LTC2379-18 [Linear]

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR; 18位, 1.6Msps ,低功耗SAR型ADC的SNR 101.2分贝
LTC2379-18
型号: LTC2379-18
厂家: Linear    Linear
描述:

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
18位, 1.6Msps ,低功耗SAR型ADC的SNR 101.2分贝

文件: 总24页 (文件大小:2836K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2379-18  
18-Bit, 1.6Msps, Low Power  
SAR ADC with 101.2dB SNR  
FEATURES  
DESCRIPTION  
The LTC®2379-18 is a low noise, low power, high speed  
18-bit successive approximation register (SAR) ADC. Op-  
n
1.6Msps Throughput Rate  
n
2ꢀSꢁ INꢀ ꢂMaꢃx  
n
Guaranteed 18-ꢁit No Missing Codes  
erating from a 2.5V supply, the LTC2379-18 has a V  
fullydifferentialinputrangewithV rangingfrom2.5Vto  
5.1V.TheLTC2379-18consumesonly18mWandachieves  
2LSꢀ ꢁIL maximum, no missing codes at 18-bits with  
101.2dꢀ SIR.  
REF  
n
ꢀow Power: 18mW at 1.6Msps, 18µW at 1.6ksps  
REF  
n
101.2dꢁ SNR ꢂtypx at f = 2kHz  
IN  
IN  
n
120dꢁ THD ꢂtypx at f = 2kHz  
n
Digital Gain Compression ꢂDGCx  
n
Guaranteed Operation to 125°C  
The LTC2379-18 has a high speed SPꢁ-compatible se-  
rial interface that supports 1.8V, 2.5V, 3.3V and 5V logic  
while also featuring a daisychain mode. The fast 1.6Msps  
throughput with no cycle latency makes the LTC2379-18  
ideally suited for a wide variety of high speed applications.  
Aninternaloscillatorsetstheconversiontime,easingexter-  
nal timing considerations. The LTC2379-18 automatically  
powers down between conversions, leading to reduced  
power dissipation that scales with the sampling rate.  
n
2.5V Supply  
n
Fully Differential ꢁnput Range V  
REF  
n
n
n
n
n
n
V
ꢁnput Range from 2.5V to 5.1V  
REF  
Io Pipeline Delay, Io Cycle Latency  
1.8V to 5V ꢁ/O Voltages  
SPꢁ-Compatible Serial ꢁ/O with Daisychain Mode  
ꢁnternal Conversion Clock  
16-pin MSOP and 4mm × 3mm DFI Packages  
The LTC2379-18 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
APPLICATIONS  
n
Medical ꢁmaging  
n
High Speed Data Acquisition  
n
Portable or Compact ꢁnstrumentation  
ꢁndustrial Process Control  
Low Power ꢀattery-Operated ꢁnstrumentation  
ATE  
function that maps zero-scale code from 0V to 0.1 • V  
REF  
n
and full-scale code from V  
to 0.9 • V . For a typical  
REF  
REF  
n
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
TYPICAL APPLICATION  
32k Point FFT fS = 1.6Msps, fIN = 2kHz  
0
2.5V 1.8V TO 5V  
10µF  
SNR = 101.2dB  
–20  
–40  
THD = –120dB  
SINAD = 101.1dB  
SFDR = 121dB  
0.1µF  
–60  
V
OV  
DD  
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
CNV  
DD  
3300pF  
3300pF  
3300pF  
V
V
REF  
20Ω  
20Ω  
+
–80  
IN  
+
0V  
–100  
–120  
–140  
–160  
–180  
LTC2379-18  
REF  
IN  
SAMPLE CLOCK  
0V  
V
REF/DGC  
REF  
GND  
REF  
237918 TA01  
2.5V TO 5.1V  
47µF  
(X5R, 0805 SIZE)  
0
100 200 300 400 500 600 700 800  
FREQUENCY (kHz)  
237918 TA02  
237918f  
1
LTC2379-18  
ABSOLUTE MAXIMUM RATINGS  
ꢂNotes 1, 2x  
Supply Voltage (V )...............................................2.8V  
Digital Output Voltage  
DD  
Supply Voltage (OV )................................................6V  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
DD  
Reference ꢁnput (REF).................................................6V  
Analog ꢁnput Voltage (Iote 3)  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2379C ................................................ 0°C to 70°C  
LTC2379ꢁ .............................................–40°C to 85°C  
LTC2379H .......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
+
ꢁI , ꢁI ......................... (GID –0.3V) to (REF + 0.3V)  
REF/DGC ꢁnput (Iote 3).... (GID –0.3V) to (REF + 0.3V)  
Digital ꢁnput Voltage  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
PIN CONFIGURATION  
TOP VIEW  
CHAIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
OV  
TOP VIEW  
V
DD  
DD  
CHAIN 1  
16 GND  
GND  
SDO  
V
2
15 OV  
DD  
DD  
+
GND 3  
14 SDO  
13 SCK  
17  
GND  
IN  
SCK  
+
IN  
IN  
4
5
IN  
RDL/SDI  
BUSY  
GND  
12 RDL/SDI  
11 BUSY  
10 GND  
GND  
REF  
GND 6  
REF 7  
REF/DGC 8  
9
CNV  
REF/DGC  
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
T
= 150°C, θ = 110°C/W  
16-LEAD (4mm × 3mm) PLASTIC DFN  
JMAX  
JA  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PꢁI 17) ꢁS GID, MUST ꢀE SOLDERED TO PCꢀ  
ORDER INFORMATION  
ꢀEAD FREE FINISH  
LTC2379CMS-18#PꢀF  
LTC2379ꢁMS-18#PꢀF  
LTC2379HMS-18#PꢀF  
LTC2379CDE-18#PꢀF  
LTC2379ꢁDE-18#PꢀF  
TAPE AND REEꢀ  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2379CMS-18#TRPꢀF 237918  
LTC2379ꢁMS-18#TRPꢀF 237918  
LTC2379HMS-18#TRPꢀF 237918  
LTC2379CDE-18#TRPꢀF 23798  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFI  
16-Lead (4mm × 3mm) Plastic DFI  
LTC2379ꢁDE-18#TRPꢀF  
23798  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
237918f  
2
LTC2379-18  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
V +  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
–0.05  
–0.05  
TYP  
MAX  
UNITS  
+
l
l
l
l
Absolute ꢁnput Range (ꢁI )  
V
V
+ 0.05  
V
V
V
V
ꢁI  
REF  
REF  
V
Absolute ꢁnput Range (ꢁI )  
(Iote 5)  
+ 0.05  
ꢁI  
V + – V – ꢁnput Differential Voltage Range  
V
= V + – V –  
–V  
+V  
REF  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
REF  
V
Common-Mode ꢁnput Range  
V
/2–  
V /2  
REF  
V
/2+  
REF  
0.05  
CM  
REF  
0.05  
l
Analog ꢁnput Leakage Current  
Analog ꢁnput Capacitance  
1
µA  
ꢁI  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
ꢁI  
CMRR  
ꢁnput Common Mode Rejection Ratio  
f
= 800kHz  
86  
dꢀ  
ꢁI  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ PARAMETER  
CONDITIONS  
MIN  
18  
TYP  
MAX  
UNITS  
ꢀits  
l
l
Resolution  
Io Missing Codes  
18  
ꢀits  
Transition Ioise  
0.8  
0.8  
0.2  
0
LSꢀ  
RMS  
l
l
l
ꢁIL  
ꢁntegral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Iote 6)  
(Iote 7)  
(Iote 7)  
–2  
–0.9  
–9  
2
0.9  
9
LSꢀ  
DIL  
ꢀZE  
LSꢀ  
LSꢀ  
3
mLSꢀ/°C  
LSꢀ  
l
FSE  
–40  
7
40  
0.05  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dꢁFS. ꢂNotes 4, 8x  
SYMꢁOꢀ PARAMETER  
CONDITIONS  
MIN  
97.8  
97.3  
TYP  
101  
101  
MAX  
UNITS  
dꢀ  
l
l
SꢁIAD  
SIR  
Signal-to-(Ioise + Distortion) Ratio  
f
f
= 2kHz, V = 5V  
REF  
ꢁI  
ꢁI  
= 2kHz, V = 5V, (H-Grade)  
dꢀ  
REF  
l
l
l
Signal-to-Ioise Ratio  
f
f
f
= 2kHz, V = 5V  
98.1  
96.3  
92.3  
101.2  
99  
96  
dꢀ  
dꢀ  
dꢀ  
ꢁI  
ꢁI  
ꢁI  
REF  
= 2kHz, V = 5V, REF/DGC = GID  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
l
f
f
f
= 2kHz, V = 5V, (H-Grade)  
97.7  
95.8  
92  
101.2  
99  
96  
dꢀ  
dꢀ  
dꢀ  
ꢁI  
ꢁI  
ꢁI  
REF  
= 2kHz, V = 5V, REF/DGC = GID, (H-Grade)  
REF  
= 2kHz, V = 2.5V, (H-Grade)  
REF  
l
l
l
THD  
Total Harmonic Distortion  
f
f
f
= 2kHz, V = 5V  
–108.6  
–104.7  
–99.6  
–120  
–119  
–107  
dꢀ  
dꢀ  
dꢀ  
ꢁI  
ꢁI  
ꢁI  
REF  
= 2kHz, V = 5V, REF/DGC = GID  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
l
f
f
f
= 2kHz, V = 5V, (H-Grade)  
–108.1  
–102.8  
–99.4  
–120  
–119  
–107  
dꢀ  
dꢀ  
dꢀ  
ꢁI  
ꢁI  
ꢁI  
REF  
= 2kHz, V = 5V, REF/DGC = GID, (H-Grade)  
REF  
= 2kHz, V = 2.5V, (H-Grade)  
REF  
SFDR  
Spurious Free Dynamic Range  
–3dꢀ ꢁnput ꢀandwidth  
Aperture Delay  
f
= 2kHz, V = 5V  
122  
34  
dꢀ  
MHz  
ps  
ꢁI  
REF  
500  
4
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
200  
ns  
237918f  
3
LTC2379-18  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
TYP  
MAX  
5.1  
UNITS  
l
l
l
l
V
Reference Voltage  
2.5  
V
mA  
V
REF  
REF  
Reference ꢁnput Current  
High Level ꢁnput Voltage REF/DGC Pin  
Low Level ꢁnput Voltage REF/DGC Pin  
(Iote 9)  
1
1.3  
V
ꢁHDGC  
V
ꢁLDGC  
0.8V  
REF  
0.2V  
V
REF  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
Digital ꢁnput Current  
0.8 • OV  
ꢁH  
ꢁL  
DD  
0.2 • OV  
V
DD  
V
ꢁI  
= 0V to OV  
DD  
–10  
10  
µA  
pF  
ꢁI  
C
V
V
Digital ꢁnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
ꢁI  
l
l
l
ꢁ = –500 µA  
O
OV – 0.2  
DD  
V
OH  
OL  
ꢁ = 500 µA  
O
0.2  
10  
V
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SꢁIK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
2.375  
1.71  
TYP  
MAX  
2.625  
5.25  
8.6  
UNITS  
l
l
l
V
2.5  
V
V
DD  
OV  
DD  
Supply Current  
Supply Current  
Power Down Mode  
Power Down Mode  
1.6Msps Sample Rate  
7.2  
1.1  
0.9  
0.9  
mA  
mA  
µA  
VDD  
OVDD  
PD  
1.6Msps Sample Rate (C = 20pF)  
L
+ ꢁ  
+ ꢁ  
l
l
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ )  
REF  
90  
140  
VDD  
VDD  
OVDD  
OVDD  
REF  
+ ꢁ , H-Grade)  
µA  
PD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
1.6Msps Sample Rate  
18  
2.25  
2.25  
21.5  
225  
315  
mW  
µW  
µW  
D
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ  
+ ꢁ  
+ ꢁ )  
REF  
REF  
VDD  
VDD  
OVDD  
OVDD  
+ ꢁ , H-Grade)  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1.6  
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
COIV  
ACQ  
360  
200  
625  
20  
412  
Acquisition Time  
t
= t  
–t  
– t (Iote 10)  
ꢀUSYLH  
ns  
ACQ  
CYC COIV  
Time ꢀetween Conversions  
CIV High Time  
ns  
CYC  
ns  
CIVH  
ꢀUSYLH  
CIVL  
QUꢁET  
SCK  
C = 20pF  
L
13  
ns  
CIV to ꢀUSY Delay  
Minimum Low Time for CIV  
SCK Quiet Time from CIV ↑  
SCK Period  
(Iote 11)  
20  
20  
10  
4
ns  
(Iote 10)  
ns  
(Iotes 11, 12)  
ns  
SCK High Time  
ns  
SCKH  
237918f  
4
LTC2379-18  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
SCK Low Time  
SCKL  
(Iote 11)  
(Iote 11)  
4
ns  
SDꢁ Setup Time From SCK ↑  
SDꢁ Hold Time From SCK ↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK ↑  
SDO Data Remains Valid Delay from SCK ↑  
SDO Data Valid Delay from ꢀUSY↓  
ꢀus Enable Time After RDL ↓  
ꢀus Relinquish Time After RDL↑  
SSDꢁSCK  
HSDꢁSCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Iote 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDꢁSCK  
C = 20pF (Iote 11)  
L
9.5  
ns  
C = 20pF (Iote 10)  
L
1
ns  
HSDO  
C = 20pF (Iote 10)  
L
5
ns  
DSDOꢀUSYL  
EI  
(Iote 11)  
(Iote 11)  
16  
13  
ns  
ns  
DꢁS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to ground.  
Note 3: When these pin voltages are taken below ground or above REFor  
The deviation is measured from the center of the quantization band.  
Note 7: ꢀipolar zero-scale error is the offset voltage measured from  
–0.5LSꢀ when the output code flickers between 00 0000 0000 0000 0000  
and 11 1111 1111 1111 1111. Full-scale bipolar error is the worst-case of  
–FS or +FS untrimmed deviation from ideal first and last code transitions  
and includes the effect of offset error.  
OV , they will be clamped by internal diodes. This product can handle  
Note 8: All specifications in dꢀ are referred to a full-scale 5V input with a  
5V reference voltage.  
DD  
input currents up to 100mA below ground or above REFor OV without  
DD  
latch-up.  
Note 9: f  
= 1.6MHz, ꢁ varies proportionately with sample rate.  
REF  
SMPL  
Note 4: V = 2.5V, OV = 2.5V, REF = 5V, f  
= 1.6MHz,  
DD  
DD  
SMPL  
Note 10: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
REF/DGC = V  
.
REF  
DD  
DD  
Note 5: Recommended operating conditions.  
and OV = 5.25V.  
DD  
Note 6: ꢁntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
Note 12: t  
100MHz for rising capture.  
of 10ns maximum allows a shift clock frequency up to  
SCK  
0.8*OV  
DD  
t
WIDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
237918 F01  
0.8*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
0.2*OV  
DD  
Figure 1. Voltage ꢀevels for Timing Specifications  
237918f  
5
LTC2379-18  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 5V,  
fSMPꢀ = 1.6Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
2.0  
1.5  
1.0  
0.8  
σ = 0.8  
0.6  
1.0  
0.4  
0.5  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
65536  
131072  
196608  
262144  
0
65536  
131072  
196608  
262144  
131068 131069 131070 131071 131072 131073  
OUTPUT CODE  
OUTPUT CODE  
CODE  
238018 G01  
237918 G02  
237918 G03  
THD, Harmonics  
32k Point FFT fS = 1.6Msps,  
fIN = 2kHz  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
0
–20  
105  
100  
95  
–80  
–90  
SNR = 101.2dB  
THD = –120dB  
SINAD = 101.1dB  
SFDR = 121dB  
–40  
SNR  
–60  
–100  
–110  
–120  
–130  
–140  
THD  
2ND  
–80  
SINAD  
–100  
–120  
–140  
–160  
–180  
90  
85  
3RD  
80  
0
100 200 300 400 500 600 700 800  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237918 G05  
237918 G06  
237918 G04  
SNR, SINAD vs Input level,  
fIN = 2kHz  
SNR, SINAD vs Reference  
Voltage, fIN = 2kHz  
THD, Harmonics vs Reference  
Voltage, fIN = 2kHz  
102  
101  
100  
99  
102.0  
101.5  
101.0  
100.5  
100.0  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
SNR  
SINAD  
THD  
SNR  
3RD  
SINAD  
98  
2ND  
97  
96  
95  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40  
–30  
–20  
–10  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
REFERENCE VOLTAGE (V)  
INPUT LEVEL (dB)  
REFERENCE VOLTAGE (V)  
237918 G16  
237918 G07  
237918 G17  
237918f  
6
LTC2379-18  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 5V,  
fSMPꢀ = 1.6Msps, unless otherwise noted.  
SNR, SINAD vs Temperature,  
fIN = 2kHz  
THD, Harmonics vs Temperature,  
fIN = 2kHz  
INꢀ/DNꢀ vs Temperature  
103  
102  
101  
100  
99  
–110  
–115  
–120  
–125  
–130  
–135  
2
1
SNR  
SINAD  
MAX INL  
THD  
MAX DNL  
3RD  
0
MIN DNL  
MIN INL  
98  
2ND  
–1  
97  
96  
–2  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237918 G08  
237918 G09  
237918 G10  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
Supply Current vs Temperature  
2.0  
1.5  
8
7
6
5
4
3
2
1
0
8
6
I
VDD  
–FS  
1.0  
4
0.5  
2
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2  
–4  
–6  
–8  
I
OVDD  
+FS  
I
REF  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237918 G12  
237918 G13  
237918 G11  
Reference Current vs  
Reference Voltage  
Shutdown Current vs Temperature  
CMRR vs Input Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
+ I  
+ I  
VDD OVDD REF  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
200  
400  
600  
800  
–55 –35 –15  
5
25 45 65 85 105 125  
REFERENCE VOLTAGE (V)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
237918 G14  
237918 G15  
237918 G18  
237918f  
7
LTC2379-18  
PIN FUNCTIONS  
CHAIN ꢂPin 1x: Chain Mode Selector Pin. When low, the  
LTC2379-18 operates in Iormal Mode and the RDL/SDꢁ  
input pin functions to enable or disable SDO. When high,  
the LTC2379-18 operates in Chain Mode and the RDL/  
SDꢁ pin functions as SDꢁ, the daisychain serial data input.  
ꢁUSY ꢂPin 11x: ꢀUSY indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by 0V .  
DD  
RDꢀ/SDI ꢂPin 12x: When CHAꢁI is low, the part is in Ior-  
mal Mode and the pin is treated as a bus enabling input.  
When CHAꢁI is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisychain is input. Logic levels are  
Logic levels are determined by 0V .  
DD  
V
ꢂPin 2x: 2.5V Power Supply. The range of V is  
DD  
DD  
2.375Vto2.625V. ypassV toGIDwitha1Fceramic  
DD  
capacitor.  
determined by 0V .  
DD  
GND ꢂPins 3, 6, 10 and 16x: Ground.  
SCKPin13x:SerialDataClocknput.WhenSDOisenabled,  
theconversionresultordaisychaindatafromanotherADC  
is shifted out on the rising edges of this clock MSꢀ first.  
+
IN , IN ꢂPins 4, 5x: Positive and Iegative Differential  
Analog ꢁnputs.  
Logic levels are determined by 0V .  
DD  
REF ꢂPin 7x: Reference ꢁnput. The range of REF is 2.5V  
to 5.1V. This pin is referred to the GID pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X5R, 0805 size).  
SDOPin14x:SerialDataOutput. Theconversionresultor  
daisychain data is output on this pin on each rising edge  
of SCK MSꢀ first. The output data is in 2’s complement  
format. Logic levels are determined by 0V .  
DD  
REF/DGCꢂPin8x:WhentiedtoREF,digitalgaincompression  
OV ꢂPin 15x: ꢁ/O ꢁnterface Digital Power. The range of  
DD  
isdisabledandtheLTC2379-18definesfull-scaleaccording  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
to the V analog input range. When tied to GID, digital  
REF  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
gain compression is enabled and the LTC2379-18 defines  
or 5V). ꢀypass OV to GID with a 0.1µF capacitor.  
DD  
full-scale with inputs that swing between 10% and 90%  
of the V analog input range.  
GND ꢂEꢃposed Pad Pin 17 – DFN Package Onlyx:Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
REF  
CNV ꢂPin 9x: Convert ꢁnput. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by 0V .  
DD  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 5V  
LTC2379-18  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
+
IN  
SPI  
PORT  
18-BIT SAMPLING ADC  
IN  
CNV  
BUSY  
REF/DGC  
CONTROL LOGIC  
GND  
237918 BD01  
237918f  
8
LTC2379-18  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAIN, RDL/SDI = 0  
CNV  
POWER-DOWN AND ACQUIRE  
CONVERT  
BUSY  
SCK  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
237918 TD02  
237918f  
9
LTC2379-18  
APPLICATIONS INFORMATION  
OVERVIEW  
TRANSFER FUNCTION  
The LTC2379-18 is a low noise, low power, high speed  
18-bit successive approximation register (SAR) ADC.  
Operating from a single 2.5V supply, the LTC2379-18  
The LTC2379-18 digitizes the full-scale voltage of 2 × REF  
18  
into 2 levels, resulting in an LSꢀ size of 38µV with  
REF = 5V. The ideal transfer function is shown in Figure 2.  
The output data is in 2’s complement format.  
supports a large and flexible V fully differential input  
REF  
range with V ranging from 2.5V to 5.1V, making it ideal  
REF  
for high performance applications which require a wide  
dynamicrange.TheLTC2379-18achieves 2LSILmax,  
no missing codes at 18-bits and 101.2dꢀ SIR.  
011...111  
BIPOLAR  
011...110  
ZERO  
000...001  
000...000  
111...111  
111...110  
Fast 1.6Msps throughput with no cycle latency makes  
the LTC2379-18 ideally suited for a wide variety of high  
speed applications. An internal oscillator sets the con-  
version time, easing external timing considerations. The  
LTC2379-18 dissipates only 18mW at 1.6Msps, while an  
auto power-down feature is provided to further reduce  
power dissipation during inactive periods.  
100...001  
FSR = +FS – –FS  
1LSB = FSR/262144  
100...000  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
–FSR/2  
FSR/2 – 1LSB  
LSB  
237918 F02  
The LTC2379-18 features a unique digital gain compres-  
sion(DGC)function,whicheliminatesthedriveramplifier’s  
negative supply while preserving the full resolution of the  
ADC. When enabled, the ADC performs a digital scaling  
Figure 2. TC2379-18 Transfer Function  
ANAꢀOG INPUT  
function that maps zero-scale code from 0V to 0.1 • V  
The analog inputs of the LTC2379-18 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
shown in Figure 3. The diodes at the input provide ESD  
protection. ꢁn the acquisition phase, each input sees ap-  
REF  
and full-scale code from V  
to 0.9 • V . For a typical  
REF  
REF  
reference voltage of 5V, the full-scale input range is now  
0.5V to 4.5V, which provides adequate headroom for  
powering the driving amplifier from a single 5.5V supply.  
proximately 45pF (C ) from the sampling CDAC in series  
ꢁI  
with 40Ω (R ) from the on-resistance of the sampling  
OI  
CONVERTER OPERATION  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw a current spike while charging  
The LTC2379-18 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
+
the C capacitors during acquisition. During conversion,  
the analog inputs draw only a small leakage current.  
converter (CDAC) is connected to the ꢁI and ꢁI pins to  
sample the differential analog input voltage. A rising edge  
ontheCIVpininitiatesaconversion.Duringtheconversion  
phase, the 18-bit CDAC is sequenced through a succes-  
sive approximation algorithm, effectively comparing the  
sampled input with binary-weighted fractions of the refer-  
ꢁI  
REF  
C
45pF  
IN  
R
40Ω  
ON  
+
IN  
IN  
ence voltage (e.g. V /2, V /4 … V /262144) using  
REF  
REF  
REF  
BIAS  
VOLTAGE  
the differential comparator. At the end of conversion, the  
CDAC output approximates the sampled analog input. The  
ADC control logic then prepares the 18-bit digital output  
code for serial transfer.  
REF  
C
45pF  
IN  
R
40Ω  
ON  
237918 F03  
Figure 3. The Equivalent Circuit for the  
Differential Analog Input of the TC2379-18  
237918f  
10  
LTC2379-18  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2379-18 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC inputs  
draw a current spike when entering acquisition.  
Single-Ended-to-Differential Conversion  
For best performance, a buffer amplifier should be used  
to drive the analog inputs of the LTC2379-18. The ampli-  
fier provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
ꢁt also provides isolation between the signal source and  
the current spike the ADC inputs draw.  
Forsingle-endedinputsignals,asingle-endedtodifferential  
conversion circuit must be used to produce a differential  
signal at the inputs of the LTC2379-18. The LT6350 ADC  
driver is recommended for performing single-ended-to-  
differential conversions. The LT6350 is flexible and may  
be configured to convert single-ended signals of various  
amplitudes to the 5V differential input range of the  
LTC2379-18. The LT6350 is also available in H-grade to  
complement the extended temperature operation of the  
LTC2379-18 up to 125°C.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Ioisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
Figure 5a shows the LT6350 being used to convert a 0V  
to 5V single-ended input signal. ꢁn this case, the first  
amplifierisconfiguredasaunitygainbufferandthesingle-  
ended input signal directly drives the high-impedance  
input of the amplifier. As shown in the FFT of Figure 5b,  
the LT6350 drives the LTC2379-18 to near full datasheet  
performance.  
LPF2  
3300pF  
SINGLE-ENDED-  
20Ω  
LPF1  
INPUT SIGNAL  
+
IN  
500Ω  
3300pF  
The LT6350 can also be used to buffer and convert large  
true bipolar signals which swing below ground to the  
5V differential input range of the LTC2379-18 in order  
to maximize the signal swing that can be digitized. Fig-  
ure 6a shows the LT6350 being used to convert a 10V  
true bipolar signal for use by the LTC2379-18. ꢁn this  
case, the first amplifier in the LT6350 is configured as  
an inverting amplifier stage, which acts to attenuate and  
level shift the input signal to the 0V to 5V input range of  
the LTC2379-18. ꢁn the inverting amplifier configuration,  
the single-ended input signal source no longer directly  
drives a high impedance input of the first amplifier. The  
LTC2379-18  
6600pF  
IN  
20Ω  
237918 F04  
SINGLE-ENDED- 3300pF  
TO-DIFFERENTIAL  
DRIVER  
BW = 48kHz  
BW = 800kHz  
Figure 4. Input Signal Chain  
Another filter network consisting of LPF2 should be used  
between the buffer and ADC input to both minimize the  
noisecontributionofthebufferandtohelpminimizedistur-  
bances reflected into the buffer from sampling transients.  
Long RC time constants at the analog inputs will slow  
down the settling of the analog inputs. Therefore, LPF2  
requires a wider bandwidth than LPF1. A buffer amplifier  
with a low noise density must be selected to minimize  
degradation of the SIR.  
input impedance is instead set by resistor R . R must  
ꢁI ꢁI  
be chosen carefully based on the source impedance of the  
signal source. Higher values of R tend to degrade both  
ꢁI  
the noise and distortion of the LT6350 and LTC2379-18  
as a system.  
237918f  
11  
LTC2379-18  
APPLICATIONS INFORMATION  
V
CM  
LT6350  
5V  
0V  
OUT1  
4
5V  
0V  
R2 = 499Ω  
R
R
INT  
INT  
200pF  
8
1
+
LT6350  
5V  
0V  
OUT1  
OUT2  
4
5
5V  
0V  
+
R
INT  
R
INT  
8
+
OUT2  
5
10µF  
R4 = 402Ω  
R3 = 2k  
2
5V  
0V  
+
+
V
= V /2  
REF  
CM  
1
2
237918 F05a  
10V  
0V  
–10V  
R
= 2k  
R1 = 499Ω  
IN  
+
V
= V /2  
REF  
CM  
Figure 5a. T6350 Converting a 0V-5V Single-Ended  
Signal to a 5V Differential Input Signal  
220pF  
237918 F06a  
Figure 6a. T6350 Converting a 10V Single-Ended Signal to  
a 5V Differential Input Signal  
0
SNR = 101dB  
–20  
–40  
THD = –111.5dB  
SINAD = 100.8dB  
SFDR = 114.5dB  
0
SNR = 100.8dB  
–20  
–40  
THD = –99.3dB  
SINAD = 97.8dB  
SFDR = 101.2dB  
–60  
–80  
–60  
–100  
–120  
–140  
–160  
–180  
–80  
–100  
–120  
–140  
–160  
–180  
0
100 200 300 400 500 600 700 800  
FREQUENCY (kHz)  
237918 F05b  
0
100 200 300 400 500 600 700 800  
Figure 5b. 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 5a  
FREQUENCY (kHz)  
237918 F06b  
Figure 6b. 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 6a  
R1, R2, R3 and R4 must be selected in relation to R to  
ꢁI  
achievethedesiredattenuationandtomaintainabalanced  
input impedance in the first amplifier. Table 1 shows the  
5V  
LT6203  
5V  
0V  
3
2
+
resulting SIR and THD for several values of R , R1, R2,  
ꢁI  
1
7
0V  
R3 and R4 in this configuration. Figure 6b shows the re-  
sulting FFT when using the LT6350 as shown in Figure 6a.  
5V  
0V  
5V  
0V  
5
6
+
Table 1. SNR, THD vs RIN for 10V Single-Ended Input Signal.  
R
R1  
ꢂΩx  
R2  
ꢂΩx  
R3  
ꢂΩx  
R4  
ꢂΩx  
SNR  
ꢂdꢁx  
THD  
ꢂdꢁx  
IN  
ꢂΩx  
237918 F07  
2k  
499  
499  
2k  
402  
2k  
100.8  
100.5  
94.8  
–99  
–94  
–96  
Figure 7. T6203 ꢁuffering a Fully Differential Signal Source  
10k  
100k  
2.49k  
24.9k  
2.49k  
24.9k  
10k  
100k  
20k  
Digital Gain Compression  
The LTC2379-18 offers a digital gain compression (DGC)  
feature which defines the full-scale input swing to be be-  
Fully Differential Inputs  
tween 10% and 90% of the V analog input range. To  
REF  
To achieve the full distortion performance of the  
LTC2379-18,alowdistortionfullydifferentialsignalsource  
driven through the LT6203 configured as two unity gain  
buffers as shown in Figure 7 can be used to get the full  
data sheet THD specification of –120dꢀ.  
enable digital gain compression, bring the REF/DGC pin  
low. This feature allows the LT6350 to be powered off of  
a single +5.5V supply since each input swings between  
0.5V and 4.5V as shown in Figure 8. Ieeding only one  
237918f  
12  
LTC2379-18  
APPLICATIONS INFORMATION  
5V  
many applications. With its small size, low power and  
highaccuracy, theLTC6655-5isparticularlywellsuitedfor  
use with the LTC2379-18. The LTC6655-5 offers 0.025%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficient for high precision applications. The LTC6655-5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2379-18 up to 125°C. We recommend bypassing the  
LTC6655-5witha4Fceramiccapacitor(X5R,0805size)  
close to the REF pin.  
4.5V  
0.5V  
0V  
237918 F08  
Figure 8. Input Swing of the TC2379 with Gain  
Compression Enabled  
positive supply to power the LT6350 results in additional  
power savings for the entire system.  
TheREFpinoftheLTC2379-18drawscharge(Q  
)from  
COIV  
Figure 9a shows how to configure the LT6350 to accept a  
10V true bipolar input signal and attenuate and level shift  
the signal to the reduced input range of the LTC2379-18  
whendigitalgaincompressionisenabled.Figure9bshows  
anFFTplotwiththeLTC2379-18beingdrivenbytheLT6350  
with digital gain compression enabled.  
the 47µF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
= Q  
/t . The DC current draw of the REF pin,  
COIV CYC  
REF  
REF  
, depends on the sampling rate and output code. ꢁf  
the LTC2379-18 is used to continuously sample a signal  
at a constant rate, the LTC6655-5 will keep the deviation  
of the reference voltage over the entire code span to less  
than 0.5LSꢀs.  
ADC REFERENCE  
The LTC2379-18 requires an external reference to define  
its input range. A low noise, low temperature drift refer-  
ence is critical to achieving the full datasheet performance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
When idling, the REF pin on the LTC2379-18 draws only  
a small leakage current (< 1µA). ꢁn applications where a  
burst of samples is taken after idling for long periods as  
shown in Figure 10, ꢁ quickly goes from approximately  
REF  
5.5V  
V
V
V
LTC6655-5  
IN  
0
–20  
OUT_F  
OUT_S  
SNR = 99dB  
5V  
THD = –95dB  
SINAD = 94.6dB  
SFDR = 96.3dB  
1k  
–40  
47µF  
V
CM  
–60  
4.5V  
0.5V  
2.5V  
1k  
10µF  
3
+
–80  
V
3300pF  
LT6350  
OUT1  
OUT2  
6.04k  
4.32k  
REF  
V
4
DD  
LTC2379-18  
REF/DGC  
–100  
–120  
–140  
–160  
–180  
+
20Ω  
IN  
IN  
R
R
INT  
8
+
INT  
10µF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
237918 F09a  
V
3300pF  
10V  
0V  
–10V  
= 15k  
3.01k  
IN  
0
100 200 300 400 500 600 700 800  
0.5V  
V
CM  
FREQUENCY (kHz)  
237918 F09b  
Figure 9a. T6350 Configured to Accept a 10V Input Signal While Running Off of a  
Single 5.5V Supply When Digital Gain Compression Is Enabled in the TC2379-18  
Figure 9b. 32k Point FFT Plot  
with fIN = 2kHz for Circuit Shown  
in Figure 9a  
CNV  
IDLE  
PERIOD  
IDLE  
PERIOD  
237918 F10  
Figure 10. CNV Waveform Showing ꢁurst Sampling  
237918f  
13  
LTC2379-18  
APPLICATIONS INFORMATION  
0µA to a maximum of 1.3mA at 1.6Msps. This step in DC  
currentdrawtriggersatransientresponseinthereference  
that must be considered since any deviation in the refer-  
ence output voltage will affect the accuracy of the output  
code. ꢁn applications where the transient response of the  
reference is important, the fast settling LTC6655-5 refer-  
ence is also recommended.  
Signal-to-Noise Ratio ꢂSNRx  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 11 shows  
that the LTC2379-18 achieves a typical SIR of 101.2dꢀ  
at a 1.6MHz sampling rate with a 2kHz input.  
DYNAMIC PERFORMANCE  
Total Harmonic Distortion ꢂTHDx  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2379-18 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42 +…+ VI2  
THD=20log  
V1  
Signal-to-Noise and Distortion Ratio ꢂSINADx  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughV aretheamplitudesofthesecond  
I
The signal-to-noise and distortion ratio (SꢁIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 11 shows that the LTC2379-18 achieves  
a typical SꢁIAD of 101dꢀ at a 1.6MHz sampling rate with  
a 2kHz input.  
through Ith harmonics.  
POWER CONSIDERATIONS  
The LTC2379-18 provides two power supply pins: the  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2379-18 to communicate with any digital  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems.  
0
SNR = 101.2dB  
–20  
–40  
THD = –120dB  
SINAD = 101.1dB  
SFDR = 121dB  
Power Supply Sequencing  
–60  
The LTC2379-18 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2379-18  
has a power-on-reset (POR) circuit that will reset the  
LTC2379-18 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
–80  
–100  
–120  
–140  
–160  
–180  
0
100 200 300 400 500 600 700 800  
FREQUENCY (kHz)  
237918 F11  
Figure 11. 32k Point FFT with fIN = 2kHz of the TC2379-18  
237918f  
14  
LTC2379-18  
APPLICATIONS INFORMATION  
reinitialize the ADC. Io conversions should be initiated  
until 20µs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
powered-downforalargerfractionoftheconversioncycle  
CYC  
power dissipation which scales with the sampling rate as  
shown in Figure 12.  
(t ) at lower sample rates, thereby reducing the average  
TIMING AND CONTROꢀ  
CNV Timing  
DIGITAꢀ INTERFACE  
The LTC2379-18 has a serial digital interface. The flexible  
OV supply allows the LTC2379-18 to communicate with  
DD  
The LTC2379-18 conversion is controlled by CIV. A ris-  
ing edge on CIV will start a conversion and power up the  
LTC2379-18.Onceaconversionhasbeeninitiated,itcannot  
berestarteduntiltheconversioniscomplete.Foroptimum  
performance, CIV should be driven by a clean low jitter  
signal. Converter status is indicated by the ꢀUSY output  
which remains high while the conversion is in progress.  
To ensure that no errors occur in the digitized results, any  
additional transitions on CIV should occur within 40ns  
from the start of the conversion or after the conversion  
has been completed. Once the conversion has completed,  
the LTC2379-18 powers down and begins acquiring the  
input signal.  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
100MHz,a1.6Mspsthroughputisstillachieved.Theserial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D17 remains valid till the first rising edge of SCK.  
The serial interface on the LTC2379-18 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operation of the LTC2379-18. Several modes are provided  
depending on whether a single or multiple ADCs share the  
SPꢁ bus or are daisychained.  
Internal Conversion Clock  
The LTC2379-18 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof412ns.Withamin-  
imum acquisition time of 200ns, throughput performance  
of1.6Mspsisguaranteedwithoutanyexternaladjustments.  
8
7
6
I
VDD  
5
4
3
2
1
0
Auto Power-Down  
The LTC2379-18 automatically powers down after a con-  
version has been completed and powers up once a new  
conversion is initiated on the rising edge of CIV. During  
power down, data from the last conversion can be clocked  
out. To minimize power dissipation during power down,  
disableSDOandturnoffSCK.Theautopower-downfeature  
will reduce the power dissipation of the LTC2379-18 as  
the sampling frequency is reduced. Since power is con-  
sumedonlyduringaconversion, theLTC2379-18remains  
I
OVDD  
I
REF  
0
200 400 600 800 1000 1200 1400 1600  
SAMPLING RATE (kHz)  
237918 F12  
Figure 12. Power Supply Current of the TC2379-18  
Versus Sampling Rate  
237918f  
15  
LTC2379-18  
TIMING DIAGRAM  
Normal Mode, Single Device  
Figure 13 shows a single LTC2379-18 operated in Iormal  
Mode with CHAꢁI and RDL/SDꢁ tied to ground. With RDL/  
SDꢁ grounded, SDO is enabled and the MSꢀ(D17) of the  
new conversion data is available at the falling edge of  
ꢀUSY. ThisisthesimplestwaytooperatetheLTC2379-18.  
When CHAꢁI = 0, the LTC2379-18 operates in Iormal  
mode. ꢁn Iormal mode, RDL/SDꢁ enables or disables the  
serial data output pin SDO. ꢁf RDL/SDꢁ is high, SDO is in  
high-impedance. ꢁf RDL/SDꢁ is low, SDO is driven.  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
LTC2379-18  
SCK  
RDL/SDI  
SDO  
DATA IN  
CLK  
238018 F13a  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
= t  
– t  
– t  
ACQ CYC CONV BUSYLH  
t
t
CONV  
ACQ  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D17  
D16  
D15  
D1  
D0  
237918 F13  
Figure 13. Using a Single TC2379-18 in Normal Mode  
237918f  
16  
LTC2379-18  
TIMING DIAGRAM  
Normal Mode, Multiple Devices  
Since SDO is shared, the RDL/SDꢁ input of each ADC must  
be used to allow only one LTC2379-18 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure14,  
the RDL/SDꢁ inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDꢁ is brought low, the MSꢀ of the selected  
device is output onto SDO.  
Figure 14 shows multiple LTC2379-18 devices operating  
in Iormal Mode(CHAꢁI = 0) sharing CIV, SCK and SDO.  
ꢀy sharing CIV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2379-18  
B
LTC2379-18  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
237918 F15  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
CONVERT  
POWER-DOWN AND ACQUIRE  
CHAIN = 0  
t
CNVL  
CNV  
t
CONV  
BUSY  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
19  
SCK  
SDO  
1
2
3
16  
17  
18  
20  
21  
34  
35  
36  
t
t
SCKL  
HSDO  
t
t
DSDO  
DIS  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D17  
A
D16  
D15  
D1  
A
D0  
D17  
D16  
D15  
D1  
B
D0  
B
A
A
A
B
B
B
237918 F14  
Figure 14. Normal Mode With Multiple Devices Sharing CNV, SCK and SDO  
237918f  
17  
LTC2379-18  
TIMING DIAGRAM  
When CHAꢁI = OV , the LTC2379-18 operates in Chain  
This is useful for applications where hardware constraints  
may limit the numberoflines needed to interface toa large  
number of converters. Figure 15 shows an example with  
two daisychained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 18 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDꢁ/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
DD  
Mode. ꢁnChainMode,SDOisalwaysenabledandRDL/SDꢁ  
serves as the serial data input pin (SDꢁ) where daisychain  
data output from another ADC can be input.  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2379-18  
LTC2379-18  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
237918 F15a  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
t
SCKCH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
19  
20  
34  
35  
36  
t
SCKL  
t
t
HSDO  
SSDISCK  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D17  
D16  
D16  
D15  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D17  
D15  
D1  
B
D17  
D16  
D1  
D0  
A
SDO  
B
B
B
B
A
A
A
B
237918 F15  
Figure 15. Chain Mode Timing Diagram  
237918f  
18  
LTC2379-18  
BOARD LAYOUT  
To obtain the best performance from the LTC2379-18  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢀ) should ensure the digital and  
analog signal lines are separated as much as possible. ꢁn  
particular,careshouldbetakennottorunanydigitalclocks  
orsignalsalongsideanalogsignalsorunderneaththeADC.  
Recommended ꢀayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1783A, the  
evaluation kit for the LTC2379-18.  
Partial Top Silkscreen  
237918f  
19  
LTC2379-18  
BOARD LAYOUT  
Partial ꢀayer 1 Component Side  
Partial ꢀayer 2 Ground Plane  
237918f  
20  
LTC2379-18  
BOARD LAYOUT  
Partial ꢀayer 3 PWR Plane  
Partial ꢀayer 4 ꢁottom ꢀayer  
237918f  
21  
LTC2379-18  
BOARD LAYOUT  
Partial Schematic of Demoboard  
D G C R E F /  
R E F  
8
7
1 5  
2
1
G N D  
D D  
D D  
V
G N D 1 6  
O V  
G N D  
1 0  
G N D  
6
3
3
2
1
3
2
1
237918f  
22  
LTC2379-18  
PACKAGE DESCRIPTION  
DE Package  
16-ꢀead Plastic DFN ꢂ4mm × 3mmx  
(Reference LTC DWG # 05-08-1732 Rev Ø)  
R = 0.ꢀꢀ5  
0.40 0.ꢀ0  
ꢀ6  
4.00 0.ꢀ0  
(2 SIDES)  
TYP  
9
0.70 0.05  
R = 0.05  
TYP  
3.30 0.05  
ꢀ.70 0.05  
3.30 0.ꢀ0  
3.60 0.05  
2.20 0.05  
3.00 0.ꢀ0  
(2 SIDES)  
PACKAGE  
OUTLINE  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
R = 0.20 OR  
PIN ꢀ  
0.35 × 45°  
TOP MARK  
(SEE NOTE 6)  
CHAMFER  
(DEꢀ6) DFN 0806 REV Ø  
8
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.45 BSC  
3.ꢀ5 REF  
BOTTOM VIEW—EXPOSED PAD  
3.ꢀ5 REF  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
MS Package  
16-ꢀead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
4.039 ± 0.102  
(.159 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.280 ± 0.076  
(.011 ± .003)  
REF  
16151413121110  
9
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
DETAIL “A”  
0° – 6° TYP  
5.23  
4.90 ± 0.152  
(.193 ± .006)  
3.20 – 3.45  
(.206)  
0.254  
(.010)  
(.126 – .136)  
MIN  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
1 2 3 4 5 6 7 8  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
RECOMMENDED SOLDER PAD LAYOUT  
SEATING  
PLANE  
NOTE:  
0.17 – 0.27  
(.007 – .011)  
TYP  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.1016 ± 0.0508  
(.004 ± .002)  
MSOP (MS16) 1107 REV Ø  
0.50  
(.0197)  
BSC  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
237918f  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2379-18  
TYPICAL APPLICATION  
T6350 Configured to Accept a 10V Input Signal While Running Off of a Single 5.5V Supply When  
Digital Gain Compression Is Enabled in the TC2379-18  
5.5V  
V
V
V
LTC6655-5  
IN  
OUT_F  
OUT_S  
5V  
1k  
1k  
47µF  
V
CM  
4.5V  
2.5V  
10µF  
3
+
V
3300pF  
LT6350  
OUT1  
OUT2  
0.5V  
6.04k  
4.32k  
REF  
V
DD  
4
+
20Ω  
IN  
IN  
R
INT  
R
INT  
8
+
LTC2379-18  
REF/DGC  
10µF  
R
3300pF  
20Ω  
+
5
6
1
4.5V  
2
237918 TA03  
V
3300pF  
10V  
0V  
= 15k  
3.01k  
IN  
0.5V  
V
CM  
–10V  
RELATED PARTS  
PART NUMꢁER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2383-16/LTC2382-16/ 16-ꢀit, 1Msps/500ksps/250ksps Serial, Low power ADC 2.5V Supply, Differential ꢁnput, 92dꢀ SIR, 2.5V ꢁnput Range, Pin  
LTC2381-16  
Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 package  
LTC2393-16/LTC2392-16/ 16-ꢀit, 1Msps/500ksps/250ksps Parallel/Serial ADC  
LTC2391-16  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, Pin  
Compatible Family in 7mm × 7mm LQFP-48 and QFI package  
LTC1864/LTC1864L  
LTC1865/LTC1865L  
LTC2302/LTC2306  
16-ꢀit, 250ksps/150ksps 1-Channel µPower, ADC  
16-ꢀit, 250ksps/150ksps 2-Channel µPower ADC  
12-ꢀit, 500ksps, 1-/2-Channel, Low Ioise, ADC  
5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
5V Supply, 14mW at 500ksps, DFI-10 Package  
LTC2355-14/LTC2356-14 14-ꢀit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, Unipolar/ꢀipolar, 18mW, MSOP-10 Package  
DACS  
LTC2757  
18-ꢀit, Single Parallel ꢁ  
SoftSpan™ DAC  
1LSꢀ ꢁIL/DIL, Software-Selectable Ranges, 7mm × 7mm LQFP-  
48 Package  
OUT  
LTC2641  
16-ꢀit Single Serial V  
DACs  
1LSꢀ ꢁIL, 1LSꢀ DIL, MSOP-8 Package, 0V to 5V Output  
SC70 6-Pin Package, ꢁnternal Reference, 1LSꢀ ꢁIL (12ꢀits)  
OUT  
LTC2630  
12-ꢀit/10-ꢀit/8-ꢀit Single V  
DACs  
OUT  
REFERENCES  
LTC6655  
Precision Low Drift Low Ioise ꢀuffered Reference  
Precision Low Drift Low Ioise ꢀuffered Reference  
5V/2.5V, 5ppm/°C, 0.25ppm Peak-to-Peak Ioise, MSOP-8 Package  
5V/2.5V, 5ppm/°C, 2.1ppm Peak-to-Peak Ioise, MSOP-8 Package  
LTC6652  
AMPꢀIFIERS  
LT6350  
Low Ioise Single-Ended-to-Differential ADC Driver  
Rail-to-Rail ꢁnput and Outputs, 240ns 0.01% Settling Time  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with  
Unity Gain/AV = 5/AV = 10  
Low Ioise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dꢀ at  
1MHz, TSOT23-6 Package  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail ꢁnput/Output Ioise Low 1.9nV√Hz, 3mA Maximum, 100MHz Gain ꢀandwidth  
Power Amplifiers  
LTC1992  
Low Power, Fully Differential ꢁnput/Output Amplifier/  
Driver Family  
1mA Supply Current  
237918f  
LT 0311 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2379-18_11

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379CDE-18

LTC2379-1818-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear System

LTC2379CDE-18#PBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CDE-18#TRPBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CDE-18PBF

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379CDE-18TRPBF

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379CMS-18

LTC2379-1818-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear System

LTC2379CMS-18#PBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CMS-18#TRPBF

LTC2379-18 - 18-Bit, 1.6Msps, Low Power SAR ADC with 101dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2379CMS-18PBF

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379CMS-18TRPBF

18-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear

LTC2379HMS-18

LTC2379-1818-Bit, 1.6Msps, Low Power SAR ADC with 101.2dB SNR
Linear System