LTC5599_15 [Linear]

30MHz to 1300MHz Low Power Direct Quadrature Modulator;
LTC5599_15
型号: LTC5599_15
厂家: Linear    Linear
描述:

30MHz to 1300MHz Low Power Direct Quadrature Modulator

文件: 总42页 (文件大小:2025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC5599  
30MHz to 1300MHz  
Low Power  
Direct Quadrature Modulator  
DescripTion  
FeaTures  
The LTC®5599 is a direct conversion I/Q modulator de-  
signed for low power wireless applications that enable  
direct modulation of differential baseband I and Q signals  
onanRFcarrier.Singleside-bandmodulationorside-band  
suppressed upconversion can be achieved by applying  
90° phase-shifted signals to the I and Q inputs. The I/Q  
baseband input ports can be either AC or DC coupled to a  
source with a common mode voltage level of about 1.4V.  
The SPI interface controls the supply current, modulator  
gain,andallowsoptimizationoftheLOcarrierfeedthrough  
and side-band suppression, with sine wave or square  
wave LO drive. A fixed LC network on the LO and RF ports  
covers a continuous 90MHz to 1300MHz operation. An  
on-chip thermometer can be activated to compensate for  
gain-temperature variations. More accurate temperature  
measurements can be made using an on-chip diode. In  
addition, a continuous analog gain control (VCTRL) pin  
can be used for fast power control.  
n
Frequency Range: 30MHz to 1300MHz  
n
Low Power: 2.7V to 3.6V Supply; 28mA  
n
Low LO Carrier Leakage: –51.5dBm at 500MHz  
n
Side-Band Suppression: –52.6dBc at 500MHz  
n
Output IP3: 20.8dBm at 500MHz  
n
Low RF Output Noise Floor: –156dBm/Hz at 6MHz  
Offset, P = 3dBm  
RF  
n
Sine Wave or Square Wave LO Drive  
n
SPI Control:  
Adjustable Gain: –19dB to 0dB in 1dB Steps  
Effecting Supply Current from 8mA to 35mA  
I/Q Offset Adjust: –65dBm LO Carrier Leakage  
I/Q Gain/Phase Adjust: –60dBc Side-Band Suppressed  
n
24-Lead QFN 4mm × 4mm Package  
applicaTions  
n
Wireless Microphones  
n
Battery Powered Radios  
L, LT, LTC, LTM, Linear Technology, and the Linear logo are registered trademarks and  
QuikEval is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
n
Ad-Hoc Wireless Infrastructure Networks  
n
“White-Space” Transmitters  
n
Software Defined Radios (SDR)  
n
Military Radios  
Typical applicaTion  
EVM and Noise Floor vs RF Output  
90MHz to 1300MHz Direct Conversion Transmitter Application  
Power and Digital Gain Setting  
with 1Ms/s 16-QAM Signal  
V
CTRL  
3.3V  
10  
1nF + 4.7µF  
DG = –19  
DG = –16  
DG = –12  
DG = –8  
DG = –4  
DG = 0  
9
8
7
6
5
4
3
2
1
0
–105  
–115  
–125  
–135  
V
CC  
LTC5599  
SPI  
RF = 90MHz  
to 1300MHz  
V
V
I
I
I-DAC  
I-CHANNEL  
10nF  
PA  
0°  
–145  
–155  
EN  
90°  
Q-DAC  
Q-CHANNEL  
–165  
THERMOMETER  
TTCK  
–15  
–10  
–5  
0
5
BASEBAND  
GENERATOR  
RF OUTPUT POWER (dBm)  
5599 TA01b  
39nH  
VCO/SYNTHESIZER  
5599 TA01a  
15pF  
5599f  
1
For more information www.linear.com/LTC5599  
LTC5599  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................3.8V  
Common Mode Level of BBPI, BBMI,  
24 23 22 21 20 19  
and BBPQ, BBMQ........................................................2V  
LOL, LOC DC Voltage ............................................. 0.1V  
LOL, LOC Input Power (Note 15)..........................20dBm  
Current Sink of TEMP, SDO....................................10mA  
V
1
2
3
4
5
6
18 GNDRF  
CTRL  
GND  
GNDRF  
RF  
17  
16  
GND  
25  
LOL  
LOC  
GND  
15 GNDRF  
GNDRF  
Voltage on Any Pin (Note 16)...........–0.3V to V + 0.3V  
CC  
14  
13 GNDRF  
T
JMAX  
.................................................................... 150°C  
TTCK  
Case Operating Temperature Range........–40°C to 105°C  
Storage Temperature Range .................. –65°C to 150°C  
7
8
9 10 11 12  
UF PACKAGE  
24-LEAD (4mm × 4mm) PLASTIC QFN  
T
= 150°C, θ = 43°C/W, θ = 4.5°C/W (AT EXPOSED PAD)  
JA JC  
JMAX  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
CASE TEMPERATURE RANGE  
LTC5599IUF#PBF  
LTC5599IUF#TRPBF  
5599  
–40°C to 105°C  
24-Lead (4mm × 4mm) Plastic QFN  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
Please refer to: http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ,  
BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90°  
shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
LO  
= 150MHz, f  
= 147.9MHz, f = 148MHz, Register 0x00 = 0x62  
RF2  
RF1  
S
RF Port Return Loss  
–26  
116 to 272  
–7.5  
dB  
MHz  
22(ON)  
f
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
RF Output Noise Floor  
S11 < –10dB  
LO(MATCH)  
Gain  
20 • Log (V  
/V  
)
dB  
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
OUT  
1V  
P-P(DIFF)  
CW Signal, I and Q  
–3.5  
dBm  
dBm  
dBm  
dBm  
dBm/Hz  
dBc  
OP1dB  
OIP2  
OIP3  
NFloor  
SB  
5
(Note 5)  
(Note 6)  
70.5  
21.7  
No Baseband AC Input Signal (Note 3)  
(Note 7)  
–155.3  
–61.4  
Side-Band Suppression  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
EN = Low (Note 7)  
–52.8  
–84.8  
dBm  
dBm  
2LOFT  
LO Feedthrough at 2xLO  
–59  
dBm  
5599f  
2
For more information www.linear.com/LTC5599  
LTC5599  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ,  
BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90°  
shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
SYMBOL  
PARAMETER  
CONDITIONS  
Maximum of 2f – 2f ; 2f – f ; 2f + f ,  
BB  
MIN  
TYP  
MAX  
UNITS  
2LO  
Signal Powers at 2xLO  
–51  
dBc  
LO  
BB  
LO  
BB  
LO  
2f + 2f  
LO  
BB  
3LOFT  
3LO  
LO Feedthrough at 3xLO  
Signal Powers at 3xLO  
–57  
–10.7  
15  
dBm  
dBc  
Maximum of 3f – f ; 3f + f  
BB  
LO  
BB  
LO  
BW1dB  
BW3dB  
–1dB Baseband Bandwidth  
–3dB Baseband Bandwidth  
R
R
= 50Ω, Differential  
= 50Ω, Differential  
MHz  
MHz  
BB  
SOURCE  
SOURCE  
28  
BB  
f
LO  
= 500MHz, f  
= 497.9MHz, f  
= 498MHz, Register 0x00 = 0x2D  
RF1  
RF2  
S
RF Port Return Loss  
–26  
180 to 1900  
–7.7  
dB  
MHz  
dB  
22(ON)  
f
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
RF Output Noise Floor  
S11 < –10dB  
LO(MATCH)  
Gain  
20 • Log (V  
/V  
)
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
OUT  
1V  
P-P(DIFF)  
CW Signal, I and Q  
–3.7  
dBm  
dBm  
dBm  
dBm  
OP1dB  
OIP2  
5.0  
(Note 5)  
(Note 6)  
63.6  
OIP3  
20.8  
NFloor  
No Baseband AC Input Signal (Note 3)  
= 3dBm (Note 3)  
–156.7  
156.0  
dBm/Hz  
dBm/Hz  
P
OUT  
SB  
Side-Band Suppression  
(Note 7)  
–52.6  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
EN = Low (Note 7)  
–51.5  
–67.5  
dBm  
dBm  
2LOFT  
2LO  
LO Feedthrough at 2xLO  
Signal Powers at 2xLO  
–61  
–51  
dBm  
dBc  
Maximum of 2f – 2f ; 2f – f ; 2f + f ,  
LO BB  
LO  
BB  
LO  
BB  
2f + 2f  
LO  
BB  
3LOFT  
3LO  
LO Feedthrough at 3xLO  
Signal Powers at 3xLO  
–62  
–11.8  
29  
dBm  
dBc  
Maximum of 3f – f ; 3f + f  
BB  
LO  
BB  
LO  
BW1dB  
BW3dB  
–1dB Baseband Bandwidth  
–3dB Baseband Bandwidth  
R
R
= 50Ω, Differential  
= 50Ω, Differential  
MHz  
MHz  
BB  
SOURCE  
SOURCE  
57  
BB  
f
LO  
= 900MHz, f  
= 897.9MHz, f  
= 898MHz, Register 0x00 = 0x12  
RF1  
RF2  
S
RF Port Return Loss  
–28  
223 to 1902  
–8.9  
dB  
MHz  
22(ON)  
f
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
RF Output Noise Floor  
S11 < –10dB  
LO(MATCH)  
Gain  
20 • Log (V  
/V  
)
dB  
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
OUT  
1V  
P-P(DIFF)  
CW Signal, I and Q  
–4.9  
dBm  
dBm  
dBm  
dBm  
dBm/Hz  
dBc  
OP1dB  
OIP2  
OIP3  
NFloor  
SB  
4.1  
(Note 5)  
(Note 6)  
63.5  
18.4  
No Baseband AC Input Signal (Note 3)  
(Note 7)  
–155.6  
–61.3  
Side-Band Suppression  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
EN = Low (Note 7)  
–58.6  
–62.3  
dBm  
dBm  
2LOFT  
2LO  
LO Feedthrough at 2xLO  
Signal Powers at 2xLO  
–59  
–51  
dBm  
dBc  
Maximum of 2f – 2f ; 2f – f ; 2f + f ,  
BB  
LO  
BB  
LO  
BB  
LO  
2f + 2f  
LO  
BB  
5599f  
3
For more information www.linear.com/LTC5599  
LTC5599  
The l denotes the specifications which apply over the full operating  
elecTrical characTerisTics  
temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ,  
BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90°  
shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
SYMBOL  
3LOFT  
3LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–60  
–19.2  
37  
MAX  
UNITS  
dBm  
dBc  
LO Feedthrough at 3xLO  
Signal Powers at 3xLO  
–1dB Baseband Bandwidth  
–3dB Baseband Bandwidth  
Maximum of 3f – f ; 3f + f  
BB  
LO  
BB  
LO  
BW1dB  
BW3dB  
R
R
= 50Ω, Differential  
= 50Ω, Differential  
MHz  
MHz  
BB  
BB  
SOURCE  
SOURCE  
69  
Variable Gain Control (V  
)
CTRL  
V
R
Gain Control Voltage Range  
Gain Control Response Time  
Gain Control Input Impedance  
DC Input Current  
Set Bit 6 in Register 0x01  
0.9 to 3.3  
V
ns  
pF  
CTRL  
Set Bit 6 in Register 0x01 (Note 8)  
Set Bit 6 in Register 0x01  
20  
10  
t
CTRL  
Z
CTRL  
CTRL  
I
Set Bit 6 in Register 0x01  
Clear Bit 6 in Register 0x01  
2.58  
0
mA  
mA  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
V
DC Common Mode Voltage  
Input Resistance  
Internally Generated  
1.42  
1.8  
V
kΩ  
Ω
CMBB  
R
R
Differential  
IN(DIFF)  
IN(CM)  
Common Mode Input Resistance  
Baseband Leakage Current  
Amplitude Swing  
Four Baseband Pins Shorted  
Four Baseband Pins Shorted, EN = Low  
350  
1.3  
I
nA  
BB(OFF)  
V
No Hard Clipping, Single-Ended, Digital Gain  
(DG) = –10  
1.2  
V
P-P  
SWING  
Power Supply (V  
)
CC  
V
V
Supply Voltage  
2.7  
1.6  
20  
3.3  
1.3  
3.6  
37  
9
V
V
CC  
Minimum Data Retention Voltage  
Supply Current  
(Note 14)  
RET(MIN)  
CC(ON)  
CC(RANGE)  
CC(OFF)  
ON  
I
I
I
t
t
t
t
EN = High  
28  
mA  
mA  
µA  
ns  
Supply Current Range  
Supply Current, Sleep Mode  
Turn-On Time  
EN = High, Register 0x01 from 0x00 to 0x13  
EN = 0V  
8 to 36  
0.7  
EN = Low to High (Notes 8, 12)  
EN = High to Low (Notes 9, 12)  
Register 0x00 Change, <–50dBc (Note 12)  
Register 0x02 Change, <–60dBm (Note 12)  
167  
53  
Turn-Off Time  
ns  
OFF  
Side-Band Suppression Settling  
LO Suppression Settling  
500  
90  
ns  
SB  
ns  
LO  
Serial Port (CSB, SCLK, SDI, SDO), Enable (EN) and TTCK, SCLK = 20MHz  
l
l
V
V
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
Output High Voltage  
Output Low Voltage  
SDO Leakage Current  
Input Trip Point Hysteresis  
SCLK High Time  
1.1  
V
V
IH  
IL  
0.2  
0.7  
I
IH  
I
IL  
0.02  
–0.4  
nA  
nA  
V
l
l
V
V
(Note 13)  
= 8mA (Note 10)  
VCC_L – 0.2  
OH  
I
V
OL  
SINK  
I
OH  
for SDO = High  
0.5  
110  
25  
nA  
mV  
ns  
V
HYS  
CKH  
l
t
22.5  
5599f  
4
For more information www.linear.com/LTC5599  
LTC5599  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ,  
BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90°  
shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
20  
30  
20  
10  
45  
45  
20  
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
t
t
t
t
t
t
f
CSB Setup Time  
CSS  
CSH  
CS  
CSB High Time  
ns  
SDI to SCLK Setup Time  
SDI to SCLK Hold Time  
SCLK to SDO Time  
SCLK Duty Cycle  
ns  
ns  
CH  
ns  
DO  
50  
55  
%
C%  
CLK  
Maximum SCLK Frequency  
Temperature Diode Voltage  
Temperature Slope  
MHz  
mV  
mV/°C  
V
TEMP  
I
I
= 100µA  
= 100µA  
763  
1.6  
TEMP  
TEMP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
pull-up resistor and V  
connected to.  
Note 11: I and Q baseband Input signal = 2MHz CW, 0.8V  
the digital supply voltage to which R  
is  
CC_L  
PULL-UP  
each,  
P-P, DIFF  
I and Q 0° shifted.  
Note 2: The LTC5599 is guaranteed functional over the operating case  
temperature range from –40°C to 105°C.  
Note 3: At 6MHz offset from the LO signal frequency. 100nF between BBPI  
and BBMI, 100nF between BBPQ and BBMQ.  
Note 12: f = 500MHz, P = 0dBm, C4 = 1.5nF  
LO  
LO  
Note 13: Maximum V is derated for capacitive load using the following  
OH  
formula: V  
time of one SCLK cycle, R  
exp (–0.5 • T /(R  
C  
), with T  
the  
CC_L  
CLK  
PULL-UP  
LOAD  
CLK  
the SDO pull-up resistor, V  
the  
PULL-UP  
CC_L  
Note 4: The Default Register Settings are listed in Table 1.  
digital supply voltage to which R  
capacitive load at the SDO pin. For example for T  
is connected to, and C  
the  
PULL-UP  
LOAD  
= 100ns (10MHz  
CLK  
Note 5: IM2 is measured at f – 4.1MHz.  
LO  
SCLK), R  
= 1kΩ, C  
= 10pF and V  
= 3.3V the derating is 3.3  
PULL-UP  
LOAD  
CC_L  
Note 6: IM3 is measured at f – 2.2MHz and f – 1.9MHz. OIP3 = lowest  
LO  
LO  
exp(–5) = 22.2mV, thus maximum V = 3.3V – 0.1 – 0.0222 = 3.177V.  
OH  
of (1.5 • P{f – 2.1MHz} – 0.5 • P{f – 2.2MHz}) and (1.5 • P{f – 2MHz}  
LO  
LO  
LO  
Note 14: Minimum V in order to retain register data content.  
CC  
– 0.5 • P{f – 1.9MHz}).  
LO  
Note 15: Guaranteed by design and characterization. This parameter is not  
tested.  
Note 16: RF pin guaranteed by design while using a 10nF coupling  
capacitor. The RF pin is not tested.  
Note 7: Without side-band or LO feedthrough nulling (unadjusted).  
Note 8: RF power is within 10% of final value.  
Note 9: RF power is at least 30dB down from its ON state.  
Note 10: V voltage scales linear with current sink. For example for  
OL  
R
= 1kΩ, V  
= 3.3V the SDO sink current is about (3.3 – 0.2)  
PULL-UP  
CC_L  
/1kΩ = 3.1mA. Max V = 0.7 • 3.1/8 = 0.271V, with R  
the SDO  
OL  
PULL-UP  
5599f  
5
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Supply Current vs Digital  
Gain Setting  
Gain vs RF Frequency and  
Digital Gain Setting  
Supply Current vs Supply Voltage  
36  
34  
32  
30  
28  
26  
24  
22  
20  
0
–5  
DIGITAL GAIN SETTING (DG) = 0  
–40°C  
–10°C  
25°C  
85°C  
105°C  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
(REGISTER 0x01 = 0x00)  
40  
30  
20  
10  
0
–10  
–15  
–20  
–25  
DIGITAL GAIN SETTING (DG) = –19  
(REGISTER 0x01 = 0x13)  
–30  
2.7  
3
3.3  
3.6  
–19 –17 –15 –13 –11 –9 –7 –5 –3 –1  
50  
250  
450  
650  
850 1050 1250  
SUPPLY VOLTAGE (V)  
DIGITAL GAIN SETTING  
RF FREQUENCY (MHz)  
5599 G01  
5599 G02  
5599 G03  
Output IP3 vs RF Frequency and  
Digital Gain Setting  
Output IP2 vs RF Frequency and  
Digital Gain Setting  
LO Leakage vs RF Frequency and  
Digital Gain Setting  
80  
70  
60  
50  
40  
–40  
–50  
–60  
–70  
–80  
DG 0  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG 0  
DG 0  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
20  
15  
10  
5
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
0
50  
250  
450  
650  
850 1050 1250  
50  
250  
450  
RF FREQUENCY (MHz)  
50  
250 450  
650 850 1050 1250  
RF FREQUENCY (MHz)  
650  
850 1050 1250  
RF FREQUENCY (MHz)  
5599 G04  
5599 G06  
5599 G05  
Side-Band Suppression vs RF  
Frequency and Digital Gain Setting  
Side-Band Suppression vs LO  
Frequency for Gain TempComp Off  
Side-Band Suppression vs LO  
Frequency for Gain TempComp On  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
DG 0  
3.3V, 25°C  
2.7V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 10°C  
3.3V, 25°C  
2.7V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 10°C  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
TEMPUPDT = 1  
50  
250 450  
650  
850 1050 1250  
50  
250  
450  
650  
50  
250  
450  
650  
850 1050 1250  
850 1050 1250  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5599 G07  
5599 G08  
5599 G09  
5599f  
6
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Output 1dB Compression Point vs  
RF Frequency and Digital Gain  
Setting and 3.6V Supply  
Output 1dB Compression Point vs  
RF Frequency and Digital Gain  
Setting and 3.3V Supply  
Noise Floor vs RF Frequency and  
Digital Gain Setting  
–140  
–145  
–150  
–155  
–160  
–165  
DG 0  
DG 0  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
6
2
6
2
DIGITAL GAIN SETTING = 0  
(REGISTER 0x01 = 0x00)  
–2  
–6  
–10  
–2  
–6  
–10  
DIGITAL GAIN SETTING = –19  
(REGISTER 0x01 = 0x13)  
–170  
50  
250  
450  
650  
850 1050 1250  
50  
250  
450  
650  
850 1050 1250  
50  
250  
450  
650  
850 1050 1250  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5599 G11  
5599 G12  
5599 G10  
Output 1dB Compression Point vs  
RF Frequency and Digital Gain  
Setting and 2.7V Supply  
Output 1dB Compression Point vs  
RF Frequency and Digital Gain  
Setting at –10°C  
Output 1dB Compression Point vs  
RF Frequency and Digital Gain  
Setting at –40°C  
DG 0  
DG 0  
DG 0  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
6
2
6
6
2
2
–2  
–2  
–6  
–10  
–2  
–6  
–10  
–6  
–10  
50  
250  
450  
650  
850 1050 1250  
50  
250  
450  
650  
850 1050 1250  
50  
250  
450  
650  
850 1050 1250  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5599 G13  
5599 G14  
5599 G15  
Output 1dB Compression Point vs  
RF Frequency and Digital Gain  
Setting at 105°C  
Output 1dB Compression Point vs  
RF Frequency and Digital Gain  
Setting at 85°C  
Gain vs RF Frequency and VCTRL  
0
DG 0  
DG 0  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
3.3V  
1.8V  
DG –1  
DG –2  
DG –3  
DG –4  
DG –5  
DG –6  
DG –7  
DG –8  
DG –9  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
6
6
1.6V  
–20  
–40  
–60  
–80  
1.45V  
2
–2  
2
–2  
–6  
1.35V  
DG –9  
1.25V  
DG –10  
DG –11  
DG –12  
DG –13  
DG –14  
DG –15  
DG –16  
DG –17  
DG –18  
DG –19  
1.15V  
1V  
–6  
AGCTRL = 1  
850 1050 1250  
RF FREQUENCY (MHz)  
–10  
–10  
50  
–100  
50  
50  
250  
450  
650  
850 1050 1250  
250  
450  
650  
850 1050 1250  
250  
450  
650  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5599 G16  
5599 G17  
5599 G18  
5599f  
7
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Input IP3 vs RF Frequency and  
VCTRL  
Input IP2 vs RF Frequency  
and VCTRL  
Noise Floor vs RF Frequency and  
VCTRL  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
3.3V  
2V  
3.3V  
–150  
–154  
–158  
–162  
–166  
1.8V  
1.9V  
1.85V  
1.8V  
1.75  
1.65  
1.6V  
1.55V  
1.5V  
1.45V  
1.4V  
1.3V  
1V  
1.8V  
1.6V  
1.45V  
3.3V  
1.6V  
1.45V  
1.35V  
1.15V  
1.35V  
1.25V  
1V  
1.25V  
1.15V  
1V  
AGCTRL = 1  
850 1050 1250  
RF FREQUENCY (MHz)  
AGCTRL = 1  
50  
250  
450  
650  
50  
250  
450  
650  
850 1050 1250  
50  
250  
450  
650  
850 1050 1250  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5599 G19  
5599 G20  
5599 G21  
Noise Floor vs RF Power  
Noise Floor vs VCTRL Gain  
Noise Floor vs RF Frequency  
–140  
–144  
–148  
–152  
–156  
–160  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–150  
–154  
3.3V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
2.7V, 25°C  
3.3V, 85°C  
3.3V, 105°C  
3.3V, 10°C  
3.3V, 40°C  
3.6V, 25°C  
2.7V, 25°C  
3.3V, 85°C  
3.3V, 105°C  
3.3V, 10°C  
3.3V, 40°C  
DG = 0  
DG = –4  
DG = –8  
–158  
–162  
DG = –12  
DG = –16  
DG = –19  
AGCTRL = 1  
–166  
50  
250  
450  
650  
–10 –8 –6 –4 –2  
RF POWER (dBm)  
2
4
850 1050 1250  
0
6
–80 –70 –60 –50  
–40 –30 –20 –10  
RF FREQUENCY (MHz)  
V
CTRL  
GAIN (dB)  
5599 G22  
5599 G23  
5599 G24  
Output IP3 vs RF Frequency for  
30MHz LO Match  
Side-Band Suppression vs RF  
Frequency for 30MHz LO Match  
Gain vs RF Frequency for 30MHz  
LO Match  
–5  
–6  
21  
20  
19  
18  
17  
16  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
3.3V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.3V, 0°C  
3.3V, 85°C  
3.3V, 10°C  
3.3V, 55°C  
3.3V, 85°C  
3.3V, 10°C  
3.3V, 55°C  
–7  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
3.3V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.3V, 0°C  
3.3V, 85°C  
3.3V, 10°C  
3.3V, 55°C  
3.3V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.3V, 0°C  
15  
20  
25  
30  
35  
40  
45  
50  
20  
25  
30  
20  
25  
30  
RF FREQUENCY (MHz)  
35  
40  
45  
50  
35  
40  
45  
50  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5599 G25  
5599 G26  
5599 G27  
5599f  
8
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Gain vs RF Frequency for 70MHz  
LO Match  
Output IP3 vs RF Frequency for  
70MHz LO Match  
Side-Band Suppression vs RF  
Frequency for 70MHz LO Match  
–5  
–6  
23  
22  
21  
20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
3.3V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.3V, 0°C  
3.3V, 85°C  
3.3V, 10°C  
3.3V, 55°C  
3.3V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.3V, 0°C  
3.3V, 85°C  
3.3V, 10°C  
3.3V, 55°C  
–7  
–8  
3.3V, 25°C  
3.3V, 105°C  
3.3V, 40°C  
3.3V, 0°C  
3.3V, 85°C  
3.3V, 10°C  
3.3V, 55°C  
–9  
19  
18  
–10  
50  
60  
70  
80  
90  
50  
60  
70  
80  
90  
100 110 120  
100 110 120  
50  
60  
70  
80  
90  
100 110 120  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5599 G28  
5599 G29  
5599 G30  
Gain vs LO Power at fLO = 150MHz  
Gain vs LO Power at fLO = 500MHz  
Gain vs LO Power at fLO = 900MHz  
–6  
–10  
–14  
–18  
–22  
–6  
–10  
–14  
–18  
–22  
–6  
–10  
–14  
–18  
–22  
DIGITAL GAIN = –4  
DIGITAL GAIN = –4  
DIGITAL GAIN = –4  
DIGITAL GAIN = –10  
DIGITAL GAIN = –10  
DIGITAL GAIN = –10  
3.3V  
3.6V  
2.7V  
85°C  
3.3V  
3.6V  
2.7V  
85°C  
3.3V  
3.6V  
2.7V  
85°C  
105°C  
–10°C  
–40°C  
105°C  
–10°C  
–40°C  
105°C  
–10°C  
–40°C  
–10 –8 –6 –4  
–10 –8 –6 –4 –2  
0
2
4
6
–2  
0
2
4
6
–10 –8 –6 –4  
–2  
0
2
4
6
LO POWER (dBm)  
LO POWER (dBm)  
LO POWER (dBm)  
5599 G31  
5599 G33  
5599 G32  
Gain vs LO Power  
at fLO = 1260MHz  
Output IP3 vs LO Power  
at fLO = 500MHz  
Output IP3 vs LO Power  
at fLO = 150MHz  
–6  
–10  
–14  
–18  
–22  
23  
19  
15  
11  
7
23  
19  
15  
11  
7
85°C  
3.3V  
3.6V  
2.7V  
DIGITAL GAIN = –4  
DIGITAL GAIN = –4  
105°C  
–10°C  
–40°C  
DIGITAL GAIN = –4  
DIGITAL GAIN = –10  
DIGITAL GAIN = –10  
3.3V  
3.6V  
2.7V  
85°C  
3.3V  
3.6V  
2.7V  
85°C  
105°C  
–10°C  
–40°C  
DIGITAL GAIN = –10  
105°C  
–10°C  
–40°C  
–10 –8 –6 –4  
LO POWER (dBm)  
–10 –8 –6 –4 –2  
0
2
4
6
–10 –8 –6 –4 –2  
0
2
4
6
–2  
0
2
4
6
LO POWER (dBm)  
LO POWER (dBm)  
5599 G34  
5599 G35  
5599 G36  
5599f  
9
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Output IP3 vs LO Power at  
fLO = 900MHz  
Output IP3 vs LO Power at  
fLO = 1260MHz  
Output IP2 vs LO Power at  
f
LO = 150MHz  
23  
19  
15  
11  
7
20  
16  
12  
75  
70  
65  
60  
55  
50  
45  
40  
3.3V  
3.6V  
2.7V  
85°C  
DIGITAL GAIN = –4  
DIGITAL GAIN = –4  
105°C  
–10°C  
–40°C  
DIGITAL GAIN = –10  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
8
4
85°C  
3.3V  
3.6V  
2.7V  
85°C  
DIGITAL GAIN = –10  
3.3V  
3.6V  
2.7V  
105°C  
–10°C  
–40°C  
105°C  
–10°C  
–40°C  
0
–10 –8 –6 –4  
LO POWER (dBm)  
–10 –8 –6 –4  
–10 –8 –6 –4  
LO POWER (dBm)  
–2  
0
2
4
6
–2  
0
2
4
6
–2  
0
2
4
6
LO POWER (dBm)  
5599 G37  
5599 G38  
5599 G39  
Output IP2 vs LO Power at  
fLO = 500MHz  
Output IP2 vs LO Power at  
fLO = 1260MHz  
Output IP2 vs LO Power at  
fLO = 900MHz  
75  
70  
65  
75  
70  
65  
75  
70  
65  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
85°C  
3.3V  
3.6V  
2.7V  
105°C  
–10°C  
–40°C  
60  
55  
50  
45  
40  
60  
55  
50  
45  
40  
60  
55  
50  
45  
40  
85°C  
85°C  
3.3V  
3.6V  
2.7V  
105°C  
–10°C  
–40°C  
3.3V  
3.6V  
2.7V  
105°C  
–10°C  
–40°C  
–10 –8 –6 –4  
LO POWER (dBm)  
–10 –8 –6 –4  
LO POWER (dBm)  
–2  
0
2
4
6
–2  
0
2
4
6
–10 –8 –6 –4  
LO POWER (dBm)  
–2  
0
2
4
6
5599 G40  
5599 G41  
5599 G42  
LO Leakage vs LO Power at  
fLO = 150MHz  
LO Leakage vs LO Power at  
fLO = 500MHz  
LO Leakage vs LO Power at  
fLO = 900MHz  
–45  
–50  
–55  
–60  
–65  
–45  
–50  
–45  
–50  
–55  
–60  
3.3V  
3.6V  
2.7V  
85°C  
DIGITAL GAIN = –4  
DIGITAL GAIN = –4  
105°C  
–10°C  
–40°C  
DIGITAL GAIN = –4  
DIGITAL GAIN = –10  
–55  
–60  
DIGITAL GAIN = –10  
3.3V  
3.6V  
2.7V  
85°C  
85°C  
DIGITAL  
GAIN = –10  
–65  
–70  
105°C  
–10°C  
–40°C  
105°C  
–10°C  
–40°C  
3.3V  
3.6V  
2.7V  
–10 –8 –6 –4  
–10 –8 –6 –4  
LO POWER (dBm)  
–2  
0
2
4
6
–2  
0
2
4
6
–10 –8 –6 –4  
LO POWER (dBm)  
–2  
0
2
4
6
LO POWER (dBm)  
5599 G43  
5599 G45  
5599 G44  
5599f  
10  
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
LO Leakage vs LO Power at  
fLO = 1260MHz  
Side-Band Suppression vs  
LO Power at fLO = 150MHz  
Side-Band Suppression vs  
LO Power at fLO = 500MHz  
–44  
–48  
–52  
–56  
–60  
–64  
–68  
–72  
–76  
–80  
–40  
–45  
–50  
–55  
–60  
–65  
–40  
–45  
–50  
–55  
–60  
–65  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
DIGITAL GAIN = –4  
3.3V  
3.6V  
2.7V  
85°C  
105°C  
–10°C  
–40°C  
DIGITAL  
GAIN = –10  
3.3V  
3.6V  
2.7V  
85°C  
85°C  
105°C  
–10°C  
–40°C  
105°C  
–10°C  
–40°C  
3.3V  
3.6V  
2.7V  
–10 –8 –6 –4  
–10 –8 –6 –4  
LO POWER (dBm)  
–10 –8 –6  
–2  
0
2
4
6
–2  
0
2
4
6
–4 –2  
0
2
4
6
LO POWER (dBm)  
LO POWER (dBm)  
5599 G46  
5599 G47  
5599 G48  
Side-Band Suppression vs  
LO Power at fLO = 900MHz  
Side-Band Suppression vs  
LO Power at fLO = 1260MHz  
Supply Current vs VCTRL Voltage  
–40  
–45  
–50  
–55  
–60  
–65  
–40  
–41  
–42  
–43  
–44  
–45  
–46  
–47  
–48  
–49  
–50  
40  
30  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
20  
10  
0
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
3.3V, 10°C  
DIGITAL GAIN = –4 (SOLID)  
DIGITAL GAIN = –10 (DASHED)  
85°C  
85°C  
105°C  
–10°C  
–40°C  
3.3V  
3.6V  
2.7V  
105°C  
–10°C  
–40°C  
3.3V  
3.6V  
2.7V  
AGCTRL = 1  
0.9 1.2 1.5 1.8  
3.3V, 105°C  
2.1 2.4 2.7  
VOLTAGE (V)  
5599 G51  
–10 –8 –6 –4  
LO POWER (dBm)  
–10 –8 –6 –4  
–2  
0
2
4
6
–2  
0
2
4
6
3
3.3  
LO POWER (dBm)  
V
CTRL  
5599 G49  
5599 G50  
VCTRL Current vs VCTRL Voltage  
Gain vs VCTRL Voltage  
Output IP3 vs VCTRL Gain  
3.0  
2.5  
2.0  
1.5  
0
25  
20  
15  
10  
5
AGCTRL = 1  
AGCTRL = 1  
–20  
–40  
–60  
–80  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
3.3V, 10°C  
3.3V, 105°C  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
3.3V, 10°C  
3.3V, 105°C  
2.7V, 25°C  
3.  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
3.3V, 10°C  
3.3V, 105°C  
3V, 25°C  
0
–5  
–10  
0.9 1.2 1.5 1.8  
0.9 1.2 1.5 1.8  
2.1 2.4 2.7  
(V)  
3
3.3  
2.1 2.4 2.7  
VOLTAGE (V)  
3
3.3  
–27  
–23  
–19  
–15  
–11  
–7  
V
V
CTRL  
GAIN SET BY V  
(dB)  
CTRL  
CTRL  
5599 G52  
5599 G53  
5599 G54  
5599f  
11  
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Side-Band Suppression vs  
VCTRL Gain  
Output IP2 vs VCTRL Gain  
LO Leakage vs VCTRL Gain  
70  
65  
60  
55  
50  
45  
40  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
AGCTRL = 1  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
3.3V, 10°C  
3.3V, 105°C  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
3.3V, 10°C  
3.3V, 105°C  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
3.3V, 10°C  
3.3V, 105°C  
AGCTRL = 1  
AGCTRL = 1  
–27 –17  
–17  
–15  
–13  
–77 –67 –57 –47 –37  
GAIN SET BY V  
–77 –67 –57 –47 –37  
GAIN SET BY V  
(dB)  
CTRL  
–11  
–9  
–7  
–27 –17  
(dB)  
–7  
–7  
GAIN SET BY V  
(dB)  
CTRL  
CTRL  
5599 G55  
5599 G56  
5599 G57  
PRF, IM2, IM3 vs Baseband  
Amplitude  
Gain Minus Digital Gain vs Digital  
Gain Setting  
Gain vs Digital Gain Setting  
–2  
–3  
–4  
–5  
–6  
10  
–10  
–30  
–50  
–70  
–90  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
P
RF  
FOR DG = 0, –4, –8, –12, –1  
6, –19,  
–5  
–9  
–13  
–17  
–21  
–25  
IM3 FOR DG = 0, –19,  
–16, –4, –12, –8  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 40°C  
AGCTRL = 1  
IM2 FORDG= 0, –4, –8, –19, –12, –1  
6
–19  
–15  
–11  
–7  
–3  
–19  
–15  
–11  
–7  
–3  
0.1  
1
DIGITAL GAIN SETTING  
DIGITAL GAIN SETTING  
BASEBAND AMPLITUDE (V  
)
PEAK(DIFF)  
5599 G58  
5599 G59  
5599 G60  
LO Leakage vs LO Frequency for  
Gain TempComp Off  
Output IP3 vs Baseband Amplitude  
Output IP2 vs Baseband Amplitude  
70  
60  
50  
40  
30  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
TEMPUPDT = 1  
20  
15  
10  
5
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 105°C  
0
DG = 0  
DG = –8  
DG = –16  
DG = –4  
DG = –12  
DG = –19  
DG = 0  
DG = –8  
DG = –16  
DG = –4  
DG = –12  
DG = –19  
3.3V, 10°C  
3.3V, 40°C  
–5  
0.1  
1
0.1  
1
50  
250  
450  
650  
850 1050 1250  
BASEBAND AMPLITUDE (V  
)
BASEBAND AMPLITUDE (V  
LO FREQUENCY (MHz)  
)
PEAK(DIFF)  
PEAK(DIFF)  
5599 G61  
5599 G62  
5599 G63  
5599f  
12  
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
V
CC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Worst-Case LO Leakage Over Five  
Parts vs LO Frequency After 25°C  
Calibration for Gain TempComp Off  
Worst-Case LO Leakage Over Five  
Parts vs LO Frequency After 25°C  
Calibration for Gain TempComp On  
LO Leakage vs LO Frequency for  
Gain TempComp On  
–40  
–50  
–60  
–70  
–80  
–40  
–50  
–60  
–70  
–80  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
2.7V, 25°C  
3.3V, 25°C  
3.6V, 25°C  
3.3V, 85°C  
3.3V, 105°C  
3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C;  
3.3V, 10°C; 3.3V, 40°C; 2.7V, 25°C AND  
3.6V, 25°C BETWEEN WORST-CASE AND  
BEST-CASE  
3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C;  
3.3V, 10°C; 3.3V, 40°C; 2.7V, 25°C AND  
3.6V, 25°C BETWEEN WORST-CASE AND  
BEST-CASE  
3.3V, 10°C  
3.3V, 40°C  
WORST-CASE: 3.3V, 105°C  
WORST-CASE: 3.3V, 105°C  
BEST-CASE: 3.3V, 25°C  
TEMPUPDT = 1  
BEST-CASE: 3.3V, 25°C  
50  
250  
450  
650  
50  
250  
450  
LO FREQUENCY (MHz)  
850 1050 1250  
650  
850  
1050 1250  
50  
250  
450  
650  
850 1050 1250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5599 G65  
5599 G66  
5599 G64  
Worst-Case Side-Band Suppression Over  
Five Parts vs LO Frequency After 25°C  
Calibration for Gain TempComp Off  
LO Leakage vs LO Frequency  
and Digital Gain Setting After  
Calibration at DG = –4  
Worst-Case Side-Band Suppression Over  
Five Parts vs LO Frequency After 25°C  
Calibration for Gain TempComp On  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
–40  
–50  
–60  
–70  
–80  
3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C;  
3.3V, 10°C; 3.3V, 40°C; 2.7V, 25°C AND  
3.6V, 25°C BETWEEN WORST-CASE AND  
BEST-CASE  
3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C;  
3.3V, 10°C; 3.3V, 40°C; 2.7V, 25°C AND  
3.6V, 25°C BETWEEN WORST-CASE AND  
BEST-CASE  
WORST-CASE: 3.3V, 105°C  
BEST-CASE: 3.3V, 25°C  
DG = –19  
DG = –3  
DG = 0  
DG = –8  
WORST-CASE: 3.3V, 105°C  
BEST-CASE: 3.3V, 25°C  
DG = –4  
DG = –17  
TEMPUPDT = 1  
50  
250  
450  
650  
50  
250  
450  
LO FREQUENCY (MHz)  
50  
250 450  
850 1050 1250  
650  
850  
650 850  
1050 1250  
1050 1250  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5599 G67  
5599 G68  
5599 G69  
Side-Band Suppression vs LO  
Frequency and Digital Gain Setting  
After Calibration at DG = –4  
Temperature Sensing Diode  
Voltage Cumulative Distribution  
Supply Current Cumulative  
Distribution  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
–40°C  
105°C  
105°C  
DG = 0  
DG = –19  
DG = –12  
25°C  
25°C  
–40°C  
DG = –4  
DG = –3  
850 1050 1250  
RF FREQUENCY (MHz)  
50  
250 450 650  
0.6  
0.65  
0.7  
0.75  
24  
26  
28  
SUPPLY CURRENT (mA)  
0.8  
0.85  
0.9  
30  
32  
34  
DIODE VOLTAGE FOR 100µA (V)  
5599 G70  
5599 G71  
5599 G72  
5599f  
13  
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
Sleep Current Cumulative  
Distribution  
Gain Cumulative Distribution for  
Gain TempComp Off  
Gain Cumulative Distribution for  
Gain TempComp On  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
25°C  
–40°C  
105°C  
25°C  
25°C  
130°C  
105°C  
–40°C  
–40°C  
–8.4  
–8  
–7.6  
–7.2  
–6.8  
–6.4  
0
0.2 0.4  
–8.4  
–8  
–7.6  
–7.2  
–6.8  
–6.4  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
GAIN (dB)  
SLEEP CURRENT (µA)  
GAIN (dB)  
5599 G74  
5599 G73  
5599 G75  
TEMPUPDT = 1  
Gain Cumulative Distribution for  
Gain Cumulative Distribution for  
VCTRL = 1V  
Output IP3 Cumulative Distribution  
V
CTRL = 1.75V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
NOTE 11  
105°C  
25°C  
–40°C  
–40°C  
25°C  
105°C  
105°C  
–40°C  
25°C  
AGCTRL = 1  
–12  
AGCTRL = 1  
–60  
–18  
–16  
–80  
–70  
15  
17  
–14  
–10  
–50  
19  
21  
23  
GAIN (dB)  
GAIN (dB)  
OUTPUT IP3 (dBm)  
5599 G76  
5599 G77  
5599 G78  
Output IP2 Cumulative  
Distribution  
Noise Floor Cumulative  
Distribution  
LO Leakage Cumulative Distribution  
for Floating Baseband Pins  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
NOTE 11  
–40°C  
105°C  
25°C  
–40°C  
–40°C  
105°C  
25°C  
105°C  
25°C  
–160  
–158  
NOISE FLOOR (dBm/Hz)  
–60  
–55  
–50  
LO LEAKAGE (dBm)  
–156  
–154  
–152  
–45  
–40  
–35  
50  
54  
58 62  
66  
70 74 78  
OUTPUT IP2 (dBm)  
5599 G80  
5599 G81  
5599 G79  
5599f  
14  
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
V
CC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
LO Leakage Cumulative  
Distribution  
LO Leakage Cumulative  
Side-Band Suppression  
Cumulative Distribution  
Distribution for VCTRL = 1.75V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
AGCTRL = 1  
–40°C  
105°C  
–40°C  
105°C  
25°C  
105°C  
25°C  
25°C  
–40°C  
–60  
–55  
–50  
LO LEAKAGE (dBm)  
–60 –55 –50  
–60  
–55  
SIDE-BAND SUPPRESSION (dBc)  
5599 G84  
–45  
–40  
–35  
–45 –40 –35 –30 –25 –20  
–50  
–45  
–40  
–35  
LO LEAKAGE (dBm)  
5599 G82  
5599 G83  
Side-Band Suppression Cumulative  
Distribution for VCTRL = 1.75V  
RF Return Loss  
100  
80  
60  
40  
20  
0
0
–5  
AGCTRL = 1  
25°C  
RESONANCE FREQUENCY WITH C4 = 10nF  
DG = –19  
–10  
DG = –18  
DG = –17  
–15  
–20  
105°C  
–25  
–30  
–35  
–40°C  
DG = 0  
–60  
–55  
SIDE-BAND SUPPRESSION (dBc)  
10  
100  
1000  
–50  
–45  
–40  
–35  
RF FREQUENCY (MHz)  
5599 G85  
5599 G86  
LO Return Loss for 30MHz and  
70MHz Match, Schematic in Figure 3  
LO Return Loss  
0
–5  
0
–5  
REGISTER 0x00 SET  
ACCORDING TO LO  
FREQUENCY TABLE 5  
–10  
–10  
70MHz  
–15  
–20  
–15  
–20  
30MHz  
–25  
–30  
–35  
–25  
–30  
–35  
REGISTER 0x00  
SET TO 0x7F  
10  
100  
1000  
10  
100  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5599 G87  
5599 G88  
5599f  
15  
For more information www.linear.com/LTC5599  
LTC5599  
Typical perForMance characTerisTics  
= 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz,  
LO  
VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C,  
PLO = 0dBm,  
f
2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all  
other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13.  
LO Return Loss for Standard,  
900MHz and 1260MHz Match  
RMS EVM vs RF Output Power  
with 1Ms/s 16-QAM Signal  
Peak EVM vs RF Output Power  
with 1Ms/s 16-QAM Signal  
0
–5  
20  
15  
10  
5
10  
DG = –6  
DG = –2  
STANDARD REG 0x00 = 0x0A, L1 = 39nH, C5 = 15pF  
900MHz REG 0x00 = 0x12, L1 = 8.2nH, C5 = 3.3pF  
1260MHz REG 0x00 = 0x01, L1 = 5.6nH, C5 = 3pF  
DG = –2  
9
8
7
6
5
4
3
2
1
0
DG = –6  
DG = 0  
DG = –8  
DG = –10  
DG = –12  
DG = –16  
DG = –8  
DG = –10  
DG = 0  
STANDARD  
–10  
DG = –12  
DG = –16  
–15  
–20  
900MHz  
DG = –19  
1260MHz  
–25  
–30  
–35  
DG = –19  
DG = –4  
DG = –4  
SOLID: EN = HIGH; DASHED: EN = LOW  
0
500 700 900 1100 1300 1500 1700 1900  
–20 –16  
–12  
–8  
–4  
0
4
–20 –16  
–12  
–8  
–4  
0
4
LO FREQUENCY (MHz)  
RF POWER (dBm)  
RF POWER (dBm)  
5599 G89  
5599 G91  
5599 G90  
5599f  
16  
For more information www.linear.com/LTC5599  
LTC5599  
pin FuncTions  
V
(Pin 1): Variable Gain Control Input. This analog  
BBPQ, BBMQ (Pins 10, 11): Baseband Inputs of the  
Q-Channel. The input impedance of each input is about  
1kΩ. It should be externally biased to a 1.4V common  
mode level, or AC-coupled. Do not apply common mode  
CTRL  
control pin sets the gain. Write a “1” to bit 6 in register  
0x01 (AGCTRL = 1) to activate this pin, resulting in about  
2.58mAcurrentdrawfromapositivesupply.TypicalV  
CTRL  
voltage range is 0.9V to 3.3V. Gain transfer function is  
voltage beyond 2V . Float if Q-channel is disabled.  
DC  
not linear-in-dB. Tie to V when not used.  
CC  
GNDRF (Pins 13, 14, 15, 17, 18): RF Ground. These pins  
areconnectedtogetherinternally.ForbestRFperformance  
all ground pins should be connected to RF ground.  
GND (Pins 2, 5, 12, Exposed Pad 25): Ground. All these  
pins are connected together internally. For best RF perfor-  
mance all ground pins should be connected to RF ground.  
RF (Pin 16): RF Output. The output impedance at RF  
frequencies is 50Ω. Its DC output voltage is about 1.7V  
if enabled. An AC-coupling capacitor should be used at  
this pin with a recommended value of 10nF.  
LOL, LOC (Pins 3, 4): LO Inputs. This is not a differen-  
tial input. Both pins are 50Ω inputs. An LC diplexer is  
recommended to be used at these pins (see Figure 13).  
AC-coupling capacitors are required at these pins if the  
applied DC level is higher than 100mV.  
CSB (Pin 19): Serial Port Chip Select. This CMOS input  
initiates a serial port transaction when driven low, ending  
the transaction when driven back high. Do not float.  
TTCK (Pin 6): Temperature Update. When the TTCK tem-  
perature update mode is selected in register 0x01 (bit 7  
= High, TEMPUPDT = 1), the temperature readout and  
digital gain compensation vs temperature can be updated  
through a logic low to logic high transition at this pin. Do  
not float.  
SCLK (Pin 20): Serial Port Clock. This CMOS input clocks  
serial port input data on its rising edge. Do not float.  
SDI (Pin 21): Serial Port Data Input. The serial port uses  
this CMOS input for data. Do not float.  
SDO (Pin 22): Serial Port Data Output. This NMOS output  
presentsdatafromtheserialportduringareadtransaction.  
Connect this pin to the digital supply voltage through a  
pull-up resistor of sufficiently large value, to ensure that  
the current does not exceed 10mA when pulled low.  
TEMP (Pin 7): Temperature Sensing Diode. This pin is  
connected to the anode of a diode that may be used to  
measure the die temperature, by forcing a current and  
measuring the voltage. This diode is not part of the on-  
chip thermometer.  
EN (Pin 23): Enable Pin. The chip is completely turned  
on when a logic high voltage is applied to this pin, and  
completely turned off for a logic low voltage. Do not float.  
BBPI,BBMI(Pins8,9):BasebandInputsoftheI-Channel.  
The input impedance of each input is about 1kΩ. It should  
be externally biased to a 1.4V common mode level, or AC-  
coupled.Donotapplycommonmodevoltagebeyond2V .  
DC  
V
CC  
(Pin24):PowerSupply.Itisrecommendedtouse1nF  
and4.7µFcapacitorsfordecouplingtogroundonthispin.  
5599f  
17  
For more information www.linear.com/LTC5599  
LTC5599  
block DiagraM  
CSB SCLK SDI SDO  
V
CC  
EN  
23  
19  
20  
21  
22  
24  
SPI  
BBPI  
8
9
V
V
I
I
I-CHANNEL  
Q-CHANNEL  
BBMI  
16 RF  
0°  
V
1
CTRL  
90°  
BBPQ 10  
11  
THERMOMETER  
6
TTCK  
BBMQ  
7
2
5
12 25  
3
4
13 14 15 17 18  
GNDRF  
5599 BD  
GND  
TEMP LOL LOC  
5599f  
18  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
The LTC5599 consists of I and Q input differential voltage- resulting RF signal is equal to the LO signal frequency.  
to-current converters, I and Q upconverting mixers, an The LO inputs drive a phase shifter which splits the LO  
RF output buffer and an LO quadrature phase generator. signalintoin-phaseandquadraturesignalswhichdrivethe  
An SPI bus addresses nine control registers, enabling upconverting mixers. In most applications, the LOL input  
optimization of side-band suppression, LO leakage, and is driven by the LO source via a 39nH inductor, while the  
adjustment of the modulator gain. See Table 1 for a sum- LOC input is driven by the LO source via a 15pF capacitor.  
mary of the writable registers and their default values. This inductor and capacitor form a diplexer circuit tuned  
A full map of all the registers in the LTC5599 is listed in to 200MHz. The RF output is single-ended and internally  
Table 10 and Table 11 in the Appendix.  
Table 1. SPI Writable Registers and Default Register Values.  
DEFAULT  
50Ω matched across a wide RF frequency range from  
0.6MHz to 6GHz with better than 10dB return loss using  
C4 = 10nF. See Figure 13.  
ADDRESS  
VALUE  
0x2E  
0x84  
0x80  
0x80  
0x80  
0x10  
0x50  
0x06  
SETTING REGISTER FUNCTION  
Baseband Interface  
0x00  
490MHz LO Frequency Tuning  
0x01  
DG = –4  
0mV  
0mV  
0dB  
Gain  
The baseband inputs (BBPI, BBMI, BBPQ, BBMQ) present  
a differential input impedance of about 1.8kΩ, as depicted  
in Figure 1. The baseband bandwidth depends on the  
source impedance and the frequency setting (register  
0x00). It is recommended to compensate the baseband  
input impedance in the baseband lowpass filter design in  
ordertoachievebestgainflatnessvsbasebandfrequency.  
The S-parameters for (each of) the baseband inputs are  
giveninTable2forvariousLOfrequencyandgainsettings.  
0x02  
Offset I-Channel  
Offset Q-Channel  
I/Q Gain Ratio  
0x03  
0x04  
0x05  
0°  
I/Q Phase Balance  
LO Port Matching Override  
0x06  
OFF  
0x07  
OFF  
Temperature Correction  
Override  
0x08  
0x00  
NORMAL Operating Mode  
Without using the SPI the registers will use the default  
values which may not result in the optimum side-band  
suppression (SB). For example: for LO frequency from  
about 400MHz to about 580MHz, the SB is about –45dBc;  
from 380MHz to 400MHz and 580MHz to 630MHz it falls  
to about –40dBc; from 350MHz to 380MHz and 630MHz  
to 690MHz the SB falls to about –35dBc.  
V
= 3.3V  
CC  
+
1.4V  
EN  
V
CTRL  
2.5mA  
1
1kΩ  
1kΩ  
BBPI  
8
9
Aside of powering up the LTC5599, the register values can  
be reset to the default values by setting SRESET = 1 (bit 3,  
register 0x08). After about 50ns SRESET is automatically  
set back to 0.  
V
= 1.4V  
CM  
BBMI  
35Ω  
10pF  
40Ω  
3pF  
40Ω  
3pF  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins: BBPI, BBMI and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
upconverting mixers. The mixer outputs are combined at  
the inputs of the RF output buffer, which also transforms  
the output impedance to 50Ω. The center frequency of the  
5599 F01  
Figure 1. Simplified Circuit Schematic of the Base Band Input  
Interface (Only One Channel Is Shown).  
5599f  
19  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
T
able 2. Differential Baseband (BB) Input Impedance vs  
T
able 2. Differential Baseband (BB) Input Impedance vs  
Frequency for EN = High and VCMBB = 1.4V (continued)  
Frequency for EN = High and VCMBB = 1.4V  
REFL  
REFL  
BB  
BB  
INPUT IMPEDANCE (W)  
COEFFICIENT  
INPUT IMPEDANCE (W)  
FREQUENCY  
COEFFICIENT  
FREQUENCY  
(MHz)  
REAL*  
IMAG* (CAP)  
MAG ANGLE  
(MHz)  
REAL*  
IMAG* (CAP)  
MAG ANGLE  
EN = Low (Chip Disabled, REGISTER 0X00 = 0x2E)  
LO FREQUENCY = 92MHz (REGISTER 0x00 = 0x79), DIGITAL GAIN = –4dB  
1
2
2.04k  
2.02k  
1.91k  
1.59k  
1.01k  
402  
–18.2k (8.8pF)  
–4.59k (8.7pF)  
–1.84k (8.7pF)  
–935 (8.5pF)  
–502 (7.9pF)  
–269 (5.9pF)  
–197 (4.0pF)  
0.906  
0.906  
0.901  
0.893  
0.826  
0.644  
0.522  
–0.6  
–2.5  
–6.3  
–12  
–23  
–43  
–60  
1
1.90k  
1.76k  
1.25k  
678  
–7.17k (22.2pF)  
–1.82k (21.9pF)  
–751 (21.2pF)  
–429 (18.6pF)  
–308 (12.9pF)  
0.900  
0.893  
0.854  
0.755  
0.585  
–1.6  
–6.3  
–15  
–27  
–39  
4
10  
20  
40  
100  
200  
10  
20  
40  
342  
LO FREQUENCY = 150MHz (REGISTER 0x00 = 0x62), DIGITAL GAIN = –4dB  
246  
1
4
1.90k  
1.82k  
1.45k  
887  
–9.11k (17.5pF)  
–2.30k (17.3pF)  
–935 (17.0pF)  
–507 (15.7pF)  
–325 (12.2pF)  
–252 (6.3pF)  
0.900  
0.896  
0.872  
0.804  
0.658  
0.457  
–1.3  
–5.0  
–12  
–23  
–36  
–51  
*Parallel Equivalent  
10  
20  
40  
100  
Thecircuitisoptimizedforacommonmodevoltageof1.4V  
whichcanbeinternallyorexternallyapplied.IncaseofAC-  
coupling to the baseband pins (1.4V internally generated  
bias) make sure that the high pass filter corner is not  
affecting the low frequency components of the baseband  
signal. Even a small error for low baseband frequencies  
can result in degraded EVM.  
441  
226  
LO FREQUENCY = 500MHz (REGISTER 0x00 = 0x2D), DIGITAL GAIN = –4dB  
1
4
1.91k  
1.89k  
1.72k  
1.35k  
786  
–14.7k (10.6pF)  
–3.74k (10.7pF)  
–1.50k (10.7pF)  
–769 (10.4pF)  
–426 (9.4pF)  
0.900  
0.899  
0.891  
0.864  
0.785  
0.583  
0.478  
–0.8  
–3.0  
–7.7  
–15  
–27  
–47  
–65  
10  
20  
40  
100  
200  
The baseband input offset voltage depends on the source  
resistance. In case of AC-coupling the 1 sigma offset is  
about 1.1mV, resulting in about –46.6dBm LO leakage.  
For shorted baseband pins (0Ω source resistance), the  
LO leakage improves to about –50.1dBm. In case of AC-  
coupling the LO leakage can be reduced by connecting a  
resistor in parallel with the baseband inputs, thus lower-  
ing baseband input impedance and offset. Further, the  
low combined baseband input leakage current of 1.3nA  
in shutdown mode retains the voltage over the coupling  
capacitors, which helps to settle faster when the part is  
enabled again. It is recommended to drive the baseband  
inputsdifferentiallytoimprovethelinearity.WhenaDACis  
usedasthesignalsource, areconstructionfiltershouldbe  
placedbetweentheDACoutputandtheLTC5599baseband  
inputs to avoid aliasing.  
323  
–251 (6.4pF)  
212  
–190 (4.2pF)  
LO FREQUENCY = 500MHz (REGISTER 0x00 = 0x2D), DIGITAL GAIN = 0dB  
1
4
1.56k  
1.56k  
1.48k  
1.21k  
753  
–15.0k (10.6pF)  
–3.84k (10.4pF)  
–1.52k (10.4pF)  
–784 (10.2pF)  
–432 (9.2pF)  
0.879  
0.880  
0.874  
0.849  
0.776  
0.582  
0.478  
–0.8  
–3.0  
–7.5  
–15  
–27  
–47  
–65  
10  
20  
40  
100  
200  
323  
–251 (6.3pF)  
213  
–190 (4.2pF)  
LO FREQUENCY = 900MHz (REGISTER 0x00 = 0x12), DIGITAL GAIN = –4dB  
1
2
1.91k  
1.90k  
1.77k  
1.46k  
915  
–17.0k (9.4pF)  
–4.3k (9.3pF)  
–1.72k (9.3pF)  
–878 (9.1pF)  
–475 (8.4pF)  
–261 (6.1pF)  
–193 (4.1pF)  
0.901  
0.900  
0.893  
0.873  
0.811  
0.622  
0.506  
–0.7  
–2.7  
–6.7  
–13  
–24  
–45  
–62  
10  
20  
40  
100  
200  
Internal Gain Trim DACs  
371  
Four internal gain trim DACs (one for each baseband pin)  
are configured as 11-bit each. The usable DAC input value  
range is integer continuous from 64 to 2047 and 0 for  
shutdown. The DACs are not intended for baseband signal  
233  
5599f  
20  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
to implement an automatic gain/temperature correction  
which can be activated by setting TEMPCORR = 1. In that  
case, the input of the fine digital gain control will be the  
on-chipthermometer.Theon-chipthermometergenerates  
a 4-bit digital code with code 0 corresponding to –30°C  
and code 15 corresponding to 120°C and 10°C spacing  
betweenthecodes. Theon-chipthermometeroutputcode  
can be updated continuous (by clearing TEMPUPDT, bit 7  
in register 0x01, see Table 10) or can be updated by bring-  
ing the external pin TTCK from low to high (and setting  
TEMPUPTD = 1). In case of continuous update the code  
willbeanasynchronousupdatewheneverthetemperature  
crosses a certain threshold. In some cases it is desired to  
prevent a gain update to happen in the middle of a data  
frame. In that case, the gain/temperature update can be  
synchronized using the TTCK pin for example at the begin-  
ning or end of a data frame. The on-chip temperature can  
be read back by reading register 0x1F (TEMP[3:0]).The  
decimal value of TEMP[3:0] is given by:  
generation but for gain and offset setting only, because  
there are no reconstruction filters between the DACs and  
the mixer core, and there is only indirect access between  
the DAC values and the register settings. The following  
functions are implemented in this way:  
Coarse digital gain control with 1dB steps  
Fine digital gain control with 0.1dB steps  
Gain-temperature correction  
DC offset adjustment in the I-channel  
DC offset adjustment in the Q-channel  
I/Q gain balance control  
Disable Q-channel  
Continuous variable gain control  
Coarse Digital Gain Control (DG) with 1dB Steps  
(Register 0x01)  
TEMP[3:0] = round(T/10) + 3  
Twenty digital gain positions 1dB apart are implemented  
by hardwiring a corresponding DAC code for all four  
DACs. The coarse digital gain is set by writing to the five  
least-significant bits in register 0x01, see Table 10 and 11.  
The gain is the highest for code 00000 (code 0 = 0dB, DG  
= 0) and the lowest for code 10011 (code 19 = –19dB,  
DG = –19). Note that the gain 0dB set by the digital gain  
control is not the same as the voltage gain of the part.  
The remaining 12 codes (decimal 20 to 31) are reserved.  
with T the actual on-chip temperature in °C. It’s accuracy  
is about 10°C. TEMP[3:0] defaults to 7 after an EN low  
to high transition with TEMPUPDT = 1. Switching from  
TEMPUPDT = 0 to TEMPTUPDT = 1, TEMP[3:0] indicates  
the temperature during the last time TTCK went from low  
to high. Note that the actual on-chip temperature cannot  
be read if TEMPCORR = 1 or when TEMPUPDT = 1 without  
toggling TTCK.  
The digital gain in dB equals minus the decimal value writ-  
ten into the 5 least-significant bits of the gain register. The  
formula relating the modulator gain G(in V/V) relative to  
the maximum conversion gain therefore equals:  
Analog Gain Control  
The LTC5599 supports analog control of the conversion  
gain through a voltage applied to V  
(pin 1). The gain  
CTRL  
can be controlled downward from the digital gain setting  
(DG) programmed in register 0x01. In order to minimize  
distortion in the RF output signal the AGCTRL bit (bit 6 in  
register 0x01) should be set to 1. If analog gain control is  
(DG/20)  
G(V/V) = 10  
Fine Digital Gain Control(FDG) with 0.1dB Steps and  
Gain-Temperature Correction (Register 0x07)  
not used, V  
should be connected to V and AGCTRL  
CTRL  
CC  
Sixteen digital gain positions about 0.1dB apart can be set  
directlyusingthefourleast-significantbitsinregister0x07  
combined with bit 2 = 1 in register 0x08 (TEMPCORR = 1).  
For coarse digital gain settings code 9 and higher some or  
more subsequent codes of the fine digital gain positions  
may be the same due to the limited resolution of the 11-  
bit DACs. The main purpose of these 0.1dB gain steps is  
set to 0; this saves about 2.58mA of supply current. The  
typical usable gain control range is from 0.9V to 3.3V.  
Setting V  
to a voltage lower than V with AGCTRL  
CTRL  
CC  
= 0 significantly impairs the linearity of the RF output  
signal and lowers the V response time. A simplified  
CTRL  
schematic is shown in Figure 1.  
5599f  
21  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
I/Q DC Offset Adjustment (Registers 0x02 and 0x03)  
and LO Leakage  
A positive offset means that the voltage of the positive  
input terminal (BBPI or BBPQ) is increased relative to the  
negative input terminal (BBMI or BBMQ).  
Offsets in the I- and Q-channel translates into LO leakage  
at the RF port. This offset can either be caused by the  
I/Q modulator or, in case the baseband connections are  
DC-coupled, applied externally. Registers 0x02 and 0x03  
(I-offset and Q-offset) can be set to cancel this offset  
and hence lower the LO leakage. To adjust the offset in  
the I-channel, the BBPI DAC is set to a (slightly) different  
value than the BBMI DAC, introducing an offset. These  
8-bit registers defaults are 128 and represents 0 offset.  
The register value can be set from 1 to 255. The value 0  
represents an unsupported code and should not be used.  
Since the input referred offset depends on the gain the  
I/Q Gain Ratio (Register 0x04) and Side-Band  
Suppression  
The 8-bit I/Q gain ratio register 0x04 controls the ratio of  
the I-channel mixer conversion gain G and the Q-channel  
I
mixer conversion gain G . Together with the quadrature  
Q
phaseimbalanceregister0x05,register0x04allowsfurther  
optimization of the modulator side-band suppression.  
TheexpressionrelatingthegainratioG /G tothecontents  
I
Q
of the 8-bit register 0x04, represented by decimal N and  
IQ  
the nominal conversion gain G equals:  
input offset value (V ) can be calculated as:  
OS  
20 log (G /G ) = 20 log ((3632 • G – (N – 128))/  
I
Q
IQ  
V
= 1260/((3632 • G)/(N – 128) – (N – 128)  
OS OS  
OS  
(3632 • G +(N –128))) (dB)  
IQ  
/(3632 • G))  
The step size of the gain ratio trim in dB vs N is ap-  
IQ  
andV =0forN =128.GrepresentsthegainfromTable3.  
os  
os  
proximately constant for the same digital gain setting.  
For digital gain setting = –4, for example, the step size  
is about 7.6mdB. Table 4 lists the gain step size for each  
digital gain setting that follows from the formula above.  
Table 3. Coarse Digital Gain (DG) Register Settings.  
DG (dB)  
0
G(V/V)  
1.000  
0.891  
0.794  
0.708  
0.631  
0.562  
0.501  
0.447  
0.398  
0.355  
0.316  
0.282  
0.251  
0.224  
0.200  
0.178  
0.158  
0.141  
0.126  
0.112  
DEC  
0
BINARY  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
HEX  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
–1  
1
Table 4. I/Q Gain Ratio Step Size vs Digital Gain  
Setting  
–2  
2
–3  
3
DG (dB)  
0
G (V/V)  
1.000  
0.891  
0.794  
0.708  
0.631  
0.562  
0.501  
0.447  
0.398  
0.355  
0.316  
0.282  
0.251  
0.224  
0.200  
0.178  
∆G /G (mdB)  
I
Q
–4  
4
4.8  
–5  
5
–1  
5.4  
6.0  
–6  
6
–2  
–7  
7
–3  
6.8  
–8  
8
–4  
7.6  
–9  
9
–5  
8.5  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
–6  
9.6  
–7  
10.7  
12.0  
13.5  
15.1  
17.1  
19.2  
21.5  
24.2  
27.3  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
5599f  
22  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
Table 4. I/Q Gain Ratio Step Size vs Digital Gain  
Table 5. Register 0x00 Setting vs LO Frequency (continued)  
Setting  
(continued)  
REGISTER VALUE  
DECIMAL  
LO FREQUENCY RANGE (MHz)  
DG (dB)  
–16  
G (V/V)  
0.158  
0.141  
0.126  
0.112  
∆G /G (mdB)  
I
Q
BINARY  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
HEX  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
LOWER BOUND UPPER BOUND  
30.7  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
961.8  
941.3  
921.5  
895.2  
877.6  
863.6  
843.2  
826.9  
807.0  
792.3  
772.2  
752.7  
734.0  
724.2  
704.6  
688.7  
673.2  
655.2  
638.1  
624.6  
611.9  
598.4  
585.1  
573.9  
563.1  
548.1  
538.1  
529.1  
518.5  
507.0  
497.7  
488.0  
471.5  
457.7  
448.7  
437.4  
426.6  
417.5  
407.5  
398.0  
988.2  
961.7  
941.2  
921.4  
895.1  
877.5  
863.5  
843.1  
826.8  
806.9  
792.2  
772.1  
752.6  
739.9  
724.1  
704.5  
688.6  
673.1  
655.1  
638.0  
624.5  
611.8  
598.3  
585.0  
573.8  
563.0  
548.0  
538.0  
529.0  
518.4  
506.9  
497.6  
487.9  
471.4  
457.6  
448.6  
437.3  
426.5  
417.4  
407.4  
–17  
34.6  
39.0  
44.1  
–18  
–19  
The conversion gain of the I-channel and Q-channel are  
equal for N = 128. The I-channel gain is larger than the  
IQ  
Q-channel gain for N > 128.  
IQ  
Disable Q-Channel  
If bit 5 in register 0x01 (QDISABLE) is set, the Q-channel  
is switched off, turning the I/Q modulator into an upcon-  
version mixer. It is recommended to float the BBPQ and  
BBMQ pins in this mode. The default mode is Q-channel  
is on (QDISABLE = 0).  
LO Section (Register 0x00)  
The internal LO chain consists of a poly-phase filter which  
generates the I and Q signals for the image-reject double-  
balanced mixer. The center frequency of the poly-phase  
filter is set by the lower seven bits of register 0x00. The  
recommendedsettingsvsLOfrequencyaregiveninTable5  
(see the QuikEval™ GUI).  
Table 5. Register 0x00 Setting vs LO Frequency  
REGISTER VALUE  
DECIMAL  
LO FREQUENCY RANGE (MHz)  
BINARY  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
LOWER BOUND UPPER BOUND  
0
1
N/A  
N/A  
1249.1  
1248.6  
1238.1  
1214.1  
1191.2  
1165.6  
1141.0  
1120.6  
1100.5  
1069.5  
1039.6  
1023.1  
1007.1  
988.3  
1300.0  
1249.0  
1248.5  
1238.0  
1214.0  
1191.1  
1165.5  
1140.9  
1120.5  
1100.4  
1069.4  
1039.5  
1023.0  
1007.0  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
5599f  
23  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
Table 5. Register 0x00 Setting vs LO Frequency (continued)  
Table 5. Register 0x00 Setting vs LO Frequency (continued)  
REGISTER VALUE  
DECIMAL  
LO FREQUENCY RANGE (MHz)  
REGISTER VALUE  
DECIMAL  
LO FREQUENCY RANGE (MHz)  
BINARY  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
HEX  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
LOWER BOUND UPPER BOUND  
BINARY  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
HEX  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
LOWER BOUND UPPER BOUND  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
390.1  
382.8  
376.6  
369.8  
353.1  
339.0  
332.6  
327.2  
320.6  
313.7  
309.1  
304.5  
288.1  
278.3  
274.2  
270.3  
266.0  
261.9  
258.2  
254.1  
243.6  
233.8  
230.8  
228.0  
220.2  
212.6  
210.0  
207.6  
202.1  
196.2  
193.7  
191.2  
186.6  
182.0  
179.4  
176.0  
170.1  
165.0  
162.5  
160.0  
156.7  
397.9  
390.0  
382.7  
376.5  
369.7  
353.0  
338.9  
332.5  
327.1  
320.5  
313.6  
309.0  
304.4  
288.0  
278.2  
274.1  
270.2  
265.9  
261.8  
258.1  
254.0  
243.5  
233.7  
230.7  
227.9  
220.1  
212.5  
209.9  
207.5  
202.0  
196.1  
193.6  
191.1  
186.5  
181.9  
179.3  
175.9  
170.0  
164.9  
162.4  
159.9  
96  
153.6  
151.1  
148.6  
142.5  
139.6  
136.5  
134.3  
131.2  
128.1  
126.0  
123.8  
121.3  
118.3  
115.7  
113.5  
111.3  
109.5  
107.6  
105.6  
103.0  
100.3  
98.5  
156.6  
153.5  
151.0  
148.5  
142.4  
139.5  
136.4  
134.2  
131.1  
128.0  
125.9  
123.7  
121.2  
118.2  
115.6  
113.4  
111.2  
109.4  
107.5  
105.5  
102.9  
100.2  
98.4  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
96.6  
94.7  
96.5  
93.0  
94.6  
30.0  
92.9  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A simplified circuit schematic of the LOL and LOC inter-  
faces is depicted in Figure 2. The LOL and LOC inputs are  
not differential LO inputs. They are 50Ω inputs and are  
intended to be driven with an inductor going to the LOL  
input and a capacitor to the LOC input. Do not switch the  
capacitor and inductor, as this will result in very poor  
performance. For a wideband LO range an inductor value  
of39nHandacapacitorvalueof15pF(standardLOmatch)  
5599f  
24  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
is recommended at these pins, forming a diplexer circuit  
with center frequency of 200MHz. This diplexer helps to  
improve the uncalibrated side-band suppression signifi-  
cantly around 200MHz. Even for LO frequencies far from  
200MHz the diplexer performs better than a single-ended  
LO drive or a differential drive. Due to factory calibration  
of the poly-phase filter the typical side-band suppression  
is about 50dBc for frequencies from 100MHz to 700MHz  
and 45dBc from 700MHz to 1300MHz. For narrow-band  
applications far from 200MHz it may help to tune the  
diplexer to a different frequency which can improve the  
uncalibrated side-band suppression and the gain vs LO  
drivelevel.TheTypicalPerformanceCharacteristicssection  
shows the return loss for a 900MHz match (L1 = 8.2nH,  
C5 = 3.3pF) and a 1260MHz match (L1 = 5.6nH, C5 = 3pF).  
To get a performance with the standard 200MHz match  
equivalent to the 900MHz and 1260MHz match, the LO  
powershouldbeincreasedby1.5dBand2dBrespectively.  
Register 0x00 values of Table 5 may have to be adjusted  
as well, in case the standard match is not used.  
Table6listsLOLandLOCportinputimpedancevsfrequency  
at EN = High and P = 0dBm. The other LO port (LOC or  
LO  
LOL) is terminated in a 50Ω.  
Table 6. LOL, LOC Port Input Impedance vs Frequency for EN  
= High and PLO = 0dBm (Other LO Port Terminated with 50Ω to  
Ground)  
LOL/LOC PORT IMPEDANCE (W) REFL COEFFICIENT  
FREQ REG  
(MHz) 0x00 REAL*  
IMAG* (IND)  
24.3 (194nH)  
19.0 (101nH)  
17.4 (69nH)  
MAG  
0.750  
0.743  
0.732  
0.716  
0.693  
0.661  
0.618  
0.564  
0.497  
0.419  
0.338  
0.276  
0.247  
0.234  
0.201  
0.160  
0.164  
0.150  
0.116  
ANGLE  
175  
172  
169  
165  
162  
158  
154  
151  
148  
146  
149  
150  
148  
142  
143  
162  
141  
135  
156  
20  
30  
79  
79  
79  
79  
79  
79  
79  
79  
75  
70  
6C  
68  
64  
62  
5E  
5C  
59  
57  
54  
7.9  
9.1  
40  
10.8  
13.0  
15.7  
18.6  
21.6  
24.4  
27.0  
29.0  
30.3  
32.3  
34.3  
36.2  
37.4  
37.1  
39.6  
41.4  
40.7  
50  
17.6 (56nH)  
60  
18.9 (50nH)  
70  
21.4 (49nH))  
25.0 (50nH)  
80  
90  
30.3 (54nH)  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
38.3 (61nH))  
51.4 (74nH)  
76.1 (101nH)  
109.3 (134nH)  
121.6 (138nH)  
119.4 (127nH)  
149.1 (148nH))  
357.5 (335nH)  
188.6 (167nH)  
192.0 (161nH))  
418.6 (333nH)  
LOL  
3
LOC  
4
5599 F02  
*Parallel Equivalent  
Figure 2. Simplified Circuit Schematic for the LOL and LOC Inputs  
The circuit schematic of the demo board is shown in  
Figure 13.  
Below 100MHz the matching network of Figure 3 can be  
used.The side-band suppression in that case is largely  
defined by the diplexer L1, C5 and the (temperature de-  
pendent) LOL and LOC input impedance. See measured  
performance in the Typical Performance Characteristics  
section.  
I/Q Phase Balance Adjustment Register 0x05 and  
Side-Band Suppression  
Ideally the I-channel LO phase is exactly 90° ahead of the  
Q-channelLOphase,socalledquadrature.Inpracticehow-  
ever,theI/Qphasedifferencediffersfromexactquadrature  
by a small error due to component parameter variations  
and harmonic content in the LO signal (see below).  
L1  
30MHz/70MHz  
47nH/43nH  
3
LOL  
C20  
270pF/100pF  
L2  
120nH/51nH  
LO  
C5  
C19  
560pF/120pF  
The I/Q phase imbalance register (0x05) allows adjust-  
ment of the I/Q phase shift to compensate for such errors.  
Together with gain ratio register 0x04, it can thus be used  
to optimize the side-band suppression of the modulator.  
180pF/47pF  
LOC  
4
C21  
270pF/100pF  
5599 F03  
Figure 3. Impedance Matching Network for LOL and LOC  
Interfaces Matched at 30MHz/70MHz  
5599f  
25  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
Register 0x05 contains two parts (see Table 11); the five  
leastsignificantbitsIQPHFrealizeafinephaseadjustment,  
while the three most significant bits IQPHE are used for  
coarse adjustments. The fine phase adjustment realized  
by IQPHF can be approximated as:  
As a side effect, the extension bits slightly detune the  
centerfrequencyofthepoly-phasefilter,aftercrossingthe  
boundary to a new N  
value. This can be observed  
COARSE  
as a large step in the actual phase shift. A solution for this  
is to decrease the value in the frequency register 0x00  
(increase the poly-phase filter center frequency) at the  
ꢀ j = ((N –16)/15) • ln(f /50) (degrees)  
IQ  
ph LO  
N
value boundaries. The result is a smooth phase  
COARSE  
for 30MHz < f < 1300MHz  
adjustment. In the demo board QuikEval GUI, this LO fre-  
quency register adjustment is automatically taken care of.  
LO  
where N is the decimal value of IQPHF and f is the  
ph  
LO  
frequency of the LO signal in MHz. A positive value for  
Wheneverthepoly-phasefiltercenterfrequencyisadjusted  
to improve the smoothness of the phase adjustment, it is  
recommendedtomanuallyprogramtheLOportimpedance  
match using the CLOO bits in register 0x06. By default,  
changing the filter center frequency also automatically  
adjusts the matching of the LO port (when CLOEN, bit 4  
in register 0x06 is set). However, since the LO carrier  
frequency does not change, automatic adjustment of the  
LO match is undesirable in this case; it may add another  
large step to the phase adjustment. Instead, the LO match  
shouldremainunchangedwhilethefiltercenterfrequency  
is adjusted. This can be achieved as follows. First, the  
current LO matching configuration is read from the CLO  
bits in register 0x1D, and written to the CLOO override  
bits in register 0x06. Subsequently, the CLOEN bit (bit 4,  
register 0x06) is cleared to disable automatic LO match  
adjustment. As a result the center frequency can be ad-  
justed in register 0x00 without changing the LO match.  
j means that the I-channel LO phase is more than 90°  
IQ  
ahead of the Q-channel LO phase. Notice from the expres-  
sion that the phase adjustment range and resolution are  
coupled, and dependent on the LO frequency. At low LO  
frequenciesthethesmallestadjustmentrangeandhighest  
resolution is achieved, while high LO frequencies exhibit  
the largest range and lowest resolution.  
The extension bits IQPHE provide a larger phase adjust-  
ment range, particularly useful at lower LO frequencies,  
andovercomeanothertrade-off;betweenphaseadjustment  
range and the maximum center frequency of the poly-  
phase filter. The latter trade-off is due to the fact that the  
capacitancesintheI-channel,C ,andQ-channel,C ,of  
ppI  
ppQ  
the poly-phase filter control both these parameters. Their  
differencesetsthephaseshift, whiletheirsumdetermines  
the center frequency of the filter.  
The extension bits IQPHE introduce a large phase offset in  
addition to the fine adjustment realized by the IQPHF bits.  
The sign of this large offset can be positive or negative,  
controlled by IQPHSIGN (bit 7 in register 0x00). Including  
these bits, the total phase shift from quadrature can be  
expressed as:  
At 100MHz the maximum phase shift is about 9.8°, while  
at 1GHz it is about 3°. The extension bits are not useful  
above 988.2MHz since the poly-phase center frequency  
register 0x00 value cannot be adjusted low enough to  
ensure a smooth transition to a new N  
value.  
COARSE  
ꢀ j =  
(M /15) • ln(f /50) (degrees) with  
Square Wave LO Drive  
IQ  
PH  
LO  
M
= N  
+ N –16 and  
Harmonic content of the LO signal adversely affects  
quadrature phase error and gain accuracy, whenever a  
poly-phase filter is used for quadrature generation. The  
LTC5599 can correct for phase and gain errors due to har-  
monics in the LO carrier (e.g. in a square wave) by setting  
appropriate values in the I/Q gain and I/Q phase registers.  
Suchadjustmentsaretypicallyneededwhenthe3rd-order  
harmonicoftheLOsignalexceedsthedesirableside-band  
suppression minus 13dB. Although the poly-phase filter  
is less sensitive to the second harmonic content of the LO  
PH  
COARSE  
PH  
IQPHSIGN + 1  
N
= 32 • (–1)  
N  
EXT  
COARSE  
where N equals the decimal value of the IQPHE bits. The  
valid range of values for (N –16) is thus expanded from  
ext  
ph  
{–16, –15, ... , +15} to {–240, –239, ... , +239}. Table 9 in  
the Appendix lists all the possible combinations. The cod-  
ing ranges for IQPHSIGN = 0 and IQPHSIGN = 1 overlap  
between M = –16 and M = +15, such that IQPHSIGN  
ph  
ph  
only needs to be changed for larger phase shifts.  
5599f  
26  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
carrier, it’s influence can still be significant. For –15dBc  
second harmonic content, the side-band suppression can  
degrade to –45dBc; for –20dBc it is –54dBc, assuming no  
I/Q gain and phase adjustments are made.  
Table 7. RF Output Impedance vs Frequency and Digital Gain  
Setting (DG) for EN = High (continued)  
REFL  
OUTPUT IMPEDANCE (W)  
(dB) REAL* IMAG* (CAP)  
COEFFICIENT  
FREQUENCY  
(MHz)  
DG  
MAG ANGLE  
600  
600  
–16  
–18  
–19  
0
58  
62  
77  
48  
51  
55  
59  
73  
–1.77k (0.15pF) 0.078  
–1.44k (0.18pF) 0.109  
–12  
–11  
–14  
RF Output  
After upconversion, the RF outputs of the I and Q mixers  
are combined. An on-chip buffer performs internal dif-  
ferential to single-ended conversion, while transforming  
the output signal to 50Ω as shown in Figure 4.  
600  
–680 (0.39pF)  
–802 (0.15pF)  
–807 (0.15pF)  
–709 (0.17pF)  
–526 (0.23pF)  
–280 (0.44pF)  
0.217  
1300  
1300  
1300  
1300  
1300  
0.035 –119  
–12  
–16  
–18  
–19  
0.034  
0.059  
0.098  
0.215  
–68  
–41  
–35  
–36  
V
CC  
*Parallel Equivalent  
The RF port output impedance for EN = Low is given in  
Table 8.  
50Ω  
RF  
16  
Table 8. RF Output Impedance vs Frequency for EN = Low  
REFL  
5599 F04  
OUTPUT IMPEDANCE (W)  
COEFFICIENT  
FREQUENCY  
(MHz)  
Figure 4. Simplified Circuit Schematic for the RF Output Port  
REAL*  
IMAG* (CAP)  
–7.76k (0.68pF)  
–5.24k (0.76pF)  
–3.96k (0.80pF)  
–3.18k (0.83pF)  
–2.66k (0.86pF)  
–2.29k (0.87pF)  
–2.01k (0.88pF)  
–1.79k (0.89pF)  
–856 (0.93pF)  
–679 (0.94pF)  
–563 (0.94pF)  
–481 (0.94pF)  
–420 (0.95pF)  
–373 (0.95pF)  
–336 (0.95pF)  
–281 (0.94pF)  
–241 (0.94pF)  
–211 (0.94pF)  
–188 (0.94pF)  
–169 (0.94pF)  
–154 (0.94pF)  
–141 (0.94pF)  
–129 (0.95pF)  
MAG ANGLE  
30  
40  
16.1k  
16.2k  
15.7k  
16.5k  
16.8k  
16.4k  
17.1k  
17.9k  
14.7k  
11.1k  
8.55k  
7.97k  
6.42k  
5.27k  
4.26k  
3.05k  
2.32k  
1.85k  
1.54k  
1.30k  
1.12k  
991  
0.994  
0.994  
0.994  
0.994  
0.994  
0.994  
0.994  
0.994  
0.993  
0.991  
0.988  
0.988  
0.985  
0.982  
0.977  
0.969  
0.959  
0.950  
0.941  
0.932  
0.923  
0.914  
0.906  
–0.7  
–1.1  
–1.4  
–1.8  
–2.2  
–2.5  
–2.9  
–3.2  
–6.7  
–8.4  
–10  
–12  
–14  
–15  
–17  
–20  
–23  
–27  
–30  
–33  
–36  
–39  
–42  
Table 7 shows the RF port output impedance vs frequency  
and digital gain setting for EN = High.  
50  
Table 7. RF Output Impedance vs Frequency and Digital Gain  
Setting (DG) for EN = High  
60  
70  
REFL  
80  
OUTPUT IMPEDANCE (W)  
COEFFICIENT  
FREQUENCY  
(MHz)  
DG  
(dB) REAL*  
90  
IMAG* (CAP)  
–413 (12.8pF)  
–465 (11.4pF)  
–529 (10.0pF)  
–623 (8.5pF)  
–902 (5.9pF)  
–671 (4.7pF)  
–762 (4.2pF)  
–859 (3.7pF)  
–972 (3.3pF)  
–1.21k (2.6pF)  
–1.08k (1.5pF)  
–1.32k (1.2pF)  
–1.55k (1.0pF)  
MAG ANGLE  
100  
200  
250  
300  
350  
400  
450  
500  
600  
700  
800  
900  
1000  
1100  
1200  
1300  
30  
30  
0
59  
61  
64  
69  
83  
56  
58  
61  
67  
81  
55  
57  
60  
66  
82  
54  
56  
0.104  
0.114  
0.133  
0.166  
0.249  
0.068  
0.082  
0.107  
0.146  
0.239  
0.050  
0.066  
0.096  
–43  
–35  
–27  
–19  
–10  
–38  
–27  
–19  
–13  
–8  
–12  
–16  
–18  
–19  
0
30  
30  
30  
50  
50  
–12  
–16  
–18  
–19  
0
50  
50  
50  
100  
100  
100  
100  
100  
600  
600  
–30  
–19  
–12  
–8  
–12  
–16  
–18  
–19  
0
–1.75k (0.91pF) 0.142  
–1.98k (0.80pF) 0.246  
–1.35k (0.20pF) 0.040  
–1.75k (0.15pF) 0.057  
–5  
881  
–30  
–16  
*Parallel Equivalent  
–12  
5599f  
27  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
serial bus master device first taking CSB low to enable  
the LTC5599’s port. Input data applied on SDI is clocked  
on the rising edge of SCLK, with all transfers MSB first.  
The communication burst is terminated by the serial bus  
master returning CSB high. See Figure 6 for details.  
For V = 3.3V and EN = High the RF pin voltage is about  
CC  
1.68V. For V = 3.3V and EN = Low the RF pin voltage  
CC  
is about 3.1V.  
Enable Interface  
Figure 5 shows a simplified schematic of the EN pin  
interface. The voltage necessary to turn on the LTC5599 is  
1.1V. To disable (shut down) the chip, the enable voltage  
must be below 0.2V.  
Data is read from the part during a communication burst  
using SDO. Readback may be multidrop (more than one  
LTC5599 connected in parallel on the serial bus), as SDO  
is high impedance (Hi-Z) when CSB = 1, or when data is  
not being read from the part. If the LTC5599 is not used  
in a multidrop configuration, or if the serial port master  
is not capable of setting the SDO line level between read  
sequences,itisrecommendedtoattacharesistorbetween  
V
CC  
INTERNAL  
ENABLE  
CIRCUIT  
EN  
23  
SDO and V  
to ensure the line returns to V  
during  
CC_L  
CC_L  
Hi-Z states. The resistor value should be large enough  
to ensure that the SDO output current does not exceed  
10mA. See Figure 7 for details.  
5599 F05  
Figure 5. Simplified Circuit Schematic of the EN interface  
Single Byte Transfers  
SERIAL PORT  
The serial port is arranged as a simple memory map, with  
status and control available in 9 read/write and 23 read-  
only byte-wide registers. All data bursts are comprised of  
at least two bytes. The 7 most significant bits of the first  
byte are the register address, with an LSB of 1 indicating  
a read from the part, and LSB of 0 indicating a write to the  
part. The subsequent byte, or bytes, is data from/to the  
The SPI-compatible serial port provides control and  
monitoring functionality.  
Communication Sequence  
The serial bus is comprised of CSB, SCLK, SDI and  
SDO. Data transfers to the part are accomplished by the  
MASTER–CSB  
t
t
CSS  
CSS  
t
t
t
CKL  
CKH  
CSH  
MASTER–SCLK  
t
t
CH  
CS  
MASTER–SDI  
DATA  
DATA  
5599 F06  
Figure 6. Serial Port Write Timing Diagram  
MASTER–CSB  
MASTER–SCLK  
LTC5599–SDO  
8TH CLOCK  
t
t
t
DO  
t
DO  
DO  
DO  
DATA  
DATA  
5599 F07  
Figure 7. Serial Port Read Timing Diagram  
5599f  
28  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
specifiedregisteraddress.SeeFigure8foranexampleofa  
detailed write sequence, and Figure 9 for a read sequence.  
byte of the second burst contains the destination register  
address (Addr1) and an LSB indicating a write. The next  
byte on SDI is the data intended for the register at address  
Addr1. CSB is then taken high to terminate the transfer.  
Figure 10 shows an example of two write communication  
bursts. The first byte of the first burst sent from the serial  
bus master on SDI contains the destination register ad-  
dress (Addr0) and an LSB of 0 indicating a write. The next  
byte is the data intended for the register at address Addr0.  
CSB is then taken high to terminate the transfer. The first  
Note that the written data is transferred to the internal  
th  
register at the falling edge of the 16 clock cycle (paral-  
lel load).  
MASTER–CSB  
16 CLOCKS  
MASTER–SCLK  
7-BIT REGISTER ADDRESS  
8 BITS OF DATA  
D7 D6 D5 D4 D3 D2 D1 D0  
0 = WRITE  
PARALLEL LOAD  
A6 A5 A4 A3 A2 A1 A0  
0
MASTER–SDI  
LTC5599–SD0  
5599 F08  
Figure 8. Serial Port Write Sequence  
MASTER–CSB  
MASTER–SCLK  
16 CLOCKS  
7-BIT REGISTER ADDRESS  
1 = READ  
A6 A5 A4 A3 A2 A1 A0  
1
MASTER–SDI  
LTC5599–SDO  
8 BITS OF DATA  
X D7 D6 D5 D4 D3 D2 D1 D0 DX  
5599 F09  
Figure 9. Serial Port Read Sequence  
MASTER–CSB  
ADDR0 + WR  
BYTE 0  
ADDR1 + WR  
BYTE 1  
MASTER–SDI  
LTC5599–SDO  
5599 F10  
Figure 10. Serial Port Single Byte Writes  
5599f  
29  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
Multiple Byte Transfers  
Multidrop Configuration  
More efficient data transfer of multiple bytes is accom-  
plished by using the LTC5599’s register address auto-  
increment feature as shown in Figure 11. The serial port  
master sends the destination register address in the first  
byteanditsdatainthesecondbyteasbefore,butcontinues  
sending bytes destined for subsequent registers. Byte 1’s  
address is Addr0+1, Byte 2’s address is Addr0+2, and so  
on. If the resister address pointer attempts to increment  
past 31 (0x1F), it is automatically reset to 0.  
Several LTC5599s may share the serial bus. In this  
multidropconfiguration,SCLK,SDI,andSDOarecommon  
betweenallparts.Theserialbusmastermustuseaseparate  
CSBforeachLTC5599andensurethatonlyonedevicehas  
CSB asserted at any time. It is recommended to attach a  
high value resistor to SDO to ensure the line returns to a  
known level (V  
) during Hi-Z states.  
CC_L  
Serial Port Registers  
The memory map of the LTC5599 may be found in the  
Appendix in Table 10, with detailed bit descriptions found  
in Table 11. The register address shown in hexadecimal  
format under the ADDR column is used to specify each  
register. Each register is denoted as either read-only (R)  
or read-write (R/W). The register’s default value on device  
power-up or after a reset (bit 3, register 0x08, SRESET)  
is shown at the right.  
An example of an auto-increment read from the part is  
shown in Figure 12. The first byte of the burst sent from  
the serial bus master on SDI contains the destination reg-  
ister address (Addr0) and an LSB of 1 indicating a read.  
Once the LTC5599 detects a read burst, it takes SDO out  
of the Hi-Z condition and sends data bytes sequentially,  
beginning with data from register Addr0. The part ignores  
all other data on SDI until the end of the burst.  
MASTER–CSB  
ADDR0 + WR  
BYTE 0  
BYTE 1  
BYTE 2  
MASTER–SDI  
LTC5599–SDO  
5599 F11  
Figure 11. Serial Port Auto-Increment Write  
MASTER–CSB  
MASTER–SDI  
LTC5599–SDO  
ADDR0 + RD  
DONT CARE  
BYTE 1  
BYTE 0  
BYTE 2  
5599 F12  
Figure 12. Serial Port Auto-Increment Read  
5599f  
30  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
SPI Signal Levels  
is not done properly, the RF performance will degrade.  
Figures 14 and 15 show the component side and bottom  
side of the evaluation board.  
The SPI bus supports signal levels from a digital V  
CC_L  
from 1.2V to 3.6V. The CSB = 1.2V condition creates an  
additional static input sleep current of 0.2µA. For CSB =  
1.8V the extra sleep current can be neglected.  
Ferrite bead FB1 limits the supply voltage ramping speed  
in case V is abruptly connected to a voltage source. In  
CC  
the application, limit the V ramp speed to a maximum  
CC  
Evaluation Board  
of 1V/µs.  
Figure 13 shows the evaluation board schematic. A good  
ground connection is required for the exposed pad. If this  
VCC_L  
1.2V TO 3.6V  
C17  
100nF  
R18  
1k  
(R  
)
PULL-UP  
FB1  
FERRITE BEAD  
R19, 1k  
SDO  
SDI  
TDK, MPZ1608S331AT  
R26, 1k  
V
CC  
2.7V TO 3.6V  
R25, 1k  
C1  
4.7µF  
C2  
1nF  
SCLK  
CSB  
R23, 1k  
C18  
2.2pF  
C13  
2.2pF  
C12  
2.2pF  
C10  
2.2pF  
EN  
R1, 1Ω  
23 22 21 20 19  
EN SDO SDI SCLK CSB  
25 24  
GND  
V
CTRL  
V
C3  
100nF  
CC  
1
18  
17  
16  
15  
14  
13  
V
GNDRF  
C4  
10nF  
CTRL  
2
GND  
LOL  
LOC  
GND  
GNDRF  
L1, 39nH  
C5, 15pF  
3
4
5
RF  
RF  
LTC5599IUF  
LO  
GNDRF  
GNDRF  
GNDRF  
6
TTCK  
TTCK  
TEMP BBPI BBMI BBPQ BBMQ GND  
7
8
9
10  
12  
11  
TEMP  
BBPQ  
BBPI  
BBPQ  
BBMQ  
R9  
49.9Ω  
R8  
49.9Ω  
R10  
49.9Ω  
R11  
49.9Ω  
C7  
100nF  
C6  
100nF  
C8  
100nF  
C9  
100nF  
5599 F13  
BOARD NUMBER: DC2091A  
Figure 13. Evaluation Circuit Schematic  
5599f  
31  
For more information www.linear.com/LTC5599  
LTC5599  
applicaTions inForMaTion  
Figure 14. Evaluation Board Component Side  
Figure 15. Evaluation Board Bottom Side  
5599f  
32  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Phase Shift Register (0x05) Map  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
Thisappendixsummarizesthedetailedvalueassignments  
for the phase shift register, including the extension bits  
and sign bit (bit 7 in register 0x00).  
M
N
N
PH  
B
PH  
PH  
COARSE  
–204  
–203  
–202  
–201  
–200  
–199  
–198  
–197  
–196  
–195  
–194  
–193  
–192  
–191  
–190  
–189  
–188  
–187  
–186  
–185  
–184  
–183  
–182  
–181  
–180  
–179  
–178  
–177  
–176  
–175  
–174  
–173  
–172  
–171  
–170  
–169  
–168  
–167  
–166  
–165  
–164  
–192  
4
5
011000100  
011000101  
011000110  
011000111  
011001000  
011001001  
011001010  
011001011  
011001100  
011001101  
011001110  
011001111  
011010000  
011010001  
011010010  
011010011  
011010100  
011010101  
011010110  
011010111  
011011000  
011011001  
011011010  
011011011  
011011100  
011011101  
011011110  
011011111  
010100000  
010100001  
010100010  
010100011  
010100100  
010100101  
010100110  
010100111  
010101000  
010101001  
010101010  
010101011  
010101100  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–192  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00)  
6
7
M
N
N
PH  
B
PH  
PH  
COARSE  
8
–240  
–239  
–238  
–237  
–236  
–235  
–234  
–233  
–232  
–231  
–230  
–229  
–228  
–227  
–226  
–225  
–224  
–223  
–222  
–221  
–220  
–219  
–218  
–217  
–216  
–215  
–214  
–213  
–212  
–211  
–210  
–209  
–208  
–207  
–206  
–205  
–224  
0
1
011100000  
011100001  
011100010  
011100011  
011100100  
011100101  
011100110  
011100111  
011101000  
011101001  
011101010  
011101011  
011101100  
011101101  
011101110  
011101111  
011110000  
011110001  
011110010  
011110011  
011110100  
011110101  
011110110  
011110111  
011111000  
011111001  
011111010  
011111011  
011111100  
011111101  
011111110  
011111111  
011000000  
011000001  
011000010  
011000011  
9
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–224  
–192  
–192  
–192  
–192  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
1
2
3
4
5
6
7
8
9
1
10  
11  
12  
2
3
5599f  
33  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
M
N
N
PH  
B
PH  
M
PH  
N
N
PH  
B
PH  
PH  
COARSE  
COARSE  
–163  
–162  
–161  
–160  
–159  
–158  
–157  
–156  
–155  
–154  
–153  
–152  
–151  
–150  
–149  
–148  
–147  
–146  
–145  
–144  
–143  
–142  
–141  
–140  
–139  
–138  
–137  
–136  
–135  
–134  
–133  
–132  
–131  
–130  
–129  
–128  
–127  
–126  
–125  
–124  
–123  
–160  
13  
010101101  
010101110  
010101111  
010110000  
010110001  
010110010  
010110011  
010110100  
010110101  
010110110  
010110111  
010111000  
010111001  
010111010  
010111011  
010111100  
010111101  
010111110  
010111111  
010000000  
010000001  
010000010  
010000011  
010000100  
010000101  
010000110  
010000111  
010001000  
010001001  
010001010  
010001011  
010001100  
010001101  
010001110  
010001111  
010010000  
010010001  
010010010  
010010011  
010010100  
010010101  
–122  
–121  
–120  
–119  
–118  
–117  
–116  
–115  
–114  
–113  
–112  
–111  
–110  
–109  
–108  
–107  
–106  
–105  
–104  
–103  
–102  
–101  
–100  
–99  
–128  
22  
010010110  
010010111  
010011000  
010011001  
010011010  
010011011  
010011100  
010011101  
010011110  
010011111  
001100000  
001100001  
001100010  
001100011  
001100100  
001100101  
001100110  
001100111  
001101000  
001101001  
001101010  
001101011  
001101100  
001101101  
001101110  
001101111  
001110000  
001110001  
001110010  
001110011  
001110100  
001110101  
001110110  
001110111  
001111000  
001111001  
001111010  
001111011  
001111100  
001111101  
001111110  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–160  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–128  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
–96  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
1
2
3
4
5
6
7
8
9
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
2
3
4
5
–98  
6
–97  
7
–96  
8
–95  
9
–94  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
–93  
–92  
–91  
–90  
–89  
–88  
–87  
–86  
–85  
–84  
–83  
–82  
5599f  
34  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
M
N
N
PH  
B
PH  
M
PH  
N
N
PH  
B
PH  
PH  
COARSE  
COARSE  
–81  
–80  
–79  
–78  
–77  
–76  
–75  
–74  
–73  
–72  
–71  
–70  
–69  
–68  
–67  
–66  
–65  
–64  
–63  
–62  
–61  
–60  
–59  
–58  
–57  
–56  
–55  
–54  
–53  
–52  
–51  
–50  
–49  
–48  
–47  
–46  
–45  
–44  
–43  
–42  
–41  
–96  
31  
001111111  
001000000  
001000001  
001000010  
001000011  
001000100  
001000101  
001000110  
001000111  
001001000  
001001001  
001001010  
001001011  
001001100  
001001101  
001001110  
001001111  
001010000  
001010001  
001010010  
001010011  
001010100  
001010101  
001010110  
001010111  
001011000  
001011001  
001011010  
001011011  
001011100  
001011101  
001011110  
001011111  
000100000  
000100001  
000100010  
000100011  
000100100  
000100101  
000100110  
000100111  
–40  
–39  
–38  
–37  
–36  
–35  
–34  
–33  
–32  
–31  
–30  
–29  
–28  
–27  
–26  
–25  
–24  
–23  
–22  
–21  
–20  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
–32  
8
9
000101000  
000101001  
000101010  
000101011  
000101100  
000101101  
000101110  
000101111  
000110000  
000110001  
000110010  
000110011  
000110100  
000110101  
000110110  
000110111  
000111000  
000111001  
000111010  
000111011  
000111100  
000111101  
000111110  
000111111  
x00000000  
x00000001  
x00000010  
x00000011  
x00000100  
x00000101  
x00000110  
x00000111  
x00001000  
x00001001  
x00001010  
x00001011  
x00001100  
x00001101  
x00001110  
x00001111  
x00010000  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–64  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
0
1
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
–32  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
–8  
0
8
–7  
0
9
1
–6  
0
10  
11  
12  
13  
14  
15  
16  
2
–5  
0
3
–4  
0
4
–3  
0
5
–2  
0
6
–1  
0
7
0
0
5599f  
35  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
M
N
N
PH  
B
PH  
M
PH  
N
N
PH  
B
PH  
PH  
COARSE  
COARSE  
1
0
17  
x00010001  
x00010010  
x00010011  
x00010100  
x00010101  
x00010110  
x00010111  
x00011000  
x00011001  
x00011010  
x00011011  
x00011100  
x00011101  
x00011110  
x00011111  
100100000  
100100001  
100100010  
100100011  
100100100  
100100101  
100100110  
100100111  
100101000  
100101001  
100101010  
100101011  
100101100  
100101101  
100101110  
100101111  
100110000  
100110001  
100110010  
100110011  
100110100  
100110101  
100110110  
100110111  
100111000  
100111001  
42  
32  
26  
100111010  
100111011  
100111100  
100111101  
100111110  
100111111  
101000000  
101000001  
101000010  
101000011  
101000100  
101000101  
101000110  
101000111  
101001000  
101001001  
101001010  
101001011  
101001100  
101001101  
101001110  
101001111  
101010000  
101010001  
101010010  
101010011  
101010100  
101010101  
101010110  
101010111  
101011000  
101011001  
101011010  
101011011  
101011100  
101011101  
101011110  
101011111  
101100000  
101100001  
101100010  
2
0
0
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
32  
32  
32  
32  
32  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
96  
96  
96  
27  
28  
29  
30  
31  
0
3
4
0
5
0
6
0
7
0
8
0
1
9
0
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
0
3
0
4
0
5
0
6
0
7
0
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
1
2
5599f  
36  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
(continued)  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00)  
M
PH  
N
N
PH  
B
PH  
M
N
N
PH  
B
PH  
COARSE  
PH  
COARSE  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
128  
12  
110001100  
110001101  
110001110  
110001111  
110010000  
110010001  
110010010  
110010011  
110010100  
110010101  
110010110  
110010111  
110011000  
110011001  
110011010  
110011011  
110011100  
110011101  
110011110  
110011111  
110100000  
110100001  
110100010  
110100011  
110100100  
110100101  
110100110  
110100111  
110101000  
110101001  
110101010  
110101011  
110101100  
110101101  
110101110  
110101111  
110110000  
110110001  
110110010  
110110011  
110110100  
83  
96  
3
4
101100011  
101100100  
101100101  
101100110  
101100111  
101101000  
101101001  
101101010  
101101011  
101101100  
101101101  
101101110  
101101111  
101110000  
101110001  
101110010  
101110011  
101110100  
101110101  
101110110  
101110111  
101111000  
101111001  
101111010  
101111011  
101111100  
101111101  
101111110  
101111111  
110000000  
110000001  
110000010  
110000011  
110000100  
110000101  
110000110  
110000111  
110001000  
110001001  
110001010  
110001011  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
84  
85  
96  
96  
5
86  
96  
6
87  
96  
7
88  
96  
8
89  
96  
9
90  
96  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
91  
96  
92  
96  
93  
96  
94  
96  
95  
96  
96  
96  
97  
96  
98  
96  
99  
96  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
96  
96  
96  
96  
1
96  
2
96  
3
96  
4
96  
5
96  
6
96  
7
96  
8
96  
9
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
2
3
4
5
6
7
8
9
10  
11  
5599f  
37  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued)  
Table 9. Register 0x05 Phase Shift Register Settings, Including  
the Extension Bits and Sign Bit (Bit 7 in Register 0x00)  
(continued)  
M
N
N
PH  
B
PH  
M
PH  
N
N
PH  
B
PH  
PH  
COARSE  
COARSE  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
160  
21  
110110101  
110110110  
110110111  
110111000  
110111001  
110111010  
110111011  
110111100  
110111101  
110111110  
110111111  
111000000  
111000001  
111000010  
111000011  
111000100  
111000101  
111000110  
111000111  
111001000  
111001001  
111001010  
111001011  
111001100  
111001101  
111001110  
111001111  
111010000  
111010001  
111010010  
111010011  
111000100  
111010101  
111010110  
111010111  
111011000  
111011001  
111011010  
111011011  
111011100  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
192  
29  
111011101  
111011110  
111011111  
111100000  
111100001  
111100010  
111100011  
111100100  
111100101  
111100110  
111100111  
111101000  
111101001  
111101010  
111101011  
111101100  
111101101  
111101110  
111101111  
111110000  
111110001  
111110010  
111110011  
111110100  
111110101  
111110110  
111110111  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
192  
192  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
224  
30  
31  
0
1
2
3
4
5
6
7
8
1
9
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
5599f  
38  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Table 10. Serial Port Register Contents  
ADDR  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
MSB  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DEFAULT  
0x2E  
0x84  
0x80  
0x80  
0x80  
0x10  
0x50  
0x06  
0x00  
0x00  
0x01  
0x0X  
0xXX  
0x0X  
0xXX  
0x0X  
0x08  
0xFF  
0x01  
0x08  
0xFF  
0x01  
0x08  
0xFF  
0x01  
0x08  
0xFF  
0x01  
0x00  
0x00  
0x04  
0x0Y  
IQPHSIGN  
FREQ[6]  
FREQ[5]  
QDISABLE  
FREQ[4]  
GAIN[4]  
FREQ[3]  
GAIN[3]  
FREQ[2]  
GAIN[2]  
FREQ[1]  
GAIN[1]  
FREQ[0]  
GAIN[0]  
TEMPUPDT AGCTRL  
OFFSETI[7] OFFSETI[6] OFFSETI[5] OFFSETI[4] OFFSETI[3] OFFSETI[2] OFFSETI[1] OFFSETI[0]  
OFFSETQ[7] OFFSETQ[6] OFFSETQ[5] OFFSETQ[4] OFFSETQ[3] OFFSETQ[2] OFFSETQ[1] OFFSETQ[0]  
IQGR[7]  
IQGR[6]  
IQGR[5]  
IQGR[4]  
IQPHF[4]  
CLOEN  
IQGR[3]  
IQPHF[3]  
CLOO[3]  
GAINF[3]  
SRESET  
IQGR[2]  
IQPHF[2]  
CLOO[2]  
GAINF[2]  
IQGR[1]  
IQPHF[1]  
CLOO[1]  
GAINF[1]  
IQGR[0]  
IQPHF[0]  
CLOO[0]  
GAINF[0]  
IQPHE[2]  
IQPHE[1]  
IQPHE[0]  
*
*
*
0
0
0
0
0
0
0
0
TEMPCORR THERMINP  
*
0
0
0
0
0
0
0
0
CHIPID[7] CHIPID[6] CHIPID[5] CHIPID[4] CHIPID[3] CHIPID[2] CHIPID[1] CHIPID[0]  
R
0
0
0
0
0
0
0
0
0
0
FUSE[3]  
CPPP0[3]  
CPPP1[3]  
FUSE[2]  
CPPP0[2]  
CPPP1[2]  
FUSE[1]  
CPPP0[1]  
CPPP1[1]  
FUSE[0]  
CPPP0[0]  
CPPP1[0]  
R
CPPP0[5]  
CPPP1[5]  
CPPP0[4]  
CPPP1[4]  
R
CPPP1[6]  
R
0
CPPM0[5] CPPM0[4] CPPM0[3] CPPM0[2] CPPM0[1] CPPM0[0]  
R
CPPM1[6] CPPM1[5] CPPM1[4] CPPM1[3] CPPM1[2] CPPM1[1] CPPM1[0]  
R
GPI0[6]  
GPI1[6]  
GPI2[6]  
GMI0[6]  
GMI1[6]  
GMI2[6]  
GPQ0[6]  
GPQ1[6]  
GPQ2[6]  
GMQ0[6]  
GMQ1[6]  
GMQ2[6]  
GPI0[5]  
GPI1[5]  
GPI2[5]  
GMI0[5]  
GMI1[5]  
GMI2[5]  
GPQ0[5]  
GPQ1[5]  
GPQ2[5]  
GMQ0[5]  
GMQ1[5]  
GMQ2[5]  
GPI0[4]  
GPI1[4]  
GPI2[4]  
GMI0[4]  
GMI1[4]  
GMI2[4]  
GPQ0[4]  
GPQ1[4]  
GPQ2[4]  
GMQ0[4]  
GMQ1[4]  
GMQ2[4]  
GPI0[3]  
GPI1[3]  
GPI2[3]  
GMI0[3]  
GMI1[3]  
GMI2[3]  
GPQ0[3]  
GPQ1[3]  
GPQ2[3]  
GMQ0[3]  
GMQ1[3]  
GMQ2[3]  
GPI0[2]  
GPI1[2]  
GPI2[2]  
GMI0[2]  
GMI1[2]  
GMI2[2]  
GPQ0[2]  
GPQ1[2]  
GPQ2[2]  
GMQ0[2]  
GMQ1[2]  
GMQ2[2]  
GPI0[1]  
GPI1[1]  
GPI2[1]  
GMI0[1]  
GMI1[1]  
GMI2[1]  
GPQ0[1]  
GPQ1[1]  
GPQ2[1]  
GMQ0[1]  
GMQ1[1]  
GMQ2[1]  
GPI0[0]  
GPI1[0]  
GPI2[0]  
GMI0[0]  
GMI1[0]  
GMI2[0]  
GPQ0[0]  
GPQ1[0]  
GPQ2[0]  
GMQ0[0]  
GMQ1[0]  
GMQ2[0]  
R
GPI1[7]  
R
0
R
0
R
GMI1[7]  
R
0
R
0
R
GPQ1[7]  
R
0
R
0
R
GMQ1[7]  
R
0
R
0
0
0
0
0
0
0
0
R
0
0
0
0
CLO[3]  
IDT[3]  
CLO[2]  
IDT[2]  
CLO[1]  
IDT[1]  
CLO[0]  
IDT[0]  
R
0
0
0
GOR  
R
0x1F  
0
0
0
0
TEMP[3]  
TEMP[2]  
TEMP[1]  
TEMP[0]  
R
*unused read-only; values written are disregarded, X = production dependent, Y = resets to 7 after EN from Low to High with TEMPUPDT = 1, for EN =  
Low all read-only (R) registers default to 0x00.  
5599f  
39  
For more information www.linear.com/LTC5599  
LTC5599  
appenDix  
Table 11. Serial Port Register Bit Field Summary  
BITS  
FUNCTION  
DESCRIPTION  
VALID VALUES DEFAULT  
AGCTRL  
CHIPID[7:0]  
CLO[3:0]  
CLOO[3:0]  
CLOEN  
Analog Gain Control Enable  
Chip ID  
Enables analog control through V  
(Pin 1) when AGCTRL = 1.  
0, 1  
1
1
1
CTRL  
LO Port Match Cap Array  
LO Port Cap Array Override  
Automatic LO Match Enable  
LO port match, automatically adjusted through programming FREQ[6:0]  
Programs LO port match capacitor array when CLOEN = 0  
0x00 to 0x0F  
0x00 to 0x0F  
0, 1  
0x00  
0x00  
1
Automatic LO port impedance matching enabled when CLOEN = 1. Override  
bits CLOO[3:0] control LO port match when CLOEN = 0.  
CPPM0[5:0]  
CPPM1[6:0]  
CPPP0[5:0]  
CPPP1[6:0]  
FREQ[6:0]  
FUSE[3:0]  
GAIN[4:0]  
GAINF[3:0]  
GMI0[6:0]  
GMI1[7:0]  
GMI2[6:0]  
GMQ0[6:0]  
GMQ1[7:0]  
GMQ2[6:0]  
GOR  
C
C
C
C
Fine Control  
Coarse Control  
Fine Control  
C
= CPPM0[5:0] + number of 1’s in CPPM1[6:0] × 64  
0x00 to 0x5F  
0x00 to 0x7F  
0x00 to 0x5F  
0x00 to 0x7F  
0x00 to 0x79  
0x00 to 0x0F  
0x00 to 0x13  
0xXX  
0x0X  
0xXX  
0x0X  
0x2E  
0x0X  
0x04  
0x00  
0x08  
0xFF  
0x01  
0x08  
0xFF  
0x01  
0
ppQ  
ppQ  
ppI  
ppQ  
C
= CPPP0[5:0] + number of 1’s in CPPP1[6:0] × 64  
ppI  
Coarse Control  
ppI  
Poly-Phase Filter Frequency  
Fuse Read Out  
Programs the center frequency of the poly-phase filter, according to Table 5.  
Programs the conversion gain in 1dB steps, according to Table 3.  
Coarse Digital Gain Control  
Fine Digital Gain Control  
Fine GMI DAC Read-Out  
Coarse GMI DAC Read-Out1  
Coarse GMI DAC Read-Out2  
Fine GMQ DAC Read-Out  
Conversion gain control in approximately 0.1dB steps, when TEMPCORR = 1. 0x00 to 0x0F  
BBMI input stage gain GmI.  
0x00 to 0x7F  
0x00 to 0x07  
0x00 to 0x07  
0x00 to 0x7F  
0x00 to 0x07  
0x00 to 0x07  
0, 1  
GmI = GMI0[6:0] + (number of 1’s in GMI1[7:0] and GMI2[6:0]) × 128  
BBMQ input stage gain GmQ.  
Coarse GMQ DAC Read-Out1 GmQ = GMQ0[6:0] + (number of 1’s in GMQ1[7:0] and GMQ2[6:0]) × 128  
Coarse GMQ DAC Read-Out2  
Gain Out of Range  
For DG < –19 GOR = 1; Else GOR = 0  
GPI0[6:0]  
GPI1[7:0]  
GPI2[6:0]  
GPQ0[6:0]  
GPQ1[7:0]  
GPQ2[6:0]  
IDT[3:0]  
Fine GPI DAC Read-Out  
Coarse GPI DAC Read-Out1  
Coarse GPI DAC Read-Out2  
Fine GPQ DAC Read-Out  
Coarse GPQ DAC Read-Out1  
Coarse GPQ DAC Read-Out2  
RF Buffer Bias  
BBPI input stage gain GpI.  
0x00 to 0x7F  
0x00 to 0x07  
0x00 to 0x07  
0x00 to 0x7F  
0x00 to 0x07  
0x00 to 0x07  
0x00 to 0x0D  
0x00 to 0xFF  
0x00 to 0x07  
0x00 to 0x1F  
0x08  
0xFF  
0x01  
0x08  
0xFF  
0x01  
0x04  
0x80  
0x00  
0x10  
GpI = GPI0[6:0] + (number of 1’s in GPI1[7:0] and GPI2[6:0]) × 128  
BBPQ input stage gain GpQ.  
GpQ = GPQ0[6:0] + (number of 1’s in GPQ1[7:0] and GPQ2[6:0]) × 128  
IQGR[7:0]  
IQPHE[2:0]  
IQPHF[4:0]  
I/Q Gain Ratio Control  
I/Q Phase Extension Bits  
Adjust the gain difference in approximate constant steps in dB. See Table 4.  
Extend the IQ phase adjustment range. See Table 9.  
Fine I/Q Phase Balance  
Control  
Fine adjustment of IQ LO phase difference. See Table 9. Zero phase shift for  
0x10.  
IQPHSIGN  
Sign IQ Phase Extension Bits Encodes the sign of the IQ phase extension bits IQPHE[2:0]. Positive for  
IQPHSIGN = 1.  
0, 1  
0
OFFSETI[7:0] I-Channel Offset Control  
OFFSETQ[7:0] Q-Channel Offset Control  
Adjusts DC offset in the I-channel. Zero offset for 0x80. See page 19.  
Adjusts DC offset in the Q-channel. Zero offset for 0x80. See page 19.  
0x01 to 0xFF  
0x01 to 0xFF  
0, 1  
0x80  
0x80  
0
QDISABLE  
Disable Q-Channel  
QDISABLE = 1 shuts down the Q-channel, turning the LTC5599 into an  
upconversion mixer.  
SRESET  
Soft Reset  
Writing 1 to this bit resets all registers to their default values.  
Digital representation of die temperature. Step size about 10°C.  
0, 1  
0x00 to 0x07  
0, 1  
0
0x07  
0
TEMP[3:0]  
TEMPCORR  
Thermometer Output  
Temperature Correction  
Disable  
TEMPCORR = 1 disables temperature correction of the gain, and enables  
manual fine-adjustment using bits GAINF[3:0].  
TEMPUPDT  
THERMINP  
Temperature Correction  
Update  
TEMPUPDT = 1 synchronizes temperature correction of the gain to a LOW  
0, 1  
0
1
- HIGH transition on the TTCK pin. Asynchronous correction for TEMPUPDT  
= 0.  
Thermometer Input Select  
For test purposes only. Should be set to 0.  
For more information www.linear.com/LTC5599  
0
5599f  
40  
LTC5599  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-ꢀ697 Rev B)  
0.70 0.05  
4.50 0.05  
3.ꢀ0 0.05  
2.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
R = 0.ꢀꢀ5  
PIN ꢀ NOTCH  
R = 0.20 TYP OR  
0.35 × 45° CHAMFER  
0.75 0.05  
4.00 0.ꢀ0  
(4 SIDES)  
TYP  
23 24  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
0.40 0.ꢀ0  
2
2.45 0.ꢀ0  
(4-SIDES)  
(UF24) QFN 0ꢀ05 REV B  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5599f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
41  
LTC5599  
Typical applicaTion  
V
CTRL  
3.3V  
22, 21, 20, 19  
24  
1nF + 4.7µF  
V
CC  
LTC5599  
SPI  
RF = 90MHz  
to 1300MHz  
8
9
V
V
I
I
I-DAC  
I-CHANNEL  
10nF  
16  
PA  
1
0°  
23  
EN  
90°  
13, 14, 15, 17, 18  
10  
11  
Q-DAC  
Q-CHANNEL  
6
THERMOMETER  
TTCK  
BASEBAND  
GENERATOR  
3
4
2, 5, 12  
5599 TA01a  
39nH  
VCO/SYNTHESIZER  
15pF  
Figure 16. 90MHz to 1300MHz Direct Conversion Transmitter Application  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 3kΩ 2.1V  
Infrastructure  
LT5518  
LT5528  
LT5558  
LT5568  
LT5571  
LT5572  
1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator  
1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator  
DC  
Baseband Interface, 5V/128mA Supply  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω 0.5V  
Baseband Interface, 5V/128mA Supply  
DC  
600MHz to 1100MHz High Linearity Direct Quadrature Modulator 22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ 2.1V  
Baseband Interface, 5V/108mA Supply  
DC  
700MHz to 1050MHz High Linearity Direct Quadrature Modulator 22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω 0.5V  
Baseband Interface, 5V/117mA Supply  
DC  
620MHz to 1100MHz High Linearity Direct Quadrature Modulator 21.7dBm OIP3 at 900MHz, –159dBm/Hz Noise Floor, Hi-Z 0.5V  
Baseband Interface, 5V/97mA Supply  
DC  
1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, Hi-Z 0.5V  
Baseband Interface, 5V/120mA Supply  
DC  
LTC5598  
LT5560  
5MHz to 1600MHz High Linearity Direct Quadrature Modulator  
0.01MHz to 4GHz Low Power Active Mixer  
27.7dBm OIP3 at 140MHz, –160dBm/Hz Noise Floor with P  
= 5dBm  
OUT  
IIP3 = 9dBm, 2.6dB Conversion Gain, 9.3dB NF, 3.0V/10mA Supply  
Current  
LT5506/5546  
40MHz to 500MHz Quadrature Demodulator with VGA  
56dB Gain, –49 to 0dBm IIP3, 6.8dB NF, 1.8V to 5.25V/26.5mA  
Supply Current  
LTC5510  
1MHz to 6GHz, 3.3V Wideband High Linearity Active Mixer  
1.5dB Gain, 27dBm IIP3, 11.6dB NF, 3.3V/105mA Supply Current  
RF Power Detector  
LT5581  
6GHz Low Power RMS Detector  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA  
Supply Current  
LTC5582  
40MHz to 10GHz RMS Power Detector  
57dB Dynamic Range, 1dB Accuracy Over Temperature, Single-Ended  
RF Input (No Transformer)  
LT5534  
LT5537  
50MHz to 3GHz RF Power Detector with 60dB Dynamic Range  
LF to 1GHz Wide Dynamic Range RF/IF Log Detector  
60dB Dynamic Range, Linear-in-dB Response, 2.7V to 5.25V/7mA  
83dB Dynamic Range, Linear-in-dB Response, 2.7V to 5.25V/13.5mA  
5599f  
LT 0814 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
42  
ꢀLINEAR TECHNOLOGY CORPORATION 2014  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC5599  

相关型号:

LTC559X

300MHz to 4GHz Active Downconverting Mixer
Linear

LTC5612ELM

Optoelectronic
ETC

LTC561E

Optoelectronic
ETC

LTC561G

Optoelectronic
ETC

LTC561HR

Optoelectronic
ETC

LTC561P

Optoelectronic
ETC

LTC561R

Optoelectronic
ETC

LTC561Y

Optoelectronic
ETC

LTC5703A1P

Optoelectronic
ETC

LTC5703P

Optoelectronic
ETC

LTC571E

Optoelectronic
ETC

LTC571G

Optoelectronic
ETC