
s
f
PLL Synchronization Capture Range  
V
= 12V, ISETa = 5V, CLKIN Driven with a GND-  
SYNC  
IN  
Referred Clock Toggling from 0.4V to 1.2V and Having  
a Clock Duty Cycle:  
From 10% to 90%; f Open Circuit  
250  
1.3  
550  
3
kHz  
MHz  
SET  
fSET  
From 40% to 60%; R  
= 57.6kΩ  
V
CLKIN Input Threshold  
CLKIN Input Current  
V
V
Rising  
Falling  
1.2  
V
V
CLKIN  
CLKIN  
CLKIN  
0.4  
I
V
V
= 5V  
= 0V  
230  
–5  
500  
μA  
μA  
CLKIN  
CLKIN  
CLKIN  
–20  
Power Good Feedback Input and Power Good Output  
l
l
OV  
UV  
∆V  
Output Overvoltage PGOOD Upper  
Threshold  
PGDFB Rising  
PGDFB Falling  
PGDFB Returning  
620  
525  
645  
555  
8
675  
580  
mV  
mV  
PGDFB  
Output Undervoltage PGOOD Lower  
Threshold  
PGDFB  
PGOOD Hysteresis  
mV  
kΩ  
Ω
PGDFB  
PGDFB  
R
R
Resistor Between PGDFB and SGND  
PGOOD Pull-Down Resistance  
4.94 4.99 5.04  
700 1500  
V
V
= 0.1V, V  
< UV  
or  
PGOOD  
PGOOD  
PGDFB  
PGDFB  
PGDFB  
PGDFB  
> OV  
I
t
PGOOD Leakage Current  
PGOOD Delay  
V
= 3.3V, UV  
< V  
< OV  
PGDFB  
0.1  
1
μA  
PGOOD(LEAK)  
PGOOD(DELAY)  
PGOOD  
PGDFB  
PGDFB  
PGOOD Low to High (Note 4)  
PGOOD High to Low (Note 4)  
16/f  
s
s
SW(HZ)  
SW(HZ)  
64/f  
Current Monitor and Input Voltage Regulation Pins  
l
h
I
I
/I  
Ratio of V  
Output Current to I  
= 0A  
Current, I = 4A  
OUT  
36  
–5  
40  
10  
44  
5
k
µA  
kΩ  
V
IMONa  
OUT IMONa  
OUT  
IMONa  
I
I
Offset Current  
I
at I  
IMONa OUT  
OS(IMON)  
MONa  
Resistor  
Resistor Between I  
and SGND  
9.8  
1.9  
1.8  
10.2  
2.1  
2.2  
MONb  
MONb  
l
l
V
V
I
Servo Voltage  
MONa  
IMONa Voltage During Output Current Regulation  
VINREG Voltage During Output Current Regulation  
VINREG = 2V  
2.0  
2.0  
1
IMONa  
VINREG  
VINREG  
VINREG Servo Voltage  
V
I
VINREG Leakage Current  
nA  
INTV Regulator  
CC  
V
Channel Internal V Voltage, No  
3.6V ≤ SV ≤ 58V, EXTV = Open Circuit  
3.15  
2.85  
3.4  
3.0  
3.65  
3.15  
V
V
INTVCC  
CC  
IN  
CC  
INTV Loading (I  
= 0mA)  
5V ≤ SV ≤ 58V, 3.2V ≤ EXTV ≤ 26.5V  
CC  
INTVCC  
IN CC  
V
EXTV Switchover Voltage  
(Note 4)  
0mA ≤ I ≤ 30mA  
INTVCC  
3.15  
0.5  
V
EXTVCC(TH)  
CC  
∆V  
V
/
INTV Load Regulation  
–2  
2
%
INTVCC(LOAD)  
INTVCC  
CC  
Rev 0  
4
For more information www.analog.com  
LTM4653  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). TA = 25°C, Test Circuit, VIN = SVIN = 48V, EXTVCC = 24V, RUN = 3.3V, RISET = 480k,  
RfSET = 56.ꢀkΩ, fSW = 1.5MHz (CLKIN driven with 1.2MHz clock signal) unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP MAX UNITS  
Temperature Sensor  
+
∆V  
Temperature Sensor Forward Voltage,  
TEMP  
I
= 100µA and I  
= –100μA at T = 25°C  
0.6  
V
TEMP  
TEMP  
TEMP  
A
+
V
– V  
TEMP  
TC  
∆V(TEMP)  
∆V  
TEMP  
Temperature Coefficient  
–2.0  
mV/°C  
Note 1: Stresses beyond those listing under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating conditions for extended periods may affect device  
reliability and lifetime.  
Note 5: To ensure minimum on time criteria is met, V  
high-line  
OUT(0.5VDC)  
regulation is tested at 13.2V , with f and CLKIN open circuit. See the  
IN  
SET  
Applications Information section.  
Note ꢀ. See Applications Information Section for Dropout Criteria.  
Note 2: The LTM4653 is tested under pulsed load conditions such that  
Note 6. This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
T ≈ T . The LTM4653E is guaranteed to meet performance specifications  
J
A
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls.The LTM4653I is guaranteed to meet specifications over the full  
internal operating temperature range. Note that the maximum ambient  
temperature consistent with these specifications is determined by specific  
operating conditions in conjunction with board layout, the rated package  
thermal resistance and other environmental factors.  
Note 8. The INTV Abs Max peak output current is specified as the sum  
CC  
of current drawn by circuits internal to the module biased off of INTV  
CC  
and current drawn by external circuits biased off of INTV . See the  
CC  
Applications Information section.  
Note 3: See output current derating curves for different V , V , and T ,  
IN OUT  
A
located in the Applications Information section.  
Note 4: Minimum on-time, V Overvoltage Lockout and Overvoltage  
IN  
Lockout Hysteresis, and EXTV Switchover Threshold are tested at wafer  
CC  
sort.  
Rev 0  
5
For more information www.analog.com  
LTM4653  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current at  
5VIN, Forced Continuous Mode  
Efficiency vs Load Current at  
12VIN, Forced Continuous Mode  
Efficiency vs Load Current at  
15VIN, Forced Continuous Mode  
ꢑꢌ  
ꢑ0  
ꢍꢌ  
ꢍ0  
ꢐꢌ  
ꢐ0  
ꢏꢌ  
ꢑꢂ  
ꢑ0  
ꢌꢂ  
ꢌ0  
ꢐꢂ  
ꢐ0  
ꢏꢂ  
ꢀ00  
ꢑꢍ  
ꢑ0  
ꢂꢍ  
ꢂ0  
ꢐꢍ  
ꢐ0  
ꢏꢍ  
ꢏ0  
ꢎꢁꢎꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢌꢃ ꢇ ꢍ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢂꢁꢌꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢁ0ꢃ ꢇ ꢈꢍ0ꢉꢊꢋ  
ꢄꢅꢆ  
ꢂꢁ0ꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢍꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢎꢁꢎꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢎꢁꢎꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢌꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢌꢁꢍꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢁꢂꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢌꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁ0ꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢍꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁ0ꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢌꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢍꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁ0ꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
0ꢁꢌ ꢀꢁ0 ꢀꢁꢌ ꢂꢁ0 ꢂꢁꢌ ꢎꢁ0 ꢎꢁꢌ ꢈꢁ0  
0ꢁꢂ ꢀꢁ0 ꢀꢁꢂ ꢍꢁ0 ꢍꢁꢂ ꢎꢁ0 ꢎꢁꢂ ꢈꢁ0  
0ꢁꢍ ꢀꢁ0 ꢀꢁꢍ ꢌꢁ0 ꢌꢁꢍ ꢎꢁ0 ꢎꢁꢍ ꢈꢁ0  
ꢛꢄꢜꢝ ꢕꢅRRꢒꢖꢆ ꢘꢜꢚ  
ꢛꢄꢜꢝ ꢕꢅRRꢒꢖꢆ ꢘꢜꢚ  
ꢛꢄꢜꢝ ꢕꢅRRꢒꢖꢆ ꢘꢜꢚ  
ꢈꢏꢌꢎ ꢞ0ꢀ  
ꢈꢏꢍꢎ ꢞ0ꢎ  
ꢈꢏꢂꢎ ꢞ0ꢍ  
Efficiency vs Load Current at  
24VIN, Forced Continuous Mode  
Efficiency vs Load Current at  
3ꢀVIN, Forced Continuous Mode  
Efficiency vs Load Current at  
48VIN, Forced Continuous Mode  
ꢒꢋ  
ꢒ0  
ꢑꢋ  
ꢑ0  
ꢐꢋ  
ꢐ0  
ꢌꢋ  
ꢌ0  
ꢍ00  
ꢑꢂ  
ꢑ0  
ꢎꢂ  
ꢎ0  
ꢏꢂ  
ꢏ0  
ꢐꢂ  
ꢐ0  
ꢂꢂ  
ꢊ00  
ꢑꢀ  
ꢑ0  
ꢏꢀ  
ꢏ0  
ꢆꢀ  
ꢆ0  
ꢐꢀ  
ꢐ0  
ꢀꢀ  
ꢎꢇꢂ ꢆ ꢍꢁꢋꢏꢉꢊ  
ꢃꢄꢅ  
ꢍꢂꢃ ꢇ ꢏꢂ0ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢋꢂ ꢆ ꢍꢁꢇꢏꢉꢊ  
ꢃꢄꢅ  
ꢋꢎꢁ ꢅ ꢊꢌꢋꢍꢈꢉ  
ꢂꢃꢄ  
ꢒꢌꢒꢁ ꢅ ꢎ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢍꢀꢃ ꢇ ꢎ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢁꢎꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢎꢂ ꢆ ꢍꢁꢎꢏꢉꢊ  
ꢃꢄꢅ  
ꢊꢀꢁ ꢅ ꢊꢌꢋꢍꢈꢉ  
ꢂꢃꢄ  
ꢋꢌꢀꢁ ꢅ ꢎ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢂꢁ0ꢃ ꢇ ꢂꢂ0ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢁꢂꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢋꢁ0ꢂ ꢆ ꢌ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢊꢋꢁ ꢅ ꢊꢌꢊꢍꢈꢉ  
ꢂꢃꢄ  
ꢀꢁ ꢅ ꢀꢆꢀꢇꢈꢉ  
ꢂꢃꢄ  
ꢊꢌꢏꢁ ꢅ ꢎ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢊꢌꢀꢁ ꢅ ꢎ00ꢇꢈꢉ  
ꢂꢃꢄ  
ꢌꢁꢌꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢁꢀꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢍꢁ0ꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢀꢁꢀꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
ꢀꢁꢂꢃ ꢇ ꢈ00ꢉꢊꢋ  
ꢄꢅꢆ  
ꢎꢁꢋꢂ ꢆ ꢇ00ꢈꢉꢊ  
ꢃꢄꢅ  
0ꢁꢂ ꢍꢁ0 ꢍꢁꢂ ꢀꢁ0 ꢀꢁꢂ ꢌꢁ0 ꢌꢁꢂ ꢈꢁ0  
0ꢌꢀ ꢊꢌ0 ꢊꢌꢀ ꢋꢌ0 ꢋꢌꢀ ꢒꢌ0 ꢒꢌꢀ ꢎꢌ0  
0ꢁꢋ ꢍꢁ0 ꢍꢁꢋ ꢎꢁ0 ꢎꢁꢋ ꢀꢁ0 ꢀꢁꢋ ꢇꢁ0  
ꢛꢄꢜꢝ ꢕꢅRRꢒꢖꢆ ꢘꢜꢚ  
ꢜꢂꢝꢞ ꢖꢃRRꢓꢗꢄ ꢙꢝꢛ  
ꢜꢃꢝꢞ ꢖꢄRRꢓꢗꢅ ꢙꢝꢛ  
ꢇꢌꢋꢀ ꢟ0ꢌ  
ꢈꢐꢂꢌ ꢞ0ꢈ  
ꢎꢐꢀꢒ ꢟ0ꢀ  
3.3V Transient Response, 48VIN  
12V Transient Response, 48VIN  
1V Transient Response, 24VIN  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
100mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
AC-COUPLED  
I
I
I
OUT  
2A/DIV  
OUT  
OUT  
2A/DIV  
2A/DIV  
4653 G07  
4653 G08  
4653 G09  
40µs/DIV  
FIGURE 30 CIRCUIT, 48V  
40µs/DIV  
FIGURE 30 CIRCUIT, 48V  
40µs/DIV  
FIGURE 30 CIRCUIT, 24V  
,
,
,
IN  
IN  
IN  
C
= C = 4.7µF, C  
= 2 x 100µF,  
C
= C = 4.7µF, C  
= 2 x 22µF,  
C
= C = 4.7µF, C  
= 3 x 100µF,  
INH  
fSET  
D
OUT  
INH  
fSET  
D
OUT  
INH  
fSET  
D
OUT  
R
C
= N/A, R  
= 66.5kΩ,  
R
C
= 124k, R  
= 240kΩ,  
R
C
= N/A, R  
= 20kΩ,  
ISET  
ISET  
ISET  
= 10nF, R = 604Ω,  
= 10nF, R = 562Ω,  
= 6.8nF, R = 681Ω,  
TH TH  
TH  
R
TH  
TH  
R
TH  
= N/A, C  
= N/A,  
= 49.9Ω, C  
= 1µF,  
R
= N/A, C  
= N/A,  
EXTVCC  
EXTVCC  
EXTVCC  
EXTVCC  
EXTVCC  
EXTVCC  
2A to 4A LOAD STEP AT 2A/µs  
2A to 4A LOAD STEP AT 2A/µs  
2A to 4A LOAD STEP AT 2A/µs  
Rev 0  
6
For more information www.analog.com  
LTM4653  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up, No Load  
Start-Up, 4A Load  
Start-Up, Pre-Bias  
RUN  
2V/DIV  
RUN  
2V/DIV  
RUN  
2V/DIV  
V
OUT  
5V/DIV  
V
V
OUT  
5V/DIV  
OUT  
5V/DIV  
I
DIODE  
1mA/DIV  
PGOOD  
2V/DIV  
PGOOD  
2V/DIV  
PGOOD  
2V/DIV  
4653 G10  
4653 G11  
4653 G12  
2ms/DIV  
2ms/DIV  
2ms/DIV  
FIGURE 30 CIRCUIT, 48V  
,
FIGURE 30 CIRCUIT, 48V ,  
IN  
FIGURE 30 CIRCUIT, 48V  
,
IN  
IN  
C
= C = 4.7µF, C  
= 2 x 22µF,  
C
= C = 4.7µF, C  
= 2 x 22µF,  
OUT  
C
= C = 4.7µF, C  
= 2 x 22µF,  
OUT  
INH  
D
OUT  
INH  
D
INH  
D
R
R
C
= 124k, R  
= 240kΩ,  
R
R
C
= 124k, R  
= 240kΩ,  
R
R
C
= 124k, R  
= 240kΩ,  
fSET  
PGDFB  
= 10nF, R = 562Ω,  
ISET  
fSET  
ISET  
fSET  
PGDFB  
ISET  
= 95.3kΩ,  
= 95.3kΩ,  
PGDFB  
= 95.3kΩ,  
= 10nF, R = 562Ω,  
TH TH  
= 10nF, R = 562Ω,  
TH  
TH  
R
TH  
TH  
= 49.9Ω, C  
= 1µF,  
R
= 49.9Ω, C  
= 1µF,  
EXTVCC  
R
= 49.9Ω, C  
PRE-BIASED TO 5V  
= 1µF,  
EXTVCC  
EXTVCC  
NO LOAD  
EXTVCC  
EXTVCC  
EXTVCC  
3Ω RESISTIVE LOAD  
V
OUT  
THROUGH 1N4148 DIODE  
Short Circuit, No Load  
Short Circuit, 4A Load  
V
OUT  
V
OUT  
5V/DIV  
5V/DIV  
I
IN  
I
IN  
1A/DIV  
1A/DIV  
4653 G13  
4653 G14  
10µs/DIV  
10µs/DIV  
FIGURE 30 CIRCUIT, 48V  
,
FIGURE 30 CIRCUIT, 48V ,  
IN  
IN  
C
= C = 4.7µF, C  
= 2 x 22µF,  
C
= C = 4.7µF, C  
= 2 x 22µF,  
INH  
fSET  
D
OUT  
INH  
fSET  
D
OUT  
R
R
= 124k, R  
= 240kΩ,  
R
R
= 124k, R  
= 240kΩ,  
ISET  
ISET  
= 95.3kΩ,  
= 95.3kΩ,  
PGDFB  
TH  
EXTVCC  
PGDFB  
TH TH  
EXTVCC  
C
R
= 10nF, R = 562Ω,  
C
R
= 10nF, R = 562Ω,  
TH  
= 49.9Ω, C  
= 1µF,  
= 49.9Ω, C  
= 1µF,  
EXTVCC  
EXTVCC  
NO LOAD PRIOR TO APPLICATION  
OF OUTPUT SHORT-CIRCUIT  
3Ω RESISTIVE LOAD PRIOR TO  
APPLICATION OF OUTPUT  
SHORT-CIRCUIT  
Rev 0  
7
For more information www.analog.com  
LTM4653  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
RUN (F4): Run Control Pin. A voltage above 1.2V com-  
mands the Module to regulate its output voltage. Under-  
voltagelockout(UVLO)canbeimplementedbyconnecting  
RUN to the midpoint node formed by a resistor-divider  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
V
(A1-A3, B3): Power Input Pins. Apply input voltage  
IN  
and input decoupling capacitance directly between VIN  
betweenV andGND. RUNfeatures130mVofhysteresis.  
IN  
and a ground (PGND) plane.  
See the Applications Information section.  
V (A4, B4, C4): Drain of the Converter’s Primary Switch-  
D
INTV (G3): Internal Regulator, 3.3V Nominal Output.  
CC  
ing MOSFET. Apply at minimum one 4.7µF high frequency  
Internal control circuits and MOSFET-drivers derive pow-  
ceramic decoupling capacitor directly from V to PGND.  
D
er from INTV bias. When operating 3.1V < SV ≤ 58V,  
CC  
IN  
Give this capacitor higher layout priority (closer proximity  
an LDO generates INTV from SV when RUN is logic  
CC  
IN  
to the module) than any V decoupling capacitors.  
IN  
high (RUN > 1.2V). No external decoupling is required.  
When RUN is logic low (RUN - GND < 1.2V), the INTV  
CC  
SV (C3): Input Voltage Supply for Small-Signal Circuits.  
IN  
LDO is off, i.e., INTV is unregulated. (Also see EXTV .)  
CC  
CC  
SV is the input to the INTV LDO. Connect SV directly  
IN  
CC  
IN  
to V . No decoupling capacitor is needed on this pin.  
IN  
EXTV (F3): External Bias, Auxiliary Input to the INTV  
CC  
CC  
Regulator. When EXTV exceeds 3.2V and SV exceeds  
CC  
IN  
PGND (A5, B5, C5, D5, E5, F5, G4-5, H3, H5, J3-5, K4-  
5, L4-5): Power Ground Pins of the LTM4653. Connect  
all pins to the application’s PGND plane.  
5V, the INTV LDO derives power from EXTV bias  
CC  
CC  
instead of the SV path. This technique can reduce LDO  
IN  
losses considerably, resulting in a corresponding reduc-  
V
(K1-3, L1-3): Power Output Pins of the LTM4653.  
OUT  
tion in module junction temperature. For applications in  
Connectallpinstotheapplication’spowerV plane.Apply  
OUT  
which4V≤V ≤26.5V,connectEXTV toV through  
OUT  
OUT  
CC  
the output filter capacitors and the output load between  
a power V  
a resistor. (See the Applications Information section for  
plane and the application’s PGND plane.  
OUT  
resistor value.) When taking advantage of this EXTV  
CC  
feature, locally decouple EXTV to PGND with a 1µF ce-  
GND (D4): Ground Pin of the LTM4653. Electrically con-  
nect to the application’s PGND plane.  
CC  
ramic—otherwise, leave EXTV open circuit.  
CC  
ISETb (F1): 1.5nF Soft-Start Capacitor. Connect ISETb  
to ISETa to achieve default soft-start characteristics, if  
desired. See ISETa.  
V
(G1,H1):OutputVoltageSenseandFeedbackSignal.  
OSNS  
Connect V  
to V  
at the point of load (POL). Pins G1  
OSNS  
OUT  
and H1 are electrically connected to each other internal to  
the module, and thus it is only necessary to connect one  
V
can be used for redundant connectivity or routed to an ICT  
test point for design-for-test considerations, as desired.  
ISETa (F2): Accurate 50μA Current Source. Positive input  
pin to V  
at the POL. The remaining V  
pin  
OSNS  
OUT  
OSNS  
to the error amplifier. Connect a resistor (R ) from this  
ISET  
pintoSGNDtoprogramthedesiredLTM4653outputvolt-  
age, V  
= R  
• 50μA. A capacitor can be connected  
OUT  
ISET  
from ISETa to SGND to soft-start the output voltage and  
reduce start-up inrush current. Connect ISETa to ISETb in  
order to achieve default soft-start, if desired. (See ISETb.)  
SGND (E4, G2, H2): Signal Ground Pins of the LTM4653.  
Connect Pin H2 to PGND directly under the LTM4653. The  
SGND pins at locations E4 and G2 are electrically con-  
nected to each other internal to the module, and thus it is  
only necessary to connect one SGND pin to PGND under  
the module. The remaining SGND pins can be used for  
redundant connectivity or routed to an ICT test point for  
design-for-test considerations, as desired.  
In addition, the output of the LTM4653 can track a voltage  
applied between the ISETa pin and the SGND pins. (See  
the Applications Information section.)  
Rev 0  
8
For more information www.analog.com  
LTM4653  
PIN FUNCTIONS  
PGOOD (D1): Power Good Indicator, Open-Drain Output  
Pin. PGOOD is high impedance when PGDFB is within  
approximately 7.5% of 0.6V. PGOOD is pulled to GND  
when PGDFB is outside this range.  
default loop compensation. Loop compensation (a series  
resistor-capacitor) can be applied externally to COMPa if  
desired or needed, instead. (See COMPb.)  
COMPb (E1): Internal Loop Compensation Network. For  
mostapplications,theinternal,defaultloopcompensation  
of the LTM4653 is suitable to apply “as is”, and yields very  
satisfactoryresults:applythedefaultloopcompensationto  
the control loop by simply connecting COMPa to COMPb.  
When more specialized applications require a personal  
touch to the optimization of control loop response, this  
can be accomplished by connecting a series resistor-  
capacitor network from COMPa to SGND—and leaving  
COMPb open circuit.  
PGDFB (D2): Power Good Feedback Programming Pin.  
Connect PGDFB to V  
PGDFB  
through a resistor, R  
.
OSNS  
PGDFB  
forwhich  
R
configuresthevoltagethresholdofV  
OUT  
PGOOD toggles its state. If the PGOOD feature is used,  
set R  
to:  
PGDFB  
V
OUT  
R
=
– 1 • 4.99k  
PGDFB  
0.6V  
otherwise, leave PGDFB open circuit.  
A small filter capacitor (220pF) internal to the LTM4653  
on this pin provides high frequency noise immunity for  
the PGOOD output indicator.  
VINREG (D3): Input Voltage Regulation Programming  
Pin. Optionally connect this pin to the midpoint node  
formed by a resistor-divider between V and SGND. When  
D
the voltage on VINREG falls below approximately 2V, a  
f
(E3): Oscillator Frequency Programming Pin. The  
SET  
VINREG control loop servos V  
to decrease the power  
OUT  
default switching frequency of the LTM4653 is 400kHz.  
inductor current and thus regulate VINREG at 2V. (See  
the Applications Information section.)  
Often, it is necessary to increase the programmed fre-  
quency by connecting a resistor between f and SGND.  
SET  
(See the Applications Information section.) Note that the  
If this input voltage regulation feature is not desired, con-  
synchronization range of CLKIN is approximately 40%  
nect VINREG to INTV .  
CC  
of the oscillator frequency programmed by the f pin.  
SET  
IMONa (C2): Power InductorCurrentAnalog IndicatorPin  
and Current Limit Programming Pin. The current flowing  
out of this pin is equal to 1/40,000 of the average power  
CLKIN (B1): Mode Select and Oscillator Synchronization  
Input. Leave CLKIN open circuit for forced continuous  
mode operation. Alternatively, this pin can be driven to  
synchronize the switching frequency of the LTM4653 to  
a clock signal. In this condition, the LTM4653 operates  
in forced continuous mode and the cycle-by-cycle turn-  
inductor current. To construct a voltage (V  
) that is  
IMONa  
proportional to the power inductor current, optionally  
apply a parallel resistor-capacitor network to this pin and  
terminate it to SGND.  
on of the primary power MOSFET M is coincident with  
T
IMONa can be connected to IMONb if the default resis-  
tor-capacitor termination network provided by IMONb is  
desired: 1V at full scale (4A) load current. (See IMONb.)  
If this analog indicator feature is not desired, connect  
IMONa to SGND.  
the rising edge of the clock applied to CLKIN. Note the  
synchronization range of CLKIN is approximately 40%  
of the oscillator frequency programmed by the f  
(See the Applications Information section.)  
pin.  
SET  
COMPa (E2): Current Control Threshold and Error Ampli-  
fier Compensation Node. The trip threshold of LTM4653’s  
current comparator increases with a corresponding rise  
in COMPa voltage. A small filter cap (10pF) internal to the  
LTM4653 on this pin introduces a high-frequency roll-  
off of the error-amplifier response, yielding good noise  
rejection in the control-loop. COMPa is often electrically  
connected to COMPb in one’s application, thus applying  
If IMONa ever exceeds a trip threshold of approximately  
2V, an IMON control loop servos V  
to decrease power  
OUT  
inductor current and thus regulate IMONa at 2V. In this  
manner, the average current limit inception threshold of  
the LTM4653 can be configured. (See the Applications  
Information section.)  
Rev 0  
9
For more information www.analog.com  
LTM4653  
PIN FUNCTIONS  
IMONb(C1):PowerInductorAnalogIndicatorCurrentDe-  
fault Termination R-C Network. A 10kΩ resistor in parallel  
with a 10nF capacitor and terminating to SGND connect  
to this pin. Connect IMONb to IMONa to achieve default  
power inductor analog indicator current characteristics:  
1V at full scale (4A) load current. (See IMONa.)  
TEMP– (J2, J6): Temperature Sensor, Negative Input.  
Collector and base of a 2N3906-genre PNP bipolar junc-  
tion transistor (BJT). Optionally interface to temperature  
monitoringcircuitrysuchasLTC2997,LTC2990,LTC2974  
or LTC2975. Otherwise leave electrically open. Pins J2  
and J7 are electrically connected together internal to the  
LTM4653, and thus it is only necessary to connect one  
TEMP– pin to monitoring circuitry. The remaining TEMP–  
pin can be used for redundant connectivity or routed to an  
ICTtestpointfordesign-for-testconsiderations,asdesired.  
TEMP+ (J1, Jꢀ): Temperature Sensor, Positive Input.  
Emitter of a 2N3906-genre PNP bipolar junction transis-  
tor (BJT). Optionally interface to temperature monitor-  
ing circuitry such as LTC®2997, LTC2990, LTC2974 or  
LTC2975.Otherwiseleaveelectricallyopen.PinsJ1andJ6  
areelectricallyconnectedtogetherinternaltotheLTM4653,  
and thus it is only necessary to connect one TEMP+ pin  
to monitoring circuitry. The remaining TEMP+ pin can be  
used for redundant connectivity or routed to an ICT test  
point for design-for-test considerations, as desired.  
SW (H4): Switching Node of Switching Converter Stage.  
Used for test purposes. May be routed a short distance  
with a thin trace to a local test point to monitor switching  
actionoftheconverter, ifdesired, butdonotroutenearany  
sensitivesignals;otherwise,leaveelectricallyopencircuit.  
NC (Aꢀ-6, B2, Bꢀ-6, Cꢀ-6, Dꢀ-6, Eꢀ-6, Fꢀ-6, Gꢀ-6, Hꢀ-6,  
Kꢀ-6, Lꢀ-6): No connect pins, i.e., pins with no internal  
connection. The NC pins predominantly serve to provide  
improved mounting of the module to the board. In one’s  
layout, NC pinsare permitted to remain electricallyuncon-  
nected or can be connected as desired, e.g., connected  
to a GND plane for heat-spreading purposes and/or to  
facilitate routing.  
Rev 0  
10  
For more information www.analog.com  
LTM4653  
SIMPLIFIED BLOCK DIAGRAM  
Rev 0  
11  
For more information www.analog.com  
LTM4653  
TEST CIRCUIT  
V
24V  
UP TO 4A  
,
IN  
OUT  
NC  
SW  
V
V
OSNS  
IN  
OUT  
28V TO 58V  
C
4.7μF  
INH  
V
SV  
+
IN  
C
68µF  
C
27µF  
OUTL  
OUTH  
LOAD  
RUN  
GND  
SGND  
PGND  
CLKIN  
LTM4653  
V
R
PGDFB  
196k  
D
C
D
4.7μF  
x2  
INTV  
CC  
PGDFB  
PGOOD  
CC  
TEMP+  
TEMP–  
IMONa  
IMONb  
VINREG  
COMPa  
EXTV  
C
TH  
0.1μF  
COMPb  
R
TH  
f
SET  
499Ω  
ISETa ISETb  
4653 TC01  
R
57.6k  
R
ISET  
480k  
fSET  
TA = 25°C. Refer to Test Circuit  
CONDITIONS  
DECOUPLING REQUIREMENTS  
APPLICATION SYMBOL PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Test Circuit  
C , C  
INH  
External High Frequency Input Capacitor Requirement,  
28V ≤ V ≤ 58V, V = 24V  
I
= 4A  
9.4  
µF  
D
OUT  
IN  
OUT  
C
External High Frequency Output Capacitor Requirement  
28V ≤ V ≤ 58V, V = 24V  
I
= 4A  
22  
µF  
OUTH  
OUT  
IN  
OUT  
Rev 0  
12  
For more information www.analog.com  
LTM4653  
OPERATION  
Power Module Description  
IMONaisananalogoutputcurrentindicatorpin.Itsources  
a current proportional to the LTM4653’s load current.  
When IMONa is electrically connected to IMONb, the  
voltage on the IMONa/IMONb node is proportional to load  
current—with 1V corresponding to 4A load. IMONa can  
be interfaced to an external parallel-RC network instead  
of the one provided by IMONb. If IMONa ever exceeds 2V,  
a servo loop reduces the LTM4653’s output current in  
order to keep IMONa at or below 2V. Through this servo  
mechanism, a parallel RC network can be connected to  
IMONa to implement an average current limit function—if  
desired. When the feature is not needed, connect IMONa  
to SGND.  
The LTM4653 is a non-isolated switch mode DC/DC step-  
down power supply. It can provide up to 4A output current  
with a few external input and output capacitors. Set by a  
single resistor, R , the LTM4653 regulates a positive  
ISET  
output voltage, V . V  
can be set to as low as 0.5V to  
OUT OUT  
ashighas0.94V . TheLTM4653operatesfromapositive  
IN  
input supply rail, V , between 3.1V and 58V. The typical  
IN  
application schematic is shown in Figure 30.  
The LTM4653 contains an integrated constant-frequency  
current mode regulator, power MOSFETs, power inductor,  
EMI filter and other supporting discrete components. The  
nominal switching frequency range is from 400kHz to  
3MHz, and the default operating frequency is 400kHz. It  
can be externally synchronized to a clock, from 250kHz  
to 3MHz. See the Applications Information section. The  
LTM4653 supports internal and external control loop  
compensation. Internal loop compensation is selected by  
connecting the COMPa and COMPb pins. Using internal  
loop compensation, the LTM4653 has sufficient stability  
margins and good transient performance with a wide  
range of output capacitors—even ceramic-only output  
capacitors. For external loop compensation, see the  
ApplicationsInformationsection.LTpowerCAD® isavailable  
for transient load step and stability analysis. Input filter  
and noise cancellation circuitry reduces noise-coupling to  
the module’s inputs and outputs, ensuring the module’s  
electromagnetic interference (EMI) meets the limits of  
EN55022 Class B (see Figures 4 to 6).  
The LTM4653 also features a spare control pin called  
VINREG, with a 2V servo threshold, which can be used  
to reduce the input current draw during input line sag  
(“brownout”)conditions.ConnectVINREGtoINTV when  
CC  
this feature is not needed.  
TEMP+ and TEMP– pins give access to a diode-con-  
nected PNP transistor, making it possible to monitor the  
LTM4653’s internal temperature—if desired.  
External component selection is primarily determined by  
the maximum load current and output voltage. Refer to  
Table 7 and the Test Circuit for recommended external  
component values.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions on the V to V  
step-down ratio  
IN  
OUT  
that the LTM4653 can achieve. The maximum duty cycle  
of the LTM4653 is 96% typical. The V to V mini-  
Pulling the RUN pin below 1.2V forces the LTM4653 into  
a shutdown state. A capacitor can be applied from ISETa  
to SGND to program the output voltage ramp-rate; or,  
the default LTM4653 ramp-rate can be set by connecting  
ISETa to ISETb; or, voltage tracking can be implemented  
by interfacing rail voltages to the ISETa pin. See the  
Applications Information section.  
IN  
OUT  
mum dropout voltage is a function of load current when  
operating in high duty cycle applications. As an example,  
V
from the Electrical Characteristics table high-  
OUT(24VDC)  
lights the LTM4653’s ability to regulate 24V  
at up to  
OUT  
4A from 28V , when running at a switching frequency,  
IN  
f
SW  
, of 1.5MHz.  
Multiphase operation can be employed by applying an  
external clock source to the LTM4653’s synchronization  
input, the CLKIN pin. See the Typical Applications section.  
At very low duty cycles, the LTM4653’s on-time of M  
T
each switching cycle should be designed to exceed the  
LTM4653 control loop’s specified minimum on-time of  
60ns, t  
D
, (guardband to 90ns), i.e.:  
LDO losses within the module are reduced by connecting  
ON(MIN)  
EXTV to V  
through an RC-filter or by connecting  
CC  
OUT  
> T  
ON(MIN)  
EXTV to a suitable voltage source.  
CC  
f
SW  
Rev 0  
13  
For more information www.analog.com  
LTM4653  
OPERATION  
where D (unitless) is the duty-cycle of M , given by:  
effectsduringoutputloadchanges.Thebulkcapacitorcan  
be a switcher-rated aluminum electrolytic capacitor or a  
T
V
OUT  
D =  
Polymer capacitor. Suggested values for C and C are  
D
INH  
V
IN  
found in Table 7.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM4653’s V ,  
In rare cases where the minimum on-time restriction is  
violated, the frequency of the LTM4653 automatically and  
graduallyfoldsbackdowntoapproximatelyone-fifthofits  
IN  
SV ,andV pins.Aceramicinputcapacitorcombinedwith  
IN  
D
programmed switching frequency to allow V  
to remain  
OUT  
trace or cable inductance forms a high Q (underdamped)  
tank circuit. If the LTM4653 circuit is plugged into a live  
supply, the input voltage can ring to twice its nominal  
value, possibly exceeding the device’s rating. This situa-  
tioniseasilyavoided;seetheHot-PluggingSafelysection.  
in regulation. See the Frequency Adjustment section. Be  
remindedofNotes2,3and5intheElectricalCharacteristics  
section regarding output current guidelines.  
Input Capacitors  
TheLTM4653achieveslowinputconductedEMInoisedue  
to tight layout and high-frequency bypassing of MOSFETs  
Output Capacitors  
Output capacitors C  
theLTM4653.SufficientcapacitanceandlowESRarecalled  
for, to meet the output voltage ripple, loop stability, and  
transient requirements. C  
or polymer capacitor. C  
typical output capacitance is 22μF (type X5R material, or  
better), if ceramic-only output capacitors are used.  
and C  
are applied to V  
of  
OUTH  
OUTL  
OUT  
M and M within the module itself. A small filter inductor  
T
B
(400nH) is integrated in the input line (from V to V ),  
IN  
D
providing further noise attenuation—again, local to the  
switching MOSFETs. The V and V pins are available  
can be a low ESR tantalum  
OUTL  
D
IN  
is a ceramic capacitor. The  
OUTH  
for external input capacitors—C and C —to form a  
D
INH  
high-frequency π filter. As shown in the Simplified Block  
Diagram, the ceramic capacitor C on the LTM4653’s V  
D
D
pins handles the majority of the RMS current into the DC/  
DC converter power stage and requires careful selection,  
for that reason.  
Table 7 shows a matrix of suggested output capacitors  
optimized for 2A transient step-loads applied at 2A/μs.  
Additional output filtering may be required by the system  
designer, if further reduction of output ripple or dynamic  
transientspikeisrequired. TheLTpowerCADdesigntoolis  
availablefortransientandstabilityanalysis.Stabilitycriteria  
are considered in the Table 7 matrix, and LTpowerCAD is  
available for stability analysis. Multiphase operation will  
reduce effective output ripple as a function of the num-  
ber of phases. Application Note 77 discusses this noise  
reduction versus output ripple current cancellation, but  
the output capacitance should be considered carefully as  
afunctionofstabilityandtransientresponse.LTpowerCAD  
can be used to calculate the output ripple reduction as the  
number of implemented phases increases by N times.  
External loop compensation can be applied to COMPa if  
needed, for transient response optimization.  
See Figures 4 to 6 for demonstration of LTM4653’s EMI  
performance,meetingtheradiatedemissionsrequirements  
of EN55022B.  
The input capacitance, C , is needed to filter the pulsed  
D
current drawn by M . To prevent excessive voltage sag  
T
on V , a low-effective series resistance (low-ESR, such  
D
as an X7R ceramic) input capacitor should be used, sized  
appropriately for the maximum C RMS ripple current:  
D
I
OUT(MAX)  
I
=
• D • (1D)  
CD(RMS)  
η%  
whereη%istheestimatedefficiencyofthepowermodule.  
(See Typical Performance Characteristics graphs.)  
Forced Continuous Operation  
Several capacitors may be paralleled to meet the applica-  
LeavetheCLKINpinopencircuittocommandtheLTM4653  
for forced continuous operation. In this mode, the control  
loop is allowed to command the inductor peak current to  
Rev 0  
tion’stargetsize,height,andC RMSripplecurrentrating.  
D
For lower input voltage applications, sufficient bulk input  
capacitance is needed to counteract line sag and transient  
14  
For more information www.analog.com  
LTM4653  
OPERATION  
approximately –1A, allowing for significant negative aver-  
age current. Clocking the CLKIN pin at a frequency within  
40% of the target switching frequency commanded by  
Frequency Adjustment  
The default switching frequency (f ) of the LTM4653  
SW  
is 400kHz. This is suitable for low-V (V ≤ 5V) ap-  
IN  
IN  
the f pin synchronizes M ’s turn-on to the rising edge  
SET  
T
plications and low-V  
(V ≤3.3V) applications. For a  
OUT OUT  
of the CLKIN pin.  
practical design, the LTM4653’s inductor ripple current  
(∆I ) is suggested to be less than ~2A . Choose  
PK-PK  
PK-PK  
Output Voltage Programming, Tracking and Soft-Start  
f
according to:  
SW  
The LTM4653 regulates its output voltage, V , accord-  
OUT  
V
• 1D  
(
)
OUT  
ing to the differential voltage present across ISETa and  
f
=
SW  
L • ∆I  
PK-PK  
SGND. In most applications, the output voltage is set by  
simply connecting a resistor, R , from ISETa to SGND,  
ISET  
where the value of LTM4653’s power inductor, L, is 4μH.  
according to:  
To avoid cycle-skipping, impose restrictions on f , to  
SW  
V
OUT  
R
=
ensure minimum on time criteria is met:  
ISET  
50µA  
D
f
<
SW  
Since the LTM4653 control loop servos its output volt-  
age according to the voltage between ISETa and SGND:  
T
ON(MIN)  
placing a capacitor, C , parallel to R  
configures the  
SS  
SET  
The LTM4653’s minimum on-time, t  
, is specified  
ON(MIN)  
ramp-up rate of ISETa and thus V . In the time domain,  
OUT  
as 60ns. For a practical design, it is recommended to  
guardband to 90ns.  
the output voltage ramp-up after the RUN pin is toggled  
from low to high (t = 0s) is given by:  
ToconfiguretheLTM4653forahigherswitchingfrequency  
t
than its default of 400kHz, apply a resistor, R , between  
fSET  
RISET • CSS  
V
(t)=I  
•R  
• 1– e  
the f pin and SGND. R  
is given (in MΩ) by:  
OUT  
ISETa  
ISET  
SET  
fSET  
1
R
(MΩ)=  
fSET  
10pF •[f (MHz)– 0.4(MHz)]  
The soft-start time, t , is defined as the time it takes for  
SS  
SW  
V
to ramp from 0V to 90% of its final value:  
OUT  
The relationship of R  
to programmed f is shown  
SW  
fSET  
t
t
= –R  
•C •In (1– 0.9)  
SS  
ISET  
SS  
in Figure 1. See Table 7 for recommended f and cor-  
SW  
or  
responding R  
values for various combinations of V  
fSET  
IN  
= 2.3 • R  
•C  
SS  
ISET  
SS  
and V  
.
OUT  
ꢀ0  
A default value of C = 1.5nF can be implemented by  
SS  
connecting ISETa to ISETb. For other ramp-up rates,  
connect an external C capacitor parallel to R . When  
SS  
ISET  
starting up into a pre-biased V , the LTM4653 stays in  
OUT  
a sleep mode, keeping M and M off until V equals  
T
B
ISETa  
Rꢀ  
ꢄꢅꢃ ꢆꢁꢂꢇ  
ꢁꢂꢃ  
V
—after which, the DC/DC converter commences  
OSNS  
switching action and V  
is ramped according to the  
OUT  
voltage commanded by ISETa.  
Since the LTM4653 control loop servos its V  
voltage  
OSNS  
0ꢀꢁ  
to match that of ISETa’s, the LTM4653’s output can be  
configured to track any voltage applied to ISETa, refer-  
enced to SGND.  
ꢀ0  
ꢀ00  
ꢀꢁ  
(kΩ)  
ꢀ0ꢁ  
Rf  
SET  
ꢀꢁꢂꢃ ꢄ0ꢅ  
Figure 1. Relationship Between RfSET and Target fSW  
Rev 0  
15  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
Power Module Protection  
ꢇꢀꢂꢂꢉ  
R
R
TheLTM4653’scurrentmodecontrolarchitectureprovides  
fastcycle-by-cyclecurrentlimitinanovercurrentcondition,  
as shown in the Typical Performance Characteristics sec-  
tion. If the output voltage collapses sufficiently due to an  
overload or short-circuit condition, minimum on-time will  
be violated and the internal oscillator will then fold-back  
automatically to one-fifth of the LTM4653’s programmed  
switchingfrequency—therebyreducingtheoutputcurrent  
and affording the load a chance to recover.  
Rꢀꢁ ꢂꢃꢁ  
ꢊꢋꢌꢍ ꢎ0ꢏ  
Figure 2. Undervoltage Lockout Resistive Divider  
from falsely tripping UVLO. Resistors are chosen by first  
selecting R (refer to Figure 2). Then:  
B
TheLTM4653featuresinputovervoltageshutdownprotec-  
tion: when V > 68V, switching action ceases (with 4V of  
IN  
V
IN(ON)  
hysteresis)—however, be advised that this protection is  
onlyactiveoutsidetheLTM4653’ssafeoperatingarea(see  
Note 1 and Note 4 of the Electrical Characteristics table).  
R =R •  
– 1  
A
B
1.2V  
where V  
is the input voltage at which the undervolt-  
IN(ON)  
The LTM4653 ceases switching action if internal tempera-  
tures exceed 165°C. The control IC resumes operation  
after a 10°C cool-down hysteresis. Note that these typical  
parameters are based on measurements in a lab oven and  
arenotproductiontested.Thisovertemperatureprotection  
is intended to protect the device during momentary over-  
loadconditions.Themaximumratedjunctiontemperature  
will be exceeded when this overtemperature protection is  
active. Continuous operation above the specified absolute  
maximum operating junction temperature may impair  
device reliability or permanently damage the device.  
age lockout is overcome and the supply turns on. R may  
A
be replaced with a hardwired connection from V to RUN.  
D
The V turn-off voltage, V  
is given by:  
IN  
IN(OFF)  
R
R
A
B
V
= 1.07V •  
+1  
IN(OFF)  
IfUVLOisnotneeded,RUNcanbeconnectedtoLTM4653’s  
V or V pins.  
D
IN  
When RUN is below its threshold, UVLO is engaged, M  
T
and M are turned off, INTV ceases to be regulated, and  
B
CC  
ISETa is discharged to SGND by internal circuitry.  
The LTM4653 does not feature any specialized output  
overvoltage protection beyond what is inherent to the  
control loop’s servo mechanism.  
Loop Compensation  
External loop compensation may be preferred for some  
applications and can be implemented easily, as follows:  
RUN Pin Enable  
leave COMPb open circuit; connect a series-R network  
C
The RUN pin is used to enable the power module or se-  
quencethepowermodule. Thethresholdis1.2V. TheRUN  
pincanbeusedtoprovideanundervoltagelockout(UVLO)  
function by connecting a resistor divider from the input  
supply to the RUN pin, as shown in Figure 2. Undervoltage  
lockout keeps the LTM4653 in shutdown until the supply  
input voltage is above a certain voltage programmed by  
the user. The RUN pin hysteresis voltage prevents noise  
(R and C ) from COMPa to SGND; in some instances,  
TH  
TH  
connect a capacitor (C ) from COMPa to SGND (paral-  
THP  
leling the R  
series-RC network). See Table 7 for  
TH-CTH  
suggested input and output capacitances for a variety of  
operatingconditions.Additionally,theLTpowerCADdesign  
tool is available for transient and stability analysis.  
Rev 0  
16  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
Hot-Plugging Safely  
The recommended value of the resistor between V  
and  
OUT  
EXTV is roughly V  
• 4Ω/V. This resistor, R  
,
.
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
CC  
OUT  
EXTVCC  
EXTVCC  
²
must be rated to continually dissipate (0.02A) • R  
The primary purpose of this resistor is to prevent EXTV  
bypasscapacitors(C andC )oftheLTM4653.However,  
CC  
D
INH  
overstress under a fault condition. For example, when an  
these capacitors can cause problems if the LTM4653 is  
plugged into a live supply (see Linear Technology Ap-  
plication Note 88 for a complete discussion). The low  
loss ceramic capacitor combined with stray inductance  
in series with the power source forms an under damped  
inductive short-circuit is applied to the module’s output,  
V
OUT  
may be briefly dragged below PGND—forward bias-  
ing the PGND-to-EXTV body diode. This resistor limits  
CC  
the magnitude of current flow in EXTV . Bypass EXTV  
CC  
CC  
with 1μF of X5R (or better) MLCC.  
tank circuit, and the voltage at the V pin of the LTM4653  
IN  
can ring to twice the nominal input voltage, possibly ex-  
ceeding the LTM4653’s rating and damaging the part. If  
the input supply is poorly controlled or the user will be  
plugging the LTM4653 into an energized supply, the input  
network should be designed to prevent this overshoot by  
introducing a damping element into the path of current  
flow. This is often done by adding an inexpensive elec-  
Multiphase Operation  
Multiple LTM4653 devices can be paralleled for higher  
output current applications. For lowest input and output  
voltage and current ripples, it is advisable to synchronize  
paralleled LTM4653s to an external clock (within 40%  
of the target switching frequency set by f —see Test  
SET  
trolytic bulk capacitor (C ) across the input terminals  
Circuit 1). See Figure 32 for an example of a synchroniz-  
INL  
of the LTM4653. The selection criteria for C calls for:  
ing circuit.  
INL  
an ESR high enough to damp the ringing; a capacitance  
LTM4653modulescanbeparalleledwithoutsynchronizing  
circuits:justbeawarethatsomebeat-frequencyripplewill  
bepresentintheoutputvoltageandreflectedinputcurrent  
by virtue of the fact that such modules are not operating  
at identical, synchronized switching frequencies.  
value several times larger than C . C does not need  
INH INL  
to be located physically close to the LTM4653; it should  
be located close to the application board’s input connec-  
tor, instead.  
INTV and EXTV Connection  
The LTM4653 device is an inherently current mode con-  
trolled device, so parallel modules will have good current  
sharing’s shown in Figure 33. This helps balance the  
thermals on the design.  
CC  
CC  
When RUN is logic high, an internal low dropout regula-  
tor regulates an internal supply, INTV , that powers the  
CC  
controlcircuitryfordrivingLTM4653’sinternalMOSFETs.  
INTV isregulatedat3.3V.Inthismanner,theLTM4653’s  
To parallel LTM4653s, connect the respective COMPa,  
CC  
INTV is directly powered from SV , by default. The gate  
ISETa, and V  
pins of each LTM4653 together to share  
CC  
IN  
OSNS  
driver current through the LDO is about 20mA for a typical  
1MHz application. The internal LDO power dissipation can  
be calculated as:  
the current evenly. In addition, tie the respective RUN  
pins of paralleled LTM4653 devices together, to ensure  
proper start-up and shutdown behavior. Figure 32 shows  
a schematic of LTM4653 devices operating in parallel.  
PLDO _ LOSS(INTVCC) = 20mA •(SVIN – 3V)  
Note that for parallel applications, V  
can be set by a  
OUT  
The LDO draws current off of EXTV instead of SV  
CC  
IN  
single, common resistor on the ISETa net:  
when EXTV is higher than 3.2V and SV is above 5V.  
CC  
IN  
For output voltages of 4V and higher, EXTV can be con-  
CC  
V
OUT  
R
=
ISET  
nectedtoV  
throughanRC-filter.WhentheinternalLDO  
OUT  
50µA •N  
derives power from EXTV instead of SV , the internal  
CC  
IN  
where N is the number of LTM4653 modules in parallel  
configuration.  
LDO power dissipation is:  
PLDO _ LOSS(EXTVCC) = 20mA •(VOUT 3V)  
Rev 0  
17  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
Manydesignersmayopttouselaboratoryequipmentanda  
testvehiclesuchasthedemoboardtopredicttheµModule  
regulator’s thermal performance in their application at  
various electrical and environmental operating conditions  
to compliment any FEA activities. Without FEA software,  
the thermal resistances reported in the Pin Configuration  
sectionare, inandofthemselves, notrelevanttoproviding  
guidance of thermal performance; instead, the derating  
curves provided in this data sheet can be used in a man-  
ner that yields insight and guidance pertaining to one’s  
application-usage,andcanbeadaptedtocorrelatethermal  
performance to one’s own application.  
Depending on the duty cycle of operation, the output volt-  
age ripple achieved by paralleled, synchronized LTM4653  
modulesmaybeconsiderablysmallerthanwhatisyielded  
by a single-phase solution. Application Note 77 provides  
a detailed explanation of multiphase operation (relevant  
to parallel LTM4653 applications) pertaining to noise  
reduction and output and input ripple current cancella-  
tion. Regardless of ripple current cancellation, it remains  
importantfortheoutputcapacitanceofparalleledLTM4653  
applications to be designed for loop stability and transient  
response. LTpowerCAD is available for such analysis.  
Figure 3 illustrates the RMS ripple current reduction as  
a function of the number of interleaved (paralleled and  
synchronized) LTM4653 modules—derived from Ap-  
plication Note 77.  
The Pin Configuration section gives four thermal coeffi-  
cients explicitly defined in JESD51-12; these coefficients  
are quoted or paraphrased below:  
1. θ , the thermal resistance from junction to ambient, is  
JA  
Radiated EMI Noise  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted  
toaJESD51-9definedtestboard,whichdoesnotreflect  
an actual application or viable operating condition.  
The generation of radiated EMI noise is an inherent disad-  
vantageofswitchingregulators.Fastswitchingturn-onand  
turn-off of the power MOSFETs—necessary for achieving  
high efficiency—create high-frequency (~30MHz+) ∆l/∆t  
changes within DC/DC converters. This activity tends to  
be the dominant source of high-frequency EMI radiation  
in such systems. The high level of device integration  
within LTM4653—including optimized gate-driver and  
critical front-end � filter inductor—delivers low radiated  
EMI noise performance. Figures 4 to 6 show typical ex-  
amples of LTM4653 meeting the radiated emission limits  
established by EN55022 Class B.  
2. θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottomofthepackage.InthetypicalµModuleregulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment. As a result, this thermal resistance value  
may be useful for comparing packages but the test  
conditionsdon’tgenerallymatchtheuser’sapplication.  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configuration  
section of this data sheet are consistent with those pa-  
rameters defined by JESD51-12 and are intended for use  
with finite element analysis (FEA) software modeling tools  
that leverage the outcome of thermal modeling, simula-  
tion, and correlation to hardware evaluation performed on  
a µModule package mounted to a hardware test board.  
The motivation for providing these thermal coefficients is  
found in JESD51-12 (“Guidelines for Reporting and Using  
Electronic Package Thermal Information”).  
3. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetopof  
the package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
Rev 0  
18  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
0ꢀꢅ0  
ꢉꢙꢘꢚꢓꢖꢑ  
ꢈꢙꢘꢚꢓꢖꢑ  
0ꢀꢂꢂ  
ꢆꢙꢘꢚꢓꢖꢑ  
ꢄꢙꢘꢚꢓꢖꢑ  
ꢅꢙꢘꢚꢓꢖꢑ  
0ꢀꢂ0  
0ꢀꢄꢂ  
0ꢀꢄ0  
0ꢀꢆꢂ  
0ꢀꢆ0  
0ꢀꢈꢂ  
0ꢀꢈ0  
0ꢀꢉꢂ  
0ꢀꢉ0  
0ꢀ0ꢂ  
0
0ꢀꢉ 0ꢀꢉꢂ 0ꢀꢈ 0ꢀꢈꢂ 0ꢀꢆ 0ꢀꢆꢂ 0ꢀꢄ 0ꢀꢄꢂ 0ꢀꢂ 0ꢀꢂꢂ 0ꢀꢅ 0ꢀꢅꢂ 0ꢀꢁ 0ꢀꢁꢂ 0ꢀꢃ 0ꢀꢃꢂ 0ꢀꢊ  
ꢋꢌꢍꢎ ꢏꢎꢏꢐꢑ  
ꢄꢅꢂꢆ ꢇ0ꢆ  
Figure 3. Normalized Input RMS Ripple Current vs Duty Cycle for One to Six LTM4ꢀ53s (Phases)  
ꢓ0  
ꢒ0  
ꢑ0  
ꢔ0  
ꢕ0  
ꢖ0  
ꢗ0  
0
ꢓ0  
ꢁꢈꢀꢧ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢧꢂꢈꢜ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢁꢈꢀꢧ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢧꢂꢈꢜ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢒ0  
ꢑ0  
ꢔ0  
ꢕ0  
ꢖ0  
ꢗ0  
0
ꢢꢗꢣ ꢞꢤRꢄꢥꢤꢛꢅꢀꢃ  
ꢢꢖꢣ ꢍꢈRꢅꢄꢜꢀꢃ  
ꢚꢂꢦ ꢃꢄꢁꢄꢅ  
ꢢꢗꢣ ꢞꢤRꢄꢥꢤꢛꢅꢀꢃ  
ꢢꢖꢣ ꢍꢈRꢅꢄꢜꢀꢃ  
ꢚꢂꢦ ꢃꢄꢁꢄꢅ  
ꢙꢤRꢁꢀꢃ  
ꢙꢤRꢁꢀꢃ  
ꢘꢗ0  
ꢘꢗ0  
ꢕ0  
ꢗꢕ0  
ꢖꢕ0  
ꢕꢕ0  
ꢔꢕ0  
ꢑꢕ0  
ꢒꢕ0  
ꢓꢕ0  
ꢠꢕ0  
ꢡꢕ0 ꢗ000  
ꢕ0  
ꢗꢕ0  
ꢖꢕ0  
ꢕꢕ0  
ꢔꢕ0  
ꢑꢕ0  
ꢒꢕ0  
ꢓꢕ0  
ꢠꢕ0  
ꢡꢕ0 ꢗ000  
ꢔꢒꢑꢕ ꢙ0ꢔ  
ꢔꢒꢑꢕ ꢙ0ꢑ  
ꢙRꢈꢚꢆꢈꢛꢜꢝ ꢉꢁꢞꢟꢐ  
ꢙRꢈꢚꢆꢈꢛꢜꢝ ꢉꢁꢞꢟꢐ  
Figure 4. Radiated Emissions Scan of the LTM4ꢀ53. Producing  
24VOUT at 4A, from 29.5VIN. DC2326A Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
Figure 5. Radiated Emissions Scan of the LTM4ꢀ53 Producing  
24VOUT at 3.5A, from 48VIN. DC2326A Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
ꢓ0  
ꢁꢈꢀꢧ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢧꢂꢈꢜ ꢇꢄꢧꢅ ꢗ0ꢏ  
ꢒ0  
ꢑ0  
ꢔ0  
ꢕ0  
ꢖ0  
ꢗ0  
0
ꢢꢗꢣ ꢞꢤRꢄꢥꢤꢛꢅꢀꢃ  
ꢢꢖꢣ ꢍꢈRꢅꢄꢜꢀꢃ  
ꢚꢂꢦ ꢃꢄꢁꢄꢅ  
ꢙꢤRꢁꢀꢃ  
ꢘꢗ0  
ꢕ0  
ꢗꢕ0  
ꢖꢕ0  
ꢕꢕ0  
ꢔꢕ0  
ꢑꢕ0  
ꢒꢕ0  
ꢓꢕ0  
ꢠꢕ0  
ꢡꢕ0 ꢗ000  
ꢔꢒꢑꢕ ꢙ0ꢒ  
ꢙRꢈꢚꢆꢈꢛꢜꢝ ꢉꢁꢞꢟꢐ  
Figure ꢀ. Radiated Emissions Scan of the LTM4ꢀ53. Producing  
12VOUT at 3A, from 58VIN. DC2326A Hardware. fSW = 1.2MHz.  
Measured in a 10m Chamber. Peak Detect Method  
Rev 0  
19  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
4. θ , the thermal resistance from junction to the printed  
Within the LTM4653, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complicationwithoutsacrificingmodelingsimplicity—but  
alsonotignoringpracticalrealities—anapproachhasbeen  
taken using FEA software modeling along with laboratory  
testing in a controlled-environment chamber to reason-  
ably define and correlate the thermal resistance values  
supplied in this data sheet: (1) Initially, FEA software is  
used to accurately build the mechanical geometry of the  
LTM4653 and the specified PCB with all of the correct  
material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
definedJEDECenvironmentconsistentwithJESD51-9and  
JESD51-12topredictpowerlossheatflowandtemperature  
readings at different interfaces that enable the calculation  
of the JEDEC-defined thermal resistance values; (3) the  
model and FEA software is used to evaluate the LTM4653  
with heat sink and airflow; (4) having solved for and  
analyzed these thermal resistance values and simulated  
various operating conditions in the software model, a  
thorough laboratory evaluation replicates the simulated  
conditions with thermocouples within a controlled envi-  
ronment chamber while operating the device at the same  
power loss as that which was simulated. The outcome of  
this process and due diligence yields the set of derating  
JB  
circuit board, is the junction-to-board thermal resis-  
tance where almost all of the heat flows through the  
bottom of the µModule regulator and into the board,  
and is really the sum of the θ  
and the thermal  
JCbottom  
resistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from the  
package, using a two sided, two layer board. This board  
is described in JESD51-9.  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 7; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule package.  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operating conditions of a µModule regulator. For example,  
in normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
for θ  
and θ , respectively. In practice, power  
JCbottom  
JCtop  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
ꢑꢒꢓꢐꢔꢏꢕꢓꢖꢔꢕꢖꢗꢇꢜꢏꢍꢓꢔ ꢔꢝꢍRꢇꢗꢞ Rꢍꢘꢏꢘꢔꢗꢓꢐꢍ ꢐꢕꢇꢚꢕꢓꢍꢓꢔꢘ  
ꢑꢒꢓꢐꢔꢏꢕꢓꢖꢔꢕꢖꢐꢗꢘꢍ ꢙꢔꢕꢚꢛ  
Rꢍꢘꢏꢘꢔꢗꢓꢐꢍ  
ꢐꢗꢘꢍ ꢙꢔꢕꢚꢛꢖꢔꢕꢖꢗꢇꢜꢏꢍꢓꢔ  
Rꢍꢘꢏꢘꢔꢗꢓꢐꢍ  
ꢑꢒꢓꢐꢔꢏꢕꢓꢖꢔꢕꢖꢜꢕꢗRꢌ Rꢍꢘꢏꢘꢔꢗꢓꢐꢍ  
ꢑꢒꢓꢐꢔꢏꢕꢓ  
ꢗꢇꢜꢏꢍꢓꢔ  
ꢑꢒꢓꢐꢔꢏꢕꢓꢖꢔꢕꢖꢐꢗꢘꢍ  
ꢙꢜꢕꢔꢔꢕꢇꢛ Rꢍꢘꢏꢘꢔꢗꢓꢐꢍ  
ꢐꢗꢘꢍ ꢙꢜꢕꢔꢔꢕꢇꢛꢖꢔꢕꢖꢜꢕꢗRꢌ  
Rꢍꢘꢏꢘꢔꢗꢓꢐꢍ  
ꢜꢕꢗRꢌꢖꢔꢕꢖꢗꢇꢜꢏꢍꢓꢔ  
Rꢍꢘꢏꢘꢔꢗꢓꢐꢍ  
ꢀꢁꢂꢃ ꢄ0ꢅ  
ꢆꢇꢈꢉꢊꢋe ꢌꢍꢎꢏꢐꢍ  
Figure 6. Graphical Representaion of JESD51-12 Thermal Coefficients  
Rev 0  
20  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
curves provided in later sections of this data sheet, along  
withwell-correlatedJESD51-12-definedθvaluesprovided  
in the Pin Configuration section of this data sheet.  
at 2.5A  
condition is 3.9W. A 4.5W loss is calculated  
OUT  
by multiplying the 3.9W room temperature loss from the  
48V to 24V  
power loss curve at 2.5A (Figure 10),  
IN  
OUT  
with the 1.15 multiplying factor at 70°C ambient (from  
Table 1). If the 70°C ambient temperature is subtracted  
from the 120°C junction temperature, then the difference  
The1V,5V,and15V and24VpowerlosscurvesinFigures8,  
9 and 10 respectively can be used in coordination with  
the load current derating curves in Figures 11 to 28 for  
of 50°C divided by 4.5W yields a thermal resistance, θ ,  
JA  
calculating an approximate θ thermal resistance for the  
JA  
of 11.1°C/W—in good agreement with Table 4. Tables 2,  
3 and 4 provide equivalent thermal resistances for 1V, 5V  
and 15V and 24V outputs with and without air flow and  
heat sinking. The derived thermal resistances in Tables 2,  
3 and 4 for the various conditions can be multiplied by the  
calculatedpowerlossasafunctionofambienttemperature  
to derive temperature rise above ambient, thus maximum  
junction temperature. Room temperature power loss  
can be derived from the efficiency curves in the Typical  
Performance Characteristics section and adjusted with  
ambient temperature multiplicative factors from Table 1.  
LTM4653withvariousheatsinkingandairflowconditions.  
These thermal resistances represent demonstrated  
performance of the LTM4653 on DC2327A hardware; a  
4-layerFR4PCBmeasuring99mm×133mm ×1.6mm using  
outerandinnercopperweightsof2ozand1oz,respectively.  
The power loss curves are taken at room temperature,  
and are increased with multiplicative factors with ambient  
temperature.TheseapproximatefactorsarelistedinTable1.  
(Compute the factor by interpolation, for intermediate  
temperatures.) The derating curves are plotted with the  
LTM4653’s output initially sourcing 4A and the ambient  
temperature at 20°C. The output voltages are 1V, 5V,  
15V and 24V. These are chosen to include the lower and  
higher output voltage ranges for correlating the thermal  
resistance. In all derating curves, the switching frequency  
of operation follows guidance provided by Table 7.  
Thermal models are derived from several temperature  
measurements in a controlled temperature chamber  
along with thermal modeling analysis. The junction  
temperatures are monitored while ambient temperature is  
increased with and without air flow, and with and without  
a heat sink attached with thermally conductive adhesive  
tape. The power loss increase with ambient temperature  
change is factored into the derating curves. The junctions  
are maintained at 120°C maximum while lowering output  
current or power while increasing ambient temperature.  
The decreased output current decreases the internal  
module loss as ambient temperature is increased. The  
monitored junction temperature of 120°C minus the  
ambientoperatingtemperaturespecifieshowmuchmodule  
temperaturerisecanbeallowed.AsanexampleinFigure25,  
the load current is derated to 2.5A at 70°C ambient  
with 200LFM airflow and no heat sink and the room  
Table 1. Power Loss Multiplicative Factors vs Ambient  
Temperature  
POWER LOSS MULTIPLICATIVE  
AMBIENT TEMPERATURE  
FACTOR  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
Up to 40°C  
50°C  
60°C  
70°C  
80°C  
90°C  
100°C  
110°C  
120°C  
temperature (25°C) power loss for this 48V to 24V  
IN  
OUT  
Rev 0  
21  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
Table 2. 1V Output  
DERATING CURVE  
Figures 11, 12, 13  
Figures 11, 12, 13  
Figures 11, 12, 13  
Figures 14, 15, 16  
Figures 14, 15, 16  
Figures 14, 15, 16  
V
(V)  
POWER LOSS CURVE  
Figures 8, 9  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
13.9  
11.4  
10.7  
13.3  
11.0  
10.3  
Figures 8, 9  
200  
400  
0
None  
Figures 8, 9  
None  
Figures 8, 9  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 8, 9  
200  
400  
Figures 8, 9  
Table 3. 5V Output  
DERATING CURVE  
Figures 17, 18, 19  
Figures 17, 18, 19  
Figures 17, 18, 19  
Figures 20, 21, 22  
Figures 20, 21, 22  
Figures 20, 21, 22  
V
(V)  
POWER LOSS CURVE  
Figures 8, 9, 10  
Figures 8, 9, 10  
Figures 8, 9, 10  
Figures 8, 9, 10  
Figures 8, 9, 10  
Figures 8, 9, 10  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
12, 24, 48  
12, 24, 48  
12, 24, 48  
12, 24, 48  
12, 24, 48  
12, 24, 48  
0
13.9  
11.4  
10.7  
13.3  
11.0  
10.3  
200  
400  
0
None  
None  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
Table 4. 15V and 24V Output  
DERATING CURVE  
Figures 23, 24, 25  
V
(V)  
POWER LOSS CURVE  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
JA  
IN  
24, 48  
24, 48  
24, 48  
24, 48  
24, 48  
24, 48  
0
13.9  
11.4  
10.7  
13.3  
11.0  
10.3  
Figures 23, 24, 25  
200  
400  
0
None  
Figures 23, 24, 25  
None  
Figures 26, 27, 28  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 26, 27, 28  
200  
400  
Figures 26, 27, 28  
Table 5. Heat Sink Manufacturer (Thermally Conductive Adhesive Tape Pre-Attached)  
HEAT SINK MANUFACTURER  
PART NUMBER  
WEBSITE  
Cool Innovations  
3-0504035UT411  
www.coolinnovations.com  
Table ꢀ. Thermally Conductive Adhesive Tape Vendor  
THERMALLY CONDUCTIVE ADHESIVE  
TAPE MANUFACTURER  
PART NUMBER  
WEBSITE  
Chomerics  
T411  
www.chomerics.com  
Rev 0  
22  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
Table 6. LTM4ꢀ53 Output Voltage Response vs Component Matrix. Performance of Figure 30 Circuit with Values Here Indicated.  
Load-Stepping from 2A to 4A Load Current, at 2A/μs. Typical Measured Values  
C
VENDORS  
PART NUMBER  
C
OUTH  
VENDORS  
PART NUMBER  
OUTH  
AVX  
12066D107MAT2A (100μF, 6.3V, 1206 Case Size)  
GRM31CR60J107M (100μF, 6.3V, 1206 Case Size)  
JMK316BBJ107MLHT (100μF, 6.3V, 1206 Case Size)  
C3216X5R0J107M (100μF, 6.3V, 1206 Case Size)  
1210YD476MAT2A (47μF, 16V, 1210 Case Size)  
GRM32ER61C476M (47μF, 16V, 1210 Case Size)  
EMK325BJ476MM (47μF, 16V, 1210 Case Size)  
12103D226MAT2A (22μF, 25V, 1210 Case Size)  
TMK325BJ226MM (22μF, 25V, 1210 Case Size)  
C3225X5R1E226M (22μF, 25V, 1210 Case Size)  
AVX  
12105D106MAT2A (10μF, 50V, 1210 Case Size)  
GRM32ER61H106M (10μF, 50V, 1210 Case Size)  
UMK325BJ106M (10μF, 50V, 1210 Case Size)  
C3225X5R1H106M (10μF, 50V, 1210 Case Size)  
PART NUMBER  
Murata  
Murata  
Taiyo Yuden  
TDK  
Taiyo Yuden  
TDK  
AVX  
C
/C VENDORS  
INH D  
Murata  
Taiyo Yuden  
AVX  
Murata  
AVX  
GRM32ER71K475M (4.7μF, 80V, 1210 Case Size)  
12065C475MAT2A (4.7μF, 50V, 1206 Case Size)  
GRM31CR71H475M (4.7μF, 50V, 1206 Case Size)  
UMK316AB7475ML (4.7μF, 50V, 1206 Case Size)  
C3216X5R1H475M (4.7μF, 50V, 1206 Case Size)  
Murata  
Taiyo Yuden  
TDK  
Taiyo Yuden  
TDK  
LOAD STEP LOAD STEP  
TRANSIENT  
DROOP  
(mV)  
PK-PK  
DEVIATION  
(mV)  
RECOVERY  
TIME  
(μs)  
V
V
R
C
R
R
f
R
R
OUT  
(V)  
IN  
(V)  
TH  
TH  
ISET  
(kΩ)  
PGDFB  
(kΩ)  
SW  
fSET  
EXTVCC  
(Ω)  
C
C
C
OUTH  
(Ω)  
681  
681  
681  
665  
665  
665  
665  
665  
665  
665  
665  
665  
665  
665  
649  
649  
649  
649  
649  
604  
604  
604  
604  
604  
499  
499  
499  
499  
499  
499  
499  
499  
499  
499  
499  
499  
499  
(nF)  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
8.2  
8.2  
8.2  
8.2  
8.2  
8.2  
8.2  
8.2  
8.2  
10  
(kHz)  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
550  
575  
600  
500  
800  
1100  
1200  
750  
1200  
1400  
1200  
1500  
(kΩ)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
665  
576  
499  
1000  
249  
143  
124  
287  
124  
100  
124  
90.9  
INH  
D
1
5
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
4.7μF  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 3  
100μF x 2  
100μF x 2  
100μF x 2  
100μF x 2  
100μF x 2  
47μF x 2  
47μF x 2  
47μF x 2  
47μF x 2  
22μF x 2  
22μF x 2  
22μF x 2  
22μF x 2  
22μF x 2  
22μF x 2  
22μF x 2  
10μF x 2  
10μF x 2  
20  
3.32  
3.32  
3.32  
4.99  
4.99  
4.99  
7.5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
20  
70  
70  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
145  
190  
190  
185  
180  
180  
260  
260  
260  
260  
350  
350  
350  
350  
350  
350  
350  
430  
440  
55  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
45  
45  
45  
45  
40  
40  
40  
40  
40  
40  
40  
35  
35  
1
12  
24  
5
20  
1
20  
70  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
5
24  
70  
12  
24  
5
24  
70  
24  
70  
30.1  
30.1  
30.1  
30.1  
36  
70  
12  
24  
36  
5
7.5  
70  
7.5  
70  
7.5  
70  
10  
70  
12  
24  
36  
5
36  
10  
70  
36  
10  
70  
36  
10  
70  
50  
15.8  
15.8  
15.8  
15.8  
15.8  
22.6  
22.6  
22.6  
22.6  
22.6  
36.5  
36.5  
36.5  
36.5  
95.3  
95.3  
95.3  
95.3  
121  
121  
121  
196  
196  
70  
12  
24  
36  
48  
5
50  
70  
50  
70  
50  
70  
50  
70  
66.5  
66.5  
66.5  
66.5  
66.5  
100  
100  
100  
100  
240  
240  
240  
240  
301  
301  
301  
481  
481  
90  
12  
24  
36  
48  
12  
24  
36  
48  
15  
24  
36  
48  
24  
36  
48  
36  
48  
10  
90  
10  
90  
10  
90  
10  
90  
10  
130  
130  
130  
130  
170  
170  
170  
170  
170  
170  
170  
220  
220  
5
10  
20  
5
10  
20  
5
10  
20  
12  
12  
12  
12  
15  
15  
15  
24  
24  
10  
49.9  
49.9  
49.9  
49.9  
60.4  
60.4  
60.4  
100  
100  
10  
10  
10  
10  
10  
10  
10  
10  
Rev 0  
23  
For more information www.analog.com  
LTM4653  
See Table 1 for fSW and REXTVCC  
.
APPLICATIONS INFORMATION—DERATING CURVES  
ꢄꢀ0  
ꢃꢀꢁ  
ꢃꢀ0  
ꢂꢀꢁ  
ꢂꢀ0  
0ꢀꢁ  
0ꢀ0  
ꢅꢀ0  
ꢄꢀꢁ  
ꢄꢀ0  
ꢃꢀꢁ  
ꢃꢀ0  
ꢂꢀꢁ  
ꢂꢀ0  
0ꢀꢁ  
0ꢀ0  
ꢇꢀ0  
ꢆꢀ0  
ꢃꢀ0  
ꢄꢀ0  
ꢅꢀ0  
ꢂꢀ0  
ꢁꢀ0  
0ꢀ0  
ꢁꢀ0ꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢄꢖ ꢗ ꢁꢀꢃꢛꢙꢚ  
ꢉꢐꢑ  
ꢂꢁꢖ ꢗ ꢜꢁ0ꢘꢙꢚ  
ꢇꢎꢏ  
ꢄꢀꢄꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢁꢃꢖ ꢗ ꢁꢀꢄꢛꢙꢚ  
ꢉꢐꢑ  
ꢂꢃꢖ ꢗ ꢛ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢃꢀꢁꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢁꢂꢖ ꢗ ꢁꢀꢂꢛꢙꢚ  
ꢉꢐꢑ  
ꢁꢀ0ꢖ ꢗ ꢁꢁ0ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀꢕꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢃꢀ0ꢖ ꢗ ꢆ00ꢘꢙꢚ  
ꢉꢐꢑ  
ꢄꢀꢄꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀꢁꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢅꢀꢅꢖ ꢗ ꢄ00ꢘꢙꢚ  
ꢉꢐꢑ  
ꢃꢀꢁꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀꢃꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀꢃꢖ ꢗ ꢄ00ꢘꢙꢚ  
ꢉꢐꢑ  
ꢂꢀꢛꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀ0ꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀꢁꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀꢃꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
ꢂꢀ0ꢖ ꢗ ꢅ00ꢘꢙꢚ  
ꢇꢎꢏ  
0ꢀ0 0ꢀꢁ ꢂꢀ0 ꢂꢀꢁ ꢃꢀ0 ꢃꢀꢁ ꢄꢀ0 ꢄꢀꢁ ꢅꢀ0  
0ꢀ0 0ꢀꢁ ꢂꢀ0 ꢂꢀꢁ ꢃꢀ0 ꢃꢀꢁ ꢄꢀ0 ꢄꢀꢁ ꢅꢀ0  
0ꢀ0 0ꢀꢃ ꢁꢀ0 ꢁꢀꢃ ꢂꢀ0 ꢂꢀꢃ ꢅꢀ0 ꢅꢀꢃ ꢄꢀ0  
ꢇꢎꢏꢆꢎꢏ ꢐꢎRRꢉꢑꢏ ꢌꢒꢍ  
ꢇꢎꢏꢆꢎꢏ ꢐꢎRRꢉꢑꢏ ꢌꢒꢍ  
ꢉꢐꢑꢈꢐꢑ ꢒꢐRRꢋꢓꢑ ꢎꢔꢏ  
ꢅꢓꢁꢄ ꢔ0ꢕ  
ꢅꢓꢁꢄ ꢔ0ꢕ  
ꢄꢆꢃꢅ ꢕꢁ0  
Figure 8. 12VIN Power Loss Curve  
Figure 9. 24VIN Power Loss Curve  
Figure 10. 48VIN Power Loss Curve  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢁꢂꢒꢓ ꢔꢄꢄ  
ꢁꢂꢒꢓ ꢔꢄꢀ  
ꢁꢂꢒꢓ ꢔꢄꢓ  
Figure 11. 5V to 1VOUT Derating  
Curve, No Heat Sink  
Figure 12. 12V to 1VOUT  
Derating Curve, No Heat Sink  
Figure 13. 24V to 1VOUT  
Derating Curve, No Heat Sink  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢁꢂꢒꢓ ꢔꢄꢁ  
ꢁꢂꢒꢓ ꢔꢄꢒ  
ꢁꢂꢒꢓ ꢔꢄꢂ  
Figure 14. 5V to 1VOUT Derating  
Curve, with BGA Heat Sink  
Figure 15. 12V to 1VOUT Derating  
Curve, with BGA Heat Sink  
Figure 1ꢀ. 24V to 1VOUT Derating  
Curve, with BGA Heat Sink  
Rev 0  
24  
For more information www.analog.com  
LTM4653  
See Table 1 for fSW and REXTVCC  
.
APPLICATIONS INFORMATION—DERATING CURVES  
ꢁꢖ0  
ꢓꢖꢒ  
ꢓꢖ0  
ꢀꢖꢒ  
ꢀꢖ0  
ꢄꢖꢒ  
ꢄꢖ0  
0ꢖꢒ  
0ꢖ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢖ0  
ꢓꢖꢒ  
ꢓꢖ0  
ꢀꢖꢒ  
ꢀꢖ0  
ꢄꢖꢒ  
ꢄꢖ0  
0ꢖꢒ  
0ꢖ0  
ꢙꢘꢔꢆ  
ꢘꢗꢔꢆ  
ꢙꢘꢔꢆ  
ꢀ00ꢘꢔꢆ  
ꢁ00ꢘꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢘꢔꢆ  
ꢁ00ꢘꢔꢆ  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢁꢂꢒꢓ ꢔꢄꢕ  
ꢁꢂꢒꢓ ꢔꢄꢃ  
ꢁꢂꢒꢓ ꢔꢄꢕ  
Figure 16. 12V to 5VOUT  
Derating Curve, No Heat Sink  
Figure 18. 24V to 5VOUT  
Derating Curve, No Heat Sink  
Figure 19. 48V to 5VOUT  
Derating Curve, No Heat Sink  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢁꢂꢒꢓ ꢔꢀꢄ  
ꢁꢂꢒꢓ ꢔꢀꢀ  
ꢁꢂꢒꢓ ꢔꢀ0  
Figure 22. 48V to 5VOUT Derating  
Curve, with BGA Heat Sink  
Figure 20. 12V to 5VOUT Derating  
Curve, with BGA Heat Sink  
Figure 21. 24V to 5VOUT Derating  
Curve, with BGA Heat Sink  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢘꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢁꢂꢒꢓ ꢔꢀꢓ  
ꢁꢂꢒꢓ ꢔꢀꢁ  
ꢁꢂꢒꢓ ꢔꢀꢒ  
Figure 24. 48V to 15VOUT Derating  
Curve, No Heat Sink  
Figure 25. 48V to 24VOUT Derating  
Curve, No Heat Sink  
Figure 23. 24V to 15VOUT Derating  
Curve, No Heat Sink  
Rev 0  
25  
For more information www.analog.com  
LTM4653  
See Table 1 for fSW and REXTVCC  
.
APPLICATIONS INFORMATION—DERATING CURVES  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢁꢖ0  
ꢓꢖꢒ  
ꢓꢖ0  
ꢀꢖꢒ  
ꢀꢖ0  
ꢄꢖꢒ  
ꢄꢖ0  
0ꢖꢒ  
0ꢖ0  
ꢁꢕ0  
ꢓꢕꢒ  
ꢓꢕ0  
ꢀꢕꢒ  
ꢀꢕ0  
ꢄꢕꢒ  
ꢄꢕ0  
0ꢕꢒ  
0ꢕ0  
ꢘꢗꢔꢆ  
ꢙꢘꢔꢆ  
ꢘꢗꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ00ꢘꢔꢆ  
ꢁ00ꢘꢔꢆ  
ꢀ00ꢗꢔꢆ  
ꢁ00ꢗꢔꢆ  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢀ0  
ꢁ0  
ꢂ0  
ꢃ0  
ꢄ00  
ꢄꢀ0  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢅꢆꢇꢈꢉꢊꢋ ꢋꢉꢆꢌꢉRꢅꢋꢍRꢉ ꢎꢏꢐꢑ  
ꢁꢂꢒꢓ ꢔꢀꢂ  
ꢁꢂꢒꢓ ꢔꢀꢕ  
ꢁꢂꢒꢓ ꢔꢀꢃ  
Figure 26. 48V to 15VOUT Derating  
Curve, with BGA Heat Sink  
Figure 28. 48V to 24VOUT Derating  
Curve, with BGA Heat Sink  
Figure 2ꢀ. 24V to 15VOUT Derating  
Curve, with BGA Heat Sink  
APPLICATIONS INFORMATION  
Safety Considerations  
• Place high frequency ceramic input and output ca-  
pacitors next to the V , V , PGND and V pins to  
IN  
D
OUT  
TheLTM4653doesnotprovidegalvanicisolationfromV  
IN  
minimize high frequency noise.  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
• Place a dedicated power ground layer underneath the  
LTM4653.  
tobeprovidedtoprotecttheunitfromcatastrophicfailure.  
The fuse or circuit breaker, if used, should be selected to  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
limit the current to the regulator in case of a M MOSFET  
T
fault. If M fails, the system’s input supply will source  
T
very large currents to V  
through M . This can cause  
OUT  
T
• Do not put vias directly on pads, unless they are capped  
or plated over.  
excessive heat and board damage depending on how  
much power the input voltage can deliver to this system.  
A fuse or circuit breaker can be used as a secondary fault  
protector in this situation. The LTM4653 does feature  
overcurrent and overtemperature protection.  
• Use a separate SGND copper plane for components  
connected to signal pins. Connect SGND to PGND  
directly under the module.  
• For parallel module applications, connect the V  
,
OUT  
Layout Checklist/Example  
V
, RUN, ISETa, COMPa and PGOOD pins together  
OSNS  
The high integration of LTM4653 makes the PCB board  
layout straightforward. However, to optimize its electrical  
and thermal performance, some layout considerations  
are still necessary.  
as shown in Figure 32.  
• Bring out test points on the signal pins for monitoring.  
Figure 29 gives a good example of the recommended  
LTM4653 layout.  
• Use large PCB copper areas for high current paths,  
including V , PGND and V . Doing so helps to  
IN  
OUT  
minimize the PCB conduction loss and thermal stress.  
Rev 0  
26  
For more information www.analog.com  
LTM4653  
APPLICATIONS INFORMATION  
ꢀꢁꢂ  
ꢄꢁ  
ꢀꢁꢂ  
ꢅꢆꢇ  
ꢈꢉꢊꢋ ꢌꢍꢎ  
Figure 29. Recommend PCB Layout, Package Top View  
TYPICAL APPLICATIONS  
V
24V  
UP TO 4A  
,
IN  
OUT  
NC  
SW  
V
V
OSNS  
IN  
OUT  
48V  
C
4.7μF  
INH  
V
SV  
IN  
C
OUTH  
10µF  
x2  
LOAD  
V
D
C
4.7μF  
D
SGND  
PGND  
RUN  
GND  
INTV  
CC  
LTM4653  
R
196k  
R
EXTVCC  
PGDFB  
CLKIN  
R
PGDPUP  
100k  
100Ω  
0.1µF  
PGDFB  
PGOOD  
TEMP+  
TEMP–  
INTV  
INTV  
CC  
CC  
+
V
VINREG  
COMPa  
COMPb  
CC  
V
D
D
REF  
470pF  
LTC2997  
GND  
C
10nF  
TH  
TH  
EXTV  
4mV/K  
CC  
V
PTAT  
C
EXTVCC  
IMONa  
IMONb  
4653 F30  
R
499Ω  
f
SET  
1µF  
ISETa ISETb  
R
90.9k  
R
ISET  
481k  
fSET  
OPTIONAL ANALOG OUTPUT  
TEMPERATURE INDICATOR  
Figure 30. 4A, 24V Output DC/DC μModule Regulator  
Rev 0  
27  
For more information www.analog.com  
LTM4653  
TYPICAL APPLICATIONS  
Rꢀꢁ  
ꢂꢃꢄꢅꢆꢃ  
ꢇꢈꢉ  
ꢀ0ꢆꢃꢄꢅꢆ  
ꢊꢋꢇꢇꢄ  
ꢌꢆꢃꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
Figure 31. Start-Up Waveforms at 48VIN, Figure 30 Circuit  
I
OUT1  
24V  
V
48V  
OUT  
IN  
V
NC  
SW  
IN  
V
OUT  
UP TO 8A  
C
22µF  
×2  
C
4.7μF  
OUT  
INH  
V
OSNS  
SV  
IN  
LOAD  
V
D
C
4.7μF  
D
RUN  
GND  
SGND  
PGND  
U1  
LTM4653  
INTV  
CC1  
R
INTV  
PGDFB1  
196k  
CLKIN  
INTV  
CC1  
R
PGDPUP  
100Ω  
PGDFB  
PGOOD  
EXTV  
CC  
PGOOD  
VINREG  
CC  
R
100Ω  
EXTVCC  
COMPa  
COMPb  
TEMP+  
TEMP–  
IMONa  
C
1µF  
EXTVCC  
LTC6908-1  
ANALOG OUTPUT  
CURRENT INDICATOR  
f
SET  
ISETa  
ISETb IMONb  
+
V
OUT1  
OUT2  
MOD  
V
IMON  
= 0.125Ω • (I  
+ I  
)
OUT1 OUT2  
R
fSET1  
90.9k  
R
66.5k  
SET  
SET  
I
OUT2  
0.1µF  
GND  
V
NC  
SW  
IN  
V
OUT  
C
4.7μF  
INH  
V
OSNS  
SV  
IN  
V
D
SGND  
PGND  
RUN  
GND  
C
D
4.7μF  
U2  
LTM4653  
R
CLKIN  
INTV  
PGDFB2  
196k  
R
100Ω  
EXTVCC  
PGDFB  
PGOOD  
CC  
VINREG  
EXTV  
CC  
+
COMPa  
COMPb  
TEMP  
TEMP  
C
10nF  
TH  
C
1µF  
TH  
EXTVCC  
R
IMONa  
IMONb  
499Ω  
f
SET  
ISETa  
ISETb  
4653 F32  
R
90.9k  
R
ISET  
240k  
fSET  
Figure 32. 24V Output at Up to 8A from 48V Input, 2-Phase Paralled with Analog Output Current Indicator  
Rev 0  
28  
For more information www.analog.com  
LTM4653  
TYPICAL APPLICATIONS  
0
ꢌꢀ  
ꢌꢁ  
ꢔꢀ  
0
ꢈꢉꢈꢊꢋ ꢉꢌꢈꢍꢌꢈ ꢎꢌRRꢏꢐꢈ ꢑꢊꢒ  
ꢃꢅꢄꢂ ꢓꢂꢂ  
Figure 33. Current Sharing Performance of LTM4ꢀ53s in Figure 32 Circuit  
Rꢈꢎ  
ꢊꢆꢃꢄꢅꢆ  
ꢇꢈꢉ  
ꢊꢆꢃꢄꢅꢆ  
ꢇꢈꢉ  
ꢊꢆꢃꢄꢅꢆ  
ꢌꢍꢇꢇꢄ  
ꢊꢆꢃꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢃꢀ  
ꢀꢁꢂꢃꢄꢅꢆ  
Figure 34. Concurrent 12V Supply, Output Voltage Start-Up Waveforms, Figure 35 Circuit  
Rev 0  
29  
For more information www.analog.com  
LTM4653  
PACKAGE PHOTOGRAPH  
PACKAGE DESCRIPTION  
Table 9. LTM4ꢀ53 Component BGA Pinout  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION  
CLKIN  
NC  
PIN ID  
C1  
FUNCTION  
IMONb  
PIN ID  
D1  
FUNCTION  
PGOOD  
PGDFB  
VINREG  
GND  
PIN ID  
E1  
FUNCTION  
COMPb  
PIN ID  
F1  
FUNCTION  
ISETb  
V
IN  
V
IN  
V
IN  
A2  
B2  
C2  
IMONa  
D2  
E2  
COMPa  
F2  
ISETa  
A3  
B3  
V
C3  
SV  
D3  
E3  
f
F3  
EXTV  
CC  
IN  
IN  
SET  
A4  
V
D
B4  
V
D
C4  
V
D
D4  
E4  
SGND  
PGND  
NC  
F4  
RUN  
PGND  
NC  
A5  
PGND  
NC  
B5  
PGND  
NC  
C5  
PGND  
NC  
D5  
PGND  
NC  
E5  
F5  
A6  
B6  
C6  
D6  
E6  
F6  
A7  
NC  
B7  
NC  
C7  
NC  
D7  
NC  
E7  
NC  
F7  
NC  
PIN ID  
G1  
FUNCTION  
PIN ID  
H1  
FUNCTION  
PIN ID  
J1  
FUNCTION  
PIN ID  
K1  
FUNCTION  
PIN ID  
L1  
FUNCTION  
+
V
V
OSNS  
TEMP  
V
V
V
V
V
V
OSNS  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
G2  
SGND  
INTV  
H2  
SGND  
PGND  
SW  
J2  
TEMP  
K2  
L2  
G3  
H3  
J3  
PGND  
PGND  
PGND  
K3  
L3  
CC  
G4  
PGND  
PGND  
NC  
H4  
J4  
K4  
PGND  
PGND  
NC  
L4  
PGND  
PGND  
NC  
G5  
H5  
PGND  
NC  
J5  
K5  
L5  
+
G6  
H6  
J6  
TEMP  
K6  
L6  
G7  
NC  
H7  
NC  
J7  
TEMP  
K7  
NC  
L7  
NC  
Rev 0  
30  
For more information www.analog.com  
LTM4653  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM4ꢀ53#packaging for the most recent package drawings.  
ꢷ ꢷ ꢯ ꢯ ꢯ  
ꢪ ꢥ ꢞ ꢎ 0  
ꢟ ꢥ ꢜ ꢋ 0  
ꢎ ꢥ ꢟ ꢰ 0  
0 ꢥ ꢪ ꢎ ꢰ ꢜ  
0 ꢥ ꢪ ꢎ ꢰ ꢜ  
ꢎ ꢥ ꢟ ꢰ 0  
0 ꢥ 0 0 0  
ꢟ ꢥ ꢜ ꢋ 0  
ꢪ ꢥ ꢞ ꢎ 0  
Rev 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
31  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTM4653  
TYPICAL APPLICATION  
I
OUT  
V
OUT  
12V  
V
IN  
15V TO 46V  
V
NC  
SW  
V
IN  
OUT  
C
INH1  
4.7μF  
UP TO 4A  
V
OSNS  
SV  
IN  
C
22µF  
×2  
OUTH  
R
105k  
A
LOAD  
V
D
C
4.7μF  
D1  
GND  
SGND  
PGND  
RUN  
U1  
LTM4653  
INTV  
CC1  
R
PGDFB1  
95.3k  
CLKIN  
R
PGDPUP  
100Ω  
INTV  
INTV  
CC  
CC1  
PGDFB  
PGOOD  
EXTV  
PGOOD  
VINREG  
CC  
R
EXTVCC1  
49.9Ω  
COMPa  
COMPb  
TEMP+  
C
TH  
C
1µF  
TEMP–  
IMONa  
EXTVCC1  
10nF  
TH  
R
499Ω  
ANALOG OUTPUT  
CURRENT INDICATOR,  
f
SET  
ISETa  
ISETb IMONb  
V
IMON  
= 0.25Ω • I  
OUT  
C
R
R
124k  
SS  
ISET1  
fSET1  
10nF 240k  
V
NC  
SW  
IN  
C
INH2  
4.7µF  
PGOOD  
GND  
C
SV  
IN  
SNS  
INOUT  
4.7µF  
GND  
V
D
C
DGND  
4.7µF  
PGND  
C
OUT2  
22µF  
LOAD  
U2  
LTM4651  
D1*  
V
OUT  
–12V  
UP TO 3.25A  
V
SV  
C
D2  
4.7µF  
OUT  
OUT  
RUN  
R
PGDFB2  
95.3k  
CLKIN  
R
B
PGDFB  
INTV  
CC  
10k  
R
EXTVCC2  
49.9Ω  
VINREG  
COMPa  
EXTV  
CC  
+
TEMP  
COMPb  
R
TRACK  
10k  
TEMP  
f
SET  
ISETa ISETb  
C
R
R
EXTVCC2  
1µF  
fSET2  
124k  
ISET2  
240k||10k  
*D1: CENTRAL SEMI  
P/N CMMSH1-40L  
4653 F35  
Figure 35. Concurrent 12V Supply. See Figure 34 for Output Voltage Start-Up Waveforms  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4651  
LTM8045  
LTM8049  
EN55022B Compliant, 58Vin, 24W Inverting-Output  
3.6V ≤ Vin ≤ 58V, -26.5V ≤ Vout ≤ -0.5V, Iout ≤ 4A. 15mm x 9mm x  
5.01mm BGA  
μModule Regulator  
SEPIC or Inverting µModule DC/DC Converter  
2.8V ≤ V ≤ 18V, 2.5V ≤ V  
15V. I  
≤ 700mA. 6.25mm ×  
IN  
OUT  
OUT(DC)  
11.25mm × 4.92mm BGA  
Dual, SEPIC and/or Inverting µModule DC/DC Converter 2.6V ≤ V ≤ 20V, 2.5V ≤ V  
24V. I  
≤ 1A/Channel. 9mm ×  
IN  
OUT  
OUT(DC)  
15mm × 2.42mm BGA  
LTM8073  
LTM8064  
LTM4613  
60V, 3A Step-Down µModule Regulator  
3.4V ≤ V ≤ 60V, 0.8V ≤ V  
≤ 15V. 6.25mm × 9mm × 3.32mm BGA  
IN  
OUT  
58V, 6A CVCC Step-Down µModule Regulator  
EN55022B Compliant, 36V, 8A µModule Regulator  
6V ≤ V ≤ 58V, 1.2V ≤ V  
≤ 36V. 11.9mm x 16mm × 4.92mm BGA  
≤ 15V. 15mm × 15mm × 4.32mm LGA, and  
IN  
OUT  
5V ≤ V ≤ 36V, 3.3V ≤ V  
IN  
OUT  
15mm × 15mm × 4.92mm BGA  
Rev 0  
D16803-0-4/18(0)  
www.analog.com  
32  
ANALOG DEVICES, INC. 2018  

相关型号:

LTM4655

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator
ADI

LTM4655IY

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator
ADI

LTM4655MPY

EN55022B Compliant 40V, Dual 4A or Single 8A Step-Down or 50W Inverting μModule Regulator
ADI

LTM4656

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656EY

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656EY-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656IY

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4656IY-1

Synchronous Boost μModule Regulator with Input-Output Short Protection
ADI

LTM4657

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI

LTM4657IY

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI

LTM4661

15V, 4A Step-Up μModule Regulator
Linear