LTM4618IVPBF [Linear]

6A DC/DC μModule Regulator with Tracking and Frequency Synchronization; 6A DC / DC微型模块稳压器,带有跟踪和频率同步
LTM4618IVPBF
型号: LTM4618IVPBF
厂家: Linear    Linear
描述:

6A DC/DC μModule Regulator with Tracking and Frequency Synchronization
6A DC / DC微型模块稳压器,带有跟踪和频率同步

稳压器
文件: 总24页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4618  
6A DC/DC µModule  
Regulator with Tracking and  
Frequency Synchronization  
FEATURES  
DESCRIPTION  
The LTM®4618 is a complete 6A output switching mode  
DC/DC power supply in a 9mm × 15mm × 4.32mm LGA  
package. Included in the package are the switching con-  
troller, power FETs, inductor and all support components.  
Operating over an input voltage range of 4.5V to 26.5V,  
the LTM4618 supports an output voltage range of 0.8V  
to 5V set by a single external resistor. Its high efficiency  
design delivers 6A continuous current (8A peak). Only a  
few input and output capacitors are needed.  
n
Complete Standalone Power Supply  
n
Wide Input Voltage Range: 4.5V to 26.5V  
n
6A DC Typical, 8A Peak Output Current  
n
0.8V to 5V Output  
Output Voltage Tracking  
±±.ꢀ5ꢁ Maꢂimum Total DC Error  
n
n
n
Current Mode Control/Fast Transient Response  
n
Phase-Lockable Fiꢂed Frequency 250kHz to ꢀ80kHz  
n
On-Board Frequency Synchronization  
Selectable Burst Mode® Operation  
n
Highswitchingfrequencyandacurrentmodearchitecture  
enable a very fast transient response to line and load  
changes without sacrificing stability. The device supports  
frequencysynchronizationandoutputvoltagetrackingfor  
supply rail sequencing. Burst Mode operation or pulse-  
skipping mode can be selected for light load operations.  
n
Power Good Voltage Indicator  
n
Output Overvoltage Protection  
n
Output Current Foldback Limiting  
n
9mm × 15mm × 4.32mm LGA Package  
APPLICATIONS  
Fault protection features include overvoltage protection,  
overcurrent protection and foldback current limit for  
short-circuit protection.  
n
Telecom and Networking Equipment  
n
Servers  
n
Storage Cards  
The LTM4618 is Pb-free and RoHS compliant.  
L, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode and μModule are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
ATCA Cards  
Industrial Equipment  
Point of Load Regulation  
n
n
n
Medical Systems  
TYPICAL APPLICATION  
2.5V/6A DC/DC Power μModule® with 6V to 26.5V Input  
Efficiency and Power Loss vs Load Current  
95  
90  
85  
80  
75  
70  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EFFICIENCY  
MODE/PLLIN INTV  
CC  
EXTV  
CC  
FREQ  
V
IN  
6V to 26.5V  
V
IN  
C
IN  
V
OUT  
2.5V/6A  
COMP  
TK/SS  
RUN  
V
OUT  
LTM4618  
C
OUT  
V
FB  
0.1μF  
28.7k  
PGOOD  
SGND  
PGND  
POWER LOSS  
4618 TA01  
12V TO 2.5V  
IN  
OUT  
OUT  
24V TO 2.5V  
IN  
0
1
2
3
4
5
6
LOAD CURRENT (A)  
4618 TA01b  
4618f  
1
LTM4618  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note ±)  
TOP VIEW  
SW  
V , SW...................................................... –0.3V to 28V  
IN  
7
INTV , RUN, EXTV , PGOOD .................... –0.3V to 6V  
CC  
CC  
V
IN  
COMP, V ................................................. –0.3V to 2.7V  
6
5
4
3
2
1
PGND  
FB  
MODE/PLLIN, TK/SS,  
EXTV  
CC  
FREQ..................................................... –0.3V to INTV  
CC  
SGND/PGND  
V
............................................................... 0.8V to 5V  
OUT  
MODE/  
PLLIN  
FREQ  
RUN  
V
OUT  
Operating Junction Temperature Range  
(Note 2)..................................................–40°C to 125°C  
Storage Temperature Range...................–55°C to 125°C  
Peak Package Body Temperature .......................... 250°C  
A
B
C
D
E
F
G
H
J
K
L
M
TK/SS COMP V PGOOD INTV  
FB CC  
LGA PACKAGE  
84-LEAD (15mm s 9mm s 4.32mm)  
= 16°C/W, Θ = 15°C/W, Θ = 4°C/W, WEIGHT = 2.3g,  
JCtop  
Θ
JA  
θ
JCbottom  
+ θ = 16°C/W, θ = BOARD-TO-AMBIENT RESISTANCE,  
JB  
BA  
BA  
θ VALUES DEFINED PER JESD51-12  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4618EV#PBF  
LTM4618IV#PBF  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTM4618V  
–40°C to 125°C  
–40°C to 125°C  
84-Lead (15mm × 9mm × 4.32mm) LGA  
84-Lead (15mm × 9mm × 4.32mm) LGA  
LTM4618V  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = ±2V, per typical application in Figure 2±.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
l
l
V
V
Input DC Voltage  
(Note 5)  
4.5  
26.5  
V
IN(DC)  
Output Voltage Total Variation with  
Line and Load  
C
C
= 10μF ×2, R = 28.0kΩ  
OUT(DC)  
IN  
FB  
= 100μF ×3 X7R Ceramic  
OUT  
2.476  
2.52  
2.557  
V
MODE/PLLIN = 0V, V  
= 2.4V  
FREQ  
OUT  
V
= 6V to 26.5V, I  
= 0A to 6A (Note 4)  
IN  
Input Specifications  
V
Undervoltage Lockout Thresholds  
Input Inrush Current at Start-Up  
V
V
Rising  
Falling  
2.00  
1.85  
2.20  
2.00  
2.35  
2.15  
V
V
IN(UVLO)  
INTVCC  
INTVCC  
I
I
= 0A, C = 10μF ×2, C  
= 100μF ×3  
INRUSH(VIN)  
OUT  
IN  
OUT  
V
= 2.5V  
OUT  
0.3  
0.2  
A
A
V
IN  
V
IN  
= 12V  
= 26.5V  
4618f  
2
LTM4618  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = ±2V, per typical application in Figure 2±.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
I
Input Supply Bias Current  
V
V
= 12V, V  
= 2.5V, I = 0A  
OUT  
OUT  
26  
20  
80  
mA  
mA  
μA  
Q(VIN)  
S(VIN)  
IN  
IN  
OUT  
= 26.5V, V  
= 2.5V, I  
= 0A  
OUT  
Shutdown, RUN = 0, V = 26.5V  
IN  
I
Input Supply Current  
V
IN  
V
IN  
= 12V, V  
= 26.5V, V  
= 2.5V, I = 6A  
OUT  
1.430  
0.675  
A
A
OUT  
= 2.5V, I  
= 6A  
OUT  
OUT  
INTV  
Internal V Voltage  
V
= 12V, V > 2V, No Load  
RUN  
4.8  
4.5  
5
5.2  
V
V
CC  
CC  
IN  
l
V
EXTV Switchover Voltage  
EXTV Ramping Positive  
4.7  
50  
EXTVCC  
CC  
CC  
VLDO External  
EXTV Voltage Drop  
INTV = 20mA, V = 5V  
EXTVCC  
100  
mV  
mV  
CC  
CC  
CC  
V
Hysteresis EXTV Hysteresis  
200  
EXTVCC  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 2.5V (Note 4)  
OUT  
0
6
A
OUT(DC)  
IN  
= 2.5V, V from 6V to 26.5V  
ΔV  
ΔV  
V
OUT  
IN  
OUT(LINE)  
l
l
I
= 0A  
0.02  
0.3  
0.04  
0.6  
%/V  
%
OUT  
V
OUT  
Load Regulation Accuracy  
Output Ripple Voltage  
V
IN  
= 12V, V  
= 2.5V, 0 to 6A (Note 4)  
OUT  
OUT(LOAD)  
V
OUT  
I
= 0A, C  
= 100μF ×3 X5R Ceramic  
OUT(AC)  
OUT  
OUT  
10  
12  
mV  
mV  
V
= 12V, V  
= 2.5V  
OUT  
IN  
IN  
V
= 26.5V, V  
= 2.5V  
OUT  
f
Output Ripple Voltage Frequency  
Turn-On Overshoot  
I
= 2A, V = 12V, V  
= 2.5V, V  
= INTV  
CC  
780  
kHz  
S
OUT  
IN  
OUT  
FREQ  
ΔV  
C
V
= 100μF ×3 X5R Ceramic  
OUT  
OUT(START)  
= 2.5V, I  
= 0A  
OUT  
OUT  
20  
20  
mV  
mV  
V
= 12V  
IN  
IN  
V
= 26.5V  
t
Turn-On Time  
C
V
= 100μF ×3 X5R Ceramic,  
START  
OUT  
OUT  
V
V
= 2.5V, I  
= 0A, TK/SS Capacitor = 0.01μF  
OUT  
0.75  
0.70  
ms  
ms  
= 12V  
IN  
IN  
= 26.5V  
Peak Deviation for Dynamic Load  
Settling Time for Dynamic Load Step  
Output Current Limit  
Load: 0% to 50% of Full Load  
ΔV  
OUTLS  
C
= 100μF ×3 X5R Ceramic, V  
= 2.5V  
= 2.5V  
OUT  
V
OUT  
OUT  
= 12V  
15  
10  
mV  
μs  
IN  
t
Load: 0% to 50% of Full Load  
SETTLE  
C
OUT  
V
= 100μF ×3 X5R Ceramic, V  
IN  
= 12V  
I
C
= 100μF ×3 X5R Ceramic  
OUT(PK)  
OUT  
11  
11  
A
A
V
= 6V, V  
= 2.5V  
IN  
OUT  
V
= 26.5V, V  
= 2.5V  
OUT  
IN  
Control Section  
V
Error Amplifier Feedback Voltage  
I
= 0A, V = 2.5V  
OUT  
0.792  
0.788  
0.8  
0.8  
0.808  
0.808  
V
V
FB  
OUT  
l
I
Error Amplifier Feedback Current  
Feedback Voltage Lockout  
Soft-Start Charge Current  
Maximum Duty Factor  
Minimum On-Time  
(Note 3)  
Measured at V  
–10  
0.86  
1.3  
–50  
0.88  
1.7  
nA  
V
FB  
V
0.84  
0.9  
OVL  
FB  
I
V
TK/SS  
= 0V  
μA  
%
TK/SS  
DF  
In Dropout (Note 3)  
(Note 3)  
97  
MAX  
ON(MIN)  
NOM  
t
f
f
90  
ns  
Nominal Frequency  
V
= 1.2V  
= 0V  
450  
210  
500  
250  
550  
290  
kHz  
kHz  
FREQ  
FREQ  
Lowest Frequency  
V
LOW  
4618f  
3
LTM4618  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = ±2V, per typical application in Figure 2±.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
700  
2.0  
TYP  
MAX UNITS  
f
Highest Frequency  
V
FREQ  
≥ 2.4V, INTV  
CC  
780  
860  
kHz  
V
HIGH  
V
V
Synchronous Clock High Level  
Synchronous Clock Low Level  
MODE/PLLIN Input Resistance  
IH(MODE/PLLIN)  
IL(MODE/PLLIN)  
0.8  
V
R
250  
kΩ  
MODE/PLLIN  
FREQ  
I
FREQ Pin  
Sinking Current  
Sourcing Current  
f
f
> f  
< f  
–13  
13  
μA  
μA  
MODE/PLLIN  
MODE/PLLIN  
OSC  
OSC  
V
V
RUN Pin On Threshold  
RUN Pin Hysteresis  
RUN Rising  
1.1  
1.22  
120  
1.35  
60.7  
V
mV  
kꢀ  
RUN  
Hysteresis  
RUN  
R
Resistor Between V  
and V Pins  
60.1  
60.4  
FBHI  
OUT  
FB  
PGOOD Output  
V
PGOOD Voltage Low  
I
= 2mA  
= 5V  
0.1  
0.3  
2
V
PGL  
PGOOD  
I
PGOOD Leakage Current  
PGOOD Trip Level  
V
μA  
PGOOD  
PGOOD  
V
PG  
V
with Respect to Set Regulated Voltage  
FB  
V
V
Ramping Negative  
Ramping Positive  
–5  
5
–7.5  
7.5  
–10  
10  
%
%
FB  
FB  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
operating junction temperature range. Note that the maximum ambient  
temperature consistent with these specifications is determined by specific  
operating conditions in conjunction with board layout, the rated package  
thermal resistance and other environmental factors.  
Note 2: The LTM4618 is tested under pulsed load conditions such that  
Note 3: 100% tested at wafer level only.  
T ≈ T . The LTM4618E is guaranteed to meet performance specifications  
J
A
Note 4: See Output Current Derating curves for different V , V  
and T .  
A
IN OUT  
over the 0°C to 125°C operating junction temperature range. Specifications  
over the full –40°C to 125°C operating junction temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4618I is guaranteed to meet specifications over the full  
Note 5: For input voltages less than 6V, tie the V , INTV and EXTV  
CC  
IN  
CC  
together. The LTM4618 will operate from 5V inputs, but V , INTV and  
IN  
CC  
EXTV need to be tied together.  
CC  
4618f  
4
LTM4618  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current with  
5VIN (CCM)  
Efficiency vs Load Current with  
±2VIN (CCM)  
Efficiency vs Load Current with  
24VIN (CCM)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
12V TO 1.2V  
12V TO 1.5V  
12V TO 2.5V  
12V TO 3.3V  
12V TO 5V  
5V TO 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
5V TO 1.2V  
OUT  
5V TO 1.5V  
OUT  
24V TO 2.5V  
24V TO 3.3V  
24V TO 5V  
OUT  
OUT  
5V TO 2.5V  
OUT  
5V TO 3.3V  
OUT  
OUT  
OUT  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4618 G01  
4618 G02  
4618 G03  
Efficiency vs Load Current with  
Different Mode Settings  
(±2V to 3.3V)  
±.2V Transient Response  
±.5V Transient Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 12V  
IN  
OUT  
= 3.3V  
I
I
OUT  
OUT  
1A/DIV  
1A/DIV  
V
V
OUT  
50mV/DIV  
OUT  
50mV/DIV  
4618 G05  
4618 G06  
50μs/DIV  
50μs/DIV  
V
C
= 12V AND V  
OUT  
= 1.2V AT 3A/μs LOAD STEP  
V
C
= 12V AND V  
OUT  
= 1.5V AT 3A/μs LOAD STEP  
OUT  
IN  
OUT  
IN  
= 2s 22μF 6.3V CERAMIC CAPACITOR  
= 2s 22μF 6.3V CERAMIC CAPACITOR  
BURST  
PULSE SKIP  
CCM  
1s 100μF 6.3V CERAMIC CAPACITOR  
1s 220μF SANYO POSCAP  
1s 100μF 6.3V CERAMIC CAPACITOR  
1s 220μF SANYO POSCAP  
0.01  
0.1  
1
LOAD CURRENT (A)  
4618 G04  
2.5V Transient Response  
3.3V Transient Response  
5V Transient Response  
I
I
I
OUT  
OUT  
OUT  
1A/DIV  
1A/DIV  
1A/DIV  
V
V
OUT  
V
OUT  
OUT  
100mV/DIV  
50mV/DIV  
50mV/DIV  
4618 G07  
4618 G08  
4618 G09  
50μs/DIV  
50μs/DIV  
50μs/DIV  
V
C
= 12V AND V  
OUT  
= 2.5V AT 3A/μs LOAD STEP  
V
C
= 12V AND V  
OUT  
= 3.3V AT 3A/μs LOAD STEP  
V
C
= 12V AND V  
OUT  
= 5V AT 3A/μs LOAD STEP  
OUT  
IN  
OUT  
IN  
OUT  
IN  
= 2s 22μF 6.3V CERAMIC CAPACITOR  
= 2s 22μF 6.3V CERAMIC CAPACITOR  
= 2s 22μF 6.3V CERAMIC CAPACITOR  
1s 100μF 6.3V CERAMIC CAPACITOR  
1s 220μF SANYO POSCAP  
1s 100μF 6.3V CERAMIC CAPACITOR  
1s 220μF SANYO POSCAP  
1s 100μF 6.3V CERAMIC CAPACITOR  
1s 220μF SANYO POSCAP  
4618f  
5
LTM4618  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up, IOUT = 0A  
Start-Up, IOUT = 6A  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
I
I
IN  
IN  
0.5A/DIV  
0.2A/DIV  
4618 G11  
4618 G10  
20ms/DIV  
= 12V AND V = 2.5V  
OUT  
20ms/DIV  
= 12V AND V = 2.5V  
OUT  
V
C
V
C
IN  
IN  
= 2s 22μF 6.3V CERAMIC,  
= 2s 22μF 6.3V CERAMIC,  
OUT  
OUT  
1s 100μF 6.3V CERAMIC AND  
1s 220μF SANYO POSCAP  
1s 100μF 6.3V CERAMIC AND  
1s 220μF SANYO POSCAP  
C
= 0.1μF  
C
= 0.1μF  
SOFT-START  
SOFT-START  
Short-Circuit Protection,  
IOUT = 0A  
Short-Circuit Protection,  
IOUT = 6A  
V
V
OUT  
1V/DIV  
OUT  
1V/DIV  
I
I
IN  
1A/DIV  
IN  
1A/DIV  
4618 G12  
4618 G13  
100μs/DIV  
100μs/DIV  
V
C
= 12V AND V  
OUT  
= 2.5V  
V
C
= 12V AND V  
OUT  
= 2.5V  
IN  
OUT  
IN  
OUT  
= 2s 22μF 6.3V CERAMIC,  
= 2s 22μF 6.3V CERAMIC,  
1s 100μF 6.3V CERAMIC AND  
1s 220μF SANYO POSCAP  
1s 100μF 6.3V CERAMIC AND  
1s 220μF SANYO POSCAP  
4618f  
6
LTM4618  
PIN FUNCTIONS  
NC (A±): No Connect. Leave floating.  
SGND (B3, C2 and C3): Signal Ground Pin. Return ground  
path for all analog and low power circuitry. Tie a single  
connection to PGND. See applications for details.  
FREQ (A2): Frequency Selection Pin. An internal low pass  
filter is tied to this pin. The frequency can be selected from  
250kHz to 780kHz by setting a voltage from this pin to  
SGND. A programming resistor divider can be used to set  
the operating frequency. See the Applications Information  
section.  
COMP (C±): Current control threshold and error ampli-  
fier compensation point. The module has been internally  
compensated for most I/O ranges.  
EXTV (C4):ExternalVoltageInput.Bypassestheinternal  
CC  
MODE/PLLIN(A3):ModeSelectionorExternalSynchroni-  
zationPin. TyingthispintoINTV enablespulse-skipping  
INTV LDOandpowerstheinternalcircuitryandMOSFET  
CC  
drivers. If a 5V source is available, the internal LDO is  
disabled, and the power dissipation is lower, especially at  
higher input voltages. See the Applications Information  
section.  
CC  
operation. Tying this pin low enables forced continuous  
modeoperation. BurstModeoperationisenabledbyoat-  
ing the pin. A clock on the pin will force the controller into  
forced continuous mode of operation and synchronize to  
the internal oscillator. The programming DC voltage has  
to be removed for clock synchronization.  
V
(D±): The negative input of the error amplifier. Inter-  
FB  
nally,thispinisconnectedtoV  
witha60.4kΩprecision  
OUT  
resistor. Different output voltages can be programmed  
PGND (BANK 2: A4, B4, D4-Dꢀ, E±-Eꢀ, F±-Fꢀ, G±-Gꢀ,  
H±-Hꢀ, J5-Jꢀ, K5, Kꢀ, L5-Lꢀ, M5-Mꢀ): Power ground  
pins for both input and output returns.  
with an additional resistor between V and SGND pins.  
FB  
See applications for details.  
PGOOD(D2):OutputVoltagePowerGoodIndicator.Open-  
drain logic output that is pulled to ground when the output  
voltage is not within 7.5% of the regulation point.  
V
IN  
(BANK ±: A5-Aꢀ, B5-Bꢀ, C5-Cꢀ): Power Input Pins.  
Apply input voltage between these pins and PGND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
INTV (D3): Internal 5V Regulator Output. This pin is for  
CC  
between V pins and PGND pins.  
IN  
additional decoupling of the 5V internal regulator.  
TK/SS(B±):OutputVoltageTrackingandSoft-StartPin.An  
internal soft-start current of 1.3μA charges the soft-start  
capacitor. See the Applications Information section.  
V
(BANK3:J±-J4,K±-K4,L±-L4,M±-M4):PowerOut-  
OUT  
put Pins. Apply output load between these pins and PGND  
pins. Recommend placing output decoupling capacitance  
directly between these pins and PGND pins.  
RUN (B2): Run Control Pin. A voltage above 1.35V on  
this pin turns on the module. Forcing this pin below 1.1V  
will shut down the output. The RUN pin has a 1μA pull-  
up current source that increases to 10μA as the RUN pin  
voltage reaches 1.5V and up to compliance. Therefore the  
pin can be left floating for normal operation. A maximum  
of 6V can be applied to the pin. A voltage divider can be  
used for a UVLO function. See the Applications Informa-  
tion section.  
SW (K6): Switching Node of the Circuit. This pin is used  
to check the switching frequency. Leave pin floating. A  
resistor-capacitor snubber can be placed from SW to  
PGND to eliminate high frequency switch node ringing.  
See the Applications Information section.  
7
BANK 2  
PGND  
BANK 1  
6
V
IN  
SW  
5
4
3
2
1
SGND/PGND  
CNTRL  
BANK 3  
V
OUT  
A
B
C
D
E
F
G
H
J
K
L
M
4618f  
7
LTM4618  
SIMPLIFIED BLOCK DIAGRAM  
≤6V V  
IN  
TIE V , INTV AND  
IN  
CC  
EXTV TOGETHER  
CC  
V
INTERNAL  
FILTER  
IN  
4.5V TO 26.5V  
+
+
1.5μF  
C
C
EXTV  
INTV  
MODE/PLLIN  
IN  
CC  
CC  
M1  
M2  
SW  
1.5μH  
TK/SS  
V
OUT  
C
SS  
2.5V/6A  
10μF  
POWER  
CONTROL  
OUT  
RUN  
PGOOD  
COMP  
PGND  
INTERNAL  
COMP  
60.4k  
INTV  
CC  
FREQ  
V
FB  
R
FB  
INTERNAL  
FILTER  
28k  
SGND  
4618 F01  
Figure ±. Simplified LTM46±8 Block Diagram  
TA = 25°C. Use Figure ± configuration.  
DECOUPLING REQUIREMENTS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
C
External Input Capacitor Requirement  
I
I
= 6A  
10  
μF  
IN  
OUT  
(V = 4.5V to 26.5V, V  
= 2.5V)  
IN  
OUT  
External Output Capacitor Requirement  
(V = 4.5V to 26.5V, V = 2.5V)  
= 6A  
200  
μF  
OUT  
OUT  
IN  
OUT  
4618f  
8
LTM4618  
OPERATION  
Power Module Description  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limitandcurrentfoldbackinashort-circuitcondition.Pull-  
ing the RUN pin below 1.1V forces the controller into its  
shutdown state, by turning off both MOSFETs. The TK/SS  
pin can be used for programming the output voltage ramp  
and voltage tracking during start-up. See the Applications  
Information section.  
TheLTM4618isastandalonenon-isolatedswitchingmode  
DC/DC power supply. It can deliver up to 6A (DC current)  
output with few external input and output capacitors. This  
module provides precisely regulated output voltages pro-  
grammable via external resistors from 0.8VDC to 5.0VDC  
over 4.5V to 26.5V input voltages. The typical application  
schematic is shown in Figure 21. For ≤6V inputs, connect  
V , INTV and EXTV together.  
IN  
CC  
CC  
The LTM4618 is internally compensated to be stable over  
all operating conditions. The Linear Technology μModule  
Power Design Tool will be provided for transient and  
TheLTM4618hasanintegratedconstantfrequencycurrent  
mode regulator and built-in power MOSFET devices with  
fast switching speed. The typical switching frequency is  
750kHz.  
stability analysis. The V pin is used to program the  
FB  
output voltage with a single external resistor to ground.  
Multiphase operation can be easily employed with the  
synchronization control.  
With current mode control and internal feedback loop  
compensation, the LTM4618 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
High efficiency at light loads can be accomplished with  
selectableBurstModeorpulse-skippingmodeoperations  
usingtheMODE/PLLINpin.Efficiencygraphsareprovided  
for light load operation in the Typical Performance Char-  
acteristics section.  
4618f  
9
LTM4618  
APPLICATIONS INFORMATION  
The typical LTM4618 application circuit is shown in  
Figure 21. External component selection is primarily  
determined by the maximum load current and output  
voltage.  
Input Capacitors  
The LTM4618 module should be connected to a low AC-  
impedance DC source. One 1.5μF input ceramic capacitor  
is included inside the module. Additional input capacitors  
are only needed if a large load step is required up to  
the 6A level. A 47μF to 100μF surface mount aluminum  
electrolytic bulk capacitor can be used for more input bulk  
capacitance. This bulk input capacitor is only needed if  
the input source impedance is compromised by long in-  
ductive leads, traces or not enough source capacitance.  
If low impedance power planes are used, then this 47μF  
capacitor is not needed.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V to V  
step-  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
One of the restrictions is the minimum on-time t  
,
ON(MIN)  
which is the smallest time duration that the LTM4618 can  
operate.Makesurethattheoperatingon-timeislargerthan  
theminimumon-timeasshownintheequationbelow. See  
the Thermal Considerations and Output Current Derating  
sections in this data sheet for the current restrictions.  
For a buck converter, the switching duty-cycle can be  
estimated as:  
t
is approximately 90ns, guardband to 110ns.  
ON(MIN)  
VOUT  
VOUT  
D=  
tON(MIN)  
<
V
IN  
V • ƒ  
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
Output Voltage Programming  
ThePWMcontrollerhasaninternal0.8Vreferencevoltage.  
As shown in the Block Diagram, a 60.4k internal feedback  
IOUT(MAX)  
ICIN(RMS)  
=
D(1D)  
η
resistorconnectsV totheV pin.AddingaresistorR  
OUT  
FB  
FB  
from the V pin to SGND programs the output voltage:  
In the above equation, η is the estimated efficiency of  
the power module. One 10μF ceramic input capacitor is  
typically rated for 2A of RMS ripple current, so the RMS  
input current at the worst case 6A maximum current is  
about 3A. If a low inductance plane is used to power the  
device, then two 10μF ceramic capacitors are enough for  
the output at 6A load and no external input bulk capacitor  
is required. The input RMS ripple current can be cancelled  
by paralleling multiple LTM4618 power modules out of  
phase, allowing the use of fewer input capacitors. Ap-  
plication Note 77 explains the details.  
FB  
60.4k +RFB  
VOUT = 0.8V •  
RFB  
Table ±. VFB Resistor Table vs Various Output Voltages  
V
(V)  
0.8  
1
1.2  
1.5  
1.8  
2.5  
3.3  
5
OUT  
R
(kΩ)  
Open  
243  
121  
69.8 48.7 28.7 19.1 11.5  
FB  
4618f  
10  
LTM4618  
APPLICATIONS INFORMATION  
Output Capacitors  
Frequency Selection  
The LTM4618 is designed for low output voltage ripple  
The switching frequency of the LTM4618’s controller can  
be selected using a DC voltage. If the MODE/PLLIN pin  
is not being driven by an external clock source, the FREQ  
pin can program the controller’s operating frequency  
from 250kHz to 780kHz by connecting a resistor divider  
as shown in Figure 21. The typical frequency is 750kHz.  
But if the minimum on-time is reached, a lower frequency  
needs to be set to increase the turn-on time. Otherwise, a  
significant amount of cycle skipping can occur with cor-  
respondingly larger ripple current and voltage ripple.  
noise. The bulk output capacitors defined as C  
are  
OUT  
chosenwithlowenougheffectiveseriesresistance(ESR)to  
meettheoutputvoltagerippleandtransientrequirements.  
C
can be a low ESR tantalum capacitor, a low ESR  
OUT  
polymer capacitor or ceramic capacitor. The typical output  
capacitancerangeisfrom100μFto300μF.Additionaloutput  
filtering may be required by the system designer if further  
reduction of output ripple or dynamic transient spikes is  
required.Table4showsamatrixofdifferentoutputvoltages  
and output capacitors to minimize the voltage droop and  
overshootduringa3A/μstransient.Thetableoptimizesthe  
totalequivalentESRandtotalbulkcapacitancetooptimize  
thetransientperformance.Stabilitycriteriaareconsidered  
in the Table 4 matrix, and the Linear Technology μModule  
Power Design Tool is available for stability analysis. Mul-  
tiphase operation will reduce effective output ripple as a  
function of the number of phases. Application Note 77  
discusses this noise reduction versus output ripple cur-  
rent cancellation, but the output capacitance should be  
consideredcarefullyasafunctionofstabilityandtransient  
response. The Linear Technology μModule Power Design  
Toolcancalculatetheoutputripplereductionasthenumber  
of implemented phases increases by N times.  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
FREQ PIN VOLTAGE (V)  
4618 F03  
Figure 3. Relationship Between Switching  
Frequency and Voltage at the FREQ Pin  
Mode Selections and Phase-Locked Loop  
Frequency Synchronization  
The LTM4618 can be enabled to enter high efficiency  
BurstModeoperation,constant-frequency,pulse-skipping  
mode, or forced continuous conduction mode. To select  
the forced continuous operation, tie the MODE/PLLIN pin  
to ground. To select pulse-skipping mode of operation,  
The MODE/PLLIN pin allows the LTM4618 to be synchro-  
nized to an external clock (between 400kHz to 780kHz)  
and the internal phase-locked loop allows the LTM4618  
to lock onto input clock phase as well. The FREQ pin has  
the onboard loop filter for the PLL. The incoming clock  
must be applied before the RUN pin is enabled. For ap-  
plications powering the clock source from the LTM4618’s  
tie the MODE/PLLIN pin to INTV . To select Burst Mode  
CC  
operation, float the pin.  
A phase-locked loop (PLL) is available on the LTM4618  
to synchronize the internal oscillator to an external clock  
source that is connected to the MODE/PLLIN pin. The  
incoming clock should be applied before the regulator’s  
RUN pin is enabled.  
INTV , the RUN pin has to be enabled in order to acti-  
CC  
vate INTV for the clock source. In this situation (see  
CC  
Figure 22) the TK/SS pin can be used to soft-start the  
regulator for 100ms using a ≈ 0.22μF capacitor. This will  
allow the regulator to synchronize to the right frequency  
before the regulator’s inductor ripple current peaks.  
4618f  
11  
LTM4618  
APPLICATIONS INFORMATION  
TheLTM4618canbesynchronizedfrom400kHzto780kHz  
with an input clock that has a high level above 2.0V and a  
low level below 0.8V. The 400kHz low end operation limit  
is put in place to limit inductor ripple current. See the  
TypicalApplicationssectionforsynchronizationexamples.  
The LTM4618 minimum on-time is limited to about 90ns.  
Guardband the on-time to 110ns. The on-time can be  
calculated as:  
V
is the track ramp applied to the slave’s TK/SS  
TRACK  
TRACK  
pin. V  
has a control range of 0V to 0.8V. When the  
master’s output is divided down with the same resistor  
values used to set the slave’s output, then the slave will  
coincident track with the master until it reaches its final  
value. The master will continue to its final value from the  
slave’s regulation point.  
Ratiometric modes of tracking can be achieved by select-  
ing different divider resistor values to change the output  
tracking ratio. The master output must be greater than the  
slave output for the tracking to work. Master and slave  
data inputs can be used to implement the correct resistor  
values for coincident or ratio tracking.  
VOUT  
1
tON(MIN)  
=
FREQ  
V
IN  
Soft-Start and Tracking  
LTM4618 has the ability to either soft-start by itself with a  
capacitor or track the output of an external supply. When  
the module is configured to soft-start by itself, a capacitor  
should be connected to its TK/SS pin. When the module  
is in the shutdown state, the TK/SS pin is actively pulled  
to ground.  
MODE/PLLIN INTV  
EXTV  
CC  
CC  
V
IN  
V
FREQ  
IN  
5V  
C
IN  
V
OUT(SLAVE)  
COMP  
V
OUT  
2.5V/6A  
22pF  
MASTER  
OUTPUT  
R1  
60.4k  
LTM4618  
C
OncetheRUNpinvoltageisabove1.22V, themodulepow-  
ers up. Then a soft-start current of 1.3μA starts to charge  
its soft-start capacitor. Note that soft-start or tracking is  
achieved not by limiting the maximum output current of  
the controller but by controlling the output ramp voltage  
according to the ramp rate on the TK/SS pin. Current  
foldback is disabled during this phase to ensure smooth  
soft-start or tracking. The soft-start or tracking range is  
defined as the voltage range from 0V to 0.8V on the TK/SS  
pin. The total soft-start time can be calculated as:  
OUT  
TK/SS  
RUN  
V
FB  
PGOOD  
R2  
28.7k  
28.7k  
SGND  
PGND  
4618 F04  
Figure 4. Output Voltage Coincident Tracking  
MASTER OUTPUT  
SLAVE OUTPUT  
0.8V CSS  
tSOFT-START  
=
1.3µA  
OUTPUT  
VOLTAGE  
Output voltage tracking can be programmed externally  
using the TK/SS pin. The master voltage is divided down  
with an external resistor divider that is the same as the  
slave’s feedback divider to implement coincident tracking.  
The LTM4618 uses an accurate 60.4k resistor internally  
for the top feedback resistor. Figure 4 shows an example  
of coincident tracking.  
4618 F05  
TIME  
Figure 5. Coincident Tracking Characteristics  
R1  
R2  
VOUT(SLAVE) = 1+  
• V  
TRACK  
4618f  
12  
LTM4618  
APPLICATIONS INFORMATION  
Slope Compensation  
figuration section are in-and-of themselves not relevant to  
providing guidance of thermal performance; instead, the  
derating curves provided in the data sheet can be used in  
a manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
The module has already been internally compensated  
for all output voltages. The Linear Technology μModule  
Power Design Tool will be provided for other control loop  
optimization.  
RUN Pin  
The Pin Configuration section shows four thermal coef-  
ficientsexplicitlydefinedinJESD51-12;thesecoefficients  
are quoted or paraphrased below:  
The RUN pin has a 1μA pull-up current source that will  
enable the device in a float condition. A voltage divider  
can be used to enable a UVLO function using the RUN  
pin. See Figure 21.  
θ , the thermal resistance from junction to ambi-  
JA  
ent, is the natural convection junction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as “still air” although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD 51-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
The LTM4618 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only in  
steady-state operation, but also in transient.  
To further limit current in the event of an overload condi-  
tion,theLTM4618providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 40%, then the maximum  
output current is progressively lowered to about 25% of  
its full current limit value.  
θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is the junction-to-board  
thermal resistance with all of the component power  
dissipation flowing through the bottom of the pack-  
age. In the typical μModule, the bulk of the heat flows  
out the bottom of the package, but there is always  
heat flow out into the ambient environment. As a  
result, this thermal resistance value may be useful  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configuration  
section of the data sheet are consistent with those param-  
eters defined by JESD51-9 and are intended for use with  
finite element analysis (FEA) software modeling tools that  
leverage the outcome of thermal modeling, simulation,  
and correlation to hardware evaluation performed on a  
μModulepackagemountedtoahardwaretestboard—also  
defined by JESD51-9 (“Test Boards for Area Array Surface  
MountPackageThermalMeasurements”).Themotivation  
for providing these thermal coefficients in found in JESD  
51-12 (“Guidelines for Reporting and Using Electronic  
Package Thermal Information”).  
θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
component power dissipation flowing through the  
top of the package. As the electrical connections of  
the typical μModule are on the bottom of the pack-  
age, it is rare for an application to operate such that  
most of the heat flows from the junction to the top of  
the part. As in the case of θ  
, this value may  
JCbottom  
be useful for comparing packages but the test condi-  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to anticipate  
the μModule regulator’s thermal performance in their ap-  
plicationatvariouselectricalandenvironmentaloperating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
tions don’t generally match the user’s application.  
θ , the thermal resistance from junction to the  
JB  
printed circuit board, is the junction-to-board thermal  
resistance where almost all of the heat flows through  
the bottom of the μModule and into the board, and  
4618f  
13  
LTM4618  
APPLICATIONS INFORMATION  
simplicity—but also, not ignoring practical realities—an  
approach has been taken using FEA software modeling  
along with laboratory testing in a controlled-environment  
chamber to reasonably define and correlate the thermal  
resistance values supplied in this data sheet: (1) Initially,  
FEA software is used to accurately build the mechanical  
geometry of the μModule and the specified PCB with all  
of the correct material coefficients along with accurate  
power loss source definitions; (2) this model simulates  
a software-defined JEDEC environment consistent with  
JSED51-9topredictpowerlossheatowandtemperature  
readings at different interfaces that enable the calculation  
of the JEDEC-defined thermal resistance values; (3) the  
model and FEA software is used to evaluate the μModule  
with heat sinks and airflow; (4) having solved for and  
analyzed these thermal resistance values and simulated  
various operating conditions in the software model, a  
thorough laboratory evaluation replicates the simulated  
conditions with thermocouples within a controlled-envi-  
ronment chamber while operating the device at the same  
power loss as that which was simulated. An outcome of  
this process and due-diligence yields a set of derating  
curves provided in other sections of this data sheet. After  
theselaboratorytestshavebeenperformedandcorrelated  
is really the sum of the θ  
and the thermal re-  
JCbottom  
sistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured at specified distance from  
the package, using a two sided, two layer board.  
This board is described in JESD 51-9.  
A graphical representation of the forementioned thermal  
resistances is given in Figure 6; blue resistances are con-  
tained within the μModule, whereas green resistances are  
external to the μModule.  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD 51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operating conditions of a μModule. For example, in actual  
board-mounted applications, never does 100% of the  
device’s total power loss (heat) thermally conduct exclu-  
sivelythroughthetoporexclusivelythroughbottomofthe  
μModule—asthestandarddefinesforθ  
andθ  
,
JCtop  
JCbottom  
respectively.Inpractice,powerlossisthermallydissipated  
inbothdirectionsawayfromthepackage—granted, inthe  
absence of a heat sink and airflow, a majority of the heat  
flow is into the board.  
to the μModule model, then the θ and θ are summed  
JB  
BA  
together to correlate quite well with the μModule model  
with no air flow or heat sinking in a properly define cham-  
WithinaSIP(System-In-Package)module,beawarethere  
are multiple power devices and components dissipating  
power, with a consequence that the thermal resistances  
relative to different junctions of components or die are not  
exactly linear with respect to total package power loss. To  
reconcile this complication without sacrificing modeling  
ber. This θ + θ value is shown in the Pin Configuration  
JB  
BA  
section and should accurately equal the θ value because  
JA  
approximately 100% of power loss flows from the junc-  
tion through the board into ambient with no airflow or top  
mounted heat sink.  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
A
t
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4618 F06  
μMODULE DEVICE  
Figure 6. Graphical Representation of JESD5±-±2 Thermal Coefficients  
4618f  
14  
LTM4618  
APPLICATIONS INFORMATION  
The 1.5V and 3.3V power loss curves in Figures 7 and 8  
can be used in coordination with the load current derating  
curves in Figures 9 to 16 for calculating an approximate  
no air flow or heat sink and the power loss for the 12V to  
1.5V at 5A output is about 1.7W. The 1.7W loss is calcu-  
lated with the ~1.4W room temperature loss from the 12V  
to 1.5V power loss curve at 5A, and the 1.2 multiplying  
factor at 85°C ambient. If the 85°C ambient temperature  
is subtracted from the 115°C junction temperature, then  
θ thermal resistance for the LTM4618 with various heat  
JA  
sinking and air flow conditions. The power loss curves  
are taken at room temperature, and are increased with  
multiplicative factors according to the ambient tempera-  
ture. These approximate factors are: 1 for 40°C; 1.05 for  
50°C; 1.1 for 60°C; 1.15 for 70°C; 1.2 for 80°C; 1.25 for  
90°C; 1.3 for 100°C; 1.35 for 110°C and 1.4 for 125°C.  
The derating curves are plotted with the output current  
starting at 6A and the ambient temperature at 40°C. The  
output voltages are 1.5V, and 3.3V. These are chosen to  
include the lower and higher output voltage ranges for  
correlating the thermal resistance. Thermal models are  
derivedfromseveraltemperaturemeasurementsinacon-  
trolledtemperaturechamberalongwiththermalmodeling  
analysis. The junction temperatures are monitored while  
ambient temperature is increased with and without air  
flow. The power loss increase with ambient temperature  
change is factored into the derating curves. The junctions  
are maintained at 120°C maximum while lowering output  
current or power with increasing ambient temperature.  
The decreased output current will decrease the internal  
module loss as ambient temperature is increased. The  
monitored junction temperature of 120°C minus the  
ambient operating temperature specifies how much mod-  
ule temperature rise can be allowed. As an example, in  
Figure 11 the load current is derated to ~5A at ~85°C with  
the difference of 30°C divided 1.7W equals a 17°C/W θ  
JA  
thermalresistance.Table2specifiesa16°C/Wvaluewhich  
isveryclose.Table2andTable3provideequivalentthermal  
resistances for 1.5V and 3.3V outputs with and without air  
flow and heat sinking. The derived thermal resistances in  
Tables 2 and 3 for the various conditions can be multiplied  
by the calculated power loss as a function of ambient  
temperature to derive temperature rise above ambient,  
thus maximum junction temperature. Room temperature  
power loss can be derived from the efficiency curves  
in the Typical Performance Characteristics section and  
adjusted with the above ambient temperature multiplica-  
tive factors. The printed circuit board is a 1.6mm thick  
four layer board with two ounce copper for the two outer  
layers and one ounce copper for the two inner layers. The  
PCB dimensions are 95mm × 76mm. The BGA heat sink  
is listed in Table 3.  
Safety Considerations  
TheLTM4618modulesdonotprovideisolationfromV to  
IN  
V
OUT  
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
with a rating twice the maximum input current needs to be  
provided to protect each unit from catastrophic failure.  
2.0  
3.0  
5V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4618 F07  
4618 F08  
Figure ꢀ. Power Loss at ±.5VOUT  
Figure 8. Power Loss at 3.3VOUT  
4618f  
15  
LTM4618  
APPLICATIONS INFORMATION  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
70 75 80 85 90 95 100 105 110 115  
70 75 80 85 90 95 100 105 110 115  
70 75 80 85 90 95 100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4618 F09  
4618 F11  
4618 F10  
Figure 9. 5VIN to ±.5VOUT without  
Heat Sink  
Figure ±0. 5VIN to ±.5VOUT with  
Heat Sink  
Figure ±±. ±2VIN to ±.5VOUT  
without Heat Sink  
6
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5
4
3
2
1
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
60 65 70 75 80 85 90 95 100 105 110  
60 65 70 75 80 85 90 95 100 105 110  
70 75 80 85 90 95 100 105 110 115  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4618 F13  
4618 F14  
4618 F12  
Figure ±3. ±2VIN to 3.3VOUT without  
Heat Sink  
Figure ±2. ±2VIN to ±.5VOUT with  
Heat Sink  
Figure ±4. ±2VIN to 3.3VOUT with  
Heat Sink  
6
5
4
3
2
6
5
4
3
2
1
0
0LFM  
200LFM  
400LFM  
1
0
0LFM  
200LFM  
400LFM  
60 65 70 75 80 85 90 95 100 105  
60 65 70 75 80 85 90 95 100 105  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4618 F16  
4618 F15  
Figure ±6. 24VIN to 3.3VOUT with  
Heat Sink  
Figure ±5. 24VIN to 3.3VOUT  
without Heat Sink  
4618f  
16  
LTM4618  
APPLICATIONS INFORMATION  
Table 2. ±.5V Output  
DERATING CURVE  
Figures 9, 11  
Figures 9, 11  
Figures 9, 11  
Figures 10, 12  
Figures 10, 12  
Figures 10, 12  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIRFLOW (LFM)  
HEAT SINK  
None  
Θ
(°C/W)  
IN  
JA  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
16  
Figure 7  
200  
400  
0
None  
12.2  
11.2  
15.2  
11.6  
10.7  
Figure 7  
None  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 7  
200  
400  
Figure 7  
Table 3. 3.3V Output  
DERATING CURVE  
Figures 13, 15  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIRFLOW (LFM)  
HEAT SINK  
None  
Θ
(°C/W)  
IN  
JA  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
0
15  
Figures 13, 15  
Figure 8  
200  
400  
0
None  
11.2  
10.2  
14.2  
10.6  
9.7  
Figures 13, 15  
Figure 8  
None  
Figures 14, 16  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 14, 16  
Figure 8  
200  
400  
Figures 14, 16  
Figure 8  
Heat Sink Used: 15 × 9 Version of Aavid #375424B000346  
Table 4. Output Voltage Response vs Component Matriꢂ (Refer to Figure 2±) 0A to 3A Load Step  
C
C
C
C
C2  
FREQ DROOP P-P DEVIATION RECOVERY LOAD STEP  
R
FB  
IN  
IN  
OUT±  
OUT2  
V
(V) (CERAMIC) (BULK) (CERAMIC) (BULK) COMP  
(pF)  
(kHz)  
400  
400  
400  
400  
400  
400  
500  
500  
500  
500  
500  
500  
500  
600  
600  
600  
600  
600  
(mV)  
38  
35  
30  
40  
37  
27  
48  
40  
30  
52  
45  
50  
65  
75  
60  
90  
80  
150  
(mV)  
TIME (μs)  
(A/μs)  
(kΩ)  
242  
242  
242  
121  
121  
121  
68.1  
68.1  
68.1  
48.7  
48.7  
48.7  
28  
OUT  
1
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
68μF  
None  
220μF  
470μF  
None  
220μF  
470μF  
None  
220μF  
470μF  
None  
220μF  
None  
None  
None  
220μF  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
100  
None  
None  
47  
76  
35  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
22μF × 2  
100μF × 4  
100μF × 2  
100μF  
1
1
70  
35  
60  
35  
1.2  
80  
30  
100μF × 4  
100μF × 2  
100μF  
1.2  
1.2  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
3.3  
3.3  
5
None  
None  
47  
74  
35  
54  
35  
96  
36  
100μF × 3  
100μF  
None  
None  
47  
80  
36  
100μF  
60  
40  
104  
90  
36  
100μF × 3  
100μF  
None  
47  
35  
100  
130  
150  
120  
180  
160  
300  
35  
100μF × 4  
100μF × 3  
100μF × 4  
100μF  
47  
38  
None  
None  
22  
35  
28  
45  
28  
36  
19.1  
19.1  
11.5  
100μF × 2  
100μF × 2  
100μF  
47  
40  
47  
40  
4618f  
17  
LTM4618  
APPLICATIONS INFORMATION  
VISHAY INLP1616BZERR22M01  
0.22μH  
IN  
INTV  
MODE/PLLIN EXTV  
CC  
CC  
π FILTER  
V
FREQ  
V
IN  
6V TO 26.5V  
C
IN  
10μF  
s2  
V
OUT  
10μF  
V
COMP  
TK/SS  
RUN  
OUT  
3.3V/6A  
s2  
C2  
47pF  
C
OUT  
LTM4618  
100μF  
V
FB  
s3  
V
IN  
C1  
0.1μF  
19.1k  
PGOOD  
R1  
R2  
SGND PGND  
SW  
¥
´
R2  
R1R2  
4618 F17  
V
r1.22V  
IN  
¦
µ
R
§
SNUB  
1.2ꢀ 0805  
C
SNUB  
470pF  
0805, 50V  
Figure ±ꢀ. 6V to 26.5V Input, 3.3V at 6A Design,  
Meeting CISPR25 Conducted and CISPR22 Radiated EMI Solution  
10dB/μV  
PER DIV  
150kHz  
100MHz  
VIDEO BANDWIDTH  
4618 F18  
Figure ±8. VIN 26.5V, VOUT 3.3V, IOUT 5A,  
π Filter 20μF to 0.22μH Vishay (±6±6BZ) to 20μF  
CISPR25 Conducted Emissions  
55  
45  
35  
25  
15  
5
55  
CISPR22  
CLASS A  
45  
35  
25  
15  
5
CISPR22  
CLASS B  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
4618 F19a  
4618 F19b  
Figure ±9. VIN 26.5V, VOUT 3.3V, IOUT 5A,  
π Filter 20μF to 0.22μH Vishay (±6±6BZ) to 20μF  
CISPR22 Radiated EMI Plots  
4618f  
18  
LTM4618  
APPLICATIONS INFORMATION  
EMI Section  
• Use large PCB copper areas for high current path,  
including V , PGND and V . It helps to minimize  
IN  
OUT  
The LTM4618 has been evaluated for CISPR22 A and B  
Radiated EMI and CISPR25 Conducted EMI. The CISPR25  
Conducted EMI test was performed with an input π filter  
as shown in Figure 17. An RC snubber circuit is optionally  
usedfromtheSWpintothePGNDpintoimprovethehigher  
frequencyattenuationandEMIlimitguardband. Figure18  
shows the CISPR25 conducted emissions plot for 26.5V  
input to 3.3V output at 5A load. Several conditions were  
evaluated, and Figure 18 results are from the worst-case  
condition.Theinputπlterisusedtoattenuatethereflected  
noise from the regulator input, and is primarily utilized  
when the power regulators are closed to the input power  
feed to a board, like the input power connectors. If the  
regulator design is placed out on the center of the system  
board, then the input π filter may not be needed because  
all of the extra board capacitance and the inductive planes  
will provide filtering for reflected emissions. If the system  
board has noise sensitive circuitry that is powered from  
the same voltage rail as the regulators are, then an input  
π filter is a good idea to keep regulator noise from cor-  
rupting the noise sensitive circuitry on the system board.  
Figure 19 shows the CISPR22 B Radiated EMI plots. The  
input π filter is used to attenuate the reflected noise from  
propagating out onto the input power cables, thus pos-  
sibly causing radiated EMI issues. An RC snubber circuit  
is optionally used from the SW pin to the PGND pin to  
improve the higher frequency attenuation and EMI limit  
the PCB conduction loss and thermal stress.  
• Test points can be placed on signal pin for monitor-  
ing during testing.  
• Place high frequency ceramic input and output  
capacitors next to the V , PGND and V  
pins to  
IN  
OUT  
minimize high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit.  
• To minimize the via conduction loss and reduce mod-  
ule thermal stress, use multiple vias for interconnec-  
tion between top layer and other power layers.  
• Do not put vias directly on the pad, unless they are  
capped.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
Figure 20 gives a good example of the recommended  
layout.  
V
PGND  
IN  
guard band. A placeholder can accommodate the R  
7
SNUB  
and C  
components with 1.2Ω and 470pF. These  
6
5
4
3
2
1
SNUB  
components are probably not necessary, but can be used  
or adjusted to improve the radiated limit guard bands at  
the higher frequencies by attenuating any switch node  
ringing due to parasitic values in the high speed switching  
paths. It is important to follow the recommended layout  
guidelines and use good X5R or X7R ceramic capacitors  
to get good results.  
CNTRL  
A
B
C
D
E
F
G
H
J
K
L
M
CNTRL  
C
C
OUT  
Layout Checklist/Eꢂample  
OUT  
ThehighintegrationofLTM4618makesthePCboardlayout  
very simple and easy. However, to optimize its electrical  
and thermal performance, some layout considerations  
are still necessary.  
PGND  
V
OUT  
4618 F20  
Figure 20. Recommended PCB Layout Eꢂample  
4618f  
19  
LTM4618  
TYPICAL APPLICATIONS  
31.6k  
10k  
INTV  
MODE/PLLIN EXTV  
CC  
CC  
V
IN  
FREQ  
V
IN  
6V TO 26.5V  
C
IN  
10μF  
V
OUT  
V
COMP  
TK/SS  
RUN  
OUT  
s2  
2.5V/6A  
C2  
47pF  
C
OUT  
LTM4618  
100μF  
V
FB  
s3  
V
C1  
0.1μF  
IN  
28.7k  
PGOOD  
R1  
SGND  
PGND  
¥
´
R2  
R1R2  
V
r1.22V  
4618 F21  
IN  
¦
µ
§
UVLO FUNCTION  
R2  
Figure 2±. Typical 6V to 26.5V Input, 2.5V at 6A Design, 500kHz Operation  
CLOCK SYNC  
0° PHASE  
PGOOD MODE/PLLIN  
V
IN  
FREQ  
V
IN  
6V TO 26.5V  
C
IN1  
V
OUT  
10μF  
V
COMP  
TK/SS  
RUN  
OUT  
2.5V/12A  
C4  
LTM4618  
C
OUT  
47pF  
100μF  
V
FB  
s4  
ON/OFF  
0.47μF  
R4  
14.3k  
C3  
INTV  
CC  
CC  
SGND  
PGND EXTV  
+
V
OUT1  
LTC6908-1  
C5  
0.1μF  
R5  
165k  
CLOCK SYNC  
180° PHASE  
GND  
OUT2  
MODE/PLLIN  
PGOOD  
SET  
MOD  
FREQ  
V
IN  
C
IN2  
10μF  
2-PHASE OSCILLATOR  
V
OUT  
COMP  
TK/SS  
RUN  
LTM4618  
V
FB  
WITH CLOCK SYNC,  
SOFT-START THE REGULATOR FOR APPROXIMATELY 100ms  
INTV  
CC  
CC  
100ms • 2 • 1.3μA  
SGND  
PGND EXTV  
C3 ꢁ  
0.8V  
4618 F22  
Figure 22. Two LTM46±8 Parallel, 2.5V at ±2A Design  
4618f  
20  
LTM4618  
TYPICAL APPLICATIONS  
4618f  
21  
LTM4618  
PACKAGE PHOTOGRAPH  
PACKAGE DESCRIPTION  
Pin Assignment Tables  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
N/C  
FREQ  
MODE/PLLIN  
PGND  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
V
G1  
G2  
G3  
G4  
G5  
G6  
G7  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
V
V
V
V
FB  
OUT  
OUT  
OUT  
OUT  
PGOOD  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
INTV  
CC  
PGND  
PGND  
PGND  
PGND  
V
V
V
PGND  
SW  
PGND  
IN  
IN  
IN  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
TK/SS  
RUN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
SGND  
PGND  
V
V
V
PGND  
PGND  
PGND  
IN  
IN  
IN  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
COMP  
SGND  
SGND  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
V
V
V
V
M1  
M2  
M3  
M4  
M5  
M6  
M7  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
EXTV  
CC  
V
V
V
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
IN  
IN  
IN  
4618f  
22  
LTM4618  
PACKAGE DESCRIPTION  
Z
b b b  
Z
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 0 0 0  
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
0 . 3 1 5  
0 . 3 1 5  
a a a  
Z
4618f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4618  
TYPICAL APPLICATION  
5V Input, 2.5V at 6A Design, 500kHz Operation  
31.6k  
10k  
INTV  
MODE/PLLIN EXTV  
CC  
CC  
V
5V  
IN  
FREQ  
V
IN  
4.5V ≤ V ≤ 6V  
IN  
C
IN  
10μF  
V
OUT  
V
COMP  
TK/SS  
RUN  
OUT  
s2  
2.5V/6A  
C2  
47pF  
C
OUT  
LTM4618  
100μF  
V
FB  
s3  
V
C1  
0.1μF  
IN  
28.7k  
PGOOD  
R1  
SGND  
PGND  
¥
´
R2  
R1R2  
V
r1.22V  
µ
4618 TA02  
IN  
¦
§
UVLO FUNCTION  
R2  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM4603  
6A DC/DC μModule Regulator with PLL  
and Output Tracking/Margining  
4.5V to 20V Input, 0.6V to 5V Output, 15mm × 15mm × 2.8mm LGA Package  
LTM4604A  
LTM4608A  
LTM4612  
LTM4619  
LTM8025  
4A DC/DC μModule Regulator  
8A DC/DC μModule Regulator  
2.375V to 5.5V Input, 0.8V to 5V Output, Tracking  
2.7V to 5.5V Input, 0.6V to 5V Output, PLL, Tracking  
4.5V to 36V Input, 3.3V to 15V Output, PLL, Tracking, Margining  
4.5V to 26.5V Input, Dual 0.8V to 5V Output, PLL, Tracking  
36V DC/DC μModule Regulator  
IN  
Dual 4A DC/DC μModule Regulator  
36V , 3A DC/DC μModule Regulator  
3.6V ≤ V ≤ 36V; 0.8V ≤ V  
≤ 24V; 9mm × 15mm × 4.32mm LGA Package  
OUT  
IN  
IN  
4618f  
LT 0710 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4618V

6A DC/DC μModule Regulator with Tracking and Frequency Synchronization
Linear

LTM4619

Dual, 26VIN, 4A DC/DC μModule Regulator
Linear

LTM4619

Dual 8A or Single 16A DC/DC μModule Regulator
LINEAR_DIMENS

LTM4619EV

Dual, 26VIN, 4A DC/DC μModule Regulator
Linear

LTM4619EV#PBF

LTM4619 - Dual, 26VIN, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4619EVPBF

Dual, 26VIN, 4A DC/DC μModule Regulator
Linear

LTM4619IV

Dual, 26VIN, 4A DC/DC μModule Regulator
Linear

LTM4619IV#PBF

LTM4619 - Dual, 26VIN, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4619IVPBF

Dual, 26VIN, 4A DC/DC μModule Regulator
Linear

LTM4620

Dual 13A or Single 26A DC/DC μModule Regulator
Linear

LTM4620A

Dual 8A per Channel Low VIN DC/DC μModule Regulator
LINEAR_DIMENS

LTM4620A

Dual 13A or Single 26A DC/DC μModule Regulator Frequency Synchronization
Linear