LTC559X [Linear]

300MHz to 4GHz Active Downconverting Mixer; 300MHz至4GHz的活动下变频混频器
LTC559X
型号: LTC559X
厂家: Linear    Linear
描述:

300MHz to 4GHz Active Downconverting Mixer
300MHz至4GHz的活动下变频混频器

文件: 总20页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC5567  
300MHz to 4GHz Active  
Downconverting Mixer with  
Wideband IF  
FeaTures  
DescripTion  
The LTC®5567 is optimized for RF downconverting mixer  
applications that require wide IF bandwidth. The part is  
also a pin-compatible upgrade to the LT5557 active mixer,  
offering higher linearity and 1dB compression, wider  
bandwidth, and lower output spurious levels. Integrated  
RF and LO transformers and LO buffer amplifiers allow a  
very compact solution.  
n
High IIP3: +26.9dBm at 1950MHz  
n
1.9dB Conversion Gain  
n
Low Noise Figure: 11.8dB at 1950MHz  
n
16.5dB NF Under 5dBm Blocking  
n
Low Power: 294mW  
n
Wide IF Frequency Range Up to 2.5GHz  
n
LO Input 50Ω Matched when Shutdown  
n
–40°C to 105°C Operation (T )  
Very Small Solution Size  
C
The RF input is 50Ω matched from 1.4GHz to 3GHz, and  
easily matched for higher or lower RF frequencies with  
simple external matching. The LO input is 50Ω matched  
from 1GHz to 4GHz, even when the IC is disabled. The LO  
input is easily matched for higher or lower frequencies, as  
low as 300MHz, with simple external matching. The low  
capacitance differential IF output is usable up to 2.5GHz.  
n
n
n
Pin Compatible with LT5557  
16-Lead (4mm × 4mm) QFN package  
applicaTions  
n
Wireless Infrastructure Receivers  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
DPD Observation Receivers  
n
CATV Infrastructure  
Typical applicaTion  
DPD Observation Receiver Mixer with 500MHz IF Bandwidth and  
+13dBm Input P1dB into 200Ω Load  
Voltage Conversion Gain, IIP3  
and NF vs IF Frequency  
LO  
1.65GHz  
0dBm  
28  
26  
24  
3.9pF  
IIP3  
LO  
LTC5567  
200Ω LOAD  
330pF  
390nH  
22 RF = 1.69GHz TO 2.24GHz  
LO = 1.65GHz  
+
20  
IF  
Z
Z
T
= 50Ω  
RF  
IF  
C
18  
16  
14  
12  
10  
8
2.7pF  
LO  
RF  
249Ω  
249Ω  
100Ω  
100Ω  
= 200Ω DIFFERENTIAL  
1.69GHz  
= 25°C  
IF  
TO  
RF  
EN  
AMP  
2.24GHz  
NF  
RF  
390nH  
330pF  
IF  
5567 TA01a  
G
V
EN  
BIAS  
6
V
IADJ  
CC  
4
10nF  
3.3V  
89mA  
40 90 140 190 240 290 340 390 440 490 540 590  
IF FREQUENCY (MHz)  
10nF  
5567 TA01b  
5567f  
1
LTC5567  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
+
TOP VIEW  
Supply Voltage (V , IF , IF ) ..................................4.0V  
CC  
Enable Input Voltage (EN)................–0.3V to V + 0.3V  
CC  
16 15 14 13  
LO Input Power (300MHz to 4.5GHz)................. +10dBm  
LO Input DC Voltage............................................... 0.1V  
RF Input Power (300MHz to 4GHz).................... +15dBm  
RF Input DC Voltage............................................... 0.1V  
TEMP Monitor Input Current..................................10mA  
TEMP  
GND  
RF  
1
2
3
4
12 GND  
+
11 IF  
17  
GND  
IF  
10  
9
GND  
GND  
5
6
7
8
Operating Temperature Range (T )........ –40°C to 105°C  
C
Junction Temperature (T ) .................................... 150°C  
J
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 150°C, θ = 8°C/W  
Storage Temperature Range .................. –65°C to 150°C  
T
JMAX  
JC  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
16-Lead (4mm × 4mm) Plastic QFN  
CASE TEMPERATURE RANGE  
–40°C to 105°C  
LTC5567IUF#PBF  
LTC5567IUF#TRPBF  
5567  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ac elecTrical characTerisTics VCC = 3.3V, EN = High. Test circuit shown in Figure 1.  
(Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
300 to 4000  
300 to 4500  
5 to 2500  
>12  
MAX  
UNITS  
MHz  
MHz  
MHz  
dB  
RF Input Frequency Range  
LO Input Frequency Range  
IF Output Frequency Range  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
LO Input Power  
External Matching Required  
Z = 50Ω, 1400MHz to 3000MHz, C3 = 2.7pF  
O
Z = 50Ω, 1000MHz to 4000MHz, C5 = 3.9pF  
O
>10  
dB  
Differential at 153MHz  
532Ω||1.0pF  
0
R||C  
dBm  
–6  
6
RF to LO Isolation  
RF = 300MHz to 1000MHz  
RF = 1000MHz to 4000MHz  
>59  
>50  
dB  
dB  
RF to IF Isolation  
RF = 300MHz to 700MHz  
RF = 700MHz to 1000MHz  
RF = 1000MHz to 4000MHz  
>47  
>40  
>28  
dB  
dB  
dB  
5567f  
2
LTC5567  
ac elecTrical characTerisTics VCC = 3.3V, EN = High. TC = 25°C, PLO = 0dBm, IF = 153MHz,  
PRF = –6dBm (–6dBm/tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Conversion Gain  
RF = 450MHz, High Side LO  
RF = 850MHz, High Side LO  
RF = 1950MHz, Low Side LO  
RF = 2550MHz, Low Side LO  
RF = 3500MHz, Low Side LO  
1.5  
2.0  
1.9  
1.7  
1.2  
dB  
dB  
dB  
dB  
dB  
0.8  
Conversion Gain Flatness  
RF = 1950 30MHz, LO = 1797MHz, IF = 153 30MHz  
0.09  
dB  
Conversion Gain vs Temperature  
T = –40°C to 105ºC, RF = 1950MHz, Low Side LO  
C
–0.013  
dB/°C  
2-Tone Input 3rd Order Intercept (∆f = 2MHz)  
RF = 450MHz, High Side LO  
RF = 850MHz, High Side LO  
RF = 1950MHz, Low Side LO  
RF = 2550MHz, Low Side LO  
RF = 3500MHz, Low Side LO  
26.0  
26.7  
26.9  
26.0  
26.5  
dBm  
dBm  
dBm  
dBm  
dBm  
RF  
24.2  
2-Tone Input 2nd Order Intercept  
RF = 450MHz (527MHz/373MHz), LO = 603MHz  
RF = 850MHz (927MHz/773MHz), LO = 1003MHz  
RF = 1950MHz (2027MHz/1873MHz), LO = 1797MHz  
RF = 2550MHz (2627MHz/2473MHz), LO = 2397MHz  
RF = 3500MHz (3577MHz/3423MHz), LO = 3347MHz  
67  
64  
72  
71  
63  
dBm  
dBm  
dBm  
dBm  
dBm  
(∆f = 154MHz = f  
)
RF  
IM2  
SSB Noise Figure  
RF = 450MHz, High Side LO  
RF = 850MHz, High Side LO  
RF = 1950MHz, Low Side LO  
RF = 2550MHz, Low Side LO  
RF = 3500MHz, Low Side LO  
12.5  
11.4  
11.8  
12.6  
14.6  
dB  
dB  
dB  
dB  
dB  
13.5  
SSB Noise Figure Under Blocking  
LO to RF Leakage  
RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm  
RF = 1950MHz, Low Side LO, 2050MHz Blocker at 5dBm  
16.5  
16.5  
dB  
dB  
LO = 300MHz to 700MHz  
LO = 700MHz to 2200MHz  
LO = 2200MHz to 4500MHz  
<–62  
<–56  
<–47  
dBm  
dBm  
dBm  
LO to IF Leakage  
LO = 300MHz to 500MHz  
LO = 500MHz to 700MHz  
LO = 700MHz to 4500MHz  
<–43  
<–37  
<–41  
dBm  
dBm  
dBm  
1/2IF Output Spurious Product  
RF  
850MHz: f = 926.5MHz at –6dBm, f = 1003MHz  
–78  
–73  
dBc  
dBc  
RF  
LO  
(f Offset to Produce Spur at f = 153MHz)  
1950MHz: f = 1873.5MHz at –6dBm, f = 1797MHz  
IF  
RF LO  
1/3IF Output Spurious Product  
RF  
850MHz: f = 952MHz at –6dBm, f = 1003MHz  
–82  
–80  
dBc  
dBc  
RF  
LO  
(f Offset to Produce Spur at f = 153MHz)  
1950MHz: f = 1848MHz at –6dBm, f = 1797MHz  
IF  
RF  
LO  
Input 1dB Compression  
RF = 450MHz, High Side LO  
RF = 850MHz, High Side LO  
RF = 1950MHz, Low Side LO  
RF = 2550MHz, Low Side LO  
RF = 3500MHz, Low Side LO  
11.0  
10.9  
10.1  
10.2  
10.4  
dBm  
dBm  
dBm  
dBm  
dBm  
5567f  
3
LTC5567  
Dc elecTrical characTerisTics VCC = 3.3V, TC = 25°C. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3.3  
89  
MAX  
UNITS  
Supply Voltage (V  
Supply Current  
)
3.0  
3.6  
V
CC  
Enabled  
Disabled  
EN = High  
EN = Low  
105  
100  
mA  
µA  
Enable Logic Input (EN)  
Input High Voltage (On)  
Input Low Voltage (Off)  
Input Current  
2.5  
V
V
0.3  
–0.3V to V + 0.3V  
–30  
100  
µA  
µs  
µs  
CC  
Turn-On Time  
0.6  
0.5  
Turn-Off Time  
Mixer DC Current Adjust (IADJ)  
Open-Circuit DC Voltage  
2.2  
1.8  
V
Short-Circuit DC Current  
Pin Shorted to Ground  
mA  
Temperature Sensing Diode (TEMP)  
DC Voltage at T = 25°C  
I
IN  
I
IN  
= 10µA  
= 80µA  
716  
773  
mV  
mV  
J
Voltage Temperature Coefficient  
I
IN  
I
IN  
= 10µA  
= 80µA  
–1.75  
–1.56  
mV/°C  
mV/°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: SSB Noise Figure measured with a small-signal noise source,  
bandpass filter and 2dB matching pad on RF input, and bandpass filter on  
the LO input.  
Note 4: Specified performance includes 4:1 IF transformer and evaluation  
Note 2: The LTC5567 is guaranteed functional over the –40°C to 105°C  
PCB losses.  
case temperature range (θ = 8°C/W).  
JC  
Typical Dc perForMance characTerisTics EN = High, Test circuit shown in Figure 1.  
TEMP Diode Voltage vs Junction  
Temperature  
Supply Current vs Supply Voltage  
98  
96  
94  
92  
90  
88  
86  
84  
900  
850  
800  
750  
700  
650  
600  
550  
500  
I
= 80µA  
IN  
T
T
T
T
T
T
= 105°C  
= 85°C  
= 55°C  
= 25°C  
= –10°C  
= –40°C  
C
C
C
C
C
C
I
= 10µA  
IN  
3.4  
SUPPLY VOLTAGE (V)  
3.6  
3.0  
3.1  
3.2  
3.3  
3.5  
–45 –20  
5
30  
55  
80 105 130  
JUNCTION TEMPERATURE (°C)  
V
CC  
5567 G02  
5567 G01  
5567f  
4
LTC5567  
Typical perForMance characTerisTics 1400MHzto3000MHzapplication.Testcircuitshownin  
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.  
Conversion Gain, IIP3 and NF  
vs RF Frequency (Low Side LO)  
1950MHz Conversion Gain, IIP3  
and NF vs LO Power (Low Side LO)  
2550MHz Conversion Gain, IIP3  
and NF vs LO Power (Low Side LO)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5
4
3
2
1
0
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
IIP3  
T
T
T
= 85°C  
= 25°C  
= –40°C  
C
C
C
T
T
T
= 85°C  
= 25°C  
= –40°C  
C
C
C
T
= 25°C  
C
NF  
NF  
G
C
6
4
2
0
6
4
2
0
G
C
G
C
NF  
–6  
–4  
–2  
0
2
4
6
1.4  
2.2  
2.6 2.8  
–6  
–4  
–2  
0
2
4
6
1.6 1.8 2.0  
2.4  
3.0  
LO INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
LO INPUT POWER (dBm)  
5567 G05  
5567 G03  
5567 G04  
Conversion Gain, IIP3 and NF  
vs RF Frequency (High Side LO)  
1950MHz Conversion Gain, IIP3  
and NF vs LO Power (High Side LO)  
2550MHz Conversion Gain, IIP3  
and NF vs LO Power (High Side LO)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5
4
3
2
1
0
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
IIP3  
T
T
T
= 85°C  
= 25°C  
= –40°C  
C
C
C
T
T
T
= 85°C  
= 25°C  
= –40°C  
C
C
C
T
= 25°C  
C
NF  
NF  
G
C
6
4
2
0
6
4
2
0
G
C
G
C
NF  
–6  
–4  
–2  
0
2
4
6
1.4  
2.2  
2.6 2.8  
–6  
–4  
–2  
0
2
4
6
1.6 1.8 2.0  
2.4  
3.0  
LO INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
LO INPUT POWER (dBm)  
5567 G08  
5567 G06  
5567 G07  
RF Isolation vs RF Frequency  
LO Leakage vs LO Frequency  
65  
60  
55  
50  
45  
40  
35  
30  
25  
–20  
–30  
–40  
–50  
–60  
–70  
T
= 25°C  
T
= 25°C  
C
C
RF-LO  
LO-IF  
LO-RF  
RF-IF  
1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5567 G09  
5567 G10  
5567f  
5
LTC5567  
Typical perForMance characTerisTics 1400MHzto3000MHzapplication.Testcircuitshownin  
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.  
2-Tone IF Output Power, IM3 and  
IM5 vs RF Input Power  
Single Tone IF Output Power, 2 × 2  
and 3 × 3 Spurs vs RF Input Power  
2 × 2 and 3 × 3 Spur Suppression  
vs LO Power  
15  
5
–60  
–65  
–70  
–75  
–80  
–85  
–90  
10  
0
T
= 25°C  
T
= 25°C  
C
C
LO = 1797MHz  
RF = 1950MHz  
= –6dBm  
IF  
OUT  
P
RF  
IF  
OUT  
–5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
LO = 1797MHz  
(RF = 1950MHz)  
2RF-2LO  
(RF = 1873.5MHz)  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
T
= 25°C  
C
RF1 = 1949MHz  
RF2 = 1951MHz  
LO = 1797MHz  
3RF-3LO  
(RF = 1848MHz)  
3RF-3LO  
(RF = 1848MHz)  
IM3  
2RF-2LO  
(RF = 1873.5MHz)  
IM5  
–6  
–2  
0
2
4
6
–12  
–9  
–3  
0
3
6
–15 –12 –9 –6 –3  
0
3
6
9
12  
–4  
–6  
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm/TONE)  
RF INPUT POWER (dBm)  
5567 G13  
5567 G11  
5567 G12  
SSB Noise Figure  
vs RF Blocker Level  
Conversion Gain, IIP3, NF and RF  
Input P1dB vs Temperature  
Conversion Gain, IIP3 and NF  
vs Supply Voltage  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
30  
27  
24  
21  
18  
15  
12  
9
T
= 25°C  
C
RF = 1950MHz  
IIP3  
BLOCKER = 2050MHz  
LO = 1797MHz  
IIP3  
RF = 1950MHz  
LOW SIDE LO  
T
T
T
= 85°C  
C
C
C
RF = 1950MHz  
LOW SIDE LO  
= 25°C  
P
LO  
= –3dBm  
= –40°C  
NF  
P
= 0dBm  
LO  
SSB NF  
P1dB  
6
4
2
0
6
G
C
P
0
= 3dBm  
5
G
C
LO  
3
0
–25  
–15 –10 –5  
10  
–20  
–45  
–15  
15  
45  
75  
105  
3.0  
3.1  
3.3  
3.4  
3.5  
3.6  
3.2  
RF BLOCKER POWER (dBm)  
CASE TEMPERATURE (°C)  
V
SUPPLY VOLTAGE (V)  
CC  
5567 G14  
5567 G15  
5567 G16  
1950MHz Conversion Gain  
Distribution  
1950MHz IIP3 Distribution  
1950MHz SSB NF Distribution  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
RF = 1950MHz  
LOW SIDE LO  
RF = 1950MHz, LOW SIDE LO  
RF = 1950MHz, LOW SIDE LO  
105°C  
105°C  
25°C  
–40°C  
105°C  
25°C  
–40°C  
25°C  
–40°C  
0
0
0
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
24.6 25.2 25.8 26.4 27.0 27.6 28.2 28.8  
10.2 10.8 11.4 12.0 12.6 13.2 13.8  
CONVERSION GAIN (dB)  
IIP3 (dBm)  
SSB NOISE FIGURE (dB)  
5567 G17  
5567 G18  
5567 G19  
5567f  
6
LTC5567  
Typical perForMance characTerisTics 700MHz to 1000MHz application. Test circuit shown in  
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
850MHz Conversion Gain,  
IIP3 and NF vs LO Power  
850MHz Conversion Gain,  
IIP3 and NF vs Supply Voltage  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
28  
25  
22  
19  
16  
13  
10  
7
IIP3  
IIP3  
IIP3  
T
T
T
= 85°C  
T
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
= 25°C  
RF = 850MHz  
T
HIGH SIDE LO  
RF = 850MHz  
HIGH SIDE LO  
= –40°C  
HIGH SIDE LO  
T
T
= 25°C  
C
NF  
NF  
NF  
6
6
G
C
4
2
4
2
G
C
G
C
4
0
700  
0
1
750  
800  
850  
900  
950 1000  
–6  
–4  
–2  
0
2
4
6
3.0  
3.1  
3.2  
3.3  
3.6  
3.4  
3.5  
RF FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
V
SUPPLY VOLTAGE (V)  
CC  
5567 G20  
5567 G21  
5567 G22  
RF Isolation and LO Leakage vs  
Frequency  
Conversion Gain, IIP3, NF and RF  
Input P1dB vs Temperature  
SSB Noise Figure  
vs RF Blocker Level  
22  
70  
60  
50  
40  
30  
20  
10  
0
0
28  
26  
24  
22  
T
= 25°C  
T
= 25°C  
RF-LO  
ISO  
C
C
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IIP3  
RF = 850MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
BLOCKER = 750MHz  
LO = 1003MHz  
20 RF = 850MHz  
RF-IF  
ISO  
HIGH SIDE LO  
18  
16  
14  
12  
10  
8
6
4
2
0
P
LO  
= –3dBm  
NF  
P
= 0dBm  
LO  
P1dB  
LO-IF  
LO-RF  
G
C
P
LO  
= 3dBm  
5
700  
800  
900  
1000  
1100  
1200  
–45  
–15  
15  
45  
75  
105  
–25 –20 –15 –10 –5  
0
10  
RF/LO FREQUENCY (MHz)  
RF BLOCKER POWER (dBm)  
CASE TEMPERATURE (°C)  
5567 G25  
5567 G23  
5567 G24  
2-Tone IF Output Power, IM3 and  
IM5 vs RF Input Power  
Single Tone IF Output Power, 2 × 2  
and 3 × 3 Spurs vs RF Input Power  
2 × 2 and 3 × 3 Spur Suppression  
vs LO Power  
15  
5
–60  
–65  
–70  
–75  
–80  
–85  
–90  
20  
T
= 25°C  
T
= 25°C  
C
C
LO = 1003MHz  
10  
0
RF = 850MHz  
= –6dBm  
IF  
OUT  
P
RF  
IF  
OUT  
–5  
LO = 1003MHz  
(RF = 850MHz)  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2LO-2RF  
(RF = 926.5MHz)  
T
= 25°C  
C
RF1 = 849MHz  
RF2 = 851MHz  
LO = 1003MHz  
3LO-3RF  
(RF = 952MHz)  
IM3  
IM5  
3
3LO-3RF  
(RF = 952MHz)  
2LO-2RF  
(RF = 926.5MHz)  
6
9
12  
–6  
–2  
0
2
4
6
–12  
–9  
–3  
0
6
–15 –12 –9 –6 –3  
0
3
–4  
–6  
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm/TONE)  
RF INPUT POWER (dBm)  
5567 G28  
5567 G27  
5567 G26  
5567f  
7
LTC5567  
Typical perForMance characTerisTics 400MHz to 500MHz application. Test circuit shown in  
Figure 1. VCC = 3.3V, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 153MHz unless otherwise noted.  
Conversion Gain, IIP3 and NF vs  
RF Frequency  
450MHz Conversion Gain,  
IIP3 and NF vs LO Power  
RF Isolation and LO Leakage  
vs RF and LO Frequency  
27  
24  
21  
18  
15  
12  
9
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
70  
65  
60  
55  
0
T
= 25°C  
C
RF-IF  
IIP3  
IIP3  
–10  
–20  
–30  
T
T
T
= 85°C  
= 25°C  
= –40°C  
C
C
C
HIGH SIDE LO  
HIGH SIDE LO  
NF  
RF-LO  
T
= 25°C  
C
LO-IF  
NF  
50  
45  
–40  
–50  
40  
35  
30  
–60  
–70  
–80  
7
5
3
1
LO-RF  
650  
6
G
C
3
G
C
0
450  
500  
600  
400  
700  
400  
425  
450  
475  
500  
–6  
–4  
–2  
0
2
4
6
550  
RF FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
RF/LO FREQUENCY (MHz)  
5567 G29  
5567 G30  
5567 G31  
3GHz to 4GHz application. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
3500MHz Conversion Gain,  
IIP3 and NF vs LO Power  
3500MHz Conversion Gain,  
IIP3 and NF vs Supply Voltage  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
27  
24  
21  
18  
15  
12  
9
27  
24  
21  
18  
15  
12  
9
IIP3  
IIP3  
IIP3  
LOW SIDE LO  
= 25°C  
RF = 3.5GHz  
LOW SIDE LO  
RF = 3.5GHz  
LOW SIDE LO  
T
C
NF  
NF  
NF  
T
T
T
= 85°C  
= 25°C  
= –40°C  
T
T
T
= 85°C  
= 25°C  
= –40°C  
C
C
C
C
C
C
6
6
6
4
2
G
C
G
C
3
3
G
C
0
0
0
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
–6  
–4  
–2  
0
6
2
4
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
RF FREQUENCY (GHz)  
LO INPUT POWER (dBm)  
V
SUPPLY VOLTAGE  
CC  
5567 G32  
5567 G33  
5567 G34  
Conversion Gain, IIP3 and RF  
Input P1dB vs Temperature  
RF Isolation vs RF Frequency  
LO leakage vs LO Frequency  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
60  
50  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
T
= 25°C  
C
IIP3  
RF-LO  
40  
RF = 3500MHz  
LOW SIDE LO  
30  
20  
NF  
T
= 25°C  
10  
C
LO-IF  
0
P1dB  
–10  
–20  
–30  
–40  
6
4
2
0
LO-RF  
RF-IF  
G
C
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
2.6  
3.2  
3.5  
3.8  
4.1  
4.4  
–45  
–15  
15  
45  
75  
105  
2.9  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
CASE TEMPERATURE (°C)  
5567 G35  
5567 G36  
5567 G37  
5567f  
8
LTC5567  
pin FuncTions  
TEMP (Pin 1): Temperature Sensing Diode. This pin is  
connected to the anode of a diode that may be used to  
measure the die temperature, by forcing a current and  
measuring the voltage.  
V
(Pin6):PowerSupplyPin.Thispinmustbeconnected  
CC  
toaregulated3.3Vsupply, withabypasscapacitorlocated  
close to the pin. Typical DC current consumption is 34mA.  
NC (Pins 7, 14): These pins are not connected internally.  
GND (Pins 2, 4, 9, 12, 13, 16, Exposed Pad Pin 17):  
Ground. These pins must be soldered to the RF ground  
plane on the circuit board. The exposed pad metal of the  
package provides both electrical contact to ground and  
good thermal contact to the printed circuit board.  
They can be left floating, connected to ground, or to V .  
CC  
IADJ (Pin 8): This pin allows adjustment of the mixer DC  
supply current. Typical open-circuit DC voltage is 2.2V.  
This pin should be left floating for optimum performance.  
+
IF /IF (Pin 11/Pin 10): Open-Collector Differential IF  
RF (Pin 3): Single-Ended RF Input. This pin is internally  
connected to the primary winding of the integrated RF  
transformer, which has low DC resistance to ground. A  
series DC-blocking capacitor must be used if the RF  
source has DC voltage present. The RF input is 50Ω  
impedance matched from 1.4GHz to 3GHz, as long as  
the mixer is enabled. Operation down to 300MHz or up  
to 4GHz is possible with external matching.  
Output. These pins must be connected to the V supply  
CC  
through impedance-matching inductors or a transformer  
center tap. Typical DC current consumption is 27.5mA  
into each pin.  
LO (Pin 15): Single-Ended Local Oscillator Input. This  
pin is internally connected to the primary winding of an  
integrated transformer, which has low DC resistance to  
ground. A series DC-blocking capacitor must be used to  
avoid damage to the internal transformer. This input is  
50Ω impedance matched from 1GHz to 4GHz, even when  
the IC is disabled. Operation down to 300MHz or up to  
4.5GHz is possible with external matching.  
EN (Pin 5): Enable Pin. When the input voltage is greater  
than 2.5V, the mixer is enabled. When the input voltage is  
lessthan0.3V,themixerisdisabled.Typicalinputcurrentis  
lessthan30µA. Thispinhasaninternalpull-downresistor.  
block DiagraM  
16  
15  
14  
13  
GND  
LO  
NC  
GND  
1
2
TEMP  
GND  
GND 12  
LO  
11  
+
IF  
RF  
3
4
10  
RF  
IF  
GND  
BIAS  
GND  
9
17 GND  
(EXPOSED PAD)  
V
6
EN  
NC  
7
IADJ  
CC  
5
8
5567 BD  
5567f  
9
LTC5567  
TesT circuiT  
DC1861A  
EVALUATION BOARD  
LAYER STACK-UP  
(NELCO N4000-13)  
RF  
GND  
0.015"  
0.062"  
BIAS  
GND  
0.015"  
C6  
LO  
IN  
50Ω  
C5  
16  
15  
14  
NC  
13  
GND  
LO  
GND  
GND 12  
+
1
2
TEMP  
GND  
C7  
LTC5567  
11  
IF  
T1  
IF  
OUT  
R1  
R2  
L1  
L2  
50Ω  
C2  
17  
GND  
C3  
L3  
RF  
IN  
3
4
RF  
50Ω  
R4  
0Ω  
C4  
10  
9
IF  
C8  
GND  
GND  
IADJ  
V
EN  
NC  
7
CC  
5
6
8
V
CC  
3.3V  
EN  
89mA  
C1  
C9  
5567 F01  
APPLICATION  
RF (MHz)  
RF MATCH  
C4  
LO MATCH  
C5  
LO  
HS  
C3  
L3  
C6  
15pF  
10pF  
2.7pF  
300 to 400  
400 to 500  
120pF  
120pF  
120pF  
2.7pF  
3.9pF  
18pF  
12pF  
4.7pF  
2.2nH  
2nH  
47pF  
27pF  
6.8pF  
3.9pF  
3.9pF  
HS  
700 to 1000  
1400 to 3000  
3000 to 4000  
HS  
LS, HS  
LS  
0.7pF  
LS = Low side, HS = High side  
REF DES  
C1, C2  
VALUE  
SIZE  
0402  
0402  
0402  
0402  
VENDOR  
AVX  
REF DES  
C9  
VALUE  
1µF  
SIZE  
VENDOR  
10nF  
0603  
AVX  
C3 - C6  
C7, C8  
See Table  
330pF  
AVX  
T1  
4:1  
Mini-Circuits TC8-1-10LN+  
Coilcraft 0603HP  
AVX  
L1, L2  
L3  
300nH  
See Table  
0603  
0402  
R1, R2  
3.01k, 1%  
Coilcraft 0402HP  
Figure 1. Standard Downmixer Test Circuit Schematic (153MHz Bandpass IF Matching)  
5567f  
10  
LTC5567  
applicaTions inForMaTion  
Introduction  
RF Input  
TheLTC5567incorporatesahighlinearitydouble-balanced  
active mixer, a high-speed limiting LO buffer and bias/  
enable circuits. See the Pin Functions and Block Diagram  
sections for a description of each pin. A test circuit sche-  
matic showing all external components required for the  
data sheet specified performance is shown in Figure 1.  
A few additional components may be used to modify the  
DC supply current or frequency response, which will be  
discussed in the following sections.  
A simplified schematic of the mixer’s RF input is shown  
in Figure 3. As shown, one terminal of the integrated RF  
transformer’sprimarywindingisconnectedtoPin3, while  
the other terminal is DC-grounded internally. For this rea-  
son, a series DC-blocking capacitor (C3) is needed if the  
RF source has DC voltage present. The DC resistance of  
the primary winding is approximately 4Ω. The secondary  
winding of the RF transformer is internally connected to  
the RF buffer amplifier.  
The LO and RF inputs are single ended. The IF output is  
differential. Low side or high side LO injection may be  
used. The test circuit, shown in Figure 1, utilizes bandpass  
IF output matching and an 8:1 IF transformer to realize a  
50Ω single-ended IF output. The evaluation board layout  
is shown in Figure 2.  
The RF input is 50Ω matched from 1400MHz to 3000MHz  
with a single 2.7pF series capacitor on the input. Matching  
to RF frequencies above or below this frequency range is  
easily accomplished by adding shunt capacitor C4, shown  
in Figure 3. For RF frequencies below 500MHz, series  
Figure 2. Evaluation Board Layout  
5567f  
11  
LTC5567  
applicaTions inForMaTion  
0
LTC5567  
C3  
RF  
IN  
L3  
C4  
–5  
RF  
3
RF  
BUFFER  
–10  
–15  
–20  
–25  
–30  
5567 F03  
Figure 3. RF Input Schematic  
T
= 25°C  
inductor L3 is also needed. The evaluation board does  
not have provisions for L3, so the RF input trace needs  
to be cut to install it in series. The RF input matching ele-  
ment values for each application are tabulated in Figure 1.  
Measured RF input return losses are shown in Figure 4.  
The RF input impedance and input reflection coefficient,  
versus frequency are listed in Table 1.  
C
–35  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
4.7  
FREQUENCY (GHz)  
5567 F04  
400MHz TO 500MHz APP.  
700MHz TO 1000MHz APP.  
1400MHz TO 3000MHz APP.  
3GHz TO 4GHz APP.  
Figure 4. RF Input Return Loss  
Table 1. RF Input Impedance and S11 (At Pin 3, No External  
Matching, Mixer Enabled)  
LTC5567  
C5  
LO  
IN  
LO  
15  
S11  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
LO  
BUFFER  
MAG  
0.79  
0.71  
0.66  
0.61  
0.57  
0.52  
0.48  
0.41  
0.33  
0.26  
0.19  
0.13  
0.14  
0.22  
0.34  
0.45  
0.56  
0.64  
0.70  
ANGLE  
161.6  
152.1  
147.0  
142.5  
138.1  
131.1  
125.1  
115.6  
107.9  
103.1  
104.9  
120.8  
155.9  
171.3  
167.9  
158.3  
147.3  
136.8  
126.6  
C6  
200  
350  
6.0 + j8.0  
9.0 + j11.9  
11.0 + j14.1  
13.3 + j15.9  
15.4 + j17.5  
18.5 + j20.0  
21.7 + j22.0  
27.4 + j24.2  
33.7 + j24.2  
39.1 + j21.6  
42.6 + j16.1  
42.6 + j9.9  
38.8 + j4.3  
31.9 + j2.3  
24.8 + j4.0  
19.5 + j8.2  
15.4 + j13.4  
12.6 + j18.7  
10.9 + j24.2  
5569 F05  
450  
575  
Figure 5. LO Input Schematic  
700  
LO Input  
900  
1100  
1400  
1700  
1950  
2200  
2450  
2700  
3000  
3300  
3600  
3900  
4200  
4500  
A simplified schematic of the LO input, with external  
components is shown in Figure 5. Similar to the RF in-  
put, the integrated LO transformer’s primary winding is  
DC-groundedinternally,andthereforerequiresanexternal  
DC-blocking capacitor. Capacitor C5 provides the neces-  
sary DC-blocking, and optimizes the LO input match over  
the 1GHz to 4GHz frequency range. The nominal LO input  
level is 0dBm although the limiting amplifiers will deliver  
excellent performance over a 5dB input power range. LO  
input power greater than +6dBm may cause conduction  
of the internal ESD diodes.  
To optimize the LO input match for frequencies below  
1GHz, the value of C5 is increased and shunt capacitor C6  
is added. A summary of values for C5 and C6, versus LO  
5567f  
12  
LTC5567  
applicaTions inForMaTion  
Table 3. LO Input Impedance and S11 (At Pin 15, No External  
Matching, Mixer Enabled)  
frequency range is listed in Table 2. Measured LO input  
return losses are shown in Figure 6. Finally, LO input im-  
pedance and input reflection coefficient, versus frequency  
is shown in Table 3.  
S11  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
MAG  
0.83  
0.81  
0.80  
0.78  
0.75  
0.67  
0.58  
0.33  
0.11  
0.13  
0.23  
0.29  
0.35  
0.38  
ANGLE  
146.5  
141.7  
137.0  
132.7  
123.6  
106.0  
89.5  
350  
400  
5.2 + j14.9  
6.0 + j17.3  
6.6 + j19.5  
7.2 + j21.5  
9.1 + j26.5  
15.1 + j35.7  
24.9 + j43.6  
67.5 + j36.4  
61.7 – j4.2  
40.3 – j7.1  
31.7 + j1.8  
29.8 + j12.3  
31.5 + j22.9  
36.0 + j32.4  
Table 2. LO Input Matching Values vs LO Frequency Range  
FREQUENCY (MHz)  
285 to 392  
C5 (pF)  
330  
330  
56  
C6 (pF)  
33  
450  
500  
338 to 415  
22  
600  
415 to 505  
18  
800  
525 to 635  
27  
10  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
645 to 803  
15  
7.5  
2.7  
47.1  
800 to 1150  
1000 to 4000  
3000 to 4500  
6.8  
–18.3  
–139.4  
173.1  
140.0  
113.2  
92.8  
3.9  
1.8  
0.2  
0
–5  
0
–10  
–15  
–20  
–25  
T
= 25°C  
C
C5 = 3.9pF  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
T
= 25°C  
C
DISABLED  
ENABLED  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
4.7  
FREQUENCY (GHz)  
5567 F06  
C5 = 27pF, C6 = 10pF  
C5 = 6.8pF, C6 = 2.7pF  
C5 = 3.9pF  
C5 = 1.8pF, C6 = 0.2pF  
0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7  
FREQUENCY (GHz)  
5567 F07  
Figure 6. LO Input Return Loss  
Figure 7. LO Input Return Loss—Mixer Enabled and Disabled  
The LO buffers have been designed such that the LO input  
impedance does not change significantly when the IC is  
disabled. This feature only requires that supply voltage is  
applied. The actual performance of this feature is shown  
in Figure 7. As shown, the LO input return loss is better  
than 10dB over the 1GHz to 4GHz frequency range when  
the IC is enabled or disabled.  
IF Output  
The IF output schematic with external matching compo-  
nents is shown in Figure 8. As shown, the output is dif-  
ferential open collector. Each IF output pin must be biased  
at the supply voltage (V ), which is applied through the  
CC  
externalmatchinginductors(L1andL2)showninFigure8.  
Each pin draws approximately 27.5mA of DC supply cur-  
rent (55mA total).  
5567f  
13  
LTC5567  
applicaTions inForMaTion  
The differential IF output impedance can be modeled as a  
frequency-dependentparallelR-Ccircuit, usingthevalues  
listed in Table 4. This data is referenced to the package  
pins (with no external components) and includes the  
effects of the IC and package parasitics. Resistors R1  
and R2 are used to reduce the output resistance, which  
increases the IF bandwidth and input P1dB, but reduces  
the conversion gain. The standard downmixer test circuit  
shown in Figure 1 uses bandpass matching and 3.01k  
resistors to realize a 400Ω differential output, followed by  
an 8:1 transformer to get a 50Ω single-ended output. C7  
and C8 are 330pF DC-blocking capacitors. The values of  
L1 and L2 are calculated to resonate with the internal IF  
measured 1dB (conversion gain) IF frequency range for  
eachinductorvalueisshown.Theinductorvalueslistedare  
less than the ideal calculated values due to the additional  
capacitance of the 8:1 transformer. For differential IF out-  
put applications where the 8:1 transformer is eliminated,  
the ideal calculated values should be used. Measured IF  
output return losses are shown in Figure 9.  
Table 4. IF Output Impedance and Bandpass Matching Element  
Values vs IF Frequency.  
IF MATCHING USING TC8-1  
DIFFERENTIAL IF  
IF FREQUENCY OUTPUT IMPEDANCE  
1dB IF FREQUENCY  
RANGE (MHz)  
(MHz)  
(R ||C )  
IF IF  
L1, L2  
390nH  
300nH  
210nH  
120nH  
51nH  
140  
532Ω||1.0pF  
532Ω||1.0pF  
530Ω||1.0pF  
525Ω||1.0pF  
511Ω||1.0pF  
500Ω||1.03pF  
454Ω||1.07pF  
364Ω||1.12pF  
268Ω||1.24pF  
209Ω||1.41pF  
65 to 327  
84 to 350  
107 to 375  
160 to 415  
288 to 520  
capacitance (C ) at the desired IF center frequency, using  
153  
IF  
the following equation:  
190  
250  
1
L1, L2=  
380  
2π f 2 2CIF  
(
)
IF  
500  
1000  
1500  
2000  
2500  
For IF frequencies below 100MHz, the inductor values  
become unreasonably high and the highpass impedance  
matchingnetwork describedina latersection is preferred,  
due to its lower inductor values.  
T1  
IF  
OUT  
0
50Ω  
C7  
C8  
–5  
L1  
L2  
–10  
–15  
V
CC  
390nH  
300nH  
210nH  
120nH  
51nH  
R1  
R2  
C2  
10nF  
–20  
–25  
–30  
11  
10  
LTC5567  
V
+
IF  
IF  
T1 = TC8-1  
R1, R2 = 3.01k  
C7, C8 = 330pF  
CC  
50 100 150 200 250 300 350 400 450 500 550  
5567 F09  
FREQUENCY (MHz)  
Figure 9. IF Output Return Loss—400Ω Bandpass  
Matching with 8:1 Transformer  
5567 F08  
Wideband Differential IF Output  
Figure 8. IF Output Schematic with External Matching  
Wide IF bandwidth and high input 1dB compression are  
obtainedbyreducingtheIFoutputresistancewithresistors  
R1 and R2. This will reduce the mixer’s conversion gain,  
but will not degrade the IIP3 or noise figure.  
Table 4 summarizes the optimum IF matching inductor  
values, versus IF center frequency, to be used in the  
standard downmixer test circuit shown in Figure 1. The  
5567f  
14  
LTC5567  
applicaTions inForMaTion  
The IF matching shown in Figure 10 uses 249Ω resistors  
and 390nH supply chokes to produce a wideband 200Ω  
differential output. This differential output is suitable for  
driving a wideband differential amplifier, filter, or a wide-  
band 4:1 transformer. The evaluation board layout allows  
the removal of the IF transformer to evaluate the mixer  
performance with a differential output.  
Table 5. IF Bandwidth and 1dB Compression for 400Ω and  
200Ω Differential IF Output Resistance (RF = 1.69 to 2.24GHz,  
LO = 1.65GHz, VCC = 3.3V, TC = 25°C, L1, L2 = 390nH)  
R
R1, R2  
(Ω)  
P1dB  
(dBm)  
1dB (CONVERSION GAIN)  
IF FREQUENCY RANGE  
OUT  
(Ω)  
400  
200  
3.01k  
249  
10.1  
13.0  
65MHz to 327MHz  
45MHz to 580MHz  
The complete test circuit, shown in Figure 11, uses re-  
sistive impedance matching attenuators (L-pads) on the  
evaluation board to transform each 100Ω IF output to  
50Ω. An external 0°/180° power combiner is then used to  
convert the 100Ω differential output to 50Ω single-ended,  
to facilitate measurement.  
Measured voltage conversion gain, IIP3 and SSB noise  
figure, at the 200Ω differential output are plotted in Fig-  
ure 12. Voltage gain, rather than power gain, is plotted  
to emphasize the voltage gain due to the 200Ω output.  
As shown, the conversion gain is flat within 1dB over the  
45MHz to 590MHz IF output frequency range.  
Table 5 compares the IF bandwidth and 1dB compression  
for the standard 400Ω and wideband 200Ω IF output re-  
sistances. As shown, the 200Ω matching doubles the IF  
bandwidth, and increases the RF input P1dB to +13dBm.  
28  
26  
IIP3  
24  
22 RF = 1.69GHz TO 2.24GHz  
LO = 1.65GHz  
20  
Z
Z
T
= 50Ω  
RF  
IF  
C
18  
16  
14  
12  
10  
8
= 200Ω DIFFERENTIAL  
200Ω  
= 25°C  
330pF  
LOAD  
NF  
249Ω  
249Ω  
390nH  
100Ω  
100Ω  
LTC5567  
+
IF  
V
CC  
G
V
6
IF  
390nH  
4
40 90 140 190 240 290 340 390 440 490 540 590  
IF FREQUENCY (MHz)  
5567 F10  
5567 F12  
330pF  
Figure 12. Voltage Conversion Gain, IIP3 and NF vs IF  
Output Frequency for Wideband 200Ω Differential IF  
Figure 10. Wideband 200Ω Differential Output  
LO  
1.65GHz  
L-PADS AND 180° COMBINER  
FOR 50Ω SINGLE-ENDED MEASUREMENT  
0dBm  
3.9pF  
+
IF  
LO  
LTC5567  
330pF  
50Ω  
69.8Ω  
71.5Ω  
1MHz TO 500MHz  
COMBINER  
+
IF  
2.7pF  
LO  
RF  
1.69GHz  
TO  
249Ω  
249Ω  
390nH  
IF  
0°  
IF  
OUT  
OUT  
OUT  
180°  
RF  
EN  
200Ω  
50Ω  
2.24GHz  
IF  
RF  
390nH  
50Ω  
69.8Ω  
71.5Ω  
IF  
EN  
BIAS  
330pF  
V
IADJ  
CC  
10nF  
3.3V  
89mA  
5567 F11  
10nF  
Figure 11. Test Circuit for Wideband 200Ω Differential Output  
5567f  
15  
LTC5567  
applicaTions inForMaTion  
Highpass IF Matching  
wideband test circuit, shown in Figure 11, was modified  
with the following new element values, and re-tested.  
By simply changing component values, the bandpass IF  
output matching network can be changed to a highpass  
impedance transforming network. This matching network  
will drive a lower impedance differential load (or trans-  
former), like the 200Ω wideband bandpass matching  
previously described, while delivering higher conversion  
gain, similar to the 400Ω bandpass matching. The high-  
pass matching network will have less IF bandwidth than  
the bandpass matching. It also uses smaller inductance  
values;anadvantagewhendesigningforIFcenterfrequen-  
cies well below 100MHz.  
L1, L2 = 150nH  
C7, C8 = 10pF  
R1, R2 = 1.1k  
Measured voltage conversion gain for the highpass and  
wideband bandpass methods are shown in Figure 14, for  
comparison. Both circuits are driving a 200Ω differential  
load, but the highpass version delivers 2.3dB of additional  
gain at 153MHz. Measured performance for both circuits  
is summarized in Table 6. As shown, the highpass method  
has less than half the IF bandwidth, and 3dB lower P1dB.  
Referring to the small-signal output network schematic in  
Figure 13, the reactive matching element values (L1, L2,  
C7 and C8) are calculated using the following equations.  
Table 6. Measured Performance Comparison for Highpass  
and Wideband IF Matching (RF = 1950MHz, IF = 153MHz,  
Low Side LO).  
The source resistance (R ) is the parallel combination of  
S
G
IIP3  
P1dB  
1dB (CONVERSION GAIN)  
IF FREQUENCY RANGE  
external resistors R1 + R2 and the internal IF resistance,  
V
IF MATCHING (dB) (dBm) (dBm)  
R taken from Table 4. The differential load resistance  
IF  
Highpass  
Wideband  
8.5  
6.2  
26.9  
26.9  
10.0  
13.0  
110MHz to 320MHz  
45MHz to 590MHz  
(R ) is typically 200Ω, but can be less. C , the IF output  
L
IF  
capacitance, is taken from Table 4. Choosing R in the  
S
380Ω to 450Ω range will yield power conversion gains  
9
8
7
around 2dB.  
153MHz  
HIGHPASS  
R = R || 2·R1  
(R1 = R2)  
(R > R )  
S
IF  
6
5
4
WIDEBAND  
BANDPASS  
Q = √(R /R –1)  
S
L
S
L
3
2
Y = Q/R + • C )  
L
S
IF  
IF  
1
0
RF = 1.7GHz TO 2.2GHz  
L1, L2 = 1/(2 • Y • ω )  
L
IF  
LO = 1.65GHz AT 0dBm  
–1  
–2  
–3  
–4  
–5  
Z
Z
T
= 50Ω  
RF  
IF  
C
C7, C8 = 2/(Q • R • ω )  
= 200Ω DIFFERENTIAL  
L
IF  
= 25°C  
C7  
LTC5567  
+
50 100 150 200 250 300 350 400 450 500 550  
IF  
IF FREQUENCY (MHz)  
11  
10  
R1  
R2  
L1  
L2  
5567 F14  
V
R
L
CC  
R
C
IF  
IF  
Figure 14. Voltage Conversion Gain versus IF Frequency  
for 153MHz Highpass and Wideband Bandpass IF Matching  
Networks  
C8  
IF  
5567 F13  
Mixer Bias Current Reduction  
Figure 13. IF Output Circuit for Highpass Matching Element  
Value Calculations  
The IADJ pin (Pin 8) is available for reducing the mixer  
core DC current consumption at the expense of linearity  
and P1dB. For the highest performance, this pin should  
be left open circuit. As shown in Figure 15, an internal  
bias circuit produces a 3mA reference current for the  
To demonstrate the highpass impedance transformer  
output matching, these equations were used to calculate  
the element values for a 153MHz IF frequency and 200Ω  
differential load resistance. The output matching on the  
mixer core. If a resistor is connected to Pin 8, as shown  
5567f  
16  
LTC5567  
applicaTions inForMaTion  
I
CC  
6
V
CC  
LTC5567  
V
CC  
R3  
L1  
L2  
34mA  
CLAMP  
500Ω  
300k  
8
11  
10  
6
EN  
+
IADJ  
IF  
IF  
V
CC  
4
EN  
CMOS  
V
CC  
3mA  
BIAS  
5567 F16  
55mA  
BIAS  
Figure 16. Enable Input Circuit  
LTC5567  
The EN pin has an internal 300k pull-down resistor.  
Therefore, the mixer will be disabled with the enable pin  
left floating.  
5567 F12  
Figure 15. IADJ Interface  
Supply Voltage Ramping  
in Figure 15, a portion of the reference current can be  
shunted to ground, resulting in reduced mixer core cur-  
rent. For example, R3 = 1k will shunt away 1mA from Pin  
8 and reduce the mixer core current by 33%. The nominal,  
open-circuit DC voltage at the IADJ pin is 2.2V. Table 7  
lists DC supply current and RF performance at 1950MHz  
for various values of R3.  
Fast ramping of the supply voltage can cause a current  
glitch in the internal ESD clamp circuits connected to the  
CC  
result in a supply voltage transient that exceeds the 4.0V  
maximum rating. A supply voltage ramp time greater than  
1ms is recommended.  
V
pin. Depending on the supply inductance, this could  
Spurious Output Levels  
Table 7. Mixer Performance with Reduced Current  
(RF = 1950MHz, Low Side LO, IF = 153MHz)  
Mixer spurious output levels versus harmonics of the  
RF and LO are tabulated in Table 8. The spur levels were  
measured on a standard evaluation board using the test  
circuit shown in Figure 1. The spur frequencies can be  
calculated using the following equation:  
IIP3  
P1dB  
R3 (Ω)  
Open  
10k  
I
(mA)  
G (dB)  
(dBm)  
(dBm)  
NF (dB)  
11.8  
CC  
C
89.0  
1.9  
1.9  
1.6  
1.3  
1.0  
26.9  
25.7  
21.4  
19.3  
17.9  
10.2  
10.2  
10.1  
9.5  
84.6  
70.4  
62.9  
58.3  
11.5  
1k  
10.5  
f
= (M • f ) – (N • f )  
RF LO  
SPUR  
330  
10.3  
100  
8.5  
10.1  
Table 8. IF Output Spur Levels (dBm)  
(RF = 1950MHz, PRF = –2dBm, PIF = 0dBm at 153MHz, Low Side  
LO, PLO = 0dBm, VCC = 3.3V, TC = 25°C)  
Enable Interface  
N
4
Figure 16 shows a simplified schematic of the enable  
interface. To enable the mixer, the EN voltage must be  
higher than 2.5V. If the enable function is not required,  
0
1
2
3
5
6
7
8
9
0
1
2
3
4
5
6
7
–43 –24 –47 –30 –57 –46 –64 –50 –81  
–56 –57 –59 –37 –69 –47 –78 –58  
–60 –56 –67 –68 –72 –78 –78 –85 –87  
–30  
0
the pin should be connected directly to V . The volt-  
CC  
*
*
*
*
*
age at the EN pin should never exceed the power supply  
*
*
*
–81 –89  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–90  
*
*
*
M
voltage (V ) by more than 0.3V. If this should occur, the  
CC  
*
*
*
–73  
*
*
supply current could be sourced through the ESD diode,  
potentially damaging the IC.  
*Less than –90dBc  
5567f  
17  
LTC5567  
Typical applicaTions  
300MHz RF Application with 70MHz Highpass IF Matching  
22pF  
LO  
IN  
50Ω  
370MHz ±±0MHz  
330pF  
LO  
LTC5567  
22pF  
TC±-1W  
±:1  
+
IF  
IF  
OUT  
120pF  
LO  
RF  
1.1k  
1.1k  
390nH  
IN  
50Ω  
3.3nH  
22pF  
50Ω  
70MHz NOM  
300MHz ±±0MHz  
RF  
RF  
390nH  
22pF  
TYPICAL PERFORMANCE  
(RF = 300MHz, IF = 70MHz, LO = 370MHz AT 0dBm)  
G
C
= 0.6dB  
IF  
IIP3 = 26.3dBm  
EN  
BIAS  
EN  
SSB NF = 13.3dB  
V
IADJ  
CC  
INPUT P1dB = 10.9dBm  
10nF  
3.3V  
89mA  
5567 TA03a  
10nF  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
RF Isolation and LO leakage vs  
RF and LO Frequency  
RF, LO and IF Port Return Losses  
10  
5
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
70  
0
IIP3  
65  
60  
55  
–10  
–20  
–30  
RF-LO  
HIGH SIDE LO  
= 0dBm  
0
P
LO  
–5  
IF = 70MHz  
= 25°C  
T
C
RF-IF  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
LO-IF  
IF  
50  
45  
–40  
–50  
NF  
LO  
6
4
2
0
RF  
40  
35  
30  
–60  
–70  
–80  
LO-RF  
G
C
–2  
50 100 150 200 250 300 350 400 450  
260 280 300 320 340 360 380 400  
260  
300  
340  
380  
420  
460  
5567 TA03d  
FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF/LO FREQUENCY (MHz)  
5567 TA03b  
5567 TA03c  
5567f  
18  
LTC5567  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692 Rev Ø)  
0.72 ±0.05  
4.35 ±0.05  
2.90 ±0.05  
2.15 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 ±0.05  
R = 0.115  
TYP  
4.00 ±0.10  
(4 SIDES)  
15  
16  
0.55 ±0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 ±0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 ±0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5567f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC5567  
Typical applicaTion  
CATV Downconverting Mixer with 1GHz IF Bandwidth  
LO  
IN  
3.9pF  
1200MHz  
TO 2150MHz  
50Ω  
Conversion Gain, OIP3 and 2RF-LO  
Spur vs IF Output Frequency  
16  
15  
14  
NC GND  
LTC5567  
13  
30  
27  
24  
21  
18  
15  
12  
9
0
12  
11  
GND  
GND LO  
OIP3  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
15nH  
402Ω  
68nH  
+
IF  
RF = 1150MHz  
1
2
TEMP  
GND  
MABACT0066  
T1  
P
= –6dBm  
RF  
HIGH SIDE LO  
= 0dBm  
1nF  
1nF  
P
T
LO  
= 25°C  
C
17  
GND  
IF  
OUT  
10pF  
10nF  
50MHz TO  
1000MHz  
50Ω  
68nH  
402Ω  
RF  
IN  
1150MHz  
50Ω  
2RF-LO  
6
3
4
RF  
1.8pF  
3
G
C
GND  
0
10  
9
IF  
–3  
15nH  
0
200  
400  
600  
800  
1000  
V
GND  
NC IADJ  
EN  
5
CC  
IF OUTPUT FREQUENCY (MHz)  
6
7
8
5567 TA02b  
V
CC  
EN  
3.0V TO 3.6V  
1µF  
10V  
10nF  
220nF  
5567 TA02a  
relaTeD parTs  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply  
2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply  
8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply  
LT®5527  
LT5557  
400MHz to 3.7GHz, 5V Downconverting Mixer  
400MHz to 3.8GHz, 3.3V Downconverting Mixer  
LTC559x  
600MHz to 4.5GHz Dual Downconverting Mixer  
Family  
LTC5569  
300MHz to 4GHz, 3.3V Dual Active  
Downconverting Mixer  
2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply  
LTC554x  
LTC6400-X  
LTC6416  
LTC6412  
LT5554  
LT5578  
LT5579  
LTC5588-1  
LTC5585  
600MHz to 4GHz, 5V Downconverting Mixer Family 8dBm Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply  
300MHz Low Distortion IF Amp/ADC Driver  
2GHz 16-Bit ADC Buffer  
31dB Linear Analog VGA  
Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O  
40dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping  
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB  
Ultralow Distort IF Digital VGA  
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps  
27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer  
27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports  
31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor  
400MHz to 2.7GHz Upconverting Mixer  
1.5GHz to 3.8GHz Upconverting Mixer  
200MHz to 6GHz I/Q Modulator  
700MHz to 3GHz Wideband I/Q Demodulator  
>530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling  
RF Power Detectors  
LT5538  
LT5581  
LTC5582  
LTC5583  
ADCs  
40MHz to 3.8GHz Log Detector  
0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA Supply Current  
0.5dB Accuracy Over Temperature, 0.2dB Linearity Error, 57dB Dynamic Range  
Up to 60dB Dynamic Range, 0.5dB Accuracy Over Temperature, >50dB Isolation  
6GHz Low Power RMS Detector  
40MHz to 10GHz RMS Detector  
Dual 6GHz RMS Power Detector  
LTC2208  
LTC2153-14  
16-Bit, 130Msps ADC  
14-Bit, 310Msps Low Power ADC  
78dBFS Noise Floor, >83dB SFDR at 250MHz  
68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption  
5567f  
LT 0412 • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC5612ELM

Optoelectronic
ETC

LTC561E

Optoelectronic
ETC

LTC561G

Optoelectronic
ETC

LTC561HR

Optoelectronic
ETC

LTC561P

Optoelectronic
ETC

LTC561R

Optoelectronic
ETC

LTC561Y

Optoelectronic
ETC

LTC5703A1P

Optoelectronic
ETC

LTC5703P

Optoelectronic
ETC

LTC571E

Optoelectronic
ETC

LTC571G

Optoelectronic
ETC

LTC571HR

Optoelectronic
ETC