LTC3225EDDB#TRMPBF [Linear]

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LTC3225EDDB#TRMPBF
型号: LTC3225EDDB#TRMPBF
厂家: Linear    Linear
描述:

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

光电二极管
文件: 总14页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3225/LTC3225-1  
150mA Supercapacitor  
Charger  
FEATURES  
DESCRIPTION  
TheLTC®3225/LTC3225-1areprogrammablesupercapaci-  
tor chargers designed to charge two supercapacitors in  
series to a selectable fixed output voltage (4.8V/5.3V for  
the LTC3225 and 4V/4.5V for the LTC3225-1) from input  
supplies as low as 2.8V to 5.5V. Automatic cell balancing  
prevents overvoltage damage to either supercapacitor. No  
balancing resistors are required.  
n
Low Noise Constant Frequency Charging of Two  
Series Supercapacitors  
n
Automatic Cell Balancing Prevents Capacitor  
Overvoltage During Charging  
n
Programmable Charge Current (Up to 150mA)  
n
Selectable 2.4V or 2.65V Regulation per Cell  
(LTC3225)  
n
Selectable 2V or 2.25V Regulation per Cell  
Low input noise, low quiescent current and low external  
parts count (one flying capacitor, one bypass capacitor at  
(LTC3225-1)  
Automatic Recharge  
n
V
and one programming resistor) make the LTC3225/  
IN  
n
I
I
= 20ꢀA in Standby Mode  
COUT  
No Inductors  
VIN  
LTC3225-1 ideally suited for small battery-powered  
n
n
n
< 1ꢀA When Input Supply is Removed  
applications.  
Charge current level is programmed with an external  
resistor. When the input supply is removed, the LTC3225/  
LTC3225-1automaticallyenteralowcurrentstate,drawing  
less than 1μA from the supercapacitors.  
Tiny Application Circuit (2mm × 3mm DFN Package,  
All Components <1mm High)  
APPLICATIONS  
The LTC3225/LTC3225-1 are available in a 10-lead 2mm  
× 3mm DFN package.  
L, LT, LTC and LTM are registered trademarks and ThinSOT is a trademark of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Current Limited Applications with High Peak Power  
Loads (LED Flash, PCMCIA Tx Bursts, HDD Bursts,  
GPRS/GSM Transmitter)  
Backup Supplies  
n
TYPICAL APPLICATION  
Charging Profile with 30% Mismatch  
in Output Capacitance, CTOP < CBOT  
V
OUT  
V
IN  
SHDN  
V
C
C
C
4.8V/5.3V (LTC3225)  
4V/4.5V (LTC3225-1)  
IN  
+
OUT  
2.8V/3V TO 5.5V  
5V/DIV  
0.6F  
0.6F  
2.2ꢀF  
1ꢀF  
CX  
LTC3225  
LTC3225-1  
I
VIN  
300mA/DIV  
GND  
100k  
V
COUT  
SHDN PGOOD  
ON/OFF  
2V/DIV  
V
OUTPUT  
PROGRAMMING  
SEL  
PROG  
12k  
3225 TA01a  
V
-V  
TOP BOT  
200mV/DIV  
3225 TA01b  
LTC3225  
= V  
5 SEC/DIV  
V
R
SEL  
IN  
= 12k  
PROG  
C
C
C
C
= 1.1F  
= 1.43F  
TOP  
BOT  
TOP  
BOT  
INITIAL VOLTAGE = 0V  
INITIAL VOLTAGE = 0V  
3225fb  
1
LTC3225/LTC3225-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V , C  
to GND ......................................... –0.3V to 6V  
TOP VIEW  
IN OUT  
SHDN, V ...................................... –0.3V to V + 0.3V  
SEL  
IN  
+
1
2
3
4
5
10  
9
C
C
C
V
OUT  
C
I
OUT  
Short-Circuit Duration............................. Indefinite  
Continuous (Note 2)......................................350mA  
Continuous (Note 2).....................................175mA  
OUT  
VIN  
IN  
11  
8
CX  
SHDN  
GND  
I
7
PROG  
6
PGOOD  
V
Operating Temperature Range (Note 3).... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
SEL  
DDB PACKAGE  
10-LEAD (3mm s 2mm) PLASTIC DFN  
T
= 125°C, θ = 76°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 11) MUST BE SOLDERED TO  
LOW IMPEDANCE GND PLANE (PIN 8) ON PCB  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3225EDDB#TRMPBF  
LTC3225EDDB-1#TRMPBF LTC3225EDDB-1#TRPBF LFFS  
TRM = 500 pieces.  
LTC3225EDDB#TRPBF  
LCYR  
–40°C to 85°C  
–40°C to 85°C  
10-Lead (3mm × 2mm) Plastic DFN  
10-Lead (3mm × 2mm) Plastic DFN  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, CIN = 2.2μF, CFLY = 1μF, unless otherwise specified (Note 3).  
SYMBOL  
LTC3225  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
V
V
V
Input Supply Undervoltage Lockout  
High-to-Low Threshold  
V
V
= V  
= 0  
2.65  
2.4  
2.75  
2.5  
2.85  
2.6  
V
V
IN-UVLO  
IN-UVLO-HYS  
IN  
SEL  
SEL  
IN  
IN  
IN  
Input Supply Undervoltage Lockout  
Hysteresis  
V
V
= V  
= 0  
150  
140  
mV  
mV  
SEL  
SEL  
l
l
Input Voltage Range  
V
V
= V  
= 0V  
3
2.8  
5.5  
5.5  
V
V
SEL  
SEL  
l
l
Charge Termination Voltage  
Sleep Mode Threshold (Rising Edge)  
V
V
= V  
IN  
= 0V  
5.2  
4.7  
5.3  
4.8  
5.4  
4.9  
V
V
COUT  
SEL  
SEL  
Output Comparator Hysteresis  
100  
mV  
COUT-HYS  
l
l
V
Maximum Voltage Across Each of the  
Supercapacitors After Charging  
V
V
= V  
IN  
= 0V  
2.75  
2.5  
V
V
TOP/BOT  
SEL  
SEL  
LTC3225-1  
l
l
V
Input Supply Undervoltage Lockout  
High-to-Low Threshold  
V
V
= V  
= 0  
2.25  
2.0  
2.35  
2.1  
2.45  
2.2  
V
V
IN-UVLO  
SEL  
SEL  
IN  
V
Input Supply Undervoltage Lockout  
Hysteresis  
V
V
= V  
= 0  
150  
140  
mV  
mV  
IN-UVLO-HYS  
SEL  
SEL  
IN  
3225fb  
2
LTC3225/LTC3225-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, CIN = 2.2μF, CFLY = 1μF, unless otherwise specified (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
V
Input Voltage Range  
V
V
= V  
= 0  
2.8  
2.8  
5.5  
5.5  
V
V
IN  
SEL  
SEL  
IN  
l
l
Charge Termination Voltage  
Sleep Mode Threshold (Rising Edge)  
V
V
= V  
= 0  
4.4  
3.9  
4.5  
4.0  
4.6  
4.1  
V
V
COUT  
COUT-HYS  
SEL  
SEL  
IN  
Output Comparator Hysteresis  
100  
mV  
l
l
V
Maximum Voltage Across Each of the  
Supercapacitors After Charging  
V
V
= V  
= 0  
2.35  
2.1  
V
V
TOP/BOT  
SEL  
SEL  
IN  
LTC3225/LTC3225-1  
l
l
I
I
I
No Load Operating Current at V  
Shutdown Current  
I
= 0mA  
20  
40  
1
ꢀA  
ꢀA  
Q-VIN  
IN  
OUT  
SHDN = 0V, V  
= 0V  
0.1  
SHDN-VIN  
COUT  
OUT  
l
l
C
Leakage Current  
V
V
V
= 5.6V, SHDN = 0V  
1
2
3
4
1
ꢀA  
ꢀA  
ꢀA  
OUT  
OUT  
OUT  
OUT  
= 5.6V, Charge Pump in Sleep Mode  
= 5.6V, SHDN Connected to V with  
IN  
Input Supply Removed  
I
I
Input Charge Current  
Output Charge Current  
V
V
= 3.6V, R  
= 3.6V, R  
= 3.6V, R  
= 12k, C  
= 60k, C  
= 12k, C  
= C  
= C  
= C  
306  
55  
mA  
mA  
mA  
VIN  
IN  
IN  
PROG  
PROG  
PROG  
TOP  
TOP  
TOP  
BOT  
BOT  
V
V
V
,
BOT  
125  
150  
175  
OUT  
IN  
OUT  
OUT  
= 4.5V (LTC3225),  
= 3.7V (LTC3225-1)  
V
V
V
= 3.6V, R  
OUT  
OUT  
= 60k, C  
= C ,  
BOT  
26  
mA  
IN  
PROG  
TOP  
= 4.5V (LTC3225),  
= 3.7V (LTC3225-1)  
l
l
l
l
V
PGOOD Low Output Voltage  
I
= –1.6mA  
= 5V  
0.4  
10  
V
ꢀA  
%
%
Ω
PGOOD  
PGOOD  
I
PGOOD High Impedance Leakage Current  
PGOOD Low-to-High Threshold  
PGOOD Threshold Hysteresis  
V
PGOOD  
PGOOD-LEAK  
V
V
Relative to Output Voltage Threshold  
Relative to Output Voltage Threshold  
92  
94  
96  
PG  
0.25  
1.2  
2.5  
PG-HYS  
R
Effective Open-Loop Output Impedance  
(Note 4)  
V
V
= 3.6V, V  
= 3.6V, V  
= 4.5V (LTC3225)  
= 3.7V (LTC3225-1)  
8
9
OL  
IN  
IN  
OUT  
OUT  
l
f
CLK Frequency  
0.6  
1.3  
0.9  
1.5  
MHz  
OSC  
V
V
V
, SHDN  
SEL  
l
l
l
l
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
V
V
IH  
0.4  
1
IL  
I
–1  
–1  
ꢀA  
ꢀA  
IH  
IL  
I
1
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LTC3225/LTC3225-1 are tested under pulsed load conditions  
such that T ≈ T . The LTC3225/LTC3225-1 are guaranteed to meet  
performance specifications from 0°C to 85°C. Specifications over the  
–40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
J
A
Note 2: Based on long-term current density limitations.  
Note 4: Output not in regulation;  
R
OL  
(2 • V – V )/I  
IN OUT OUT  
3225fb  
3
LTC3225/LTC3225-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, CFLY = 1μF, CIN = 2.2μF, CTOP = CBOT, unless otherwise specified)  
I
OUT vs RPROG  
IOUT vs VOUT (RPROG = 12k)  
Efficiency vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
180  
160  
140  
120  
100  
80  
V
V
= 3.6V  
IN  
OUT  
= 4.5V (LTC3225)  
LTC3225  
80  
60  
LTC3225-1  
60  
I
= 100mA  
BOT  
LOAD  
TOP  
C
= C  
BOT  
40  
20  
0
TOP  
40  
C
= C  
V
V
V
= 2.8V  
= 3.6V  
= 5.5V  
IN  
IN  
IN  
V
V
= V  
IN  
SEL  
SEL  
20  
= 0  
3.5  
0
20  
30  
R
50  
10  
60  
40  
(kΩ)  
2.5  
3
4
(V)  
5.5  
4.5  
5
0
0.5  
4
4.5  
5
1
1.5  
2
V
2.5  
(V)  
3
3.5  
V
PROG  
IN  
OUT  
3225 G01  
3525 G03  
3225 G02  
Charge Pump Open-Loop Output  
Resistance vs Temperature  
(2VIN – VCOUT)/IOUT  
Extra Input Current vs Output  
Current (IVIN – 2 • IOUT  
No-Load Input Current vs  
Supply Voltage  
)
7
6
5
4
3
2
30  
25  
20  
15  
10  
5
10.0  
9.5  
9.0  
8.5  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
CHARGE PUMP IS ON  
T
T
= 85°C  
= 25°C  
= –40°C  
A
A
V
= 3.7V  
OUT  
V
= 5V  
(LTC3225-1)  
OUT  
T
A
V
= 4.5V  
OUT  
V
= 4.5V  
OUT  
8.0  
7.5  
V
= 3.7V  
OUT  
(LTC3225)  
7.0  
6.5  
6.0  
V
= 4.2V  
OUT  
0
100  
(mA)  
140 160  
2.5  
3.5  
4
4.5  
5
5.5  
20  
40  
60  
80  
120  
3
–15  
10  
TEMPERATURE (°C)  
60  
–40  
85  
35  
V
(V)  
I
IN  
OUT  
3225 G04  
3225 G05  
3225 G06  
Charging Profile with Unequal  
Initial Output Capacitor Voltage  
(Initial VTOP = 1.3V, VBOT = 1V)  
Oscillator Frequency vs  
Supply Voltage  
Input Ripple and Input Current  
0.94  
0.93  
0.92  
0.91  
0.90  
0.89  
0.88  
SHDN  
5V/DIV  
V
IN  
I
VIN  
20mV/DIV  
300mA/DIV  
T
= 25°C  
A
I
V
VIN  
COUT  
200mA/DIV  
0mA  
2V/DIV  
T
= –40°C  
A
V
-V  
TOP BOT  
T
= 85°C  
500mV/DIV  
A
3225 G08  
3225 G09  
R
= 12k  
200ns/DIV  
LTC3225  
= V  
2 SEC/DIV  
PROG  
V
R
SEL  
IN  
= 12k  
PROG  
TOP  
C
C
C
= C  
= 1.1F  
BOT  
INITIAL VOLTAGE = 1.3V  
INITIAL VOLTAGE = 1V  
TOP  
BOT  
2.5  
3
4
4.5  
5
5.5  
3.5  
V
(V)  
IN  
3225 G07  
3225fb  
4
LTC3225/LTC3225-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, CFLY = 1μF, CIN = 2.2μF, CTOP = CBOT, unless otherwise specified)  
Charging Profile with Unequal  
Initial Output Capacitor Voltage  
(Initial VTOP = 1V, VBOT = 1.3V)  
Charging Profile with 30%  
Charging Profile with 30%  
Mismatch in Output Capacitance  
Mismatch in Output Capacitance  
(CTOP > CBOT  
)
(CTOP < CBOT)  
SHDN  
5V/DIV  
SHDN  
5V/DIV  
SHDN  
5V/DIV  
I
I
I
VIN  
VIN  
VIN  
300mA/DIV  
300mA/DIV  
300mA/DIV  
V
COUT  
V
V
COUT  
COUT  
2V/DIV  
2V/DIV  
2V/DIV  
V
-V  
V
-V  
TOP BOT  
TOP BOT  
V
-V  
TOP BOT  
200mV/DIV  
200mV/DIV  
500mV/DIV  
3225 G11  
3225 G12  
3225 G10  
LTC3225  
5 SEC/DIV  
LTC3225  
5 SEC/DIV  
LTC3225  
= V  
2 SEC/DIV  
V
= V  
V
= V  
V
SEL  
PROG  
TOP  
BOT  
TOP  
BOT  
IN  
SEL  
PROG  
TOP  
BOT  
TOP  
BOT  
IN  
SEL  
IN  
R
C
= 12k  
= 1.43F  
= 1.1F  
R
C
C
C
C
= 12k  
R
C
= 12k  
PROG  
= 1.1F  
= C  
= 1.1F  
TOP  
TOP  
BOT  
BOT  
C
C
C
= 1.43F  
C
C
INITIAL VOLTAGE = 1V  
INITIAL VOLTAGE = 1.3V  
INITIAL VOLTAGE = 0V  
INITIAL VOLTAGE = 0V  
INITIAL VOLTAGE = 0V  
INITIAL VOLTAGE = 0V  
PIN FUNCTIONS  
+
C (Pin 1): Flying Capacitor Positive Terminal. A 1ꢀF X5R  
V
(Pin 6): Output Voltage Selection Input. A logic  
SEL  
low at V  
+
or X7R ceramic capacitor should be connected from C  
to C .  
sets the regulated C  
to 4.8V (LTC3225)  
SEL  
OUT  
or 4V (LTC3225-1); a logic high sets the regulated C  
OUT  
to 5.3V (LTC3225) or 4.5V (LTC3225-1). Do not float the  
pin.  
C (Pin 2): Flying Capacitor Negative Terminal.  
V
SEL  
CX (Pin 3): Midpoint of Two Series Supercapacitors. This  
pin voltage is monitored and forced to track C  
OUT  
PROG (Pin 7): Charge Current Programming Pin. A resis-  
tor connected between this pin and GND sets the charge  
current. (See Applications Information section).  
(CX =  
OUT  
C
/2) during charging to achieve voltage balancing of  
the top and bottom supercapacitors.  
GND (Pin 8, Exposed Pad Pin 11): Charge Pump Ground.  
These pins must be soldered directly to PCB ground. The  
exposed pad must be soldered to a low impedance PCB  
ground for rated thermal performance.  
SHDN(Pin4):ActiveLowShutdownInput.AlowonSHDN  
puts the LTC3225/LTC3225-1 in low current shutdown  
mode. Do not float the SHDN pin.  
PGOOD(Pin5):Open-DrainOutputStatusIndicator.Upon  
V
(Pin 9): Power Supply for the LTC3225/LTC3225-1.  
IN  
start-up, this open-drain pin remains low until the output  
V should be bypassed to GND with a low ESR ceramic  
IN  
voltage, V , is within 6% (typical) of its final value. Once  
OUT  
capacitor of more than 2.2ꢀF.  
V
OUT  
is valid, PGOOD becomes Hi-Z. If V  
falls 7.2%  
OUT  
(typical) below its correct regulation level, PGOOD is  
pulled low. PGOOD may be pulled up through an external  
resistor to an appropriate reference level. This pin is Hi-Z  
in shutdown mode.  
C
(Pin 10): Charge Pump Output Pin. Connect C  
to  
OUT  
OUT  
thetopplateofthetopsupercapacitor.C providescharge  
OUT  
current to the supercapacitors and regulates the final volt-  
age to 4.8V/5.3V (LTC3225) or 4V/4.5V (LTC3225-1).  
3225fb  
5
LTC3225/LTC3225-1  
SIMPLIFIED BLOCK DIAGRAM  
C
FLY  
9
1
2
4
V
IN  
+
V
C
C
SHDN  
IN  
UVLO  
SOFT-START AND  
SHUTDOWN CONTROL  
THERMAL  
PROTECTION  
3000i  
POR  
1.2V  
C
OUT  
CX  
10  
3
C
C
TOP  
CHARGE  
PUMP  
RUN  
GND  
BOT  
8
i
PROG  
CLK  
7
R
PROG  
RUN/STOP  
R1  
R2  
OSCILLATOR  
+
C1  
V
REF  
– 2%  
POR  
PGOOD  
1.2V  
V
REF  
5
+
1.088V (LTC3225)  
1.067V (LTC3225-1)  
C2  
V
– 6%  
REF  
V
SEL  
6
V
– 7.2%  
REF  
3225 F01  
Figure 1  
OPERATION  
TheLTC3225/LTC3225-1aredualcellsupercapacitorchar-  
gers. Their unique topology maintains a constant output  
voltage with programmable charge current. Their ability  
to maintain equal voltages on both cells while charging  
protectsthesupercapacitorsfromdamagethatispossible  
with other charging methods, without the use of external  
balancing resistors. The LTC3225/LTC3225-1 include an  
Normal Charge Cycle  
Operation begins when the SHDN pin is pulled above 1.3V.  
TheC pinvoltageissensedandcomparedwithapreset  
OUT  
voltage threshold using an internal resistor divider and  
a comparator. The preset voltage threshold is selectable  
with the V  
pin. If the voltage at the C  
pin is lower  
SEL  
OUT  
thanthepresetvoltagethreshold, theoscillatorisenabled.  
The oscillator operates at a typical frequency of 0.9MHz.  
When the oscillator is enabled, the charge pump operates  
internal switched capacitor charge pump to boost V to a  
IN  
regulated output voltage. A unique architecture maintains  
relatively constant input current for the lowest possible  
input noise. The basic charger circuit requires only three  
external components.  
charging up C . Each time the charge pump starts up  
OUT  
from shutdown, the input current drawn by the internal  
charge pump ramps up at approximately 20mA/ꢀs until it  
reaches a level which is determined by R  
.
PROG  
3225fb  
6
LTC3225/LTC3225-1  
OPERATION  
Once the output voltage is charged to the preset volt-  
age threshold, the part shuts down the internal charge  
pump and enters into a low current state. In this state,  
the LTC3225/LTC3225-1 consume only about 20μA  
Shutdown Mode  
Asserting SHDN low causes the LTC3225/LTC3225-1 to  
enter shutdown mode. With the SHDN pin connected to  
V and the input supply removed or grounded, less than  
IN  
from the input supply. The current drawn from C  
approximately 2ꢀA.  
is  
OUT  
1ꢀA is consumed from the output, allowing the superca-  
pacitors to remain charged.  
Automatic Cell Balancing  
If the input supply is present at V and the SHDN pin is  
IN  
grounded, the LTC3225/LTC3225-1 draw approximately  
Duetomanufacturingtolerances,capacitanceandleakage  
current can vary from supercapacitor to supercapacitor.  
Without the automatic cell balancing scheme used in the  
LTC3225/LTC3225-1,thevoltagesacrossthesupercapaci-  
torscoulddifferfromeachotherandpotentiallyovervoltage  
a cell. This can affect the performance and lifetime of a  
supercapacitor.  
1ꢀA of supply current. With the voltage at the C  
pin  
OUT  
dischargedto0V,thiscurrentdropstolessthan1ꢀA.Since  
the SHDN pin is a high impedance CMOS input, it should  
never be allowed to float.  
Output Voltage Programming  
The LTC3225/LTC3225-1 have a V input pin that allows  
SEL  
The LTC3225/LTC3225-1 constantly monitor the volt-  
age across both supercapacitors while charging. When  
the voltage across the supercapacitors is equal, both  
capacitors are charged with equal currents. If the voltage  
across one supercapacitor is lower than the other, the  
lower supercapacitor’s charge current is increased and  
the higher supercapacitor’s charge current is decreased.  
The greater the difference between the supercapacitor  
voltages, the greater the difference in charge current per  
capacitor. The charge currents can increase or decrease  
as much as 50% to balance the voltage across the su-  
percapacitors. When the cell voltages are balanced, the  
supercapacitors are charged at a rate of approximately:  
the user to set the output threshold voltage to either 4.8V  
or 5.3V for the LTC3225 and 4V or 4.5V for the LTC3225-1  
by forcing a low or high at the V pin respectively.  
SEL  
Output Status Indicator (PGOOD)  
Duringshutdown,thePGOODpinishighimpedance.When  
the charge cycle starts, an internal N-channel MOSFET  
pulls the PGOOD pin to ground. When the output voltage,  
V
, is within 6% (typical) of its final value, the PGOOD  
OUT  
pinbecomeshighimpedance,butchargecurrentcontinues  
to flow until V crosses the charge termination voltage.  
OUT  
When V  
drops 7% below the charge termination volt-  
OUT  
age, the PGOOD pin again pulls low.  
1
ICOUT = •IVIN  
2
Current Limit/Thermal Protection  
The LTC3225/LTC3225-1 have built-in current limit as well  
as overtemperature protection. If the PROG pin is shorted  
to ground, a protection circuit automatically shuts off the  
internal charge pump. At higher temperatures, or if the  
input voltage is high enough to cause excessive self-heat-  
ing of the part, the thermal shutdown circuitry shuts down  
the charge pump once the junction temperature exceeds  
approximately 150°C. It will enable the charge pump once  
the junction temperature drops back to approximately  
135°C. The LTC3225/LTC3225-1 are able to cycle in and  
out of thermal shutdown indefinitely without latch-up or  
damage until the overcurrent condition is removed.  
If the leakage currents or capacitances of the two superca-  
pacitors are mismatched enough that varying the charge  
current is not sufficient to balance their voltages, the  
LTC3225/LTC3225-1 stop charging the capacitor with the  
higher voltage until they are again balanced. This feature  
protectseithercapacitorfromexperiencinganovervoltage  
condition.Attemptingtoequalizethevoltagesusingparallel  
resistors wastes power, discharges the supercapacitors,  
andtakestimetoequalizethevoltages.A30%capacitance  
mismatch leads to a 30% initial voltage difference after  
charging. It takes hours to equalize the voltages across  
1F supercapacitors using 10k resistors.  
3225fb  
7
LTC3225/LTC3225-1  
APPLICATIONS INFORMATION  
Programming Charge Current  
Charging Time Estimation  
The charge current is programmed with a single resistor  
connecting the PROG pin to ground. The program resistor  
and the input/output charge currents are calculated using  
the following equations:  
The estimated charging time with equal initial voltages  
across the two supercapacitors is given by the equation:  
COUT • V  
– VINI  
(
)
COUT  
tCHRG  
=
IOUT  
is the series output capacitance, V is the  
COUT  
3600V  
RPROG  
IVIN  
=
where C  
OUT  
voltage threshold set by the V  
pin, V is the initial  
SEL  
INI  
IVIN  
2
voltage at the C  
pin and I  
is the output charge  
IOUT  
=
(with matched output capacitors)  
OUT  
OUT  
current given by:  
An R  
resistor value of 2k or less (i.e., short circuit)  
1800V  
RPROG  
PROG  
IOUT  
=
causes the LTC3225/LTC3225-1 to enter overcurrent  
shutdown mode. This mode prevents damage to the part  
by shutting down the internal charge pump.  
Whenthechargingprocessstartswithunequalinitialvolt-  
ages across the supercapacitors, only the capacitor with  
the lower voltage level is charged; the other capacitor is  
not charged until the voltages equalize. This extends the  
charging time slightly. Under the worst-case condition,  
whereby one capacitor is fully depleted while the other  
remains fully charged due to significant leakage current  
mismatch, the charging time is about 1.5 times longer  
than normal.  
Power Efficiency  
The power efficiency (η) of the LTC3225/LTC3225-1 is  
similar to that of a linear regulator with an effective input  
voltageoftwicetheactualinputvoltage.Inanidealregulat-  
ing voltage doubler the power efficiency is given by:  
POUT VOUT IOUT VOUT  
η2xIDEAL  
=
=
=
P
V 2I  
2V  
IN  
IN  
IN  
OUT  
Thermal Management  
At moderate to high output power the switching losses  
and quiescent current of the LTC3225/LTC3225-1 are  
negligible and the above expression is valid. For example,  
For higher input voltages and maximum output current,  
therecanbesubstantialpowerdissipationintheLTC3225/  
LTC3225-1. If the junction temperature increases above  
approximately150°C,thethermalshutdowncircuitryauto-  
matically deactivates the output. To reduce the maximum  
junctiontemperature,agoodthermalconnectiontothePC  
board is recommended. Connecting the GND pin (Pin 8)  
and the Exposed Pad (Pin 11) of the DFN package to a  
ground plane under the device on two layers of the PC  
board can reduce the thermal resistance of the package  
and PC board considerably.  
with V = 3.6V, I  
= 100mA and V  
regulated to 5.3V,  
IN  
OUT  
OUT  
the measured efficiency is 71.2% which is in close agree-  
ment with the theoretical 73.6% calculation.  
Effective Open-Loop Output Resistance (R )  
OL  
Theeffectiveopen-loopoutputresistance(R )ofacharge  
OL  
pumpisanimportantparameterthatdescribesthestrength  
of the charge pump. The value of this parameter depends  
on many factors including the oscillator frequency (f ),  
OSC  
value of the flying capacitor (C ), the non-overlap time,  
FLY  
the internal switch resistances (R ) and the ESR of the  
S
external capacitors.  
3225fb  
8
LTC3225/LTC3225-1  
APPLICATIONS INFORMATION  
V Capacitor Selection  
IN  
its voltage can reverse upon start-up of the LTC3225/  
LTC3225-1. Low ESR ceramic capacitors should always  
be used for the flying capacitor.  
The type and value of C controls the amount of ripple  
IN  
present at the input pin (V ). To reduce noise and ripple,  
IN  
The flying capacitor controls the strength of the charge  
pump. In order to achieve the rated output current, it is  
necessary to use at least 0.6ꢀF of capacitance for the  
flying capacitor.  
it is recommended that low equivalent series resistance  
(ESR) multilayer ceramic chip capacitors (MLCCs) be  
used for C . Tantalum and aluminum capacitors are not  
IN  
recommended because of their high ESR.  
Theeffectivecapacitanceofaceramiccapacitorvarieswith  
temperatureandvoltageinamannerprimarilydetermined  
by its formulation. For example, a capacitor made of X5R  
or X7R material retains most of its capacitance from  
–40°C to 85°C whereas a Z5U or Y5V type capacitor loses  
considerable capacitance over that range. X5R, Z5U and  
Y5V capacitors may also have a poor voltage coefficient  
causing them to lose 60% or more of their capacitance  
when the rated voltage is applied. Therefore, when com-  
paring different capacitors, it is often more appropriate to  
compare the amount of achievable capacitance for a given  
case size rather than comparing the specified capacitance  
value. For example, over rated voltage and temperature  
conditions, a 4.7ꢀF 10V Y5V ceramic capacitor in a 0805  
casemaynotprovideanymorecapacitancethana1F10V  
X5R or X7R capacitor available in the same 0805 case. In  
fact, over bias and temperature range, the 1ꢀF 10V X5R  
or X7R provides more capacitance than the 4.7ꢀF 10V  
Y5V capacitor. The capacitor manufacturer’s data sheet  
should be consulted to determine what value of capacitor  
is needed to ensure minimum capacitance values are met  
over operating temperature and bias voltage.  
The input current to the LTC3225/LTC3225-1 is relatively  
constant during both the input charging phase and the  
output charging phase but drops to zero during the clock  
non-overlap times. Since the non-overlap time is small  
(~40ns) these missing “notches” result in only a small  
perturbation on the input power supply line. Note that a  
higher ESR capacitor, such as a tantalum, results in higher  
input noise. Therefore, ceramic capacitors are recom-  
mended for their exceptional ESR performance. Further  
input noise reduction can be achieved by powering the  
LTC3225/LTC3225-1 through a very small series inductor  
as shown in Figure 2.  
A 10nH inductor will reject the fast current notches,  
thereby presenting a nearly constant current load to the  
input power supply. For economy, the 10nH inductor can  
be fabricated on the PC board with about 1cm (0.4") of  
PC board trace.  
Flying Capacitor Selection  
Warning: Polarized capacitors such as tantalum or alumi-  
num should never be used for the flying capacitor since  
10nH  
9
V
V
IN  
IN  
LTC3225  
0.1ꢀF  
2.2ꢀF  
8, 11  
LTC3225-1  
GND  
3225 F02  
Figure 2. 10nH Inductor Used for Input Noise Reduction  
3225fb  
9
LTC3225/LTC3225-1  
APPLICATIONS INFORMATION  
Table 1 contains a list of ceramic capacitor manufacturers  
and how to contact them.  
also be generated if the flying capacitors are far from the  
part (i.e. the loop area is large). To prevent capacitive  
energy transfer, a Faraday shield may be used. This is a  
grounded PC trace between the sensitive node and the  
LTC3225/LTC3225-1 pins. For a high quality AC ground it  
should be returned to a solid ground plane that extends  
all the way to the LTC3225/LTC3225-1.  
Table 1. Capacitor Manufacturers  
AVX  
www.avx.com  
Kemet  
Murata  
Taiyo Yuden  
Vishay  
TDK  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.component.tdk.com  
Table 2. Supercapacitor Manufacturers  
CAP-XX  
www.cap-xx.com  
NESS CAP  
Maxwell  
www.nesscap.com  
www.maxwell.com  
www.cooperbussmann.com  
www.avx.com  
Layout Considerations  
Bussmann  
AVX  
Due to the high switching frequency and high transient  
currents produced by the LTC3225/LTC3225-1, careful  
board layout is necessary for optimum performance. An  
unbroken ground plane and short connections to all the  
external capacitors improves performance and ensures  
proper regulation under all conditions.  
Illinois Capacitor  
Tecate Group  
www.illcap.com  
www.tecategroup.com  
Charging a Single Supercapacitor  
The LTC3225/LTC3225-1 can also be used to charge a  
singlesupercapacitorbyconnectingtwoseries-connected  
matched ceramic capacitors with a minimum capacitance  
of 100ꢀF in parallel with the supercapacitor as shown in  
Figure 3.  
+
The voltages on the flying capacitor pins C and C have  
very fast rise and fall times. The high dV/dt values on  
these pins can cause energy to capacitively couple to  
adjacent printed circuit board traces. Magnetic fields can  
LTC3225  
LTC3225-1  
10  
C
V
OUT  
OUT  
C1  
3
C
X
C
SUP  
C2  
8, 11  
GND  
3225 F03  
C1 = C2 ≥ 100ꢀF  
Figure 3. Charging a Single Supercapacitor  
3225fb  
10  
LTC3225/LTC3225-1  
TYPICAL APPLICATION  
5V Supercapacitor Back-Up Supply  
Q2  
Si4421DY  
LTM4616  
1.8V  
V
IN  
V
V
V
IN1 OUT1  
5V  
C6  
100ꢀF  
FB1  
IN2  
R3  
C5  
22ꢀF  
4.78k  
Q1  
Si4421DY  
GND  
I
THM1  
1.2V  
V
OUT2  
FB2  
C7  
C8  
100ꢀF  
100ꢀF  
R2  
10k  
3225 TA02  
V
C
C
OUT  
IN  
+
LTC4412  
SENSE  
C2  
I
THM2  
10F  
V
IN  
GND  
C
X
R2  
470k  
C1  
1ꢀF  
LTC3225  
LTC3225-1  
C3  
10F  
GND GATE  
CTL STAT  
C
GND  
SHDN  
C4  
2.2ꢀF  
V
SEL  
PROG  
R1  
12k  
3225fb  
11  
LTC3225/LTC3225-1  
PACKAGE DESCRIPTION  
DDB Package  
10-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1722 Rev Ø)  
R = 0.115  
0.64 p0.05  
(2 SIDES)  
0.40 p 0.10  
3.00 p0.10  
(2 SIDES)  
TYP  
6
R = 0.05  
TYP  
10  
0.70 p0.05  
2.55 p0.05  
1.15 p0.05  
2.00 p0.10  
PIN 1 BAR  
TOP MARK  
PIN 1  
(2 SIDES)  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 s 45o  
PACKAGE  
OUTLINE  
0.64 p 0.05  
(2 SIDES)  
0.25 p 0.05  
CHAMFER  
5
1
(DDB10) DFN 0905 REV Ø  
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
0.50 BSC  
2.39 p0.05  
2.39 p0.05  
(2 SIDES)  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3225fb  
12  
LTC3225/LTC3225-1  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
6/10  
Updated Note 3 in Electrical Characteristics section.  
Updates to Pins 8 and 11 in Pin Functions.  
Update to text in Layout Considerations section.  
Updated Typical Application and Related Parts.  
2, 3  
5
10  
14  
3225fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
13  
LTC3225/LTC3225-1  
TYPICAL APPLICATION  
12V Supercapacitor Back-Up Supply  
LT3740  
HIGH EFFICIENCY  
DOWN CONVERTER  
D1  
CSHD6-40C  
DPAK  
*
V
1.8V  
10A  
CHARGER 3  
OUT  
V
IN  
+
V
V
OUT  
IN  
12V  
V
IN  
C
OUT  
C1  
LT3740  
LTC3225/  
+
47ꢀF  
25V  
DCAP  
LTC3225-1  
GND  
GND  
+
C2  
1ꢀF  
10V  
C
C
CX  
GND  
GND  
GND  
10A  
R6  
1k  
D2  
CMSH3-20  
M4  
Si4410DY  
M2  
IRF7424  
V
BIAS  
3.3V  
C5  
10ꢀF  
D3  
CMSH3-20  
*
CHARGER 2  
GND  
V
IN  
C
OUT  
LTC3225/  
D4  
CMSH3-20  
LTC3225-1  
+
C3  
1ꢀF  
10V  
C
C
CX  
GND  
1
8
VM  
V
CC  
1
8
LTC2915  
R7  
2
3
4
7
6
5
PGND OUT  
LTC4441-1  
R5  
1k  
SEL1 SEL2  
10k  
M3  
Si4410DY  
2
3
4
7
6
5
M1  
IRF7424  
R1  
2k  
TOL/MR RT  
SGND DRV  
CC  
R3  
CHARGER 1  
IN  
V
IN  
GND  
RST  
332k  
R2  
100k  
V
IN  
C
OUT  
LTC3225/  
LTC3225-1  
C7  
10ꢀF  
EN/SHDN FB  
C6  
0.1ꢀF  
R4  
84.5k  
+
C4  
1ꢀF  
10V  
C
C
CX  
GND  
3225 TA03  
* REQUIRES PIN 8 (GND) AND EXPOSED PAD TO BE CONNECTED TO A  
THERMAL PAD ISOLATED FROM THE SYSTEM GROUND.  
RELATED PARTS  
PART NUMBER  
LTC1751-3.3/LTC1751-5  
LTC3200  
DESCRIPTION  
COMMENTS  
Micropower 5V/3.3V Doubler Charge Pumps  
Constant Frequency Doubler Charge Pump  
I = 20ꢀA, Up to 100mA Output, MS-8 Package  
Q
Low Noise, 5V Output or Adjustable  
LTC3203/LTC3203B/  
LTC3203B-1/LTC3203-1  
500mA Low Noise High Efficiency Dual Mode  
Step-Up Charge Pumps  
V : 2.7V to 5.5V, 3mm × 3mm 10-Lead DFN Package  
IN  
LTC3204/LTC3204B-3.3/  
LTC3204-5  
Low Noise Regulating Charge Pumps  
Up to 150mA (LTC3204-5), Up to 50mA (LTC3204-3.3)  
Up to 60mA Output  
LTC3221/LTC3221-3.3/  
LTC3221-5  
Micropower Regulated Charge Pump  
LTC3240-3.3/LTC3240-2.5 Step-Up/Step-Down Regulated Charge Pumps  
Up to 150mA Output  
LT®3420/LT3420-1  
1.4A/1A Photoflash Capacitor Charger with  
Automatic Top-Off  
Charges 220ꢀF to 320V in 3.7 Seconds from 5V, V : 2.2V to 16V,  
SD  
IN  
I
< 1ꢀA, 10-Lead MS Package  
LT3468/LT3468-1/  
LT3468-2  
1.4A/1A/0.7A, Photoflash Capacitor Charger  
V : 2.5V to 16V, Charge Time = 4.6 Seconds for the LT3468 (0V to 320V,  
IN  
100ꢀF, V = 3.6V), I < 1ꢀA, ThinSOT™ Package  
IN  
SD  
LTC3484-0/LTC3484-1/  
LTC3484-2  
1.4A/0.7A/1A, Photoflash Capacitor Charger  
V : 1.8V to 16V, Charge Time = 4.6 Seconds for the LT3484-0 (0V to 320V,  
IN  
100ꢀF, V = 3.6V), I < 1ꢀA, 2mm × 3mm 6-Lead DFN Package  
IN  
SD  
LT3485-0/LT3485-1/  
LT3485-2/LT3485-3  
1.4A/0.7A/1A/2A Photoflash Capacitor Charger V : 1.8V to 10V, Charge Time = 3.7 Seconds for the LT3485-0 (0V to 320V,  
IN  
with Output Voltage Monitor and Integrated  
IGBT  
100ꢀF, V = 3.6V), I < 1ꢀA, 3mm × 3mm 10-Lead DFN Driver  
IN SD  
LT3750  
LT3751  
Capacitor Charger Controller  
Charges Any Size Capacitor, 10-Lead MS Package  
Capacitor Controller with Regulation  
Charges Any Size Capacitor, 4mm × 5mm QFN-20 Package  
3225fb  
LT 0610 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
14  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3225EDDB#TRPBF

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3225EDDB-1#PBF

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3225EDDB-1#TRMPBF

LTC3225 - 150mA Supercapacitor Charger; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC3225EDDB-TRMPBF

150mA Supercapacitor Charger
Linear

LTC3225EDDB-TRPBF

150mA Supercapacitor Charger
Linear

LTC3225_15

150mA Supercapacitor Charger
Linear

LTC3226

2-Cell Supercapacitor Charger with Backup PowerPath Controller
Linear System

LTC3226EUD

2-Cell Supercapacitor Charger with Backup PowerPath Controller
Linear System

LTC3226EUD#PBF

LTC3226 - 2-Cell Supercapacitor Charger with Backup PowerPath Controller; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3226EUD#TRPBF

LTC3226 - 2-Cell Supercapacitor Charger with Backup PowerPath Controller; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3226IUD

2-Cell Supercapacitor Charger with Backup PowerPath Controller
Linear System