LTM4637EVPBF [Linear]

20A DC/DC μModule Step-Down Regulator; 20A DC / DC μModule降压型稳压器
LTM4637EVPBF
型号: LTM4637EVPBF
厂家: Linear    Linear
描述:

20A DC/DC μModule Step-Down Regulator
20A DC / DC μModule降压型稳压器

稳压器
文件: 总28页 (文件大小:585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4637  
20A DC/DC µModule  
Step-Down Regulator  
FEATURES  
DESCRIPTION  
n
The LTM®4637 is a complete 20A output high efficiency  
switch mode step-down DC/DC µModule (micromodule)  
regulator.Includedinthepackagearetheswitchingcontrol-  
ler, power FETs, inductor and compensation components.  
Operating over an input voltage range from 4.5V to 20V,  
the LTM4637 supports an output voltage range of 0.6V  
to 5.5V, set by a single external resistor. Only a few input  
and output capacitors are needed.  
Complete 20A Switch Mode Power Supply  
n
4.5V to 20V Input Voltage Range  
n
0.6V to 5.5V Output Voltage Range  
n
1.5ꢀ Total DC Output Voltage Error  
(–40°C to 125°C)  
n
Differential Remote Sense Amplifier for Precision  
Regulation for (V  
≤ 3.3V)  
OUT  
n
n
n
n
n
n
n
n
n
n
n
Current Mode Control/Fast Transient Response  
Parallel Current Sharing (Up to 80A)  
Frequency Synchronization  
Current mode operation allows precision current sharing  
of up to four LTM4637 regulators to obtain up to 80A  
output. High switching frequency and a current mode  
architecture enable a very fast transient response to line  
and load changes without sacrificing stability. The device  
supports frequency synchronization, multiphase/current  
sharing,BurstModeoperationandoutputvoltagetracking  
forsupplyrailsequencing.Adiode-connectedPNPtransis-  
tor is available for use as an internal temperature monitor.  
Selectable Pulse-Skipping or Burst Mode® Operation  
Soft-Start/Voltage Tracking  
Up to 88% Efficiency (12V , 1.8V  
)
IN  
OUT  
Overcurrent Foldback Protection  
Output Overvoltage Protection  
Internal Temperature Monitor  
Overtemperature Protection  
15mm × 15mm × 4.32mm LGA Package  
The LTM4637 is offered in a 15mm × 15mm × 4.32mm  
LGA package. The LTM4637 is RoHS compliant. The  
LTM4637 is pin compatible with the LTM4627, a 15A  
DC/DC µModule regulator.  
L, LT, LTC, LTM, PolyPhase, Burst Mode, µModule, Linear Technology, the Linear logo are  
registered trademarks and LTpowerCAD is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 5481178, 5847554, 6580258, 6304066, 6476589, 6774611, 6677210.  
APPLICATIONS  
n
Telecom Servers and Networking Equipment  
n
Industrial Equipment  
Medical Systems  
n
n
High Ambient Temperature Systems  
TYPICAL APPLICATION  
12VIN, 1.2VOUT, 20A DC/DC µModule® Regulator  
12VIN Efficiency vs Load Current  
2.2µF  
100  
1.2V  
250kHz  
CCM  
OUT  
V
IN  
12V  
95  
90  
22µF  
16V  
×4  
10k  
PGOOD  
V
EXTV  
INTV  
CC CC  
IN  
V
1.2V  
20A  
OUT  
0.1µF  
COMP  
V
OUT  
V
OUT_LCL  
TRACK/SS  
RUN  
85  
80  
75  
70  
100µF*  
6.3V  
×2  
+
330pF  
470µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4637  
f
V
SET  
OSNS  
MODE_PLLIN  
V
OSNS  
TEMP  
V
FB  
SGND GND  
R
**  
FB  
60.4k  
65  
* SEE TABLE 5  
** SEE TABLE 1  
4637 TA01a  
8
10 12 14 16 18 20  
0
6
2
4
OUTPUT CURRENT (A)  
4637 TA01b  
4637f  
1
For more information www.linear.com/LTM4637  
LTM4637  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V ............................................................. –0.3V to 22V  
IN  
MODE_PLLIN  
CC  
V
............................................................. –0.3V to 6V  
INTV  
TRACK/SS COMP  
OUT  
INTV , V  
MODE_PLLIN, f , TRACK/SS,  
V
IN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
, PGOOD, EXTV ............ –0.3V to 6V  
SET  
CC OUT_LCL  
CC  
A
B
C
D
E
RUN  
V
+
IN  
f
SET  
V
V
, V  
, DIFF_OUT...................–0.3V to INTV  
OSNS  
OSNS CC  
COMP (Note 7) ................................. –0.3V to 2.7V  
FB,  
INTV  
CC  
TEMP  
CC  
PGOOD  
RUN (Note 5) ............................................... –0.3V to 5V  
TEMP ........................................................ –0.3V to 0.8V  
EXTV  
F
V
FB  
INTV Peak Output Current (Note 6) ..................100mA  
CC  
GND  
G
H
J
PGOOD  
Internal Operating Temperature Range  
SGND  
+
(Note 2).................................................. –40°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Reflow (Peak Body) Temperature.......................... 245°C  
V
OSNS  
K
L
DIFF_OUT  
V
OUT  
V
V
OUT_LCL  
M
OSNS  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 4.32mm)  
T
= 125°C, θ = 9.5°C/W, θ  
= 4°C/W, θ  
= 6.7°C/W, θ = 4.5°C/W  
J(MAX)  
θ
JA  
JCbottom  
JCtop JB  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS; WEIGHT = 2.9g  
JA  
θ VALUES DETERMINED PER JESD51-12  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4637EV#PBF  
LTM4637IV#PBF  
TRAY  
PART MARKING*  
LTM4637V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM4637EV#PBF  
LTM4637IV#PBF  
133-Lead (15mm × 15mm × 4.32mm) LGA  
133-Lead (15mm × 15mm × 4.32mm) LGA  
LTM4637V  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 12V, per the typical application in Figure 22.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
20  
UNITS  
l
l
l
V
V
V
Input DC Voltage  
V
V
V
IN  
Range  
V
Range  
OUT  
0.6  
5.5  
OUT  
Output Voltage, Total  
Variation with Line and Load  
1.477  
1.50  
1.523  
C
C
= 22µF × 3  
OUT  
OUT(DC)  
IN  
= 100µF Ceramic, 470µF POSCAP  
= 40.2k, MODE_PLLIN = GND  
R
FB  
IN  
V
= 5V to 20V, I  
= 0A to 20A (Note 4)  
OUT  
Input Specifications  
V
V
RUN Pin On Threshold  
RUN Pin On Hysteresis  
V
Rising  
1.1  
1.25  
130  
1.4  
V
RUN  
RUN  
mV  
RUNHYS  
4637f  
2
For more information www.linear.com/LTM4637  
LTM4637  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 12V, per the typical application in Figure 22.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Bias Current  
V
V
V
= 12V, V  
= 12V, V  
= 12V, V  
= 1.5V, Burst Mode Operation, I  
= 1.5V, Pulse-Skipping Mode, I  
= 1.5V, Switching Continuous, I  
= 0.1A  
= 0.1A  
= 0.1A  
17  
25  
54  
40  
mA  
mA  
mA  
µA  
Q(VIN)  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Shutdown, RUN = 0, V = 12V  
IN  
I
Input Supply Current  
V
IN  
V
IN  
= 5V, V  
= 1.5V, I = 20A  
OUT  
OUT  
6.8  
2.87  
A
A
S(VIN)  
OUT  
= 12V, V  
= 1.5V, I  
= 20A  
OUT  
Output Specifications  
I
Output Continuous Current  
Range  
V
= 12V, V  
= 1.5V (Note 4)  
0
20  
A
%/V  
%
OUT(DC)  
IN  
OUT  
l
l
∆V  
(Line)  
OUT  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
Turn-On Overshoot  
V
I
= 1.5V, V from 4.5V to 20V  
OUT  
= 0A  
0.02  
0.2  
30  
0.06  
0.45  
OUT  
V
IN  
OUT  
∆V  
(Load)  
OUT  
V
= 1.5V, I  
= 0A to 20A, V = 12V (Note 4)  
OUT IN  
OUT  
V
OUT  
V
I
= 0A, C  
= 100µF Ceramic, 470µF POSCAP  
= 1.5V  
mV  
P-P  
OUT(AC)  
OUT  
OUT  
V
= 12V, V  
OUT  
IN  
∆V  
C
V
= 100µF Ceramic, 470µF POSCAP,  
= 1.5V, I  
15  
mV  
ms  
mV  
OUT(START)  
OUTLS  
OUT  
OUT  
= 0A, V = 12V  
IN  
OUT  
t
Turn-On Time  
C
= 100µF Ceramic, 470µF POSCAP,  
0.6  
50  
START  
OUT  
No Load, TRACK/SS = 0.001µF, V = 12V  
IN  
∆V  
Peak Deviation for Dynamic Load: 0% to 50% to 0% of Full Load  
Load  
C
V
= 100µF × 2 Ceramic, 470µF × 3 POSCAP,  
OUT  
= 12V, V  
= 1.5V  
OUT  
IN  
t
I
Settling Time for Dynamic  
Load Step  
Load: 0% to 50% to 0% of Full Load, V = 5V,  
OUT  
50  
µs  
SETTLE  
IN  
C
= 100µF × 2 Ceramic, 470µF × 3 POSCAP  
Output Current Limit  
V
V
= 12V, V = 1.5V  
OUT  
30  
30  
A
A
OUTPK  
IN  
IN  
= 5V, V  
= 1.5V  
OUT  
Control Section  
l
l
V
Voltage at V Pin  
I
= 0A, V = 1.5V  
OUT  
0.594  
0.60  
–12  
0.606  
–25  
V
nA  
V
FB  
FB  
OUT  
I
Current at V Pin  
(Note 7)  
FB  
FB  
V
Feedback Overvoltage  
Lockout  
0.65  
1.0  
0.67  
0.69  
OVL  
I
Track Pin Soft-Start Pull-Up TRACK/SS = 0V  
Current  
1.2  
1.4  
60.75  
3.6  
µA  
TRACK/SS  
t
Minimum On-Time  
Resistor Between V  
(Note 3)  
100  
ns  
ON(MIN)  
R
60.05  
0
60.40  
kΩ  
FBHI  
OUT_LCL  
and V Pins  
FB  
Remote Sense Amplifier  
+
V
V
,
Common Mode Input Range V = 12V, Run > 1.4V  
V
V
OSNS  
OSNS CM RANGE  
IN  
V
Maximum DIFF_OUT  
Voltage  
I
= 300µA  
INTV – 1.4  
DIFF_OUT(MAX)  
DIFF_OUT  
+
CC  
V
A
Input Offset Voltage  
Differential Gain  
V
= V  
= 1.5V, I = 100µA  
DIFF_OUT  
2
mV  
V/V  
V/µs  
MHz  
dB  
OS  
OSNS  
DIFF_OUT  
(Note 7)  
(Note 6)  
(Note 6)  
(Note 7)  
Sourcing  
1
2
V
SR  
Slew Rate  
GBP  
CMRR  
Gain Bandwidth Product  
Common Mode Rejection  
DIFF_OUT Current  
3
60  
I
2
mA  
DIFF_OUT  
4637f  
3
For more information www.linear.com/LTM4637  
LTM4637  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 12V, per the typical application in Figure 22.  
SYMBOL  
PARAMETER  
CONDITIONS  
5V < V < 20V (Note 7)  
MIN  
TYP  
MAX  
UNITS  
PSRR  
Power Supply Rejection  
Ratio  
100  
dB  
IN  
R
Input Resistance  
V
V
+ to GND  
OSNS  
80  
kΩ  
IN  
PGOOD Output  
V
PGOOD Trip Level  
With Respect to Set Output  
PGOOD  
FB  
V
V
–10  
10  
%
%
Ramping Negative  
Ramping Positive  
FB  
FB  
V
PGOOD Voltage Low  
I
= 2mA  
0.1  
0.3  
5.2  
V
PGL  
PGOOD  
INTV Linear Regulator  
CC  
V
V
V
Internal V Voltage  
6V < V < 20V  
4.8  
4.5  
5
V
%
INTVCC  
INTVCC  
EXTVCC  
CC  
IN  
Load Reg INTV Load Regulation  
I
= 0 to 50mA  
0.5  
4.7  
50  
CC  
CC  
l
External V Switchover  
EXTV Ramping Positive  
V
CC  
CC  
VLDO Ext  
EXTV Voltage Drop  
I
= 25mA, V = 5V  
EXTVCC  
100  
800  
mV  
CC  
CC  
Oscillator and Phase-Locked Loop  
f
Frequency Sync Capture  
Range  
MODE_PLLIN Clock Duty Cycle = 50%  
250  
kHz  
SYNC  
f
f
f
I
Nominal Frequency  
Lowest Frequency  
Highest Frequency  
Frequency Set Current  
V
V
V
= 1.2V  
= 0V  
450  
210  
700  
9
500  
250  
770  
10  
550  
290  
850  
11  
kHz  
kHz  
kHz  
µA  
NOM  
LOW  
HIGH  
FREQ  
fSET  
fSET  
fSET  
≥ 2.4V  
R
MODE_PLLIN Input  
Resistance  
250  
kΩ  
MODE_PLLIN  
V
V
Clock Input Level High  
Clock Input Level Low  
2.0  
V
V
IH_MODE_PLLIN  
0.8  
IL_MODE_PLLIN  
Temperature Diode  
V
TEMP Diode Voltage  
I
= 100µA  
0.6  
V
TEMP  
TEMP  
l
TC V  
Temperature Coefficient  
–2.2  
mV/°C  
TEMP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 3: The minimum on-time condition is specified for a peak-to-peak  
Note 2: The LTM4637 is tested under pulsed load conditions such that  
inductor ripple current of ~40% of I  
Information section)  
Load. (See the Applications  
MAX  
T ≈ T . The LTM4637E is guaranteed to meet performance specifications  
J
A
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4637I is guaranteed to meet specifications over the  
full –40°C to 125°C internal operating temperature range. Note that the  
maximum ambient temperature consistent with these specifications is  
Note 4: See output current derating curves for different V , V  
Note 5: Limit current into the RUN pin to less than 2mA.  
Note 6: Guaranteed by design.  
Note 7: 100% tested at wafer level.  
and T .  
A
IN OUT  
4637f  
4
For more information www.linear.com/LTM4637  
LTM4637  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current with  
8VIN (Limit 5V Output to 15A)  
Efficiency vs Load Current with  
12VIN (Limit 5V Output to 15A)  
Efficiency vs Load Current  
with 5VIN  
100  
95  
100  
95  
100  
95  
90  
90  
90  
85  
80  
75  
70  
85  
80  
75  
70  
85  
80  
75  
70  
1V , 250kHz, CCM  
1V , 250kHz, CCM  
OUT  
OUT  
1V , 250kHz, CCM  
1.2V , 250kHz, CCM  
OUT  
1.2V , 250kHz, CCM  
OUT  
OUT  
1.2V , 250kHz, CCM  
1.5V , 350kHz, CCM  
1.5V , 350kHz, CCM  
OUT  
OUT  
OUT  
1.5V , 350kHz, CCM  
1.8V , 350kHz, CCM  
1.8V , 350kHz, CCM  
OUT  
OUT  
OUT  
1.8V , 350kHz, CCM  
2.5V , 450kHz, CCM  
2.5V , 450kHz, CCM  
OUT  
OUT  
OUT  
2.5V , 450kHz, CCM  
3.3V , 600kHz, CCM  
3.3V , 600kHz, CCM  
OUT  
OUT  
OUT  
3.3V , 600kHz, CCM  
OUT  
5V , 600kHz, CCM  
OUT  
5V , 600kHz, CCM  
OUT  
65  
65  
65  
2
4
8
2
4
8
2
4
8
10 12 14 16 18 20  
0
6
10 12 14 16 18 20  
0
6
10 12 14 16 18 20  
0
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4637 G01  
4637 G02  
4637 G03  
Burst Mode Efficiency  
vs Load Current  
Pulse-Skipping Mode Efficiency  
vs Load Current  
1V Transient Response  
95  
90  
85  
80  
75  
70  
65  
95  
90  
85  
80  
75  
70  
65  
60  
OUTPUT  
TRANSIENT  
50mV/DIV  
200µs/DIV  
LOAD STEP  
5A/DIV  
4637 G06  
V
V
I
= 12V  
200µs/DIV  
IN  
= 1V  
OUT  
5V , 1.8V , 350kHz  
5V , 1.8V , 350k  
= 0A TO 10A, C = 330pF  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
FF  
8V , 1.8V , 350kHz  
8V , 1.8V , 350k  
IN OUT  
OUTPUT CAPACITORS:  
IN  
12V , 1.8V , 350kHz  
12V , 1.8V , 350k  
IN OUT  
3 × 470µF POSCAP CAPACITORS  
2 × 100µF CERAMIC CAPACITORS  
IN  
0
1
1.5  
2
2.5  
3
0
1
1.5  
2
2.5  
3
0.5  
0.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4637 G04  
4637 G05  
1.2V Transient Response  
1.5V Transient Response  
1.8V Transient Response  
OUTPUT  
TRANSIENT  
50mV/DIV  
200µs/DIV  
OUTPUT  
TRANSIENT  
50mV/DIV  
200µs/DIV  
OUTPUT  
TRANSIENT  
50mV/DIV  
200µs/DIV  
LOAD STEP  
5A/DIV  
LOAD STEP  
5A/DIV  
LOAD STEP  
5A/DIV  
4637 G08  
4637 G09  
4637 G07  
V
V
I
= 12V  
200µs/DIV  
V
V
I
= 12V  
200µs/DIV  
V
V
I
= 12V  
200µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.5V  
= 0A TO 10A, C = 330pF  
= 1.8V  
= 1.2V  
= 0A TO 10A, C = 330pF  
= 0A TO 10A, C = 330pF  
OUT  
FF  
OUT  
FF  
OUT  
FF  
OUTPUT CAPACITORS:  
OUTPUT CAPACITORS:  
OUTPUT CAPACITORS:  
3 × 470µF POSCAP CAPACITORS  
2 × 100µF CERAMIC CAPACITORS  
3 × 470µF POSCAP CAPACITORS  
2 × 100µF CERAMIC CAPACITORS  
3 × 470µF POSCAP CAPACITORS  
2 × 100µF CERAMIC CAPACITORS  
4637f  
5
For more information www.linear.com/LTM4637  
LTM4637  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5V Transient Response  
5V Transient Response  
3.3V Transient Response  
OUTPUT  
TRANSIENT  
100mV/DIV  
200µs/DIV  
OUTPUT  
TRANSIENT  
50mV/DIV  
200µs/DIV  
OUTPUT  
TRANSIENT  
50mV/DIV  
200µs/DIV  
LOAD STEP  
5A/DIV  
LOAD STEP  
5A/DIV  
LOAD STEP  
5A/DIV  
4637 G12  
4637 G10  
4637 G11  
V
V
I
= 12V  
= 5V  
OUT  
OUTPUT CAPACITORS:  
3 × 470µF POSCAP CAPACITORS  
2 × 100µF CERAMIC CAPACITORS  
200µs/DIV  
V
V
I
= 12V  
200µs/DIV  
V
V
I
= 12V  
200µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 2.5V  
= 3.3V  
= 0A TO 10A, C = 330pF  
FF  
= 0A TO 10A, C = 330pF  
= 0A TO 10A, C = 330pF  
FF  
OUT  
FF  
OUT  
OUTPUT CAPACITORS:  
OUTPUT CAPACITORS:  
3 × 470µF POSCAP CAPACITORS  
2 × 100µF CERAMIC CAPACITORS  
3 × 470µF POSCAP CAPACITORS  
2 × 100µF CERAMIC CAPACITORS  
Turn-On No Load  
Turn-On 20A Load  
V
V
IN  
IN  
2V/DIV  
2V/DIV  
20ms/DIV  
20ms/DIV  
V
V
OUT  
OUT  
200mV/DIV  
20ms/DIV  
200mV/DIV  
20ms/DIV  
4637 G13  
4637 G14  
20ms/DIV  
20ms/DIV  
12V to 1.5V AT 0A LOAD  
TRACK/SS = 0.1µF  
12V to 1.5V AT 20A LOAD  
TRACK/SS = 0.1µF  
Short-Circuit Protection with 20A  
Load  
Short-Circuit Protection No Load  
V
V
OUT  
OUT  
500mV/DIV  
200µs/DIV  
500mV/DIV  
200µs/DIV  
INPUT  
CURRENT  
1A/DIV  
INPUT  
CURRENT  
200mA/DIV  
4637 G15  
4637 G16  
200µs/DIV  
12V to 1.5V AT 0A LOAD  
TRACK/SS = 0.1µF  
200µs/DIV  
12V to 1.5V AT 20A LOAD  
TRACK/SS = 0.1µF  
4637f  
6
For more information www.linear.com/LTM4637  
LTM4637  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
V
(F12): The Negative Input of the Error Amplifier.  
FB  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
Internally, this pin is connected to V  
with a  
OUT_LCL  
60.4k precision resistor. Different output voltages can  
V
(A1-A6, B1-B6, C1-C6): Power Input Pins. Apply  
be programmed with an additional resistor between V  
IN  
FB  
and ground pins. In PolyPhase® operation, tying the  
input voltage between these and GND pins. Recommend  
placing input decoupling capacitance directly between  
V
pins together allows for parallel operation. See the  
FB  
V and GND pins.  
Applications Information section.  
IN  
V
(J1-J10, K1-K11, L1-L11, M1-M11): Power Output  
COMP(A11):CurrentControlThresholdandErrorAmplifier  
Compensation Point. The current comparator threshold  
increases with this control voltage. Tie all COMP pins  
together for parallel operation. The device is internally  
compensated.  
OUT  
Pins. ApplyoutputloadbetweentheseandGNDpins. Rec-  
ommend placing output decoupling capacitance between  
these pins and GND pins. Review Table 5.  
GND (B7, B9, C7, C9, D1-D6, D8, E1-E7, E9, F1-F9, G1-G9,  
H1-H9): Power Ground Pins for Both Input and Output.  
RUN:(A10)RunControlPin.Avoltageabove1.4Vwillturn  
on the module. A 5.1V Zener diode to ground is internal  
to the module for limiting the voltage on the RUN pin to  
PGOOD (F11, G12): Output Voltage Power Good Indica-  
tor. Open-drain logic output is pulled to ground when the  
output voltage exceeds a 10% regulation window. Both  
pins are tied together internally.  
5V, and allowing a pull-up resistor to V for enabling the  
IN  
device. Limit current into the RUN pin to ≤ 2mA.  
INTV : (A7, D9) Internal 5V LDO for Driving the Control  
CC  
SGND (G11, H11, H12): Signal Ground Pin. Return  
ground path for all analog and low power circuitry. Tie a  
single connection to the output capacitor GND. See layout  
guidelines in Figure 21.  
Circuitry and the Power MOSFET Drivers. Both pins are  
internally connected. The 5V LDO has a 100mA current  
limit. INTV is controlled and enabled when RUN is  
CC  
activated high.  
TEMP (D10): Temperature Monitor. See Applications  
Information section.  
EXTV (E12): External power input to an internal control  
CC  
switchallowsanexternalsourcegreaterthan4.7V,butless  
MODE_PLLIN(A8):ForcedContinuousMode,BurstMode  
Operation, or Pulse-Skipping Mode Selection Pin and  
External Synchronization Input to Phase Detector Pin.  
than6VtosupplyICpowerandbypasstheinternalINTV  
CC  
LDO. EXTV must be less than V at all times during  
CC  
IN  
power-on and power-off sequences. See the Applications  
Informationsection.5Voutputapplicationcanconnectthe  
5V output to this pin to improve efficiency. The 5V output  
ConnectthispintoINTV toenablepulse-skippingmode.  
CC  
Connect to ground to enable forced continuous mode.  
Floating this pin will enable Burst Mode operation. A clock  
onthispinwillenablesynchronizationwithforcedcontinu-  
ous operation. See the Applications Information section.  
is connected to EXTV in the 5V derating curves.  
CC  
V
: (L12) This pin connects to V  
through a 1M  
OUT_LCL  
OUT  
resistor,andtoV witha60.4kresistor.Theremotesense  
FB  
f
(B12): A resistor can be applied from this pin to  
SET  
amplifier output DIFF_OUT is connected to V  
, and  
OUT_LCL  
ground to set the operating frequency, or a DC voltage  
can be applied to set the frequency. See the Applications  
Information section.  
drives the 60.4k top feedback resistor in remote sensing  
applications. When the remote sense amplifier is used,  
DIFF_OUT effectively eliminates the 1MΩ from V  
to  
OUT  
V
. When the remote sense amplifier is not used,  
OUT_LCL  
TRACK/SS (A9): Output Voltage Tracking Pin and Soft-  
Start Inputs. The pin has a 1.2µA pull-up current source. A  
capacitor from this pin to ground will set a soft-start ramp  
rate. In tracking, the regulator output can be tracked to a  
differentvoltage.SeetheApplicationsInformationsection.  
then connect V  
to V  
directly.  
OUT_LCL  
OUT  
4637f  
7
For more information www.linear.com/LTM4637  
LTM4637  
PIN FUNCTIONS  
+
V
OSNS  
: (J12) (+) Input to the Remote Sense Amplifier.  
DIFF_OUT: (K12) Output of the Remote Sense Amplifier.  
This pin connects to the V pin for remote sense  
This pin connects to the output remote sense point. The  
remote sense amplifier can be used for V  
nect to ground when not used.  
OUT_LCL  
≤ 3.3V. Con-  
applications. Otherwise float when not used. The remote  
sense amplifier can be used for V ≤ 3.3V.  
OUT  
OUT  
V
: (M12) (–) Input to the Remote Sense Amplifier.  
MTP1, MTP2, MTP3, MTP4, MTP5, MTP6, MTP7,  
(A12, B11, C10, C11, C12, D11, D12): Extra mounting  
pads used for increased solder integrity strength. Leave  
floating.  
OSNS  
This pin connects to the ground remote sense point. The  
remote sense amplifier can be used for V  
nect to ground when not used.  
≤ 3.3V. Con-  
OUT  
BLOCK DIAGRAM  
PTC  
+
OTP  
~135°C  
499k  
INTV  
CC  
+
V
OUT_LCL  
V
400mV  
OUT  
10k  
1M  
V
IN  
PGOOD  
> 1.4V = ON  
< 1.1V = OFF  
MAX = 5V  
R1  
R2  
V
IN  
RUN  
V
IN  
4.5V TO 20V  
+
1.5µF  
C
5.1V  
IN  
TEMP  
COMP  
60.4k  
PNP  
M1  
INTERNAL  
COMP  
0.6µH  
V
OUT  
V
OUT  
C
1V  
SGND  
POWER  
CONTROL  
20A  
+
V
FB  
10µF  
M2  
OUT  
f
SET  
R
FB  
GND  
R
90.9k  
fSET  
50k  
INTERNAL  
LOOP  
2.2Ω  
SGND  
FILTER  
INTV  
CC  
C SOFT-START  
TRACK/SS  
V
MODE_PLLIN  
OSNS  
+
DIFF  
AMP  
250k  
V
+
+
OSNS  
INTV  
CC  
2.2µF  
C
DIFF_OUT  
EXTV  
CC  
4637 F01  
Figure 1. Simplified LTM4637 Block Diagram  
4637f  
8
For more information www.linear.com/LTM4637  
LTM4637  
DECOUPLING REQUIREMENTS TA = 25°C. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
IN  
External Input Capacitor Requirement  
IN  
88  
µF  
I
= 20A, 4× 22µF Ceramic X7R Capacitors  
OUT  
(V = 4.5V to 20V, V  
= 1.5V)  
OUT  
(See Table 5)  
C
External Output Capacitor Requirement  
(V = 4.5V to 20V, V = 1.5V)  
I
= 20A (See Table 5)  
400  
µF  
OUT  
OUT  
IN  
OUT  
OPERATION  
Power Module Description  
Overtemperature protection will turn off the regulator’s  
RUNpinat~130°Cto137°C.SeeApplicationsInformation.  
The LTM4637 is a high performance single output stand-  
alone nonisolated switching mode DC/DC power supply.  
It can provide a 20A output with few external input and  
output capacitors. This module provides precisely regu-  
lated output voltages programmable via external resistors  
Pulling the RUN pin below 1.1V forces the regulator into a  
shutdown state. The TRACK/SS pin is used for program-  
ming the output voltage ramp and voltage tracking during  
start-up. See the Application Information section.  
from 0.6V to 5.5V over a 4.5V to 20V input range.  
DC  
DC  
The LTM4637 is internally compensated to be stable over  
all operating conditions. Table 5 provides a guideline for  
inputandoutputcapacitancesforseveraloperatingcondi-  
tions. LTpowerCADisavailablefortransientandstability  
The typical application schematic is shown in Figure 22.  
The LTM4637 has an integrated constant-frequency cur-  
rent mode regulator, power MOSFETs, 0.6µH inductor,  
andothersupportingdiscretecomponents. Theswitching  
frequencyrangeisfrom250kHzto770kHz, andthetypical  
analysis.TheV pinisusedtoprogramtheoutputvoltage  
FB  
with a single external resistor to ground.  
operating frequency is shown in Table 5 for each V . For  
OUT  
Aremotesenseamplifierisprovidedforaccuratelysensing  
output voltages ≤3.3V at the load point.  
switchingnoise-sensitiveapplications, itcanbeexternally  
synchronizedfrom250kHzto800kHz,subjecttominimum  
on-time limitations. A single resistor is used to program  
the frequency. See the Applications Information section.  
Multiphase operation can be easily employed with the  
synchronization inputs using an external clock source.  
See application examples.  
With current mode control and internal feedback loop  
compensation, the LTM4637 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
High efficiency at light loads can be accomplished with  
selectable Burst Mode operation using the MODE_PLLIN  
pin. These light load features will accommodate battery  
operation. Efficiencygraphsareprovidedforlightloadop-  
erationintheTypicalPerformanceCharacteristicssection.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit in an overcurrent condition. An internal overvoltage  
monitor protects the output voltage in the event of an  
overvoltage >10%. The top MOSFET is turned off and the  
bottom MOSFET is turned on until the output is cleared.  
A TEMP pin is provided to allow the internal device tem-  
peraturetobemonitoredusinganonboarddiodeconnected  
PNP transistor.  
4637f  
9
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
The typical LTM4637 application circuit is shown in Fig-  
ure 22. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
RefertoTable5forspecificexternalcapacitorrequirements  
for particular applications.  
Input Capacitors  
The LTM4637 module should be connected to a low AC-  
impedance DC source. Additional input capacitors are  
neededfortheRMSinputripplecurrentrating.TheI  
CIN(RMS)  
equation which follows can be used to calculate the input  
capacitor requirement. Typically 22µF X7R ceramics are a  
good choice with RMS ripple current ratings of ~ 2A each.  
A4Fto100µFsurfacemountaluminumelectrolyticbulk  
capacitor can be used for more input bulk capacitance.  
This bulk input capacitor is only needed if the input source  
impedanceiscompromisedbylonginductiveleads,traces  
ornotenoughsourcecapacitance.Iflowimpedancepower  
planes are used, then this bulk capacitor is not needed.  
V to V  
IN  
Step-Down Ratios  
OUT  
There are restrictions in the V to V  
step-down ratio  
IN  
OUT  
that can be achieved for a given input voltage. The duty  
cycle is 94% typical at 500kHz operation. The V to V  
IN  
OUT  
minimumdropoutisafunctionofloadcurrentandoperation  
at very low input voltage and high duty cycle applications.  
At very low duty cycles the minimum 100ns on-time must  
be maintained. See the Frequency Adjustment section and  
temperature derating curves.  
For a buck converter, the switching duty cycle can be  
estimated as:  
Output Voltage Programming  
V
VIN  
OUT  
D=  
The PWM controller has an internal 0.6V 1% reference  
voltage. As shown in the Block Diagram, a 60.4k internal  
feedback resistor connects the V  
together. When the remote sense amplifier is used, then  
DIFF_OUT is connected to the V  
sense amplifier is not used, then V  
Without considering the inductor ripple current, for each  
output the RMS current of the input capacitor can be  
estimated as:  
and V pins  
OUT_LCL  
FB  
pin. If the remote  
connects to  
OUT_LCL  
IOUT(MAX)  
OUT_LCL  
ICIN(RMS)  
=
D(1D)  
V
. The output voltage will default to 0.6V with no feed-  
OUT  
η%  
back resistor. Adding a resistor R from V to ground  
FB  
FB  
where η% is the estimated efficiency of the power mod-  
ule. The bulk capacitor can be a switcher-rated aluminum  
electrolytic capacitor or a Polymer capacitor.  
programs the output voltage:  
60.4k+ RFB  
VOUT = 0.6V •  
RFB  
Output Capacitors  
Table 1. VFB Resistor Table vs Various Output Voltages  
(V) 0.6 1.0 1.2 1.5 1.8 2.5 3.3  
Open 90.9 60.4 40.2 30.1 19.1 13.3 8.25  
The LTM4637 is designed for low output voltage ripple  
V
5.0  
OUT  
noise. The bulk output capacitors defined as C  
are  
OUT  
R
(k)  
FB  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
ments. C  
can be a low ESR tantalum capacitor, low  
For parallel operation of N LTM4637s, the following  
OUT  
ESR Polymer capacitor or ceramic capacitors. The typical  
outputcapacitancerangeisfrom200µFto800µF.Additional  
output filtering may be required by the system designer  
if further reduction of output ripple or dynamic transient  
spikesisrequired.Table5showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 10A/µs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
equation can be used to solve for R :  
FB  
60.4k /N  
RFB=  
V
OUT  
–1  
0.6V  
Tie the V pins together for each parallel output. The  
FB  
COMP pins must be tied together also.  
4637f  
10  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
cycles, thus skipping operation cycles. This mode has  
lower ripple than Burst Mode operation and maintains a  
higher frequency operation than Burst Mode operation.  
to optimize the transient performance. Stability criteria  
are considered in the Table 5 matrix, and LTpowerCAD is  
available for stability analysis. Multiphase operation will  
reduceeffectiveoutputrippleasafunctionofthenumberof  
phases.ApplicationNote77discussesthisnoisereduction  
versus output ripple current cancellation, but the output  
capacitance should be considered carefully as a function  
of stability and transient response. LTpowerCAD can be  
usedtocalculatetheoutputripplereductionasthenumber  
of implemented phases increase by N times.  
Forced Continuous Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous operation  
should be used. Forced continuous operation can be  
enabled by tying the MODE_PLLIN pin to ground. In this  
mode, inductor current is allowed to reverse during low  
output loads, the COMP voltage is in control of the current  
comparator threshold throughout, and the top MOSFET  
alwaysturnsonwitheachoscillatorpulse.Duringstart-up,  
forced continuous mode is disabled and inductor current  
is prevented from reversing until the LTM4637’s output  
voltage is in regulation.  
Burst Mode Operation  
TheLTM4637iscapableofBurstModeoperationinwhich  
the power MOSFETs operate intermittently based on load  
demand, thus saving quiescent current. For applications  
where maximizing the efficiency at very light loads is a  
high priority, Burst Mode operation should be applied. To  
enableBurstModeoperation,simplyfloattheMODE_PLLIN  
pin. During Burst Mode operation, the peak current of the  
inductorissettoapproximately30%ofthemaximumpeak  
current value in normal operation even though the voltage  
at the COMP pin indicates a lower value. The voltage at the  
COMP pin drops when the inductor’s average current is  
greater than the load requirement. As the COMP voltage  
drops below 0.5V, the burst comparator trips, causing  
the internal sleep line to go high and turn off both power  
MOSFETs.  
Multiphase Operation  
For outputs that demand more than 20A of load current,  
multiple LTM4637 devices can be paralleled to provide  
more output current without increasing input and output  
ripple voltage. The MODE_PLLIN pin allows the LTM4637  
to be synchronized to an external clock and the internal  
phase-locked loop allows the LTM4637 to lock onto input  
clock phase as well. The f resistor is selected for nor-  
SET  
mal frequency, then the incoming clock can synchronize  
the device over the specified range. See Figure 24 for a  
synchronizing example circuit.  
In sleep mode, the internal circuitry is partially turned  
off, reducing the quiescent current. The load current is  
now being supplied from the output capacitors. When the  
output voltage drops, causing COMP to rise, the internal  
sleep line goes low, and the LTM4637 resumes normal  
operation. The next oscillator cycle will turn on the top  
power MOSFET and the switching cycle repeats.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
pacitors. The RMS input ripple current is reduced by, and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used. See Application Note 77.  
Pulse-Skipping Mode Operation  
Inapplicationswherelowoutputrippleandhighefficiency  
at intermediate currents are desired, pulse-skipping  
mode should be used. Pulse-skipping operation allows  
the LTM4637 to skip cycles at low output loads, thus  
increasing efficiency by reducing switching loss. Tying  
The LTM4637 device is an inherently current mode con-  
trolled device, so parallel modules will have good current  
sharing. This will balance the thermals in the design. Tie  
the COMP and V pins of each LTM4637 together to  
FB  
the MODE_PLLIN pin to INTV enables pulse-skipping  
CC  
share the current evenly. Figure 24 shows a schematic of  
operation. With pulse-skipping mode at light load, the  
internalcurrentcomparatormayremaintrippedforseveral  
the parallel design.  
4637f  
11  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
Input RMS Ripple Current Cancellation  
inductor current to about 30% to 40% of maximum load  
current. For output voltages from 1.5V to 1.8V, 350kHz is  
optimal. For output voltages from 2.5V to 5V, 500kHz is  
optimal. See efficiency graphs for optimal frequency set  
point. Limit 5V output to 15A.  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases  
(see Figure 2).  
The LTM4637 can be synchronized from 250kHz to  
800kHz with an input clock that has a high level above  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
PLL, Frequency Adjustment and Synchronization  
TheLTM4637switchingfrequencyissetbyaresistor(R  
)
)
fSET  
from the f pin to signal ground. A 10µA current (I  
SET  
FREQ  
flowing out of the f pin through R  
develops a volt-  
SET  
fSET  
age on f . R  
can be calculated as:  
SET fSET  
FREQ  
500kHz / V  
1
RfSET  
=
+ 0.2V  
10µA  
0
0.5  
1
1.5  
2
2.5  
4637 F03  
The relationship of f voltage to switching frequency is  
SET  
f
PIN VOLTAGE (V)  
SET  
shown in Figure 3. For low output voltages from 0.6V to  
1.2V, 250kHz operation is an optimal frequency for the  
best power conversion efficiency while maintaining the  
Figure 3. Relationship Between Switching  
Frequency and Voltage at the fSET Pin  
0.60  
1 PHASE  
2 PHASE  
0.55  
3 PHASE  
4 PHASE  
6 PHASE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
4637 F02  
OUT IN  
Figure 2. Normalized Input RMS Ripple Current vs Duty Cycle for One to Six µModule Regulators (Phases)  
4637f  
12  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
2V and a low level below 0.8V. See the Typical Applica-  
tionssectionforsynchronizationexamples.TheLTM4637  
minimum on-time is limited to approximately 100ns.  
Guardband the on-time to 110ns. The on-time can be  
calculated as:  
TRACK/SS pin. As mentioned above, the TRACK/SS pin  
has a control range from 0V to 0.6V. The master’s  
TRACK/SS pin slew rate is directly equal to the master’s  
output slew rate in volts/time. The equation:  
MR  
60.4k= RTB  
1
VOUT  
VIN  
tON(MIN)  
=
SR  
FREQ  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in volts/time. When coincident  
Output Voltage Tracking  
tracking is desired, then MR and SR are equal, thus R  
TB  
Output voltage tracking can be programmed externally  
using the TRACK/SS pin. The output can be tracked up  
and down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider  
to implement coincident tracking. The LTM4637 uses an  
accurate 60.4k resistor internally for the top feedback  
resistor.Figure4showsanexampleofcoincidenttracking.  
is equal to 60.4k. R is derived from equation:  
TA  
0.6V  
RTA =  
VFB VFB VTRACK  
+
60.4k RFB  
RTB  
where V is the feedback voltage reference of the regula-  
FB  
tor, and V  
is 0.6V. Since R is equal to the 60.4k  
TB  
TRACK  
top feedback resistor of the slave regulator in equal slew  
rate or coincident tracking, then R is equal to R with  
60.4k  
RTA  
TA  
FB  
VOUT(SLAVE) = 1+  
VTRACK  
V
= V  
. Therefore R = 60.4k, and R = 60.4k in  
FB  
TRACK TB TA  
Figure 4.  
V
V
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.6V, or the internal  
TRACK  
TRACK  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR  
TB  
reference voltage. When the master’s output is divided  
down with the same resistor values used to set the slave’s  
output, then the slave will coincident track with the master  
until it reaches its final value. The master will continue  
to its final value from the slave’s regulation point (see  
is slower than MR. Make sure that the slave supply slew  
rate is chosen to be fast enough so that the slave output  
voltage will reach its final value before the master output.  
For example, MR = 1.5V/ms, and SR = 1.2V/ms. Then R  
TB  
Figure 5). Voltage tracking is disabled when V  
is  
= 75k. Solve for R to equal 51.1k.  
TRACK  
TA  
more than 0.6V. R in Figure 4 will be equal to R for  
TA  
FB  
For applications that do not require tracking or sequenc-  
coincident tracking.  
ing, simply tie the TRACK/SS pin to INTV to let RUN  
CC  
The TRACK/SS pin of the master can be controlled by an  
externalramporthesoft-startfunctionofthatregulatorcan  
be used to develop that master ramp. The LTM4637 can  
be used as a master by setting the ramp rate on its track  
pin using a soft-start capacitor. A 1.2µA current source  
is used to charge the soft-start capacitor. The following  
equation can be used:  
control the turn on/off. When the RUN pin is below  
its threshold or the V undervoltage lockout, then  
IN  
TRACK/SS is pulled low.  
Overcurrent and Overvoltage Protection  
The LTM4637 has overcurrent protection (OCP) in a  
short circuit. The internal current comparator threshold  
folds back during a short to reduce the output current. An  
overvoltage condition (OVP) above 10% of the regulated  
outputvoltagewillforcethetopMOSFEToffandthebottom  
MOSFETonuntiltheconditioniscleared.Foldbackcurrent  
CSS  
1.2µA  
tSOFT-START = 0.6V •  
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
limiting is disabled during soft-start or tracking start-up.  
4637f  
13  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
2.2µF  
V
IN  
4.5V TO 16V  
C
IN1  
22µF  
16V  
×4  
SOFT-START  
CAPACITOR  
PGOOD  
V
EXTV  
INTV  
CC CC  
IN  
V
1.5V  
20A  
OUT2  
COMP  
V
C
OUT  
OUT_LCL  
R2  
10k  
SS  
C11  
C8  
+
TRACK/SS  
RUN  
V
100µF  
6.3V  
×2  
470µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4637  
330pF  
f
V
OSNS  
SET  
R4  
75k  
MODE_PLLIN  
V
OSNS  
TEMP  
SGND  
V
FB  
GND  
R
FB1  
40.2k  
2.2µF  
V
IN  
4.5V TO 16V  
C
IN2  
MASTER RAMP  
OR OUTPUT  
22µF  
16V  
×4  
PGOOD  
V
EXTV  
INTV  
CC CC  
IN  
V
1.2V  
20A  
OUT1  
R
60.4k  
TB  
R
TA  
COMP  
V
OUT  
OUT_LCL  
C6  
C4  
60.4k  
+
R1  
10k  
100µF  
6.3V  
×2  
TRACK/SS  
RUN  
V
470µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4637  
330pF  
f
V
OSNS  
SET  
R3  
50k  
MODE_PLLIN  
V
OSNS  
TEMP  
V
FB  
SGND  
GND  
R
FB  
60.4k  
4637 F04  
Figure 4. Dual Outputs (1.5V and 1.2V) with Tracking  
Temperature Monitoring  
Measuring the absolute temperature of a diode is pos-  
sible due to the relationship between current, voltage  
and temperature described by the classic diode equation:  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
VD  
η V  
ID = IS e  
T   
or  
4637A F05  
TIME  
I
VD = η VT ln D  
Figure 5. Output Voltage Coincident Tracking Characteristics  
IS  
where I is the diode current, V is the diode voltage, η is  
D
D
the ideality factor (typically close to 1.0) and I (satura-  
S
tion current) is a process dependent parameter. V can  
T
be broken out to:  
k T  
q
VT =  
4637f  
14  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
where T is the diode junction temperature in Kelvin, q is  
the electron charge and k is Boltzmann’s constant. V is  
To obtain a linear voltage proportional to temperature  
we cancel the I variable in the natural logarithm term to  
T
S
approximately 26mV at room temperature (298K) and  
scales linearly with Kelvin temperature. It is this linear  
temperature relationship that makes diodes suitable  
remove the I dependency from the following equation.  
S
This is accomplished by measuring the diode voltage at  
two currents I , and I , where I = 10 • I ),  
1
2
1
2
temperature sensors. The I term in the equation above  
S
Subtracting we get:  
is the extrapolated current through a diode junction when  
I1  
VD = T(KELVIN)KD ln T(KELVIN)KD ln  
IS  
I2  
IS  
the diode has zero volts across the terminals. The I term  
S
varies from process to process, varies with temperature,  
and by definition must always be less than I . Combining  
D
Combining like terms, then simplifying the natural log  
terms yields:  
all of the constants into one term:  
η k  
q
KD =  
V = T(KELVIN) • K In(10)  
D
D
and redefining constant:  
−5  
where K = 8.62 , and knowing ln(I /I ) is always posi-  
D
D S  
198µV  
tive because I is always greater than I , leaves us with  
the equation that:  
D
S
K'D = KD ln(10) =  
K
I
IS  
VD = T(KELVIN)KD ln D  
yields:  
V = K' T(KELVIN)  
D
D
where V appears to increase with temperature. It is com-  
Solving for temperature:  
D
mon knowledge that a silicon diode biased with a current  
source has an approximate –2mV/°C temperature rela-  
tionship (Figure 6), which is at odds with the equation. In  
VD  
K'D  
T(KELVIN) =  
,
T(KELVIN) = [°C]+ 273.15,  
[°C]= T(KELVIN)273.15  
fact, the I term increases with temperature, reducing the  
S
ln(I /I ) absolute value yielding an approximate –2mV/°C  
D S  
composite diode voltage slope.  
means that if we take the difference in voltage across the  
diode measured at two currents with a ratio of 10, the  
resulting voltage is 198µV per Kelvin of the junction with  
a zero intercept at 0 Kelvin.  
1.0  
I
I
= 100µA  
= 10µA  
D
D
0.8  
ThediodeconnectedPNPtransistorattheTEMPpincanbe  
used to monitor the internal temperature of the LTM4637.  
Ageneraltemperaturemonitorcanbeimplementedbycon-  
∆V  
D
0.6  
0.4  
nectingaresistorbetweenTEMPandV tosetthecurrent  
IN  
to100µA, andthenmonitoringthediodevoltagedropwith  
temperature. A more accurate temperature monitor can  
be achieved with a circuit injecting two currents that are  
at a 10:1 ratio. See Figure 22 for an example.  
–173  
–73  
27  
127  
TEMPERATURE (°C)  
4636 F06  
Figure 6. Diode Voltage VD vs Temperature  
T(°C) for Different Bias Currents  
4637f  
15  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
Overtemperature Protection  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configuration  
section of the data sheet are consistent with those param-  
eters defined by JESD51-12 and are intended for use with  
finiteelementanalysis(FEA)softwaremodelingtoolsthat  
leverage the outcome of thermal modeling, simulation,  
and correlation to hardware evaluation performed on a  
µModule package mounted to a hardware test board.  
The motivation for providing these thermal coefficients  
in found in JESD 51-12 (“Guidelines for Reporting and  
Using Electronic Package Thermal Information”).  
The internal overtemperature protection monitors the  
internal temperature of the module and shuts off the  
regulator at ~130°C to 137°C. Once the regulator cools  
down the regulator will restart.  
Run Enable  
The RUN pin is used to enable the power module or se-  
quence the power module. The threshold is 1.25V, and  
the pin has an internal 5.1V Zener to protect the pin. The  
RUN pin can be used as an undervoltage lockout (UVLO)  
function by connecting a resistor divider from the input  
supply to the RUN pin:  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to predict the  
µModule regulator’s thermal performance in their appli-  
cation at various electrical and environmental operating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figurationsectionare,inandofthemselves,notrelevantto  
providing guidance of thermal performance; instead, the  
derating curves provided in this data sheet can be used  
in a manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
V
UVLO  
= ((R1+R2)/R2) • 1.25V  
See Figure 1, Simplified Block Diagram.  
INTV Regulator  
CC  
The LTM4637 has an internal low dropout regulator from  
V
called INTV . This regulator output has a 2.2µF  
IN  
CC  
ceramic capacitor internal. An additional 2.2µF ceramic  
capacitor is needed on this pin to ground. This regulator  
powers the internal controller and MOSFET drivers. The  
gate driver current is ~20mA for 750kHz operation. The  
regulator loss can be calculated as:  
The Pin Configuration section gives four thermal coeffi-  
cients explicitly defined in JESD 51-12; these coefficients  
are quoted or paraphrased below:  
(V – 5V) • 20mA = P  
IN  
LOSS  
EXTV external voltage source ≥ 4.7V can be applied to  
CC  
1
θ , the thermal resistance from junction to ambient, is  
JA  
thispintoeliminatetheinternalINTV LDOpowerlossand  
CC  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted  
to a 95mm × 76mm PCB with four layers.  
increase regulator efficiency. A 5V supply can be applied  
to run the internal circuitry and power MOSFET driver. If  
unused, leave pin floating. EXTV must be less than V  
CC  
IN  
at all times during power-on and power-off sequences.  
Stability Compensation  
2
θ
, the thermal resistance from junction to the  
The LTM4637 has already been internally compensated  
for all output voltages. Table 5 is provided for most ap-  
plication requirements. LTpowerCAD is available for other  
control loop optimization.  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottomofthepackage.InthetypicalµModuleregulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment. As a result, this thermal resistance value  
may be useful for comparing packages but the test  
conditionsdon’tgenerallymatchtheuser’sapplication.  
4637f  
16  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
3
θ
, the thermal resistance from junction to top of  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetopof  
the package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
for θ  
and θ  
, respectively. In practice, power  
JCtop  
JCbottom  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
Within the LTM4637, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complicationwithoutsacrificingmodelingsimplicity—but  
alsonotignoringpracticalrealities—anapproachhasbeen  
taken using FEA software modeling along with laboratory  
testing in a controlled-environment chamber to reason-  
ably define and correlate the thermal resistance values  
supplied in this data sheet: (1) Initially, FEA software is  
used to accurately build the mechanical geometry of the  
LTM4637 and the specified PCB with all of the correct  
materialcoefficientsalongwithaccuratepowerlosssource  
definitions; (2) this model simulates a software-defined  
JEDECenvironmentconsistentwithJESD51-12topredict  
powerlossheatflowandtemperaturereadingsatdifferent  
interfacesthatenablethecalculationoftheJEDEC-defined  
thermalresistancevalues;(3)the modeland FEA software  
isusedtoevaluatetheLTM4637withheatsinkandairflow;  
(4) having solved for and analyzed these thermal resis-  
tance values and simulated various operating conditions  
in the software model, a thorough laboratory evaluation  
replicates the simulated conditions with thermocouples  
As in the case of θ  
, this value may be useful  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
JCbottom  
4
θ , the thermal resistance from junction to the printed  
JB  
circuitboard,isthejunction-to-boardthermalresistance  
where almost all of the heat flows through the bottom  
oftheµModulepackageandintotheboard, andisreally  
the sum of the θ  
and the thermal resistance of  
JCbottom  
the bottom of the part through the solder joints and a  
portionoftheboard.Theboardtemperatureismeasured  
a specified distance from the package.  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 7; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule package.  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD 51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operatingconditionsofaµModuleregulator. Forexample,  
in normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
JUNCTION-TO-AMBIENT THERMAL RESISTANCE COMPONENTS  
JUNCTION-TO-CASE (TOP)  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
A
t
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4637 F07  
µMODULE DEVICE  
Figure 7. Graphical Representation of JESD 51-12 Thermal Coefficients  
4637f  
17  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
within a controlled-environment chamber while operat-  
ing the device at the same power loss as that which was  
simulated. The outcome of this process and due diligence  
yields the set of derating curves shown in this data sheet.  
module loss as ambient temperature is increased.  
The monitored junction temperature of 115°C minus  
the ambient operating temperature specifies how much  
module temperature rise can be allowed. As an example in  
Figure 13 the load current is derated to ~17A at ~80°C with  
no air or heat sink and the power loss for the 12V to 1.0V  
at17Aoutputisabout3.36W. The3.36Wlossiscalculated  
with the ~2.8W room temperature loss from the 12V to  
1.0V power loss curve at 17A, and the 1.2 multiplying  
factor at 80°C ambient. If the 80°C ambient temperature  
is subtracted from the 115°C junction temperature, then  
the difference of 35°C divided by 3.36W equals a 10°C/W  
The 1V, 2.5V and 5V power loss curves in Figures 8 to 10  
can be used in coordination with the load current derating  
curves in Figures 11 to 20 for calculating an approximate  
θ thermal resistance for the LTM4637 with various heat  
JA  
sinking and airflow conditions. The power loss curves  
are taken at room temperature, and are increased with  
multiplicativefactorsaccordingtotheambienttemperature.  
These approximate factors are: 1 for 40°C; 1.05 for 50°C;  
1.1 for 60°C; 1.15 for 70°C; 1.2 for 80°C; 1.25 for 90°C; 1.3  
for 100°C; 1.35 for 110°C and 1.4 for 120°C. The derating  
curves are plotted with the output current starting at 20A  
andtheambienttemperatureat~40°C.Theoutputvoltages  
are 1V, 2.5Vand5V. Thesearechosento includethelower,  
middle and higher output voltage ranges for correlating  
the thermal resistance. Thermal models are derived  
from several temperature measurements in a controlled  
temperature chamber along with thermal modeling  
analysis. The junction temperatures are monitored while  
ambienttemperatureisincreasedwithandwithoutairflow.  
Thepowerlossincreasewithambienttemperaturechange  
is factored into the derating curves. The junctions are  
maintained at ~115°C maximum while lowering output  
current or power with increasing ambient temperature.  
The decreased output current will decrease the internal  
θ thermal resistance. Table 2 specifies a 9.5°C/W value  
JA  
which is very close. Table 2 provides equivalent thermal  
resistancesfor1.0V,2.5Vand5Voutputswithandwithout  
airflowandheatsinking.Thederivedthermalresistancesin  
Tables2thru 4for thevarious conditionscanbemultiplied  
by the calculated power loss as a function of ambient  
temperature to derive temperature rise above ambient,  
thus maximum junction temperature. Room temperature  
power loss can be derived from the efficiency curves  
in the Typical Performance Characteristics section and  
adjustedwiththeaboveambienttemperaturemultiplicative  
factors. The printed circuit board is a 1.6mm thick four  
layer board withtwo ounce copper for the two outer layers  
and one ounce copper for the two inner layers. The PCB  
dimensions are 95mm × 76mm. The BGA heat sinks are  
listed in Table 6.  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
5
4
12V TO 1V P  
LOSS  
12V TO 5V P  
LOSS  
12V TO 2.5V P  
LOSS  
3
2
1
0
5V TO 2.5V P  
LOSS  
8V TO 5V P  
LOSS  
5V TO 1V P  
LOSS  
10  
5
OUTPUT CURRENT (A)  
10  
5
OUTPUT CURRENT (A)  
0
15  
20  
0
15  
20  
5
10  
OUTPUT CURRENT (A)  
20  
0
15  
4637 F08  
4637 F09  
4637 F10  
Figure 10. 5VOUT Power Loss  
Figure 9. 2.5VOUT Power Loss  
Figure 8. 1VOUT Power Loss  
4637f  
18  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
25  
25  
25  
20  
15  
10  
5
20  
20  
15  
15  
10  
5
10  
5
0 LFM  
0 LFM  
0 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
0
0
0
40 50 60 70 80 90 100 110 120 130  
TEMPERATURE (°C)  
40 50 60 70 80 90 100 110 120 130  
TEMPERATURE (°C)  
80  
40 50 60 70  
90 100 110 120  
TEMPERATURE (°C)  
4637 F11  
4637 F12  
4637 F13  
Figure 11. 5VIN to 1.0VOUT No Heat Sink  
Figure 13. 12VIN to 1.0VOUT No Heat Sink  
Figure 12. 5VIN to 1.0VOUT with Heat Sink  
25  
20  
15  
10  
25  
20  
15  
10  
25  
20  
15  
10  
5
5
5
0 LFM  
200 LFM  
0 LFM  
200 LFM  
0 LFM  
200 LFM  
400 LFM  
0
40 50 60 70  
400 LFM  
0
40 50 60 70  
400 LFM  
0
40 50 60 70  
80  
80  
80  
90 100 110 120  
90 100 110 120  
90 100 110 120  
TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4637 F14  
4637 F15  
4637 F16  
Figure 14. 12VIN to 1.0VOUT with Heat Sink  
Figure 15. 5VIN to 2.5VOUT No Heat Sink Figure 16. 5VIN to 2.5VOUT with Heat Sink  
25  
20  
15  
10  
25  
20  
15  
10  
5
5
0 LFM  
200 LFM  
0 LFM  
200 LFM  
400 LFM  
0
40 50 60 70  
400 LFM  
0
40 50 60 70  
80  
80  
90 100 110 120  
90 100 110 120  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4637 F17  
4637 F18  
Figure 17. 12VIN to 2.5VOUT No Heat Sink  
Figure 18. 12VIN to 2.5VOUT with Heat Sink  
4637f  
19  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
25  
25  
20  
15  
20  
15  
10  
10  
5
5
0 LFM  
0 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
0
0
20 30 40 50 50 70 80 90 100 110 120  
20 30 40 50 50 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
4637 F20  
AMBIENT TEMPERATURE (°C)  
4637 F19  
Figure 19. 12VIN to 5VOUT No Heat Sink, EXTVCC = 5V  
(Limit 5V Output to 15A)  
Figure 20. 12VIN to 5VOUT with Heat Sink, EXTVCC = 5V  
(Limit 5V Output to 15A)  
Table 2. 1V Output  
DERATING  
CURVE  
POWER LOSS  
AIRFLOW  
V
CURVE  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
(LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
9.5  
7.5  
IN  
Figures 11, 13  
Figures 11, 13  
Figures 11, 13  
Figures 12, 14  
Figures 12, 14  
Figures 12, 14  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
0
200  
400  
0
None  
None  
6.5  
8
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
6.0  
5.0  
Table 3. 2.5V Output  
DERATING  
CURVE  
POWER LOSS  
CURVE  
AIRFLOW  
(LFM)  
V
HEAT SINK  
None  
θ
JA  
(°C/W)  
9.5  
7.5  
IN  
Figures 15, 17  
Figures 15, 17  
Figures 15, 17  
Figures 16, 18  
Figures 16, 18  
Figures 16, 18  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
5V, 12V  
Figure 9  
Figure 9  
Figure 9  
Figure 9  
Figure 9  
Figure 9  
0
200  
400  
0
None  
None  
6.5  
8
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
200  
400  
6.0  
5.0  
Table 4. 5V Output (5V Output Connected to EXTVCC Pin)  
DERATING  
CURVE  
POWER LOSS  
CURVE  
AIRFLOW  
(LFM)  
V
HEAT SINK  
None  
θ
JA  
(°C/W)  
9.5  
IN  
Figures 19  
Figures 19  
Figures 19  
Figures 20  
Figures 20  
Figures 20  
12V  
12V  
12V  
12V  
12V  
12V  
Figure 10  
Figure 10  
Figure 10  
Figure 10  
Figure 10  
Figure 10  
0
200  
400  
0
None  
8.0  
None  
7.0  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
8.0  
200  
400  
6.5  
5.5  
4637f  
20  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
Table 5. Output Voltage Response vs Component Matrix (Refer to Figure 22) 0A to 10A Load Step  
C
C
AND  
C
OUT2  
VENDOR  
AND  
OUT1  
OUT1  
OUT2  
CERAMIC  
C
BULK  
C
IN  
VENDOR  
VALUE  
PART NUMBER  
VALUE  
PART NUMBER VENDOR VALUE  
PART NUMBER  
25SVP56M  
TDK  
100µF 6.3V C4532X5ROJ107MZ Sanyo POSCAP 1000µF 2.5V 2R5TPD1000M5  
100µF 6.3V GRM32ER60J107M Sanyo POSCAP 470µF 2.5V 2R5TPD470M5  
Sanyo 56µF 25V  
TDK 22µF 16V  
Murata  
C3216X651C226M  
Sanyo POSCAP 470µF 6.3V  
6TPD470M5  
Murata 22µF 16V GRM31CR61C226KE15L  
PEAK-TO-PEAK  
LOAD  
V
C
C
C
(CERAMIC)  
OUT1  
C
C
(pF)  
150  
V
DROP  
(mV)  
65  
DEVIATION  
(mV)  
RECOVERY STEP  
R
FB  
FREQ  
OUT  
IN  
IN  
OUT2  
AND C  
FF  
COMP  
IN  
(V)  
(V) (CERAMIC) (BULK)  
(BULK)  
(pF)  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
47  
TIME (µs) (A/µs) (kΩ) (kHz)  
1
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
7,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
7,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
7,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
7,12  
5,12  
5,12  
5,12  
5,12  
5,12  
5,12  
7,12  
123  
123  
120  
120  
130  
150  
195  
100  
100  
100  
110  
120  
130  
165  
150  
150  
140  
130  
130  
140  
190  
190  
190  
180  
190  
200  
250  
310  
200  
200  
200  
225  
250  
340  
450  
30  
30  
50  
60  
70  
75  
80  
30  
30  
50  
60  
70  
75  
80  
30  
30  
50  
60  
70  
75  
80  
30  
30  
50  
60  
70  
75  
80  
35  
35  
35  
35  
40  
40  
60  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
90.6  
60.4  
40.2  
30.1  
19.1  
13.3  
8.25  
90.6  
60.4  
40.2  
30.1  
19.1  
13.3  
8.25  
90.6  
60.4  
40.2  
30.1  
19.1  
13.3  
8.25  
90.6  
60.4  
40.2  
30.1  
19.1  
13.3  
8.25  
90.6  
60.4  
40.2  
30.1  
19.1  
13.3  
8.25  
250  
250  
350  
350  
450  
600  
600  
250  
250  
350  
350  
450  
600  
600  
250  
250  
350  
350  
450  
600  
600  
250  
250  
350  
350  
450  
600  
600  
250  
250  
350  
350  
450  
600  
600  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
22µF × 4  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 3  
100µF × 2, 470µF × 2  
100µF × 2, 470µF × 2  
100µF × 2, 470µF × 2  
100µF × 2, 470µF × 2  
100µF × 2, 470µF × 2  
100µF × 2, 470µF × 2  
100µF × 2, 470µF × 2  
100µF × 4, 470µF × 1  
100µF × 4, 470µF × 1  
100µF × 4, 470µF × 1  
100µF × 4, 470µF × 1  
100µF × 4, 470µF × 1  
100µF × 4, 470µF × 1  
100µF × 4, 470µF × 1  
100µF × 5  
1.2  
1.5  
1.8  
2.5  
3.3  
5
150  
65  
150  
65  
150  
65  
150  
65  
150  
75  
150  
100  
50  
1
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1.2  
1.5  
1.8  
2.5  
3.3  
5
50  
50  
65  
65  
70  
85  
1
75  
1.2  
1.5  
1.8  
2.5  
3.3  
5
75  
70  
65  
65  
70  
100  
95  
1
1.2  
1.5  
1.8  
2.5  
3.3  
5
47  
95  
47  
90  
47  
95  
47  
100  
125  
155  
100  
100  
100  
112  
125  
170  
225  
47  
47  
1
47  
1.2  
1.5  
1.8  
2.5  
3.3  
5
47  
100µF × 5  
100µF × 5  
100µF × 5  
100µF × 5  
100µF × 5  
100µF × 5  
47  
47  
47  
47  
47  
Bulk capacitance is optional if V has very low input impedance.  
IN  
4637f  
21  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
Table 6. Recommended Heat Sinks  
HEAT SINK MANUFACTURER  
AAVID Thermalloy  
PART NUMBER  
WEBSITE  
375424B00034G  
www.aavidthermalloy.com  
www.coolinnovations.com  
Cool Innovations  
4-050503P to 4-050508P  
Safety Considerations  
Use large PCB copper areas for high current paths,  
including V , GND and V . It helps to minimize the  
IN  
OUT  
TheLTM4637doesnotprovidegalvanicisolationfromV  
IN  
PCB conduction loss and thermal stress.  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
Place high frequency ceramic input and output  
tobeprovidedtoprotecteachunitfromcatastrophicfailure.  
capacitors next to the V , GND and V  
pins to  
IN  
OUT  
minimize high frequency noise.  
The fuse or circuit breaker should be selected to limit the  
current to the regulator during overvoltage in case of an  
internaltopMOSFETfault. IftheinternaltopMOSFETfails,  
then turning it off will not resolve the overvoltage, thus  
the internal bottom MOSFET will turn on indefinitely trying  
to protect the load. Under this fault condition, the input  
voltage will source very large currents to ground through  
the failed internal top MOSFET and enabled internal bot-  
tom MOSFET. This can cause excessive heat and board  
damage depending on how much power the input voltage  
can deliver to this system. A fuse or circuit breaker can be  
used as a secondary fault protector in this situation. The  
LTM4637doessupportovervoltageprotection,overcurrent  
protection and overtemperature protection.  
Place a dedicated power ground layer underneath the  
unit.  
To minimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
Do not put vias directly on the pad, unless they are  
capped or plated over.  
Place test points on signal pins for testing.  
Use a separated SGND ground copper area for  
components connected to signal pins. Connect the  
SGND to GND underneath the unit.  
Forparallelmodules,tietheCOMPandV pinstogether.  
FB  
Layout Checklist/Example  
Use an internal layer to closely connect these pins  
together.  
The high integration of the LTM4637 makes the PCB  
board layout very simple and easy. However, to optimize  
its electrical and thermal performance, some layout  
considerations are still necessary.  
Figure21givesagoodexampleoftherecommendedlayout.  
4637f  
22  
For more information www.linear.com/LTM4637  
LTM4637  
APPLICATIONS INFORMATION  
V
IN  
CONTROL  
C
C
IN  
IN  
GND  
SIGNAL  
GROUND  
C
C
OUT  
OUT  
V
V
OUT  
OUT  
4637 F21  
Figure 21. Recommended PCB Layout  
TYPICAL APPLICATIONS  
INTV  
CC  
0.1µF  
V
CC  
1.8V  
+
D
D
V
REF  
470pF  
LTC2997  
4mV/K  
V
PTAT  
CC  
GND  
INTV  
V
IN  
4.5V TO 20V  
C
IN  
2.2µF  
22µF  
25V  
×4  
PGOOD  
V
EXTV  
INTV  
CC  
IN  
CC  
C7  
0.1µF  
V
1.5V  
20A  
OUT  
R1  
10k  
COMP  
V
OUT  
V
OUT_LCL  
+
C
*
C
*
OUT1  
OUT2  
TRACK/SS  
RUN  
470µF  
6.3V  
×2  
100µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4637  
C
FF  
330pF  
f
V
SET  
OSNS  
CONTINUOUS  
MODE  
R3  
75k  
MODE_PLLIN  
V
OSNS  
TEMP  
V
FB  
SGND GND  
R
FB  
40.2k  
4627 F22  
*SEE TABLE 5  
Figure 22. 4.5V to 20VIN, 1.5V at 20A Design  
4637f  
23  
For more information www.linear.com/LTM4637  
LTM4637  
TYPICAL APPLICATIONS  
4637f  
24  
For more information www.linear.com/LTM4637  
LTM4637  
TYPICAL APPLICATIONS  
2.2µF  
V
IN  
5V TO 16V  
INTV  
C20  
22µF  
16V  
C22  
22µF  
16V  
CC  
V
OUT  
1.2V AT 80A  
V
EXTV  
INTV  
CC CC  
PGOOD  
IN  
C28  
R1  
10k  
0.1µF  
V
COMP  
OUT  
C24  
C21  
+
TRACK/SS  
RUN  
V
100µF  
6.3V  
×2  
470µF  
6.3V  
×2  
OUT_LCL  
DIFF_OUT  
+
LTM4637  
470pF  
f
V
OSNS  
SET  
MODE_PLLIN  
V
OSNS  
V
TEMP  
50k  
50k  
50k  
50k  
FB  
SGND  
GND  
R
FB2  
15k  
INTV  
CC  
R2  
200k  
4-PHASE CLOCK  
+
SET  
LTC6902  
V
2.2µF  
C2  
1µF  
MOD  
DIV  
C14  
22µF  
16V  
C18  
22µF  
16V  
22µF  
25V  
GND  
PH  
V
EXTV  
INTV  
PGOOD  
CC  
IN  
CC  
OUT4  
OUT3  
OUT1  
OUT2  
COMP  
V
OUT  
OUT_LCL  
C15  
C18  
TRACK/SS  
RUN  
V
+
470µF  
6.3V  
×2  
100µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4637  
f
V
SET  
OSNS  
MODE_PLLIN  
V
OSNS  
V
TEMP  
FB  
SGND  
GND  
2.2µF  
C7  
22µF  
16V  
C9  
22µF  
16V  
V
EXTV  
INTV  
PGOOD  
CC  
IN  
CC  
COMP  
V
OUT  
OUT_LCL  
C8  
C11  
TRACK/SS  
RUN  
V
+
470µF  
6.3V  
×2  
100µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4637  
f
V
SET  
OSNS  
MODE_PLLIN  
V
OSNS  
V
TEMP  
SGND  
FB  
GND  
2.2µF  
C3  
22µF  
16V  
C1  
22µF  
16V  
22µF  
25V  
V
EXTV  
INTV  
PGOOD  
CC  
IN  
CC  
COMP  
V
OUT  
OUT_LCL  
C4  
C6  
TRACK/SS  
RUN  
V
+
470µF  
6.3V  
×2  
100µF  
6.3V  
×2  
DIFF_OUT  
+
LTM4637  
f
V
SET  
OSNS  
MODE_PLLIN  
V
OSNS  
V
TEMP  
FB  
SGND  
GND  
4637 F24  
Figure 24. 1.2V, 80A, Current Sharing with 4-Phase Operation  
4637f  
25  
For more information www.linear.com/LTM4637  
LTM4637  
PACKAGE DESCRIPTION  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
Pin Assignment Table (Arranged by Pin Number)  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION  
PIN ID  
C1  
FUNCTION  
PIN ID  
D1  
FUNCTION PIN ID FUNCTION  
PIN ID  
F1  
FUNCTION  
GND  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
V
V
V
V
V
V
V
V
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
E1  
E2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
A2  
B2  
C2  
D2  
F2  
GND  
A3  
B3  
C3  
D3  
E3  
F3  
GND  
A4  
B4  
C4  
D4  
E4  
F4  
GND  
A5  
B5  
C5  
D5  
E5  
F5  
GND  
A6  
B6  
C6  
D6  
E6  
F6  
GND  
A7  
INTV  
B7  
GND  
C7  
GND  
D7  
E7  
F7  
GND  
CC  
A8  
MODE_PLLIN  
TRACK/SS  
RUN  
B8  
C8  
D8  
GND  
E8  
F8  
GND  
A9  
B9  
GND  
C9  
GND  
MTP3  
MTP4  
MTP5  
D9  
INTV  
E9  
GND  
F9  
GND  
CC  
A10  
A11  
A12  
B10  
B11  
B12  
C10  
C11  
C12  
D10  
D11  
D12  
TEMP  
MTP6  
MTP7  
E10  
E11  
E12  
F10  
F11  
F12  
COMP  
MTP2  
PGOOD  
MTP1  
f
EXTV  
V
FB  
SET  
CC  
PIN ID  
G1  
FUNCTION  
GND  
PIN ID  
H1  
FUNCTION  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PIN ID  
J1  
FUNCTION  
PIN ID  
K1  
FUNCTION PIN ID FUNCTION  
PIN ID  
M1  
FUNCTION  
V
V
V
V
V
V
V
V
V
V
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
L1  
L2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
G2  
GND  
H2  
J2  
K2  
M2  
G3  
GND  
H3  
J3  
K3  
L3  
M3  
G4  
GND  
H4  
J4  
K4  
L4  
M4  
G5  
GND  
H5  
J5  
K5  
L5  
M5  
G6  
GND  
H6  
J6  
K6  
L6  
M6  
G7  
GND  
H7  
J7  
K7  
L7  
M7  
G8  
GND  
H8  
J8  
K8  
L8  
M8  
G9  
GND  
H9  
J9  
K9  
L9  
M9  
G10  
G11  
G12  
H10  
H11  
H12  
J10  
J11  
J12  
K10  
K11  
K12  
L10  
L11  
L12  
M10  
M11  
M12  
OUT  
SGND  
PGOOD  
SGND  
SGND  
V
+
OSNS  
DIFF_OUT  
V
V
OSNS  
OUT_LCL  
PACKAGE PHOTO  
4637f  
26  
For more information www.linear.com/LTM4637  
LTM4637  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4637f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
27  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM4637  
TYPICAL APPLICATION  
1.8V at 20A Design  
5V  
C
IN  
22µF  
25V  
×4  
PGOOD  
V
EXTV  
INTV  
CC CC  
IN  
V
1.8V  
20A  
C7  
OUT  
0.1µF  
COMP  
V
OUT  
OUT_LCL  
C4  
R1  
10k  
100µF  
6.3V  
X5R  
×2  
+
TRACK/SS  
RUN  
V
C6  
470µF  
6V  
DIFF_OUT  
+
LTM4637  
47pF  
f
V
OSNS  
SET  
CONTINUOUS MODE  
R3  
75k  
MODE_PLLIN  
V
OSNS  
TEMP  
V
FB  
SGND  
GND  
R
FB  
30.1k  
4627 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Buck-Boost DC/DC µModule Family  
Ultralow Noise High V DC/DC µModule Regulator  
COMMENTS  
All Pin Compatible; Up to 5A; Up to 36V , 34V  
LTM4609  
15mm × 15mm × 2.82mm  
IN  
OUT  
LTM4612  
5A, 5V ≤ V ≤ 36V, 3.3V ≤ V  
≤ 15V, 15mm × 15mm × 2.82mm Package  
OUT  
IN  
OUT  
LTM4627  
15A DC/DC µModule Regulator  
4.5V ≤ V ≤ 20V, 0.6V ≤ V  
≤ 5V, LGA and BGA Packages  
IN  
OUT  
LTM4620  
Dual 13A, Single 26A DC/DC µModule Regulator  
Up to 100A with Four in Parallel, 4.5V ≤ V ≤ 16V, 0.6V ≤ V  
≤ 2.5V  
IN  
OUT  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
Selector Guides  
Quick Start Guide  
Demo Boards and Gerber Files  
Free Simulation Tools  
PCB Design, Assembly and Manufacturing Guidelines  
Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
4637f  
LT 0413 • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM4637  
LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

LTM4637IVPBF

20A DC/DC μModule Step-Down Regulator
Linear

LTM4638

20VIN, 8A Step-Down DC/DC μModule Regulator
ADI

LTM4639

Ultrathin, Triple Output, Step-Down μModule Regulator for DDR-QDR4 Memory
Linear

LTM4639_15

Low VIN 20A DC/DC Module Step-Down Regulator
Linear

LTM4641

38V, 10A DC/DC μModule Regulator with Advanced Input and Load Protection
Linear

LTM4641IY

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4641IY#PBF

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4641MPY

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4641MPY#PBF

LTM4641 - 38V, 10A DC/DC &#181;Module (Power Module) Regulator with Advanced Input and Load Protection; Package: BGA; Pins: 144; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4642

Dual 10A or Single 20A μModule Regulator
Linear

LTM4642EY#PBF

LTM4642 - 20VIN, Dual 4A or Single 8A DC/DC &#181;Module Regulator; Package: BGA; Pins: 56; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4642IY#PBF

LTM4642 - 20VIN, Dual 4A or Single 8A DC/DC &#181;Module Regulator; Package: BGA; Pins: 56; Temperature Range: -40&deg;C to 85&deg;C
Linear