LTC2378IMS-20PBF [Linear]

20-Bit, 1Msps, Low Power SAR ADC with 0.5ppm INL; 20位, 1Msps的,低功耗SAR型ADC为0.5ppm INL
LTC2378IMS-20PBF
型号: LTC2378IMS-20PBF
厂家: Linear    Linear
描述:

20-Bit, 1Msps, Low Power SAR ADC with 0.5ppm INL
20位, 1Msps的,低功耗SAR型ADC为0.5ppm INL

文件: 总28页 (文件大小:1062K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2378-20  
20-Bit, 1Msps, Low Power  
SAR ADC with 0.5ppm INL  
FeaTures  
DescripTion  
The LTC®2378-20 is a low noise, low power, high speed  
20-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2378-20 has a  
n
1Msps Throughput Rate  
n
±±0.ppꢀ INꢁ ꢂTyp)  
n
Guaranteed 2±-Bit No Missing Codes  
ꢁow Power: 21ꢀW at 1Msps, 21µW at 1ksps  
1±4dB SNR ꢂTyp) at f = 2kHz  
12.dB THD ꢂTyp) at f = 2kHz  
n
V
fully differential input range with V ranging from  
REF REF  
n
2.5V to 5.1V. The LTC2378-20 consumes only 21mW and  
achieves 2ppm INL maximum, no missing codes at 20  
bits with 104dB SNR.  
IN  
IN  
n
n
n
n
n
n
n
n
n
n
n
Digital Gain Coꢀpression ꢂDGC)  
Guaranteed Operation to 85°C  
2.5V Supply  
The LTC2378-20 has a high speed SPI-compatible serial  
interface that supports 1.8V, 2.5V, 3.3V and 5V logic  
while also featuring a daisy-chain mode. The fast 1Msps  
throughput with no cycle latency makes the LTC2378-20  
ideally suited for a wide variety of high speed applications.  
Aninternaloscillatorsetstheconversiontime,easingexter-  
nal timing considerations. The LTC2378-20 automatically  
powers down between conversions, leading to reduced  
power dissipation that scales with the sampling rate.  
Fully Differential Input Range V  
REF  
V
Input Range from 2.5V to 5.1V  
REF  
No Pipeline Delay, No Cycle Latency  
1.8V to 5V I/O Voltages  
SPI-Compatible Serial I/O with Daisy-Chain Mode  
Internal Conversion Clock  
16-Lead MSOP and 4mm × 3mm DFN Packages  
The LTC2378-20 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
applicaTions  
n
Medical Imaging  
n
High Speed Data Acquisition  
n
Portable or Compact Instrumentation  
Industrial Process Control  
Low Power Battery-Operated Instrumentation  
ATE  
function that maps zero-scale code from 0V to 0.1 • V  
REF  
n
and full-scale code from V  
to 0.9 • V . For a typical  
REF  
REF  
n
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Patents Pending. Protected by U.S. Patents, including  
7705765, 7961132, 8319673.  
Typical applicaTion  
Integral Nonlinearity vs Output Code  
2.0  
2.5V 1.8V TO 5V  
10µF  
1.5  
0.1µF  
1.0  
0.5  
V
OV  
DD  
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
CNV  
REF/DGC  
DD  
6800pF  
3300pF  
6800pF  
V
V
REF  
10Ω  
10Ω  
+
IN  
+
0
0V  
LTC2378-20  
REF  
–0.5  
–1.0  
–1.5  
–2.0  
IN  
SAMPLE CLOCK  
0V  
V
REF  
GND  
REF  
237820 TA01  
2.5V TO 5.1V  
47µF  
(X7R, 1210 SIZE)  
0
262144  
524288  
786432 1048576  
OUTPUT CODE  
237820 TA02  
237820f  
1
For more information www.linear.com/LTC2378-20  
LTC2378-20  
absoluTe MaxiMuM raTings  
ꢂNotes 1, 2)  
Supply Voltage (V )...............................................2.8V  
Digital Output Voltage  
DD  
Supply Voltage (OV )................................................6V  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
DD  
Reference Input (REF).................................................6V  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2378C................................................ 0°C to 70°C  
LTC2378I .............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Analog Input Voltage (Note 3)  
+
IN , IN ......................... (GND –0.3V) to (REF + 0.3V)  
REF/DGC Input (Note 3) .... (GND –0.3V) to (REF + 0.3V)  
Digital Input Voltage  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
pin conFiguraTion  
TOP VIEW  
CHAIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
OV  
TOP VIEW  
V
DD  
DD  
CHAIN 1  
16 GND  
GND  
SDO  
V
2
15 OV  
DD  
DD  
+
GND 3  
14 SDO  
13 SCK  
17  
GND  
IN  
SCK  
+
IN  
IN  
4
5
IN  
RDL/SDI  
BUSY  
GND  
12 RDL/SDI  
11 BUSY  
10 GND  
GND  
REF  
GND 6  
REF 7  
REF/DGC 8  
9
CNV  
REF/DGC  
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
T
= 150°C, θ = 110°C/W  
16-LEAD (4mm × 3mm) PLASTIC DFN  
JMAX  
JA  
T
= 150°C, θ = 40°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
ꢁEAD FREE FINISH  
TAPE AND REEꢁ  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2378CMS-20#PBF  
LTC2378IMS-20#PBF  
LTC2378CDE-20#PBF  
LTC2378IDE-20#PBF  
LTC2378CMS-20#TRPBF 237820  
LTC2378IMS-20#TRPBF 237820  
LTC2378CDE-20#TRPBF 23780  
–40°C to 85°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
LTC2378IDE-20#TRPBF  
23780  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
237820f  
2
For more information www.linear.com/LTC2378-20  
LTC2378-20  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
teꢀperature range, otherwise specifications are at TA = 2.°C0 ꢂNote 4)  
SYMBOꢁ  
V +  
PARAMETER  
CONDITIONS  
(Note 5)  
MIN  
–0.1  
–0.1  
TYP  
MAX  
UNITS  
+
l
l
l
l
Absolute Input Range (IN )  
V
V
+ 0.1  
V
V
V
V
IN  
REF  
V –  
IN  
Absolute Input Range (IN )  
(Note 5)  
+ 0.1  
REF  
V + – V – Input Differential Voltage Range  
V
IN  
= V + – V –  
–V  
REF  
+V  
IN  
IN  
IN  
IN  
REF  
V
CM  
Common-Mode Input Range  
V
/2–  
V /2  
REF  
V
/2+  
REF  
REF  
0.1  
0.1  
I
Analog Input Leakage Current  
Analog Input Capacitance  
0.01  
µA  
IN  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
IN  
CMRR  
Input Common Mode Rejection Ratio  
f
IN  
= 500kHz  
86  
dB  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
teꢀperature range, otherwise specifications are at TA = 2.°C0 ꢂNote 4)  
SYMBOꢁ PARAMETER  
CONDITIONS  
MIN  
20  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
20  
Bits  
Transition Noise  
2.3  
ppm  
RMS  
l
l
INL  
Integral Linearity Error  
(Note 6)  
REF/DGC = GND, (Note 6)  
–2  
–2  
0.5  
0.5  
2
2
ppm  
ppm  
l
l
DNL  
BZE  
Differential Linearity Error  
Bipolar Zero-Scale Error  
Bipolar Zero-Scale Error Drift  
Bipolar Full-Scale Error  
(Note 10)  
(Note 7)  
–0.5  
–13  
0.2  
0
0.5  
13  
ppm  
ppm  
7
ppb/°C  
ppm  
l
FSE  
(Note 7)  
–100  
10  
0.05  
100  
Bipolar Full-Scale Error Drift  
ppm/°C  
DynaMic accuracy The l denotes the specifications which apply over the full operating teꢀperature range,  
otherwise specifications are at TA = 2.°C and AIN = –1dBFS0 ꢂNotes 4, 8)  
SYMBOꢁ PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
SINAD  
SNR  
Signal-to-(Noise + Distortion) Ratio  
f
= 2kHz, V = 5V  
101  
104  
dB  
IN  
REF  
l
l
l
Signal-to-Noise Ratio  
f
f
f
= 2kHz, V = 5V  
101  
99  
95.4  
104  
102  
98  
dB  
dB  
dB  
IN  
IN  
IN  
REF  
= 2kHz, V = 5V, REF/DGC = GND  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
l
THD  
Total Harmonic Distortion  
f
IN  
f
IN  
f
IN  
= 2kHz, V = 5V  
–125  
–125  
–123  
–114  
–114  
–113  
dB  
dB  
dB  
REF  
= 2kHz, V = 5V, REF/DGC = GND  
REF  
= 2kHz, V = 2.5V  
REF  
l
SFDR  
Spurious Free Dynamic Range  
–3dB Input Bandwidth  
Aperture Delay  
f
= 2kHz, V = 5V  
115  
128  
34  
dB  
MHz  
ps  
IN  
REF  
500  
4
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
312  
ns  
237820f  
3
For more information www.linear.com/LTC2378-20  
LTC2378-20  
reFerence inpuT The l denotes the specifications which apply over the full operating teꢀperature range, otherwise  
specifications are at TA = 2.°C0 ꢂNote 4)  
SYMBOꢁ  
PARAMETER  
CONDITIONS  
(Note 5)  
MIN  
TYP  
MAX  
5.1  
UNITS  
l
l
l
l
V
Reference Voltage  
2.5  
V
mA  
V
REF  
REF  
I
Reference Input Current  
High Level Input Voltage REF/DGC Pin  
Low Level Input Voltage REF/DGC Pin  
(Note 9)  
0.94  
1.1  
V
IHDGC  
V
ILDGC  
0.8V  
REF  
0.2V  
V
REF  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating teꢀperature range, otherwise specifications are at TA = 2.°C0 ꢂNote 4)  
SYMBOꢁ PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8 OV  
IH  
IL  
DD  
0.2 OV  
V
DD  
I
V
= 0V to OV  
DD  
–10  
10  
µA  
pF  
IN  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500µA  
O
OV – 0.2  
DD  
V
OH  
OL  
I = 500µA  
O
0.2  
10  
V
I
I
I
V
V
V
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
OUT  
OUT  
OUT  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
power requireMenTs The l denotes the specifications which apply over the full operating teꢀperature  
range, otherwise specifications are at TA = 2.°C0 ꢂNote 4)  
SYMBOꢁ  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
2.375  
1.71  
TYP  
MAX  
2.625  
5.25  
10  
UNITS  
l
l
l
V
DD  
2.5  
V
V
OV  
DD  
I
I
I
Supply Current  
Supply Current  
Power Down Mode  
1Msps Sample Rate  
8.4  
0.2  
1
mA  
mA  
µA  
VDD  
OVDD  
PD  
1Msps Sample Rate (C = 20pF)  
L
VDD  
l
Conversion Done (I  
+ I  
+ I  
)
)
90  
OVDD  
REF  
P
Power Dissipation  
Power Down Mode  
1Msps Sample Rate  
Conversion Done (I  
21  
2.5  
25  
225  
mW  
µW  
D
+ I  
+ I  
REF  
VDD  
OVDD  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
teꢀperature range, otherwise specifications are at TA = 2.°C0 ꢂNote 4)  
SYMBOꢁ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
CONV  
ACQ  
615  
312  
1
675  
Acquisition Time  
t
= t  
CYC  
– t  
– t (Note 10)  
BUSYLH  
ns  
ACQ  
CONV  
Time Between Conversions  
CNV High Time  
µs  
CYC  
20  
ns  
CNVH  
BUSYLH  
CNVL  
QUIET  
SCK  
C = 20pF  
L
13  
ns  
CNVto BUSY Delay  
Minimum Low Time for CNV  
SCK Quiet Time from CNV↑  
SCK Period  
(Note 11)  
(Note 10)  
20  
20  
10  
ns  
ns  
(Notes 11, 12)  
ns  
237820f  
4
For more information www.linear.com/LTC2378-20  
LTC2378-20  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
teꢀperature range, otherwise specifications are at TA = 2.°C0 ꢂNote 4)  
SYMBOꢁ  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
t
t
t
t
t
t
SCK High Time  
SCKH  
SCK Low Time  
4
ns  
SCKL  
(Note 11)  
(Note 11)  
4
ns  
SDI Setup Time From SCK↑  
SDI Hold Time From SCK↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK↑  
SSDISCK  
HSDISCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Note 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDISCK  
l
l
l
C = 20pF, OV = 5.25V  
7.5  
8
9.5  
ns  
ns  
ns  
L
DD  
DD  
DD  
C = 20pF, OV = 2.5V  
L
C = 20pF, OV = 1.71V  
L
l
l
l
l
t
t
t
t
C = 20pF (Note 10)  
1
ns  
ns  
ns  
ns  
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from BUSY↓  
Bus Enable Time After RDL↓  
HSDO  
DSDOBUSYL  
EN  
L
C = 20pF (Note 10)  
L
5
(Note 11)  
(Note 11)  
16  
13  
Bus Relinquish Time After RDL↑  
DIS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note 7: Bipolar zero-scale error is the offset voltage measured from  
–0.5LSB when the output code flickers between 0000 0000 0000 0000 0000  
and 1111 1111 1111 1111 1111. Full-scale bipolar error is the worst-case  
of –FS or +FS untrimmed deviation from ideal first and last code transitions  
and includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 8: All specifications in dB are referred to a full-scale 5V input with a  
5V reference voltage.  
Note 3: When these pin voltages are taken below ground or above REFor  
OV , they will be clamped by internal diodes. This product can handle  
DD  
input currents up to 100mA below ground or above REFor OV without  
latch-up.  
Note 9: f  
= 1MHz, I varies proportionately with sample rate.  
SMPL REF  
DD  
Note 1±: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
Note 4: V = 2.5V, OV = 2.5V, REF = 5V, V = 2.5V, f  
= 1MHz,  
DD  
DD  
CM  
SMPL  
DD  
DD  
REF/DGC = V  
.
REF  
and OV = 5.25V.  
DD  
Note .: Recommended operating conditions.  
Note 12: t  
of 10ns maximum allows a shift clock frequency up to  
SCK  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
100MHz for rising capture.  
0.8*OV  
DD  
t
WIDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
237820 F01  
0.8*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
0.2*OV  
DD  
Figure 10 Voltage ꢁevels for Tiꢀing Specifications  
237820f  
5
For more information www.linear.com/LTC2378-20  
LTC2378-20  
Typical perForMance characTerisTics TA = 2.°C, VDD = 20.V, OVDD = 20.V, VCM = 20.V,  
REF = .V, fSMPꢁ = 1Msps, unless otherwise noted0  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histograꢀ  
2.0  
1.5  
0.5  
0.4  
50000  
45000  
40000  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
σ = 2.3  
0.3  
1.0  
0.2  
0.5  
0.1  
0
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
0
262144  
524288  
786432 1048576  
0
262144  
524288  
786432 1048576  
524279 524283 524287 524291 524295  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
237820 G01  
237820 G02  
237820 G03  
THD, Harꢀonics  
128k Point FFT fS = 1Msps,  
fIN = 2kHz  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
0
–20  
108  
106  
104  
102  
100  
98  
–90  
SNR = 104dB  
THD  
2ND  
3RD  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
THD = –128dB  
SINAD = 104dB  
SFDR = 132dB  
SNR  
–40  
–60  
–80  
SINAD  
–100  
–120  
–140  
–160  
–180  
96  
94  
92  
0
100  
200  
300  
400  
500  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237820 G05  
237820 G06  
237820 G04  
SNR, SINAD vs Input level,  
fIN = 2kHz  
SNR, SINAD vs Reference  
Voltage, fIN = 2kHz  
THD, Harꢀonics vs Reference  
Voltage, fIN = 2kHz  
105.0  
104.5  
104.0  
103.5  
103.0  
105  
104  
103  
102  
101  
100  
99  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
THD  
3RD  
SNR  
SNR  
SINAD  
SINAD  
98  
97  
96  
2ND  
95  
–40  
–30  
–20  
–10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT LEVEL (dB)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
237820 G07  
237820 G08  
237820 G09  
237820f  
6
For more information www.linear.com/LTC2378-20  
LTC2378-20  
Typical perForMance characTerisTics TA = 2.°C, VDD = 20.V, OVDD = 20.V, VCM = 20.V,  
REF = .V, fSMPꢁ = 1Msps, unless otherwise noted0  
SNR, SINAD vs Teꢀperature,  
fIN = 2kHz  
THD, Harꢀonics vs Teꢀperature,  
fIN = 2kHz  
INꢁ vs Teꢀperature  
–120  
–125  
–130  
–135  
–140  
2.0  
1.5  
106  
105  
104  
103  
102  
101  
100  
SNR  
1.0  
MAX INL  
MIN INL  
0.5  
SINAD  
THD  
0
3RD  
2ND  
–0.5  
–1.0  
–1.5  
–2.0  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237820 G11  
237820 G12  
237820 G10  
Supply Current vs Teꢀperature  
Full-Scale Error vs Teꢀperature  
Offset Error vs Teꢀperature  
4
3
10  
9
8
7
6
5
4
3
2
1
0
20  
15  
I
VDD  
2
10  
1
5
–FS  
+FS  
0
0
–1  
–2  
–3  
–4  
–5  
–10  
–15  
–20  
I
REF  
I
OVDD  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237820 G14  
237820 G15  
237820 G13  
Reference Current  
vs Reference Voltage  
Shutdown Current vs Teꢀperature  
CMRR vs Input Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
+ I  
+ I  
VDD OVDD REF  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
100  
200  
300  
400  
500  
–50 –25  
0
25  
50  
75 100 125  
REFERENCE VOLTAGE (V)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
237820 G16  
237820 G17  
237820 G18  
237820f  
7
For more information www.linear.com/LTC2378-20  
LTC2378-20  
pin FuncTions  
CHAIN ꢂPin 1): Chain Mode Selector Pin. When low, the  
LTC2378-20 operates in normal mode and the RDL/SDI  
input pin functions to enable or disable SDO. When high,  
the LTC2378-20 operates in chain mode and the RDL/SDI  
pin functions as SDI, the daisy-chain serial data input.  
BUSY ꢂPin 11): BUSY Indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by OV .  
DD  
RDꢁ/SDI ꢂPin 12): When CHAIN is low, the part is in Nor-  
mal Mode and the pin is treated as a bus enabling input.  
When CHAIN is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input. Logic levels are  
Logic levels are determined by OV .  
DD  
V
ꢂPin 2): 2.5V Power Supply. The range of V is  
DD  
DD  
2.375Vto2.625V. BypassV toGNDwitha1Fceramic  
DD  
capacitor.  
determined by OV .  
DD  
GND ꢂPins 3, 6, 1± and 16): Ground.  
SCKPin13):SerialDataClockInput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSB  
+
IN , IN ꢂPins 4, .): Positive and Negative Differential  
Analog Inputs.  
first. Logic levels are determined by OV .  
DD  
REF ꢂPin 7): Reference Input. The range of REF is 2.5V  
to 5.1V. This pin is referred to the GND pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X7R, 1210 size, 10V rating).  
SDOPin14):SerialDataOutput. Theconversionresultor  
daisy-chain data is output on this pin on each rising edge  
of SCK MSB first. The output data is in 2’s complement  
format. Logic levels are determined by OV .  
DD  
REF/DGC ꢂPin 8): When tied to REF, digital gain compres-  
OV ꢂPin 1.): I/O Interface Digital Power. The range of  
DD  
sion is disabled and the LTC2378-20 defines full-scale ac-  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
cordingtothe V analoginputrange.WhentiedtoGND,  
REF  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
digital gain compression is enabled and the LTC2378-20  
or 5V). Bypass OV to GND with a 0.1µF capacitor.  
DD  
defines full-scale with inputs that swing between 10% and  
90% of the V analog input range.  
GND ꢂExposed Pad Pin 17 – DFNPackage Only): Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
REF  
CNV ꢂPin 9): Convert Input. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by OV .  
DD  
FuncTional block DiagraM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 5V  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
+
IN  
SPI  
PORT  
20-BIT SAMPLING ADC  
IN  
CNV  
BUSY  
REF/DGC  
CONTROL LOGIC  
GND  
237820 BD01  
237820f  
8
For more information www.linear.com/LTC2378-20  
LTC2378-20  
TiMing DiagraM  
Conversion Tiꢀing Using the Serial Interface  
CHAIN, RDL/SDI = 0  
CNV  
POWER-DOWN AND ACQUIRE  
CONVERT  
BUSY  
SCK  
D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
237820 TD01  
applicaTions inForMaTion  
OVERVIEW  
CONVERTER OPERATION  
The LTC2378-20 is a low noise, low power, high speed  
20-bit successive approximation register (SAR) ADC.  
Operating from a single 2.5V supply, the LTC2378-20  
The LTC2378-20 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
+
converter (CDAC) is connected to the IN and IN pins  
to sample the differential analog input voltage. A rising  
edge on the CNV pin initiates a conversion. During the  
conversionphase,the20-bitCDACissequencedthrougha  
successiveapproximationalgorithm,effectivelycomparing  
the sampled input with binary-weighted fractions of the  
supports a large and flexible V fully differential input  
REF  
range with V ranging from 2.5V to 5.1V, making it ideal  
REF  
for high performance applications which require a wide  
dynamic range. The LTC2378-20 achieves 2ppm INL  
maximum, no missing codes at 20 bits and 104dB SNR.  
reference voltage (e.g. V /2, V /4 … V /1048576)  
REF  
REF  
REF  
Fast 1Msps throughput with no cycle latency makes the  
LTC2378-20 ideally suited for a wide variety of high speed  
applications.Aninternaloscillatorsetstheconversiontime,  
easing external timing considerations. The LTC2378-20  
dissipatesonly21mWat1Msps,whileanautopower-down  
feature is provided to further reduce power dissipation  
during inactive periods.  
usingthedifferentialcomparator.Attheendofconversion,  
the CDAC output approximates the sampled analog input.  
The ADC control logic then prepares the 20-bit digital  
output code for serial transfer.  
TRANSFER FUNCTION  
The LTC2378-20 digitizes the full-scale voltage of 2 × REF  
The LTC2378-20 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
20  
into 2 levels, resulting in an LSB size of 9.5µV with  
REF = 5V. Note that 1 LSB at 20 bits is approximately  
1ppm. The ideal transfer function is shown in Figure 2.  
The output data is in 2’s complement format.  
function that maps zero-scale code from 0V to 0.1 • V  
REF  
and full-scale code from V  
to 0.9 • V . For a typical  
REF  
REF  
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
ANAꢁOG INPUT  
The analog inputs of the LTC2378-20 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
237820f  
9
For more information www.linear.com/LTC2378-20  
LTC2378-20  
applicaTions inForMaTion  
tling of the analog signal during the acquisition phase. It  
also provides isolation between the signal source and the  
ADC input currents.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
Noise and Distortion  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/1048576 ≈ 1ppm  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
INPUT VOLTAGE (V)  
237820 F02  
LPF2  
Figure 20 ꢁTC2378-2± Transfer Function  
6800pF  
SINGLE-ENDED-  
10Ω  
shown in Figure 3. The diodes at the input provide ESD  
protection. In the acquisition phase, each input sees ap-  
LPF1  
INPUT SIGNAL  
+
IN  
500Ω  
3300pF  
LTC2378-20  
proximately 45pF (C ) from the sampling CDAC in series  
IN  
6600pF  
IN  
10Ω  
with 40Ω (R ) from the on-resistance of the sampling  
ON  
237820 F04  
SINGLE-ENDED- 6800pF  
TO-DIFFERENTIAL  
DRIVER  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw a current spike while charging  
BW = 48kHz  
BW = 1.2MHz  
Figure 40 Input Signal Chain  
the C capacitors during acquisition. During conversion,  
IN  
the analog inputs draw only a small leakage current.  
A coupling filter network (LPF2) should be used between  
thebufferandADCinputtominimizedisturbancesreflected  
into the buffer from sampling transients. Long RC time  
constants at the analog inputs will slow down the settling  
of the analog inputs. Therefore, LPF2 typically requires a  
widerbandwidththanLPF1. Thisfilteralsohelpsminimize  
the noise contribution from the buffer. A buffer amplifier  
with a low noise density must be selected to minimize  
degradation of the SNR.  
INPUT DRIVE CIRCUITS  
Alowimpedancesourcecandirectlydrivethehighimped-  
ance inputs of the LTC2378-20 without gain error. A high  
impedance source should be buffered to minimize settling  
time during acquisition and to optimize ADC linearity. For  
best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2378-20. The amplifier  
provides low output impedance, which produces fast set-  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
REF  
C
45pF  
IN  
R
ON  
40Ω  
+
IN  
IN  
BIAS  
VOLTAGE  
REF  
C
45pF  
IN  
R
40Ω  
ON  
Input Currents  
One of the biggest challenges in coupling an amplifier to  
the LTC2378-20 is in dealing with current spikes drawn  
by the ADC inputs at the start of each acquisition phase.  
237820 F03  
Figure 30 The Equivalent Circuit for the  
Differential Analog Input of the ꢁTC2378-2±  
237820f  
10  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
applicaTions inForMaTion  
The input leakage currents of the LTC2378-20 should  
also be considered when designing the input drive circuit,  
because source impedances will convert input leakage  
currentstoanaddedinputvoltageerror. Theinputleakage  
currents,bothcommonmodeanddifferential,aretypically  
extremely small over the entire operating temperature  
range. Figure 6 shows input leakage currents over tem-  
perature for a typical part.  
The ADC inputs may be modeled as a switched capacitor  
load of the drive circuit. A drive circuit may rely partially  
on attenuating switched-capacitor current spikes with  
small filter capacitors C  
placed directly at the ADC  
FILT  
inputs, and partially on the driver amplifier having suffi-  
cient bandwidth to recover from the residual disturbance.  
Amplifiers optimized for DC performance may not have  
sufficientbandwidthtofullyrecoverattheADC’smaximum  
conversionrate, whichcanproducenonlinearityandother  
errors. Coupling filter circuits may be classified in three  
broad categories:  
+
LTC2378-20  
IN  
R
EQ  
C
C
FILT >> 45pF  
BIAS  
VOLTAGE  
IN  
Fully Settled – This case is characterized by filter time  
constants and an overall settling time that is consider-  
ably shorter than the sample period. When acquisition  
begins, the coupling filter is disturbed. For a typical first  
order RC filter, the disturbance will look like an initial step  
with an exponential decay. The amplifier will have its own  
response to the disturbance, which may include ringing. If  
the input settles completely (to within the accuracy of the  
LTC2378-20),thedisturbancewillnotcontributeanyerror.  
R
EQ  
FILT >> 45pF  
237820 F05  
1
REQ  
=
f
SMPL 45pF  
Figure .0 Equivalent Circuit for the Differential Analog  
Input of the ꢁTC2378-2± at 1Msps  
30  
PartiallySettledInthiscase, thebeginningofacquisition  
causes a disturbance of the coupling filter, which then  
begins to settle out towards the nominal input voltage.  
However, acquisition ends (and the conversion begins)  
before the input settles to its final value. This generally  
produces a gain error, but as long as the settling is linear,  
no distortion is produced. The coupling filter’s response  
is affected by the amplifier’s output impedance and other  
parameters. A linear settling response to fast switched-  
capacitor current spikes can NOT always be assumed for  
precision, low bandwidth amplifiers. The coupling filter  
serves to attenuate the current spikes’ high-frequency  
energy before it reaches the amplifier.  
20  
10  
DIFFERENTIAL  
0
COMMON  
–10  
–55 –35 –15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
237820 F06  
Figure 60 Coꢀꢀon Mode and Differential Input ꢁeakage Current  
over Teꢀperature  
Let R and R be the source impedances of the dif-  
FullyAveragedIfthecouplingfiltercapacitors(C )atthe  
S1  
S2  
FILT  
ferential input drive circuit shown in Figure 7, and let I  
ADCinputsaremuchlargerthantheADC’ssamplecapacitors  
(45pF), then the sampling glitch is greatly attenuated. The  
driving amplifier effectively only sees the average sampling  
current, whichisquitesmall. At1Msps, theequivalentinput  
resistance is approximately 22k (as shown in Figure 5), a  
benignresistiveloadformostprecisionamplifiers.However,  
resistive voltage division will occur between the coupling  
filter’s DC resistance and the ADC’s equivalent (switched-  
capacitor) input resistance, thus producing a gain error.  
L1  
and I be the leakage currents flowing out of the ADC’s  
analog inputs. The voltage error, V , due to the leakage  
L2  
E
currents can be expressed as:  
RS1+RS2  
IL1+IL2  
VE =  
I –I + R –R  
S2  
(
)
(
)
L1 L2  
S1  
2
2
The common mode input leakage current, (I + I )/2, is  
L1  
L2  
typically extremely small (Figure 6) over the entire operat-  
237820f  
11  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
applicaTions inForMaTion  
Single-Ended-to-Differential Conversion  
I
L1  
R
S1  
+
IN  
+
For single-ended input signals, a single-ended-to-  
differential conversion circuit must be used to produce  
a differential signal at the inputs of the LTC2378-20. The  
LT6203ADCdriverisrecommendedforperformingsingle-  
ended-to-differential conversions. The LT6203 is flexible  
and may be configured to convert single-ended signals  
of various amplitudes to the 5V differential input range  
of the LTC2378-20.  
LTC2378-20  
V
E
IN  
R
S2  
I
L2  
237820 F07  
Figure 70 Source Iꢀpedances of a Driver and Input ꢁeakage  
Currents of the ꢁTC2378-2±  
ing temperature range and common mode input voltage  
range. Thus, any reasonable mismatch (below 5%) of the  
Figure 9a shows the LT6203 being used to convert a 0V to  
5Vsingle-endedinputsignal.Inthiscase,thefirstamplifier  
is configured as a unity gain buffer and the single-ended  
inputsignaldirectlydrivesthehigh-impedanceinputofthe  
amplifier. As shown in the FFT of Figure 9b, the LT6203  
drivestheLTC2378-20tonearfulldatasheetperformance.  
sourceimpedancesR andR willcauseonlyanegligible  
S1  
S2  
error. The differential input leakage current, (I – I ),  
L1  
IN  
L2  
REF  
dependsontemperatureandismaximumwhenV =V  
,
as shown in Figure 6. The differential leakage current is  
also typically very small, and its nonlinear component is  
even smaller. Only the nonlinear component will impact  
the ADC’s linearity.  
499Ω  
499Ω  
For optimal performance, it is recommended that the  
LT6203  
5V  
0V  
6
5
+
source impedances, R and R , be between 10Ω and  
S1  
S2  
OUT2  
OUT1  
7
1
5V  
0V  
50Ω and with 1% tolerance. For source impedances in  
3
2
+
this range, the voltage and temperature coefficients of  
5V  
0V  
R
and R are usually not critical. The guaranteed AC  
S2  
S1  
and DC specifications are tested with 10Ω source imped-  
ances, and the specifications will gradually degrade with  
increased source impedances due to incomplete settling  
of the inputs.  
249Ω  
+
V
= REF/2  
10µF  
CM  
237820 F09a  
Fully Differential Inputs  
Figure 9a0 ꢁT62±3 Converting a ±V to .V Single-Ended  
Signal to a ±.V Differential Input Signal  
A low distortion fully differential signal source driven  
through the LT6203 configured as two unity gain buffers  
as shown in Figure 8 can be used to get the full data sheet  
distortion performance of –125dB.  
0
SNR = 104dB  
–20  
–40  
THD = –112.7dB  
SINAD = 103.6dB  
SFDR = 115dB  
5V  
LT6203  
–60  
5V  
3
2
+
1
7
–80  
0V  
0V  
5V  
–100  
–120  
–140  
–160  
–180  
5V  
0V  
5
6
+
0V  
237820 F08  
0
100  
200  
300  
400  
500  
Figure 80 ꢁT62±3 Buffering a Fully Differential Signal Source  
FREQUENCY (kHz)  
237820 F09b  
Figure 9b0 128k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 9a  
237820f  
12  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
applicaTions inForMaTion  
Digital Gain Coꢀpression  
tion and reducing complexity. As shown in the FFT of  
Figure 11b, the single 5V supply solution can achieve up  
to 100dB of SNR.  
The LTC2378-20 offers a digital gain compression (DGC)  
feature which defines the full-scale input swing to be be-  
tween 10% and 90% of the V analog input range. To  
REF  
DC Accuracy  
enable digital gain compression, bring the REF/DGC pin  
low. This feature allows the SAR ADC driver to be powered  
off of a single positive supply since each input swings  
between 0.5V and 4.5V as shown in Figure 10. Needing  
only one positive supply to power the SAR ADC driver  
results in additional power savings for the entire system.  
Manydrivercircuitspresentedinthisdatasheetemphasize  
ACperformance(DistortionandSignaltoNoiseRatio),and  
the amplifiers are chosen accordingly. The very low level  
ofdistortionisadirectconsequenceoftheexcellentINLof  
the LTC2378-20, and this property can be exploited in DC  
applicationsaswell.NotethatwhiletheLT6362andLT6203  
are characterized by excellent AC specifications, their DC  
specifications do not match those of the LTC2378-20. The  
offsetoftheseamplifiers,forexample,ismorethan500μV  
under certain conditions. In contrast, the LTC2378-20 has  
a guaranteed maximum offset error of 130µV (typical drift  
0.007ppm/°C), and a guaranteed maximum full-scale  
error of 100ppm (typical drift 0.05ppm/°C). Low drift  
is important to maintain accuracy over wide temperature  
ranges in a calibrated system.  
With DGC enabled, the LTC2378-20 can be driven by the  
low power LTC6362 differential driver which is powered  
fromasingle5Vsupply.Figure11ashowshowtoconfigure  
the LTC6362 to accept a 3.28V true bipolar single-ended  
input signal and level shift the signal to the reduced input  
range of the LTC2378-20 when digital gain compression  
is enabled. When paired with the LTC6655-4.096 for the  
reference, the entire signal chain solution can be powered  
from a single 5V supply, minimizing power consump-  
5V  
Amplifiers have to be selected very carefully to provide a  
20-bit accurate DC signal chain. A large-signal open-loop  
gain of at least 126dB may be required to ensure 1ppm  
linearity for amplifiers configured for a gain of negative  
1. However, less gain is sufficient if the amplifier’s gain  
characteristic is known to be (mostly) linear. An ampli-  
fier’s offset versus signal level must be considered for  
amplifiers configured as unity gain buffers. For example,  
4.5V  
0.5V  
0V  
237820 F10  
Figure 1±0 Input Swing of the ꢁTC2378 with Gain  
Coꢀpression Enabled  
5V  
V
V
V
LTC6655-4.096  
0
–20  
IN  
SNR = 100dB  
THD = –110dB  
SINAD = 99.7dB  
SFDR = 113dB  
OUT_F  
OUT_S  
4.096V  
–40  
1k  
47µF  
–60  
1k  
V
CM  
3.69V  
0.41V  
2.5V  
1k  
10µF  
–80  
3
4
+
V
6800pF  
–100  
–120  
–140  
–160  
–180  
REF  
V
1k  
DD  
LTC2378-20  
REF/DGC  
+
8
1
35.7Ω  
3300pF  
35.7Ω  
IN  
IN  
+
LTC6362  
3.28V  
0V  
–3.28V  
1k  
5
6
3.69V  
2
V
CM  
237820 F11a  
V
6800pF  
0
100  
200  
300  
400  
500  
0.41V  
FREQUENCY (kHz)  
1k  
237820 F11b  
Figure 11a0 ꢁTC6362 Configured to Accept a ±3028V Input Signal While Running froꢀ  
a Single .V Supply When Digital Gain Coꢀpression Is Enabled in the ꢁTC2378-2±  
Figure 11b0 64k Point FFT Plot  
with fIN = 2kHz for Circuit Shown  
in Figure 11a  
237820f  
13  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
applicaTions inForMaTion  
1ppm linearity may require that the offset is known to  
vary less than 5μV for a 5V swing. However, greater offset  
variations may be acceptable if the relationship is known  
to be (mostly) linear. Unity-gain buffer amplifiers typically  
require substantial headroom to the power supply rails for  
best performance. Inverting amplifier circuits configured  
to minimize swing at the amplifier input terminals may  
perform better with only little headroom than unity-gain  
buffer amplifiers. The linearity and thermal properties  
of an inverting amplifier’s feedback network should be  
considered carefully to ensure DC accuracy.  
I
I
= Q  
/t . The DC current draw of the REF pin,  
CONV CYC  
REF  
REF  
, depends on the sampling rate and output code. If  
the LTC2378-20 is used to continuously sample a signal  
at a constant rate, the LTC6655-5 will keep the deviation  
of the reference voltage over the entire code span to less  
than 0.5LSBs.  
When idling, the REF pin on the LTC2378-20 draws only  
a small leakage current (< 1µA). In applications where a  
burst of samples is taken after idling for long periods as  
shown in Figure 12, I quickly goes from approximately  
REF  
0µA to a maximum of 1.1mA at 1Msps. This step in DC  
currentdrawtriggersatransient responseinthereference  
that must be considered since any deviation in the refer-  
ence output voltage will affect the accuracy of the output  
code. In applications where the transient response of the  
reference is important, the fast settling LTC6655-5 refer-  
ence is also recommended.  
ADC REFERENCE  
The LTC2378-20 requires an external reference to define  
its input range. A low noise, low temperature drift refer-  
enceiscriticaltoachievingthefulldatasheetperformance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications. Withitssmallsize, lowpowerandhigh  
accuracy, the LTC6655-5 is particularly well suited for  
use with the LTC2378-20. The LTC6655-5 offers 0.025%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficient for high precision applications.  
DYNAMIC PERFORMANCE  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
ratedthroughput.Byapplyingalowdistortionsinewaveand  
analyzingthedigitaloutputusinganFFT algorithm,theADC’s  
spectralcontentcanbeexaminedforfrequenciesoutsidethe  
fundamental. The LTC2378-20 provides guaranteed tested  
limits for both AC distortion and noise measurements.  
WhenchoosingabypasscapacitorfortheLTC6655-5, the  
capacitor’s voltage rating, temperature rating, and pack-  
age size should be carefully considered. Physically larger  
capacitorswithhighervoltageandtemperatureratingstend  
to provide a larger effective capacitance, better filtering  
the noise of the LTC6655-5, and consequently producing  
a higher SNR. Therefore, we recommend bypassing the  
LTC6655-5 with a 47μF ceramic capacitor (X7R, 1210  
size, 10V rating) close to the REF pin.  
Signal-to-Noise and Distortion Ratio ꢂSINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratio between the RMS amplitude of the fundamental input  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
to frequencies from above DC and below half the sampling  
frequency. Figure 13 shows that the LTC2378-20 achieves  
a typical SINAD of 104dB at a 1MHz sampling rate with a  
2kHz input.  
TheREFpinoftheLTC2378-20drawscharge(Q  
)from  
CONV  
the 47µF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
CNV  
IDLE  
PERIOD  
IDLE  
PERIOD  
237820 F12  
Figure 120 CNV Waveforꢀ Showing Burst Saꢀpling  
237820f  
14  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
applicaTions inForMaTion  
Signal-to-Noise Ratio ꢂSNR)  
Power Supply Sequencing  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 13 shows  
that the LTC2378-20 achieves a typical SNR of 104dB at  
a 1MHz sampling rate with a 2kHz input.  
The LTC2378-20 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2378-20  
has a power-on-reset (POR) circuit that will reset the  
LTC2378-20 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 200µs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
0
SNR = 104dB  
–20  
–40  
THD = –128dB  
SINAD = 104dB  
SFDR = 132dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
TIMING AND CONTROꢁ  
CNV Tiꢀing  
0
100  
200  
300  
400  
500  
The LTC2378-20 conversion is controlled by CNV. A ris-  
ing edge on CNV will start a conversion and power up  
the LTC2378-20. Once a conversion has been initiated,  
it cannot be restarted until the conversion is complete.  
For optimum performance, CNV should be driven by a  
clean low jitter signal. Converter status is indicated by the  
BUSY output which remains high while the conversion is  
in progress. To ensure that no errors occur in the digitized  
results, any additional transitions on CNV should occur  
within 40ns from the start of the conversion or after the  
conversion has been completed. Once the conversion has  
completed, the LTC2378-20 powers down and begins  
acquiring the input signal.  
FREQUENCY (kHz)  
237820 F13  
Figure 130 128k Point FFT Plot with fIN = 2kHz of the ꢁTC2378-2±  
Total Harꢀonic Distortion ꢂTHD)  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42 +…+ VN2  
THD=20log  
V1  
Internal Conversion Clock  
where V1 is the RMS amplitude of the fundamental fre-  
The LTC2378-20 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof675ns.Withamin-  
imum acquisition time of 312ns, throughput performance  
of 1Msps is guaranteed without any external adjustments.  
quencyandV2throughV aretheamplitudesofthesecond  
N
through Nth harmonics.  
POWER CONSIDERATIONS  
Auto Power-Down  
The LTC2378-20 provides two power supply pins: the  
The LTC2378-20 automatically powers down after a  
conversion has been completed and powers up once a  
new conversion is initiated on the rising edge of CNV.  
During power down, data from the last conversion can  
be clocked out. To minimize power dissipation during  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2378-20 to communicate with any digital  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems.  
237820f  
15  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
applicaTions inForMaTion  
power down, disable SDO and turn off SCK. The auto  
power-down feature will reduce the power dissipation of  
the LTC2378-20 as the sampling frequency is reduced.  
Since power is consumed only during a conversion, the  
LTC2378-20remainspowered-downforalargerfractionof  
DIGITAꢁ INTERFACE  
The LTC2378-20 has a serial digital interface. The flexible  
OV supplyallowstheLTC2378-20tocommunicatewith  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
64MHz, a 1Msps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D19 remains valid until the first rising edge of SCK.  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 14.  
10  
9
8
7
6
I
VDD  
5
4
3
The serial interface on the LTC2378-20 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operationoftheLTC2378-20. Severalmodesareprovided  
depending on whether a single or multiple ADCs share the  
SPI bus or are daisy chained.  
I
OVDD  
2
1
0
I
REF  
0
100 200 300 400 500 600 700 800 9001000  
SAMPLING RATE (kHz)  
237820 F14  
Figure 140 Power Supply Current of the ꢁTC2378-2±  
Versus Saꢀpling Rate  
237820f  
16  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
TiMing DiagraMs  
Norꢀal Mode, Single Device  
Figure 15 shows a single LTC2378-20 operated in normal  
mode with CHAIN and RDL/SDI tied to ground. With RDL/  
SDI grounded, SDO is enabled and the MSB(D19) of the  
new conversion data is available at the falling edge of  
BUSY.ThisisthesimplestwaytooperatetheLTC2378-20.  
When CHAIN = 0, the LTC2378-20 operates in normal  
mode. In normal mode, RDL/SDI enables or disables the  
serial data output pin SDO. If RDL/SDI is high, SDO is in  
high impedance. If RDL/SDI is low, SDO is driven.  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
LTC2378-20  
SCK  
RDL/SDI  
SDO  
DATA IN  
CLK  
237820 F15a  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
= t  
– t  
– t  
ACQ CYC CONV BUSYLH  
t
t
CONV  
ACQ  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
18  
19  
20  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D19  
D18  
D17  
D1  
D0  
237820 F15  
Figure 1.0 Using a Single ꢁTC2378-2± in Norꢀal Mode  
237820f  
17  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
TiMing DiagraMs  
Norꢀal Mode, Multiple Devices  
Since SDO is shared, the RDL/SDI input of each ADC must  
be used to allow only one LTC2378-20 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure16,  
the RDL/SDI inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDI is brought low, the MSB of the selected  
device is output onto SDO.  
Figure 16 shows multiple LTC2378-20 devices operating  
in normal mode (CHAIN = 0) sharing CNV, SCK and SDO.  
By sharing CNV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2378-20  
B
LTC2378-20  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
237820 F16a  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
CONVERT  
POWER-DOWN AND ACQUIRE  
CHAIN = 0  
t
CNVL  
CNV  
t
CONV  
BUSY  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
21  
SCK  
SDO  
1
2
3
18  
19  
20  
22  
23  
38  
39  
40  
t
t
SCKL  
HSDO  
t
t
DSDO  
DIS  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D19  
A
D18  
D17  
D1  
A
D0  
D19  
D18  
D17  
D1  
B
D0  
B
A
A
A
B
B
B
237820 F16  
Figure 160 Norꢀal Mode With Multiple Devices Sharing CNV, SCK and SDO  
237820f  
18  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
TiMing DiagraMs  
Chain Mode, Multiple Devices  
This is useful for applications where hardware constraints  
may limitthe numberoflinesneeded to interface to a large  
number of converters. Figure 17 shows an example with  
two daisy-chained devices. The MSB of converter A will  
appear at SDO of converter B after 20 SCK cycles. The  
MSB of converter A is clocked in at the SDI/RDL pin of  
converter B on the rising edge of the first SCK.  
When CHAIN = OV , the LTC2378-20 operates in chain  
DD  
mode.Inchainmode,SDOisalwaysenabledandRDL/SDI  
serves as the serial data input pin (SDI) where daisy-chain  
data output from another ADC can be input.  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2378-20  
LTC2378-20  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
237820 F17a  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
t
SCKCH  
t
t
QUIET  
SCKH  
1
2
3
18  
19  
20  
21  
22  
38  
39  
40  
t
SCKL  
t
t
HSDO  
SSDISCK  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D19  
D18  
D18  
D17  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D19  
D17  
D1  
B
D19  
D18  
D1  
A
D0  
A
SDO  
B
B
B
B
A
A
B
237820 F17  
Figure 170 Chain Mode Tiꢀing Diagraꢀ  
237820f  
19  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
boarD layouT  
To obtain the best performance from the LTC2378-20  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCB) should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals alongside analog signals or underneath  
the ADC.  
Recoꢀꢀended ꢁayout  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1925A, the  
evaluation kit for the LTC2378-20.  
Top Silkscreen  
237820f  
20  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
boarD layouT  
ꢁayer 1 Coꢀponent Side  
237820f  
21  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
boarD layouT  
ꢁayer 2 Ground Plane  
237820f  
22  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
boarD layouT  
ꢁayer 3 PWR Plane  
237820f  
23  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
boarD layouT  
ꢁayer 4 Bottoꢀ ꢁayer  
237820f  
24  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
boarD layouT  
Partial Scheꢀatic of Deꢀoboard  
D G C R E F /  
R E F  
8
7
1 5  
2
1
G N D  
D D  
D D  
V
G N D 1 6  
O V  
G N D  
1 0  
G N D  
6
3
3
2
1
3
2
1
237820f  
25  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
package DescripTion  
Please refer to http://www0linear0coꢀ/designtools/packaging/ for the ꢀost recent package drawings0  
DE Package  
16-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ732 Rev Ø)  
R = 0.ꢀꢀ5  
TYP  
0.40 0.ꢀ0  
4.00 0.ꢀ0  
(2 SIDES)  
9
ꢀ6  
R = 0.05  
0.70 0.05  
TYP  
3.30 0.05  
ꢀ.70 0.05  
3.30 0.ꢀ0  
3.60 0.05  
2.20 0.05  
3.00 0.ꢀ0  
(2 SIDES)  
PACKAGE  
OUTLINE  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
R = 0.20 OR  
PIN ꢀ  
0.35 × 45°  
TOP MARK  
CHAMFER  
(SEE NOTE 6)  
(DEꢀ6) DFN 0806 REV Ø  
8
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.45 BSC  
3.ꢀ5 REF  
3.ꢀ5 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
237820f  
26  
For more information www.linear.com/LTC2378-20  
LTC2378-20  
package DescripTion  
Please refer to http://www0linear0coꢀ/designtools/packaging/ for the ꢀost recent package drawings0  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
4.039 0.102  
(.159 .004)  
0.889 0.127  
(.035 .005)  
(NOTE 3)  
0.280 0.076  
(.011 .003)  
REF  
16151413121110  
9
5.23  
(.206)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
DETAIL “A”  
0° – 6° TYP  
3.20 – 3.45  
(.126 – .136)  
4.90 0.152  
(.193 .006)  
0.254  
(.010)  
GAUGE PLANE  
0.53 0.152  
(.021 .006)  
1 2 3 4 5 6 7 8  
0.50  
(.0197)  
BSC  
0.305 0.038  
(.0120 .0015)  
TYP  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
RECOMMENDED SOLDER PAD LAYOUT  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 0.0508  
(.004 .002)  
0.50  
(.0197)  
BSC  
MSOP (MS16) 1107 REV Ø  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
237820f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC2378-20  
Typical applicaTion  
ꢁTC6362 Configured to Accept a ±3028V Input Signal While Running froꢀ a Single  
.V Supply with Digital Gain Coꢀpression Enabled in the ꢁTC2378-2±  
5V  
V
V
V
LTC6655-4.096  
IN  
OUT_F  
OUT_S  
4.096V  
1k  
1k  
47µF  
1k  
V
CM  
3.69V  
2.5V  
10µF  
3
4
+
V
6800pF  
0.41V  
REF  
V
DD  
1k  
+
8
1
35.7Ω  
3300pF  
35.7Ω  
IN  
IN  
+
LTC6362  
LTC2378-20  
REF/DGC  
3.28V  
0V  
–3.28V  
1k  
5
6
3.69V  
2
V
CM  
237820 TA03  
V
6800pF  
0.41V  
1k  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2379-18/LTC2378-18 18-Bit, 1.6Msps/1Msps/500ksps/250ksps Serial,  
LTC2377-18/LTC2376-18 Low Power ADC  
2.5V Supply, Differential Input, 101.2dB SNR, 5V Input Range, DGC,  
Pin Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial, Low 2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC,  
LTC2377-16/LTC2376-16 Power ADC  
Pin Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2369-18/LTC2368-18/ 18-Bit, 1.6Msps/1Msps/500ksps/250ksps Serial,  
LTC2367-18/LTC2364-18 Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 96.5dB SNR, 0V to 5V  
Input Range, Pin Compatible Family in MSOP-16 and 4mm × 3mm  
DFN-16 Packages  
LTC2370-16/LTC2368-16 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial, Low 2.5V Supply, Pseudo-Differential Unipolar Input, 94dB SNR, 0V to 5V  
LTC2367-16/LTC2364-16 Power ADC  
Input Range, Pin Compatible Family in MSOP-16 and 4mm × 3mm  
DFN-16 Packages  
LTC2389-18/LTC2389-16 18-/16-Bit, 2.5Msps Parallel/Serial, ADC  
5V Supply, Pin Configurable Input Range, 99.8dB SNR, Pin Compatible  
Parts in 7mm × 7mm LQFP-48 and QFN-48 Packages  
DACS  
LTC2756/LTC2757  
LTC2641  
18-Bit, Single Serial/Parallel I  
SoftSpan™ DAC  
DAC  
1LSB INL/DNL, SSOP-28 and 7mm × 7mm LQFP-48 Packages  
1LSB INL/DNL, MSOP-8 Package, 0V to 5V Output  
OUT  
16-/14-/12-Bit Single Serial V  
OUT  
LTC2630  
12-/10-/8-Bit Single V  
DACs  
SC70 6-Pin Package, Internal Reference, 1LSB INL (12 Bits)  
OUT  
REFERENCES  
LTC6655  
Precision Low Drift Low Noise Buffered Reference  
Precision Low Drift Low Noise Buffered Reference  
5V/2.5V, 5ppm/°C, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
5V/2.5V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
AMPꢁIFIERS  
LTC6362  
Low Power Rail-to-Rail Input/Output Differential  
Output Amplifier/ADC Driver  
Single 2.8V to 5.25V Supply, 1mA Supply Current, MSOP-8 and  
3mm × 3mm DFN-8 Packages  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with  
Unity Gain/AV = 5/AV = 10  
Low Noise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dB at  
1MHz, TSOT23-6 Package  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail Input/Output Noise 1.9nV√Hz, 3mA Maximum, 100MHz Gain Bandwidth, TSOT23-5, SO-8 ,  
Low Power Amplifiers MSOP-8 and 3mm × 3mm DFN-8 Packages  
237820f  
LT 0413 • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2378-20  

相关型号:

LTC2379-18

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379-18

LTC2379-1818-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear System

LTC2379-18_11

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379CDE-18

LTC2379-1818-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear System

LTC2379CDE-18#PBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CDE-18#TRPBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CDE-18PBF

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379CDE-18TRPBF

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379CMS-18

LTC2379-1818-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear System

LTC2379CMS-18#PBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CMS-18#TRPBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CMS-18PBF

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear