LTC3225 [Linear]

150mA Supercapacitor Charger; 150毫安超级电容器充电器
LTC3225
型号: LTC3225
厂家: Linear    Linear
描述:

150mA Supercapacitor Charger
150毫安超级电容器充电器

电容器
文件: 总12页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3225  
150mA Supercapacitor  
Charger  
FEATURES  
DESCRIPTION  
The LTC®3225 is a programmable supercapacitor charger  
designed to charge two supercapacitors in series to a  
fixedoutputvoltage(4.8V/5.3Vselectable)froma2.8V/3V  
to 5.5V input supply. Automatic cell balancing prevents  
overvoltagedamagetoeithersupercapacitor.Nobalancing  
resistors are required.  
n
Low Noise Constant Frequency Charging of Two  
Series Supercapacitors  
n
Automatic Cell Balancing Prevents Capacitor  
Overvoltage During Charging  
n
Programmable Charging Current (Up to 150mA)  
n
Selectable 2.4V or 2.65V Regulation per Cell  
n
Automatic Recharge  
Low input noise, low quiescent current and low external  
parts count (one flying capacitor, one bypass capacitor  
n
I
I
= 20ꢀA in Standby Mode  
COUT  
No Inductors  
VIN  
n
n
n
< 1ꢀA When Input Supply is Removed  
at V and one programming resistor) make the LTC3225  
IN  
ideally suited for small battery-powered applications.  
Tiny Application Circuit (3mm × 2mm DFN Package,  
All Components <1mm High)  
Charging current level is programmed with an external  
resistor. When the input supply is removed, the LTC3225  
automaticallyentersalowcurrentstate, drawinglessthan  
1μA from the supercapacitors.  
APPLICATIONS  
n
Current Limited Applications with High Peak Power  
The LTC3225 is available in a 10-lead 3mm × 2mm DFN  
package.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Loads (LED Flash, PCMCIA Tx Bursts, HDD Bursts,  
GPRS/GSM Transmitter)  
Backup Supplies  
n
TYPICAL APPLICATION  
Charging Profile with 30% Mismatch  
in Output Capacitance, CTOP < CBOT  
V
V
OUT  
SHDN  
IN  
V
C
C
C
IN  
+
OUT  
CX  
2.8V/3V TO 5.5V  
4.8V/5.3V  
5V/DIV  
0.6F  
0.6F  
2.2ꢀF  
1ꢀF  
I
VIN  
LTC3225  
300mA/DIV  
GND  
100k  
V
COUT  
SHDN PGOOD  
ON/OFF  
2V/DIV  
V
SEL  
OUTPUT  
PROGRAMMING  
PROG  
V
-V  
TOP BOT  
200mV/DIV  
12k  
3225 TA01b  
V
= V  
PROG  
5s/DIV  
SEL  
IN  
3225 TA01a  
R
= 12k  
C
C
C
C
= 1.1F  
= 1.43F  
INITIAL VOLTAGE = 0V  
INITIAL VOLTAGE = 0V  
TOP  
BOT  
TOP  
BOT  
3225f  
1
LTC3225  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V , C  
to GND ......................................... –0.3V to 6V  
TOP VIEW  
IN OUT  
SHDN, V ...................................... –0.3V to V + 0.3V  
SEL  
IN  
+
1
2
3
4
5
10  
9
C
C
C
V
OUT  
C
I
OUT  
Short-Circuit Duration............................. Indefinite  
Continuous (Note 2)......................................350mA  
Continuous (Note 2).....................................175mA  
OUT  
VIN  
IN  
11  
8
CX  
SHDN  
GND  
I
7
PROG  
6
PGOOD  
V
SEL  
Operating Temperature Range (Note 3).... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
DDB PACKAGE  
10-LEAD (3mm s 2mm) PLASTIC DFN  
T
= 125°C, θ = 76°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 11) MUST BE SOLDERED TO  
LOW IMPEDANCE GND PLANE (PIN 8) ON PCB  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC3225EDDB#TRMPBF  
TRM = 500 pieces.  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
10-Lead (3mm × 2mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3225EDDB#TRPBF  
LCYR  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, CIN = 2.2μF, CFLY = 1μF, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
V
V
V
Input Supply Undervoltage Lockout  
High-to-Low Threshold  
V
V
= V  
= 0  
2.65  
2.4  
2.75  
2.5  
2.85  
2.6  
V
V
IN-UVLO  
IN-UVLO-HYS  
IN  
SEL  
SEL  
IN  
IN  
IN  
Input Supply Undervoltage Lockout  
Hysteresis  
V
V
= V  
= 0  
150  
140  
mV  
mV  
SEL  
SEL  
l
l
Input Voltage Range  
V
V
= V  
= 0V  
3
2.8  
5.5  
5.5  
V
V
SEL  
SEL  
l
l
Charge Termination Voltage  
Sleep Mode Threshold (Rising Edge)  
V
V
= V  
IN  
= 0V  
5.2  
4.7  
5.3  
4.8  
5.4  
4.9  
V
V
COUT  
SEL  
SEL  
Output Comparator Hysteresis  
100  
mV  
COUT-HYS  
l
l
V
Maximum Voltage Across Each of the  
Supercapacitors After Charging  
V
V
= V  
IN  
= 0V  
2.75  
2.5  
V
V
TOP/BOT  
SEL  
SEL  
l
l
I
I
I
No Load Operating Current at V  
Shutdown Current  
I
= 0mA  
20  
40  
1
ꢀA  
ꢀA  
Q-VIN  
IN  
OUT  
SHDN = 0V, V  
= 0V  
0.1  
SHDN-VIN  
COUT  
OUT  
l
l
C
Leakage Current  
V
V
V
= 5.6V, SHDN = 0V  
1
2
3
4
1
ꢀA  
ꢀA  
ꢀA  
OUT  
OUT  
OUT  
OUT  
= 5.6V, Charge Pump in Sleep Mode  
= 5.6V, SHDN Connected to V with  
IN  
Input Supply Removed  
I
Input Charging Current  
V
IN  
V
IN  
= 3.6V, R  
= 3.6V, R  
= 12k, C  
= 60k, C  
= C  
= C  
306  
55  
mA  
mA  
VIN  
PROG  
PROG  
TOP  
TOP  
BOT  
BOT  
3225f  
2
LTC3225  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, CIN = 2.2μF, CFLY = 1μF, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Output Charging Current  
V
C
= 3.6V, R  
= 12k, V  
= 60k, V  
= 4.5V,  
= 4.5V,  
125  
150  
175  
mA  
OUT  
IN  
PROG  
OUT  
= C  
TOP  
BOT  
V
C
= 3.6V, R  
26  
mA  
IN  
TOP  
PROG  
OUT  
= C  
BOT  
l
l
l
l
V
PGOOD Low Output Voltage  
I
= –1.6mA  
= 5V  
0.4  
10  
V
ꢀA  
%
%
Ω
PGOOD  
PGOOD  
I
PGOOD High Impedance Leakage Current  
PGOOD Low-to-High Threshold  
PGOOD Threshold Hysteresis  
V
PGOOD  
PGOOD-LEAK  
V
V
Relative to Output Voltage Threshold  
Relative to Output Voltage Threshold  
92  
94  
1.2  
8
96  
PG  
0.25  
2.5  
PG-HYS  
R
Effective Open-Loop Output Impedance  
(Note 4)  
V
= 3.6V, V  
= 4.5V  
OUT  
OL  
IN  
l
f
CLK Frequency  
0.6  
1.3  
0.9  
1.5  
MHz  
OSC  
V
V
V
, SHDN  
SEL  
l
l
l
l
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
V
V
IH  
0.4  
1
IL  
I
I
–1  
–1  
ꢀA  
ꢀA  
IH  
IL  
1
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliabilty and lifetime.  
Note 3: The LTC3225 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: Based on long-term current density limitations.  
Note 4: Output not in regulation;  
R
(2 • V – V )/I  
IN OUT OUT  
OL  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, CFLY = 1μF, CIN = 2.2μF, CTOP = CBOT, unless otherwise specified)  
IOUT vs RPROG  
IOUT vs VOUT (RPROG = 12k)  
Efficiency vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
180  
160  
140  
120  
100  
80  
V
V
= 3.6V  
IN  
OUT  
= 4.5V  
V
= V  
IN  
SEL  
V
SEL  
= 0  
80  
60  
60  
C
TOP  
= C  
BOT  
40  
20  
0
40  
V
V
V
= 2.8V  
= 3.6V  
= 5.5V  
IN  
IN  
IN  
I
= 100mA  
BOT  
LOAD  
TOP  
20  
C
= C  
0
20  
30  
50  
0
10  
60  
70  
40  
(kΩ)  
2.5  
3
3.5  
4
5.5  
0
0.5  
4
4.5  
5
4.5  
5
1
1.5  
2
V
2.5  
(V)  
3
3.5  
R
V
IN  
(V)  
PROG  
OUT  
3225 G01  
3525 G03  
3225 G02  
3225f  
3
LTC3225  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, CFLY = 1μF, CIN = 2.2μF, CTOP = CBOT, unless otherwise specified)  
Charge Pump Open-Loop Output  
Resistance vs Temperature  
(2VIN – VCOUT)/IOUT  
Extra Input Current vs Output  
No-Load Input Current vs  
Supply Voltage  
Current (IVIN – 2 • IOUT  
)
7
6
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
V
V
= 3.6V  
V
V
= 3.6V  
IN  
OUT  
IN  
OUT  
= 4.5V  
= 4.5V  
T
T
= 85°C  
= 25°C  
= –40°C  
A
A
5
4
3
2
1
T
A
0
0
100 140 160  
120  
2.5  
3.5  
4
4.5  
5
5.5  
0
20 40 60 80  
3
–40  
–15  
10  
35  
60  
85  
V
IN  
(V)  
I
(mA)  
TEMPERATURE (°C)  
OUT  
3225 G04  
3225 G05  
3225 G08  
Charging Profile with Unequal  
Initial Output Capacitor Voltage  
(Initial VTOP = 1.3V, VBOT = 1V)  
Oscillator Frequency vs  
Supply Voltage  
Input Ripple and Input Current  
0.94  
SHDN  
5V/DIV  
V
IN  
0.93  
0.92  
0.91  
0.90  
0.89  
0.88  
20mV/DIV  
I
VIN  
300mA/DIV  
T
= 25°C  
A
I
VIN  
V
200mA/DIV  
0mA  
COUT  
T
= –40°C  
2V/DIV  
A
V
-V  
TOP BOT  
T
= 85°C  
A
500mV/DIV  
3225 G06  
R
PROG  
= 12k  
200ns/DIV  
3225 G09  
V
= V  
2s/DIV  
SEL  
IN  
R
= 12k  
PROG  
TOP  
C
= C  
= 1.1F  
BOT  
2.5  
3
4
4.5  
5
5.5  
3.5  
V
(V)  
IN  
3225 G07  
Charging Profile with Unequal  
Initial Output Capacitor Voltage  
(Initial VTOP = 1V, VBOT = 1.3V)  
Charging Profile with 30%  
Mismatch in Output Capacitance  
(CTOP > CBOT  
Charging Profile with 30%  
Mismatch in Output Capacitance  
(CTOP < CBOT  
)
)
SHDN  
5V/DIV  
SHDN  
5V/DIV  
SHDN  
5V/DIV  
I
I
I
VIN  
VIN  
VIN  
300mA/DIV  
300mA/DIV  
300mA/DIV  
V
COUT  
V
V
COUT  
COUT  
2V/DIV  
2V/DIV  
2V/DIV  
V
-V  
V
-V  
TOP BOT  
TOP BOT  
V
-V  
TOP BOT  
200mV/DIV  
200mV/DIV  
500mV/DIV  
3225 G11  
3225 G12  
3225 G10  
V
= V  
IN  
PROG  
5s/DIV  
= V  
PROG  
5s/DIV  
V
R
C
= V  
2s/DIV  
SEL  
SEL  
IN  
SEL  
IN  
R
C
= 12k  
= 12k  
= 12k  
PROG  
= 1.43F  
= 1.1F  
INITIAL VOLTAGE = 0V  
INITIAL VOLTAGE = 0V  
= 1.1F  
= 1.43F  
INITIAL VOLTAGE = 0V  
INITIAL VOLTAGE = 0V  
= C  
= 1.1F  
TOP  
TOP  
BOT  
C
C
C
BOT  
TOP  
BOT  
3225f  
4
LTC3225  
PIN FUNCTIONS  
+
C (Pin 1): Flying Capacitor Positive Terminal. A 1ꢀF X5R  
V
(Pin 6): Output Voltage Selection Input. A logic low  
SEL  
+
or X7R ceramic capacitor should be connected from C  
to C .  
at V sets the regulated C  
to 4.8V; a logic high sets  
SEL  
OUT  
the regulated C  
to 5.3V. Do not float the V pin.  
OUT  
SEL  
C (Pin 2): Flying Capacitor Negative Terminal.  
PROG(Pin7):ChargingCurrentProgrammingPin.Aresis-  
tor connected between this pin and GND sets the charging  
current. (See Applications Information section).  
CX (Pin 3): Midpoint of Two Series Supercapacitors. This  
pin voltage is monitored and forced to track C  
OUT  
(CX =  
OUT  
C
/2) during charging to achieve voltage balancing of  
GND (Pin 8): Charge Pump Ground. This pin should be  
connected directly to a low impedance ground plane.  
the top and bottom supercapacitors.  
SHDN(Pin4):ActiveLowShutdownInput.AlowonSHDN  
puts the LTC3225 in low current shutdown mode. Do not  
float the SHDN pin.  
V
(Pin 9): Power Supply for the LTC3225. V should  
IN  
IN  
be bypassed to GND with a low ESR ceramic capacitor of  
more than 2.2ꢀF.  
PGOOD(Pin5):Open-DrainOutputStatusIndicator.Upon  
C
(Pin 10): Charge Pump Output Pin. Connect C  
OUT  
OUT  
start-up, this open-drain pin remains low until the output  
to the top plate of the top supercapacitor. C  
provides  
OUT  
voltage, V , is within 6% (typical) of its final value. Once  
charge current to the supercapacitors and regulates the  
final voltage to 4.8V/5.3V.  
OUT  
V
OUT  
is valid, PGOOD becomes Hi-Z. If V  
falls 7.2%  
OUT  
(typical) below its correct regulation level, PGOOD is  
pulled low. PGOOD may be pulled up through an external  
resistor to an appropriate reference level. This pin is Hi-Z  
in shutdown mode.  
Exposed Pad (Pin 11): This pad must be soldered to  
a low impedance ground plane for optimum thermal  
performance.  
3225f  
5
LTC3225  
SIMPLIFIED BLOCK DIAGRAM  
C
FLY  
9
1
2
4
V
IN  
+
V
IN  
C
C
SHDN  
UVLO  
SOFT-START AND  
SHUTDOWN CONTROL  
THERMAL  
PROTECTION  
3000i  
POR  
1.2V  
C
OUT  
CX  
10  
3
C
C
TOP  
BOT  
CHARGE  
PUMP  
RUN  
GND  
8
i
PROG  
CLK  
7
R
PROG  
RUN/STOP  
R1  
R2  
OSCILLATOR  
+
C1  
V
REF  
– 2%  
POR  
PGOOD  
1.2V  
1.088V  
V
REF  
5
+
C2  
V
– 6%  
V
REF  
SEL  
6
V
– 7.2%  
REF  
3225 F01  
Figure 1  
3225f  
6
LTC3225  
OPERATION  
The LTC3225 is a dual cell supercapacitor charger. Its  
unique topology maintains a constant output voltage with  
programmable charging current. Its ability to maintain  
equal voltages on both cells while charging protects the  
supercapacitors from damage that is possible with other  
charging methods, without the use of external balancing  
resistors. The LTC3225 includes an internal switched  
1
2
ICOUT  
=
IVIN  
If the leakage currents or capacitances of the two su-  
percapacitors are mismatched enough that varying the  
charging current is not sufficient to balance their volt-  
ages, the LTC3225 stops charging the capacitor with the  
higher voltage until they are again balanced. This feature  
protectseithercapacitorfromexperiencinganovervoltage  
condition.  
capacitor charge pump to boost V to a regulated output  
IN  
voltage.Auniquearchitecturemaintainsrelativelyconstant  
inputcurrentforthelowestpossibleinputnoise. Thebasic  
charger circuit requires only three external components.  
Shutdown Mode  
Normal Charge Cycle  
Asserting SHDN low causes the LTC3225 to enter shut-  
down mode. When the charge pump is first disabled, the  
LTC3225 draws approximately 1μA of supply current from  
Operation begins when the SHDN pin is pulled above 1.3V.  
TheC  
pinvoltageissensedandcomparedwithapreset  
OUT  
V and C . After V is discharged to 0V, the current  
voltage threshold using an internal resistor divider and  
IN  
OUT  
OUT  
from V drops to less than 1μA. With SHDN connected  
a comparator. The preset voltage threshold is 4.8V/5.3V  
selectable with the V pin. If the voltage at the C  
IN  
to V , the output sinks less than 1ꢀA when the input sup-  
pin  
IN  
SEL  
OUT  
ply is removed. Since the SHDN pin is a high impedance  
is lower than the preset voltage threshold, the oscillator is  
enabled. The oscillator operates at a typical frequency of  
0.9MHz. When the oscillator is enabled, the charge pump  
CMOS input, it should never be allowed to float.  
Output Status Indicator (PGOOD)  
operates charging up C . The input current drawn by the  
OUT  
internalchargepumprampsupatapproximately20mA/ꢀs  
Duringshutdown,thePGOODpinishighimpedance.When  
the charge cycle starts, an internal N-channel MOSFET  
pulls the PGOOD pin to ground. When the output voltage,  
each time the charge pump starts up from shutdown.  
Once the output voltage is charged to the preset voltage  
threshold,thepartshutsdowntheinternalchargepumpand  
enters into a low current state. In this state, the LTC3225  
consumes only about 20μA from the input supply. The  
V
, is within 6% (typical) of its final value, the PGOOD  
OUT  
pinbecomeshighimpedance,butchargecurrentcontinues  
to flow until V crosses the charge termination voltage.  
OUT  
When V drops 7% below the charge termination volt-  
age, the PGOOD pin again pulls low.  
current drawn from C  
is approximately 2ꢀA.  
OUT  
OUT  
Automatic Cell Balancing  
Current Limit/Thermal Protection  
The LTC3225 constantly monitors the voltage across both  
supercapacitors while charging. When the voltage across  
the supercapacitors is equal, both capacitors are charged  
withequalcurrents.Ifthevoltageacrossonesupercapacitor  
is lower than the other, the lower supercapacitor’s charge  
currentisincreasedandthehighersupercapacitor’scharge  
current is decreased. The greater the difference between  
the supercapacitor voltages, the greater the difference  
in charge current per capacitor. The charge currents can  
increase or decrease as much as 50% to balance the volt-  
age across the supercapacitors. When the cell voltages  
are balanced, the supercapacitors are charged at a rate  
of approximately:  
The LTC3225 has built-in current limit as well as overtem-  
perature protection. If the PROG pin is shorted to ground,  
a protection circuit automatically shuts off the internal  
charge pump. At higher temperatures, or if the input  
voltage is high enough to cause excessive self-heating  
of the part, the thermal shutdown circuitry shuts down  
the charge pump once the junction temperature exceeds  
approximately 150°C. It will enable the charge pump once  
the junction temperature drops back to approximately  
135°C. The LTC3225 is able to cycle in and out of thermal  
shutdownindefinitelywithoutlatch-upordamageuntilthe  
overcurrent condition is removed.  
3225f  
7
LTC3225  
APPLICATIONS INFORMATION  
Programming Charge Current  
the internal switch resistances (R ) and the ESR of the  
S
external capacitors.  
Thechargingcurrentisprogrammedwithasingleresistor  
connecting the PROG pin to ground. The program resistor  
and the input/output charge currents are calculated using  
the following equations:  
Output Voltage Programming  
The LTC3225 has a V input pin that allows the user to  
SEL  
set the output threshold voltage to either 4.8V or 5.3V by  
3600V  
RPROG  
IVIN  
forcing a low or high at the V pin respectively.  
IVIN  
=
SEL  
Charging Time Estimation  
IOUT  
=
(with matched output capacitors)  
2
The estimated charging time when the initial voltage  
across the two output supercapacitors is equal is given  
by the equation:  
An R  
resistor value of 2k or less (i.e., short circuit)  
PROG  
causes the LTC3225 to enter overcurrent shutdown mode.  
This mode prevents damage to the part by shutting down  
the internal charge pump.  
COUT VCOUT – VINI  
(
)
tCHRG  
=
IOUT  
Power Efficiency  
where C  
is the series output capacitance, V  
is the  
OUT  
COUT  
voltage threshold set by the V  
pin, V is the initial  
SEL  
INI  
The power efficiency (η) of the LTC3225 is similar to that  
of a linear regulator with an effective input voltage of twice  
the actual input voltage. In an ideal regulating voltage  
doubler the power efficiency is given by:  
voltage at the C  
current given by:  
pin and I  
is the output charging  
OUT  
OUT  
1800V  
RPROG  
IOUT  
=
POUT VOUT IOUT VOUT  
η2xIDEAL  
=
=
=
P
V • 2IOUT 2V  
IN  
IN IN  
When the charging process starts with unequal initial  
voltages across the output supercapacitors, only the ca-  
pacitor with the lower voltage level is charged; the other  
capacitor is not charged until the voltages equalize. This  
extends the charging time slightly. Under the worst-case  
condition, whereby one capacitor is fully depleted while  
the other remains fully charged due to significant leakage  
current mismatch, the charging time is about 1.5 times  
longer than normal.  
At moderate to high output power the switching losses  
and quiescent current of the LTC3225 are negligible and  
theaboveexpressionisvalid. Forexample, withV =3.6V,  
IN  
I
= 100mA and V  
regulated to 5.3V, the measured  
OUT  
OUT  
efficiency is 71.2% which is in close agreement with the  
theoretical 73.6% calculation.  
Effective Open-Loop Output Resistance (R )  
OL  
Theeffectiveopen-loopoutputresistance(R )ofacharge  
OL  
Thermal Management  
pumpisanimportantparameterthatdescribesthestrength  
For higher input voltages and maximum output current,  
therecanbesubstantialpowerdissipationintheLTC3225.  
Ifthejunctiontemperatureincreasesaboveapproximately  
of the charge pump. The value of this parameter depends  
on many factors including the oscillator frequency (f ),  
OSC  
value of the flying capacitor (C ), the non-overlap time,  
FLY  
3225f  
8
LTC3225  
APPLICATIONS INFORMATION  
Flying Capacitor Selection  
150°C, the thermal shutdown circuitry automatically  
deactivates the output. To reduce the maximum junction  
temperature, a good thermal connection to the PC board  
is recommended. Connecting the GND pin (Pin 8) and the  
Exposed Pad (Pin 11) of the DFN package to a ground  
plane under the device on two layers of the PC board  
can reduce the thermal resistance of the package and PC  
board considerably.  
Warning: Polarized capacitors such as tantalum or alumi-  
num should never be used for the flying capacitor since  
its voltage can reverse upon start-up of the LTC3225.  
Low ESR ceramic capacitors should always be used for  
the flying capacitor.  
The flying capacitor controls the strength of the charge  
pump. In order to achieve the rated output current, it is  
necessary to use at least 0.6ꢀF of capacitance for the  
flying capacitor.  
V Capacitor Selection  
IN  
The type and value of C controls the amount of ripple  
IN  
Theeffectivecapacitanceofaceramiccapacitorvarieswith  
temperatureandvoltageinamannerprimarilydetermined  
by its formulation. For example, a capacitor made of X5R  
or X7R material retains most of its capacitance from  
–40°C to 85°C whereas a Z5U or Y5V type capacitor loses  
considerable capacitance over that range. X5R, Z5U and  
Y5V capacitors may also have a poor voltage coefficient  
causing them to lose 60% or more of their capacitance  
when the rated voltage is applied. Therefore, when com-  
paring different capacitors, it is often more appropriate to  
compare the amount of achievable capacitance for a given  
case size rather than comparing the specified capacitance  
value. For example, over rated voltage and temperature  
conditions, a 4.7ꢀF 10V Y5V ceramic capacitor in a 0805  
casemaynotprovideanymorecapacitancethana1F10V  
X5R or X7R capacitor available in the same 0805 case. In  
fact, over bias and temperature range, the 1ꢀF 10V X5R  
or X7R provides more capacitance than the 4.7ꢀF 10V  
Y5V capacitor. The capacitor manufacturer’s data sheet  
should be consulted to determine what value of capacitor  
is needed to ensure minimum capacitance values are met  
over operating temperature and bias voltage.  
present at the input pin (V ). To reduce noise and ripple,  
IN  
it is recommended that low equivalent series resistance  
(ESR) multilayer ceramic chip capacitors (MLCCs) be  
used for C . Tantalum and aluminum capacitors are not  
IN  
recommended because of their high ESR.  
TheinputcurrenttotheLTC3225isrelativelyconstantdur-  
ing both the input charging phase and the output charging  
phasebutdropstozeroduringtheclocknon-overlaptimes.  
Sincethenon-overlaptimeissmall(~40ns)thesemissing  
“notches” result in only a small perturbation on the input  
power supply line. Note that a higher ESR capacitor, such  
as a tantalum, results in higher input noise. Therefore,  
ceramiccapacitorsarerecommendedfortheirexceptional  
ESR performance. Further input noise reduction can be  
achieved by powering the LTC3225 through a very small  
series inductor as shown in Figure 2.  
A 10nH inductor will reject the fast current notches,  
thereby presenting a nearly constant current load to the  
input power supply. For economy, the 10nH inductor can  
be fabricated on the PC board with about 1cm (0.4") of  
PC board trace.  
10nH  
9
V
IN  
V
IN  
LTC3225  
0.1ꢀF  
2.2ꢀF  
8, 11  
GND  
3225 F02  
Figure 2. 10nH Inductor Used for Input Noise Reduction  
3225f  
9
LTC3225  
APPLICATIONS INFORMATION  
Table 1 contains a list of ceramic capacitor manufacturers  
and how to contact them.  
+
The voltages on the flying capacitor pins C and C have  
very fast rise and fall times. The high dv/dt values on  
these pins can cause energy to capacitively couple to  
adjacent printed circuit board traces. Magnetic fields can  
also be generated if the flying capacitors are far from the  
part (i.e. the loop area is large). To prevent capacitive  
energy transfer, a Faraday shield may be used. This is a  
grounded PC trace between the sensitive node and the  
LTC3225 pins. For a high quality AC ground it should be  
returned to a solid ground plane that extends all the way  
to the LTC3225.  
Table 1. Capacitor Manufacturers  
AVX  
www.avxcorp.com  
www.kemet.com  
Kemet  
Murata  
Taiyo Yuden  
Vishay  
TDK  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.component.tdk.com  
Layout Considerations  
Table 2. Supercapacitor Manufacturers  
Due to the high switching frequency and high transient  
currents produced by the LTC3225, careful board layout is  
necessaryforoptimumperformance.Anunbrokenground  
plane and short connections to all the external capacitors  
improves performance and ensures proper regulation  
under all conditions.  
CAP-XX  
NESS CAP  
Maxwell  
Bussmann  
AVX  
www.cap-xx.com  
www.nesscap.com  
www.maxwell.com  
www.cooperbussmann.com  
www.avx.com  
TYPICAL APPLICATION  
5V Supercapacitor Backup Supply  
D2  
7
8
1
2
3
4
V
O
V
V
V
V
IN  
IN  
O
O
1.8V  
C4  
47ꢀF  
10V  
C7  
1ꢀF  
10V  
C8  
+
C3  
150ꢀF  
10V  
D3  
1ꢀF  
10V  
10  
ENA  
SEN  
9
8
1
2
4
5
10  
3
V
IN  
5V  
V
C
C5  
0.22ꢀF  
6.3V  
IN  
OUT  
V
O
C2  
2.2ꢀF  
10V  
TYCO  
C
0.80F  
5.5V  
OUT  
AUSTIN  
CX  
GND  
SUPERLYNX  
9
5
6
LTC3225  
HS208F  
TRIM  
GND  
GND  
+
C
R1  
C1  
1ꢀF  
10V  
15k  
1%  
C
V
O
3225 TA02  
7
6
R3  
100k  
5%  
SHDN  
PROG  
R1  
23.7k  
1%  
PGOOD  
PGOOD  
V
SEL  
GND  
11  
3225f  
10  
LTC3225  
PACKAGE DESCRIPTION  
DDB Package  
10-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1722 Rev Ø)  
0.64 p0.05  
(2 SIDES)  
0.70 p0.05  
2.55 p0.05  
1.15 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
2.39 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.40 p 0.10  
3.00 p0.10  
(2 SIDES)  
TYP  
6
R = 0.05  
TYP  
10  
2.00 p0.10  
PIN 1 BAR  
TOP MARK  
PIN 1  
(2 SIDES)  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 s 45o  
0.64 p 0.05  
CHAMFER  
(2 SIDES)  
5
1
(DDB10) DFN 0905 REV Ø  
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.39 p0.05  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3225f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC3225  
TYPICAL APPLICATION  
12V Supercapacitor Backup Supply  
LT3740  
HIGH EFFICIENCY  
DOWN CONVERTER  
D1  
CSHD6-40C  
DPAK  
V
1.8V  
10A  
OUT  
V
IN  
+
V
IN  
V
CHARGER 3  
OUT  
12V  
V
IN  
C
OUT  
C1  
LT3740  
+
47ꢀF  
25V  
DCAP  
LTC3225  
GND  
GND  
+
C2  
1ꢀF  
10V  
C
C
CX  
GND  
GND  
GND  
10A  
R6  
1k  
D2  
CMSH3-20  
M4  
Si4410DY  
M2  
IRF7424  
V
BIAS  
3.3V  
C5  
10ꢀF  
D3  
CMSH3-20  
CHARGER 2  
GND  
V
IN  
C
OUT  
LTC3225  
+
D4  
CMSH3-20  
C3  
1ꢀF  
10V  
C
C
CX  
GND  
1
8
R5  
1k  
VM  
V
CC  
1
8
LTC2915  
SEL1 SEL2  
R7  
M3  
Si4410DY  
M1  
IRF7424  
2
3
4
7
6
5
PGND OUT  
LTC4441-1  
10k  
2
3
4
7
6
5
R1  
2k  
TOL/MR RT  
SGND DRV  
CC  
R3  
IN  
V
IN  
GND  
RST  
332k  
CHARGER 1  
R2  
100k  
C7  
10ꢀF  
EN/SHDN FB  
C6  
0.1ꢀF  
V
IN  
C
OUT  
R4  
84.5k  
LTC3225  
+
C4  
1ꢀF  
10V  
C
C
CX  
GND  
3225 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
I = 20ꢀA, Up to 100mA Output, SOT-23 Package  
LTC1751-3.3/LTC1751-5  
LTC1754-3.3/LTC1754-5  
LTC3200  
Micropower 5V/3.3V Doubler Charge Pumps  
Micropower 5V/3.3V Doubler Charge Pumps  
Constant Frequency Doubler Charge Pump  
Q
I = 13ꢀA, Up to 50mA Output, SOT-23 Package  
Q
Low Noise, 5V Output or Adjustable  
LTC3203/LTC3203B/  
LTC3203B-1/LTC3203-1  
500mA Low Noise High Efficiency Dual Mode  
Step-Up Charge Pumps  
V : 2.7V to 5.5V, 3mm × 3mm 10-Lead DFN Package  
IN  
LTC3204/LTC3204B-3.3/  
LTC3204-5  
Low Noise Regulating Charge Pumps  
Up to 150mA (LTC3204-5), Up to 50mA (LTC3204-3.3)  
Up to 60mA Output  
LTC3221/LTC3221-3.3/  
LTC3221-5  
Micropower Regulated Charge Pump  
LTC3240-3.3/LTC3240-2.5 Step-Up/Step-Down Regulated Charge Pumps  
Up to 150mA Output  
LT®3420/LT3420-1  
1.4A/1A Photoflash Capacitor Charger with  
Automatic Top-Off  
Charges 220ꢀF to 320V in 3.7 Seconds from 5V, V : 2.2V to 16V,  
SD  
IN  
I
< 1ꢀA, 10-Lead MS Package  
LT3468/LT3468-1/  
LT3468-2  
1.4A/1A/0.7A, Photoflash Capacitor Charger  
V : 2.5V to 16V, Charge Time = 4.6 Seconds for the LT3468 (0V to 320V,  
IN  
100ꢀF, V = 3.6V), I < 1ꢀA, ThinSOTTM Package  
IN  
SD  
LTC3484-0/LTC3484-1/  
LTC3484-2  
1.4A/0.7A/1A, Photoflash Capacitor Charger  
V : 1.8V to 16V, Charge Time = 4.6 Seconds for the LT3484-0 (0V to 320V,  
IN  
100ꢀF, V = 3.6V), I < 1ꢀA, 2mm × 3mm 6-Lead DFN Package  
IN  
SD  
LT3485-0/LT3485-1/  
LT3485-2/LT3485-3  
1.4A/0.7A/1A/2A Photoflash Capacitor Charger V : 1.8V to 10V, Charge Time = 3.7 Seconds for the LT3485-0 (0V to 320V,  
IN  
with Output Voltage Monitor and Integrated  
IGBT  
100ꢀF, V = 3.6V), I < 1ꢀA, 3mm × 3mm 10-Lead DFN Driver  
IN SD  
LT3750  
Capacitor Charger Controller  
Charges Any Size Capacitor, 10-Lead MS Package  
ThinSOT is a trademark of Linear Technology Corporation.  
3225f  
LT 0508 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3225-1

2-Cell Supercapacitor Charger with Backup
Linear System

LTC3225-1

400mA Step-Up DC/DC Converter with Maximum Power Point Control and 250mV Start-Up
Linear

LTC3225-1_15

150mA Supercapacitor Charger
Linear

LTC3225EDDB#TRMPBF

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3225EDDB#TRPBF

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3225EDDB-1#PBF

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3225EDDB-1#TRMPBF

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC3225EDDB-TRMPBF

150mA Supercapacitor Charger
Linear

LTC3225EDDB-TRPBF

150mA Supercapacitor Charger
Linear

LTC3225_15

150mA Supercapacitor Charger
Linear

LTC3226

2-Cell Supercapacitor Charger with Backup PowerPath Controller
Linear System