LTC2170CUKG-12TRPBF [Linear]

12-Bit, 65Msps/40Msps/25Msps Low Power Quad ADCs; 12位,支持65Msps / 40Msps的/ 25Msps时的低功耗四通道ADC
LTC2170CUKG-12TRPBF
型号: LTC2170CUKG-12TRPBF
厂家: Linear    Linear
描述:

12-Bit, 65Msps/40Msps/25Msps Low Power Quad ADCs
12位,支持65Msps / 40Msps的/ 25Msps时的低功耗四通道ADC

文件: 总34页 (文件大小:1586K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2172-12/  
LTC2171-12/LTC2170-12  
12-Bit, 65Msps/40Msps/  
25Msps Low Power Quad ADCs  
FEATURES  
DESCRIPTION  
TheLTC®2172-12/LTC2171-12/LTC2170-12are4-channel,  
simultaneoussampling12-bitA/Dconvertersdesignedfor  
digitizinghighfrequency,widedynamicrangesignals.They  
are perfect for demanding communications applications  
with AC performance that includes 71dB SNR and 90dB  
spurious free dynamic range (SFDR). An ultralow jitter of  
n
4-Channel Simultaneous Sampling ADC  
n
71dB SNR  
n
90dB SFDR  
Low Power: ꢀ06mW/198mW/160mW Total,  
77mW/50mW/40mW per Channel  
Single 1.8V Supply  
Serial LVDS Outputs: One or Two Bits per Channel  
Selectable Input Ranges: 1V to 2V  
n
n
n
0.15ps  
allows undersampling of IF frequencies with  
RMS  
n
excellent noise performance.  
P-P  
P-P  
n
n
n
n
n
800MHz Full Power Bandwidth Sample-and-Hold  
Shutdown and Nap Modes  
DC specifications include 0.ꢀLSB INL (typ), 0.1LSB  
DNL (typ) and no missing codes over temperature. The  
transition noise is a low 0.ꢀLSB  
Serial SPI Port for Configuration  
.
RMS  
Pin-Compatible 14-Bit and 12-Bit Versions  
52-Pin (7mm × 8mm) QFN Package  
The digital outputs are serial LVDS to minimize the num-  
ber of data lines. Each channel outputs two bits at a time  
(2-lanemode)oronebitatatime(1-lanemode).TheLVDS  
drivers have optional internal termination and adjustable  
output levels to ensure clean signal integrity.  
APPLICATIONS  
n
Communications  
n
Cellular Base Stations  
+
The ENC and ENC inputs may be driven differentially  
or single-ended with a sine wave, PECL, LVDS, TTL or  
CMOS inputs. An internal clock duty cycle stabilizer al-  
lows high performance at full speed for a wide range of  
clock duty cycles.  
n
Software Defined Radios  
n
Portable Medical Imaging  
n
Multichannel Data Acquisition  
n
Nondestructive Testing  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
1.8V  
V
1.8V  
OV  
DD  
DD  
LTC2172-12, 65Msps,  
2-Tone FFT, fIN = 70MHz and 75MHz  
CHANNEL 1  
ANALOG  
INPUT  
12-BIT  
ADC CORE  
OUT1A  
OUT1B  
S/H  
S/H  
S/H  
S/H  
0
–10  
–20  
–30  
CHANNEL 2  
ANALOG  
INPUT  
OUT2A  
OUT2B  
12-BIT  
ADC CORE  
DATA  
SERIALIZER  
–40  
SERIALIZED  
CHANNEL ꢀ  
ANALOG  
INPUT  
OUTꢀA  
OUTꢀB  
12-BIT  
ADC CORE  
–50  
LVDS  
OUTPUTS  
–60  
–70  
CHANNEL 4  
ANALOG  
INPUT  
OUT4A  
OUT4B  
12-BIT  
ADC CORE  
–80  
–90  
–100  
–110  
–120  
DATA  
CLOCK  
OUT  
ENCODE  
INPUT  
PLL  
0
20  
10  
FREQUENCY (MHz)  
30  
FRAME  
217212 TA01b  
GND  
OGND  
217212 TA01  
21721012fa  
1
LTC2172-12/  
LTC2171-12/LTC2170-12  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1 and 2)  
TOP VIEW  
Supply Voltages  
V
, OV ............................................... –0.ꢀV to 2V  
DD  
DD  
+
Analog Input Voltage (A , A  
,
IN  
IN  
52 51 50 49 48 47 46 45 44 4ꢀ 42 41  
PAR/SER, SENSE) (Note ꢀ)...........–0.ꢀV to (V + 0.2V)  
DD  
+
+
+
+
A
A
1
2
40 OUT2A  
ꢀ9 OUT2A  
IN1  
IN1  
Digital Input Voltage (ENC , ENC , CS,  
SDI, SCK) (Note 4).................................... –0.ꢀV to ꢀ.9V  
SDO (Note 4) ............................................ –0.ꢀV to ꢀ.9V  
V
OUT2B  
ꢀ8  
ꢀ7  
CM12  
+
A
OUT2B  
+
4
IN2  
IN2  
Digital Output Voltage ................ –0.ꢀV to (OV + 0.ꢀV)  
Operating Temperature Range  
LTC2172C, LTC2171C, LTC2170C............. 0°C to 70°C  
LTC2172I, LTC2171I, LTC2170I............ –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
DD  
A
5
ꢀ6 DCO  
REFH  
REFH  
REFL  
DCO  
6
ꢀ5  
7
ꢀ4 OV  
DD  
5ꢀ  
GND  
8
ꢀꢀ OGND  
+
REFL  
+
9
ꢀ2 FR  
A
A
10  
11  
12  
1ꢀ  
14  
ꢀ1 FR  
INꢀ  
+
+
ꢀ0 OUTꢀA  
29 OUTꢀA  
28 OUTꢀB  
27 OUTꢀB  
INꢀ  
V
CMꢀ4  
+
A
IN4  
IN4  
A
15 16 17 18 19 20 21 22 2ꢀ 24 25 26  
UKG PACKAGE  
52-LEAD (7mm × 8mm) PLASTIC QFN  
T
= 150°C, θ = 28°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 5ꢀ) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTC2172UKG-12  
LTC2172UKG-12  
LTC2171UKG-12  
LTC2171UKG-12  
LTC2170UKG-12  
LTC2170UKG-12  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2172CUKG-12#PBF  
LTC2172IUKG-12#PBF  
LTC2171CUKG-12#PBF  
LTC2171IUKG-12#PBF  
LTC2170CUKG-12#PBF  
LTC2170IUKG-12#PBF  
LTC2172CUKG-12#TRPBF  
LTC2172IUKG-12#TRPBF  
LTC2171CUKG-12#TRPBF  
LTC2171IUKG-12#TRPBF  
LTC2170CUKG-12#TRPBF  
LTC2170IUKG-12#TRPBF  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
21721012fa  
2
LTC2172-12/  
LTC2171-12/LTC2170-12  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2172-12  
TYP  
LTC2171-12  
TYP  
LTC2170-12  
TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
12  
MAX  
MIN  
12  
MAX  
MIN  
12  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–1  
0.ꢀ  
0.1  
1
–1  
0.ꢀ  
0.1  
1
–1  
0.ꢀ  
0.1  
1
LSB  
LSB  
mV  
–0.5  
–12  
0.5  
12  
–0.4  
–12  
0.4  
12  
–0.4  
–12  
0.4  
12  
Gain Error  
Internal Reference  
External Reference  
–1  
–1  
–1  
–1  
–1  
–1  
%FS  
%FS  
l
–2.5  
0.5  
–2.5  
0.5  
–2.5  
0.5  
Offset Drift  
20  
20  
20  
μV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
ꢀ5  
25  
ꢀ5  
25  
ꢀ5  
25  
ppm/°C  
ppm/°C  
Gain Matching  
Offset Matching  
Transition Noise  
External Reference  
0.2  
0.2  
0.2  
%FS  
mV  
External Reference  
0.ꢀ2  
0.ꢀ2  
0.ꢀ2  
LSB  
RMS  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
V
V
V
Analog Input Range (A – A  
)
1.7V < V < 1.9V  
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2  
Differential Analog Input (Note 8)  
External Reference Mode  
V
– 100mV  
0.625  
V
V
+ 100mV  
1.ꢀ00  
V
IN(CM)  
SENSE  
IN(CM)  
IN  
IN  
CM  
CM  
CM  
External Voltage Reference Applied to SENSE  
Analog Input Common Mode Current  
1.250  
V
I
Per Pin, 65Msps  
Per Pin, 40Msps  
Per Pin, 25Msps  
81  
50  
ꢀ1  
μA  
μA  
μA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current (No Encode)  
PAR/SER Input Leakage Current  
0 < A , A < V  
DD  
–1  
–ꢀ  
–6  
1
6
μA  
μA  
μA  
ns  
IN1  
IN  
IN  
0 < PAR/SER < V  
IN2  
DD  
SENSE Input Leakage Current  
0.625 < SENSE < 1.ꢀV  
INꢀ  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
0
AP  
0.15  
80  
ps  
RMS  
JITTER  
CMRR  
dB  
BW-ꢀB Full-Power Bandwidth  
Figure 6 Test Circuit  
800  
MHz  
21721012fa  
3
LTC2172-12/  
LTC2171-12/LTC2170-12  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2172-12  
TYP  
LTC2171-12  
TYP  
LTC2170-12  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
71  
71  
70.9  
70.8  
70.8  
70.5  
70.5  
70.5  
70.5  
70.2  
dBFS  
dBFS  
dBFS  
dBFS  
l
l
l
l
ꢀ0MHz Input  
70MHz Input  
140MHz Input  
69.7  
69.5  
69.ꢀ  
70.9  
70.6  
SFDR  
Spurious Free Dynamic Range 5MHz Input  
2nd or ꢀrd Harmonic  
90  
90  
89  
84  
90  
90  
89  
84  
90  
90  
89  
84  
dBFS  
dBFS  
dBFS  
dBFS  
ꢀ0MHz Input  
70MHz Input  
140MHz Input  
77  
85  
79  
85  
79  
85  
Spurious Free Dynamic Range 5MHz Input  
4th Harmonic or Higher  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
dBFS  
dBFS  
dBFS  
dBFS  
ꢀ0MHz Input  
70MHz Input  
140MHz Input  
S/(N+D) Signal-to-Noise Plus  
Distortion Ratio  
5MHz Input  
70.9  
70.9  
70.7  
70.ꢀ  
70.8  
70.7  
70.6  
70.2  
70.5  
70.4  
70.ꢀ  
69.9  
dBFS  
dBFS  
dBFS  
dBFS  
ꢀ0MHz Input  
70MHz Input  
140MHz Input  
69.1  
69.4  
69.2  
Crosstalk, Near Channel  
Crosstalk, Far Channel  
10MHz Input (Note 12)  
10MHz Input (Note 12)  
–90  
–90  
–90  
dBc  
dBc  
–105  
–105  
–105  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 • V  
25  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.5 • V – 25mV  
0.5 • V + 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600μA < I  
< 1mA  
< 1mA  
4
OUT  
I
= 0  
1.225  
1.250  
25  
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400μA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
21721012fa  
4
LTC2172-12/  
LTC2171-12/LTC2170-12  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
ꢀ.6  
+
V
IN  
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
V
kΩ  
pF  
R
10  
IN  
IN  
C
Input Capacitance  
ꢀ.5  
Single-Ended Encode Mode (ENC Tied to GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
= 1.8V  
= 1.8V  
1.2  
0
V
V
IH  
IL  
IN  
DD  
DD  
0.6  
ꢀ.6  
+
ENC to GND  
V
R
(See Figure 11)  
ꢀ0  
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
ꢀ.5  
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.ꢀ  
V
V
IH  
IL  
DD  
DD  
IN  
l
l
= 1.8V  
0.6  
10  
I
= 0V to ꢀ.6V  
–10  
μA  
pF  
IN  
C
Input Capacitance  
200  
IN  
SDO OUTPUT (Serial Programming Mode. Open-Drain Output. Requires 2k Pull-Up Resistor if SDO Is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
= 1.8V, SDO = 0V  
DD  
Ω
μA  
pF  
OL  
l
I
OH  
SDO = 0V to ꢀ.6V  
–10  
10  
C
OUT  
DIGITAL DATA OUTPUTS  
l
l
V
Differential Output Voltage  
100Ω Differential Load, ꢀ.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
ꢀ50  
175  
454  
250  
mV  
mV  
OD  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, ꢀ.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.250  
1.250  
1.ꢀ75  
1.ꢀ75  
V
V
OS  
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
21721012fa  
5
LTC2172-12/  
LTC2171-12/LTC2170-12  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2172-12  
LTC2171-12  
LTC2170-12  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
1.7  
TYP  
1.8  
MAX  
1.9  
MIN  
1.7  
TYP  
1.8  
1.8  
94  
MAX  
1.9  
MIN  
1.7  
l
l
l
V
DD  
Analog Supply Voltage (Note 10)  
1.8  
1.8  
74  
1.9  
1.9  
8ꢀ  
V
V
OV  
DD  
Output Supply Voltage (Note 10)  
1.7  
1.8  
1.9  
1.7  
1.9  
1.7  
I
I
Analog Supply Current Sine Wave Input  
154  
177  
111  
mA  
VDD  
OVDD  
Digital Supply Current 1-Lane Mode, 1.75mA Mode  
1-Lane Mode, ꢀ.5mA Mode  
16  
ꢀ0  
25  
47  
16  
29  
24  
46  
15  
28  
24  
45  
mA  
mA  
mA  
mA  
l
l
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, ꢀ.5mA Mode  
28  
50  
27  
50  
26  
49  
P
Power Dissipation  
1-Lane Mode, 1.75mA Mode  
1-Lane Mode, ꢀ.5mA Mode  
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, ꢀ.5mA Mode  
ꢀ06  
ꢀꢀ1  
ꢀ22  
ꢀ62  
198  
221  
212  
252  
160  
184  
176  
214  
mW  
mW  
mW  
mW  
DISS  
l
l
ꢀ69  
409  
248  
290  
196  
2ꢀ8  
P
P
P
Sleep Mode Power  
Nap Mode Power  
1
1
1
mW  
mW  
mW  
SLEEP  
75  
20  
75  
20  
75  
20  
NAP  
Power Increase with Differential Encode Mode Enabled  
(No Increase for Sleep Mode)  
DIFFCLK  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2172-12  
TYP  
LTC2171-12  
TYP  
LTC2170-12  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
TYP MAX UNITS  
l
f
t
Sampling Frequency  
(Notes 10, 11)  
5
65  
5
40  
5
25  
MHz  
S
l
l
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.ꢀ  
2
7.69  
7.69  
100 11.88 12.5  
100 12.5  
100  
100  
19  
2
20  
20  
100  
100  
ns  
ns  
ENCL  
2
l
l
t
t
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.ꢀ  
2
7.69  
7.69  
100 11.88 12.5  
100  
100  
19  
2
20  
20  
100  
100  
ns  
ns  
ENCH  
AP  
100  
2
12.5  
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
21721012fa  
6
LTC2172-12/  
LTC2171-12/LTC2170-12  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
Digital Data Outputs (R  
CONDITIONS  
= 100Ω Differential, C = 2pF to GND on Each Output)  
MIN  
TYP  
MAX  
UNITS  
TERM  
L
t
Serial Data Bit Period  
2-Lanes, 16-Bit Serialization  
2-Lanes, 14-Bit Serialization  
2-Lanes, 12-Bit Serialization  
1-Lane, 16-Bit Serialization  
1-Lane, 14-Bit Serialization  
1-Lane, 12-Bit Serialization  
1 / (8 • f )  
s
s
s
s
s
s
SER  
S
1 / (7 • f )  
S
1 / (6 • f )  
S
1 / (16 • f )  
S
1 / (14 • f )  
S
1 / (12 • f )  
S
l
l
l
t
t
t
t
t
FR to DCO Delay  
(Note 8)  
0.ꢀ5 • t  
0.ꢀ5 • t  
0.5 • t  
0.65 • t  
0.65 • t  
s
s
FRAME  
DATA  
PD  
SER  
SER  
SER  
SER  
SER  
DATA to DCO Delay  
Propagation Delay  
Output Rise Time  
Output Fall Time  
(Note 8)  
0.5 • t  
SER  
(Note 8)  
0.7n + 2 • t  
1.1n + 2 • t  
1.5n + 2 • t  
SER  
s
SER  
SER  
Data, DCO, FR, 20% to 80%  
Data, DCO, FR, 20% to 80%  
0.17  
0.17  
60  
ns  
ns  
R
F
DCO Cycle-to-Cycle Jitter  
Pipeline Latency  
t
= 1ns  
ps  
P-P  
SER  
6
Cycles  
SPI Port Timing (Note 8)  
l
l
t
SCK Period  
Write Mode  
Readback Mode, C  
40  
250  
ns  
ns  
SCK  
= 20pF, R  
= 2k  
SDO  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Set-Up Time  
SCK to CS Set-Up Time  
SDI Set-Up Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid Readback Mode  
125  
C
= 20pF, R  
= 2k  
SDO  
PULLUP  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 0000 0000 0000 and 1111 1111 1111 in  
2’s complement output mode.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 8: Guaranteed by design, not subject to test.  
Note 3: When these pin voltages are taken below GND or above V , they  
DD  
will be clamped by internal diodes. This product can handle input currents  
Note 9: V = OV = 1.8V, f  
(LTC2171), or 25MHz (LTC2170), 2-lane output mode, ENC = single-  
ended 1.8V square wave, ENC = 0V, input range = 2V with differential  
= 65MHz (LTC2172), 40MHz  
DD  
DD  
SAMPLE  
+
of greater than 100mA below GND or above V without latchup.  
DD  
Note 4: When these pin voltages are taken below GND they will be  
P-P  
drive, unless otherwise noted. The supply current and power dissipation  
specifications are totals for the entire chip, not per channel.  
Note 10: Recommended operating conditions.  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
DD  
Note 5: V = OV = 1.8V, f  
= 65MHz (LTC2172),  
DD  
DD  
SAMPLE  
Note 11: The maximum sampling frequency depends on the speed grade  
of the part and also which serialization mode is used. The maximum serial  
40MHz (LTC2171), or 25MHz (LTC2170), 2-lane output mode, differential  
+
ENC /ENC = 2V sine wave, input range = 2V with differential drive,  
P-P  
P-P  
data rate is 1000Mbps, so t  
must be greater than or equal to 1ns.  
SER  
unless otherwise noted.  
Note 12: Near-channel crosstalk refers to Ch. 1 to Ch.2, and Ch.ꢀ to Ch.4.  
Far-channel crosstalk refers to Ch.1 to Ch.ꢀ, Ch.1 to Ch.4, Ch.2 to Ch.ꢀ, and  
Ch.2 to Ch.4.  
21721012fa  
7
LTC2172-12/  
LTC2171-12/LTC2170-12  
TIMING DIAGRAMS  
2-Lane Output Mode, 16-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
Dꢀ  
D2  
D1  
D0  
D *  
0
0
D11 D9  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D *  
0
D11 D9  
D10 D8  
D7  
X
X
+
OUT#A  
OUT#B  
D *  
Y
D10 D8  
D *  
Y
0
D6  
+
OUT#B  
217212 TD01  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
2-Lane Output Mode, 14-Bit Serialization  
t
AP  
ANALOG  
INPUT  
N + 2  
N + 1  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D5  
D4  
Dꢀ  
D2  
D1 D * D11 D9  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D * D11 D9  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1 D * D11 D9  
D7  
D6  
X
X
X
+
OUT#A  
OUT#B  
D0 D * D10 D8  
Y
D * D10 D8  
Y
D0 D * D10 D8  
Y
+
OUT#B  
217212 TD02  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
SAMPLE N-ꢀ  
+
+
NOTE THAT IN THIS MODE, FR /FR HAS TWO TIMES THE PERIOD OF ENC /ENC  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
21721012fa  
8
LTC2172-12/  
LTC2171-12/LTC2170-12  
TIMING DIAGRAMS  
2-Lane Output Mode, 12-Bit Serialization  
t
N + 1  
AP  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
+
FR  
FR  
t
PD  
t
SER  
OUT#A  
D7  
D5  
D4  
Dꢀ  
D2  
D1 D11 D9  
D7  
D6  
D5  
Dꢀ  
D2  
D1 D11 D9  
D7  
D6  
+
OUT#A  
OUT#B  
D6  
D0 D10 D8  
SAMPLE N-5  
D4  
D0 D10 D8  
SAMPLE N-4  
+
OUT#B  
217212 TD0ꢀ  
SAMPLE N-6  
1-Lane Output Mode, 16-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D * D *  
0
0
D11 D10 D9  
SAMPLE N-5  
D8  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D * D *  
0
0
D11 D10 D9  
SAMPLE N-4  
D8  
X
Y
X
Y
+
OUT#A  
217212 TD04  
SAMPLE N-6  
+
OUT#B , OUT#B ARE DISABLED  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
21721012fa  
9
LTC2172-12/  
LTC2171-12/LTC2170-12  
TIMING DIAGRAMS  
1-Lane Output Mode, 14-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D1  
D0  
D * D * D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0 D * D * D11 D10 D9  
D8  
X
Y
X
Y
+
OUT#A  
217212 TD05  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
+
OUT#B , OUT#B ARE DISABLED  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
1-Lane Output Mode, 12-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
Dꢀ  
D2  
D1  
D0 D11 D10 D9  
SAMPLE N-5  
D8  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0 D11 D10 D9  
+
OUT#A  
217212 TD06  
SAMPLE N-6  
SAMPLE N-4  
+
OUT#B , OUT#B ARE DISABLED  
21721012fa  
10  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TIMING DIAGRAMS  
SPI Port Timing (Readback Mode)  
t
t
t
DH  
t
t
H
S
DS  
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
Aꢀ  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
Dꢀ  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
Aꢀ  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
R/W  
SDO  
217212 TD07  
HIGH IMPEDANCE  
21721012fa  
11  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2172-12: Integral  
Nonlinearity (INL)  
LTC2172-12: Differential  
Nonlinearity (DNL)  
LTC2172-12: 8k Point FFT, fIN = 5MHz  
–1dBFS, 65Msps  
1.0  
0.8  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
0.4  
0.4  
0.2  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–0.8  
–1.0  
0
2048  
3072  
4096  
0
2048  
3072  
4096  
1024  
1024  
0
10  
20  
30  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
217212 G01  
217212 G02  
217212 G03  
LTC2172-12: 8k Point FFT, fIN = 30MHz  
–1dBFS, 65Msps  
LTC2172-12: 8k Point FFT, fIN = 70MHz  
–1dBFS, 65Msps  
LTC2172-12: 8k Point FFT, fIN = 140MHz  
–1dBFS, 65Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
10  
FREQUENCY (MHz)  
30  
0
20  
10  
FREQUENCY (MHz)  
30  
0
10  
20  
30  
FREQUENCY (MHz)  
217212 G05  
217212 G06  
217212 G04  
LTC2172-12: 8k Point 2-Tone FFT,  
LTC2172-12: SNR vs Input  
Frequency, 1dBFS, 2V Range,  
65Msps  
LTC2172-12: Shorted Input  
Histogram  
f
IN = 68MHz, 69MHz, –1dBFS,  
65Msps  
18000  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
72  
16000  
14000  
12000  
10000  
8000  
71  
70  
69  
68  
67  
66  
6000  
4000  
2000  
0
–80  
–90  
–100  
–110  
–120  
2049  
2050  
2051  
OUTPUT CODE  
2052  
2053  
0
20  
10  
FREQUENCY (MHz)  
30  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
217212 G08  
217212 G07  
217212 G09  
21721012fa  
12  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2172-12: SFDR vs Input  
Frequency, 1dBFS, 2V Range,  
65Msps  
LTC2172-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 65Msps  
LTC2172-12: SNR vs Input Level,  
fIN = 70MHz, 2V Range, 65Msps  
80  
70  
60  
50  
40  
30  
20  
10  
0
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
dBc  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
–60  
–40  
–30  
–20  
–10  
0
–50  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
INPUT LEVEL(dBFS)  
217212 G50  
217212 G10  
217212 G12  
IOVDD vs Sample Rate, 5MHz Sine  
Wave Input, –1dBFS  
LTC2172-12: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
LTC2172-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
72  
71  
70  
69  
68  
67  
66  
160  
155  
50  
40  
30  
2-LANE, 3.5mA  
150  
145  
140  
135  
130  
125  
120  
115  
110  
1-LANE, 3.5mA  
2-LANE, 1.75mA  
20  
10  
0
1-LANE, 1.75mA  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.ꢀ  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
217212 G15  
217212 G53  
217212 G51  
LTC2171-12: Integral Nonlinearity  
(INL)  
LTC2171-12: Differential  
Nonlinearity (DNL)  
LTC2171-12: 8k Point FFT, fIN = 5MHz  
–1dBFS, 40Msps  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–0.4  
–0.6  
–0.8  
–1.0  
0
20  
0
2048  
ꢀ072  
4096  
10  
0
2048  
3072  
4096  
1024  
1024  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
217212 G2ꢀ  
217212 G22  
217212 G21  
21721012fa  
13  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2171-12: 8k Point FFT, fIN = 29MHz  
–1dBFS, 40Msps  
LTC2171-12: 8k Point FFT, fIN = 69MHz  
–1dBFS, 40Msps  
LTC2171-12: 8k Point FFT, fIN = 139MHz  
–1dBFS, 40Msps  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
0
20  
10  
0
20  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
217212 G24  
217212 G26  
217212 G25  
LTC2171-12: SNR vs Input  
Frequency, 1dBFS, 2V Range,  
40Msps  
LTC2171-12: 8k Point 2-Tone FFT,  
fIN = 68MHz, 69MHz, –1dBFS,  
40Msps  
LTC2171-12: Shorted Input  
Histogram  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
18000  
16000  
14000  
12000  
72  
71  
70  
69  
68  
67  
66  
10000  
8000  
6000  
4000  
2000  
0
–80  
–90  
–100  
–110  
–120  
0
20  
10  
2049  
2050  
2051  
2052  
2053  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
OUTPUT CODE  
217212 G27  
217212 G28  
217212 G29  
LTC2171-12: SFDR vs Input  
Frequency, 1dBFS, 2V Range,  
40Msps  
LTC2171-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 40Msps  
LTC2171-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
110  
100  
90  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
dBFS  
80  
70  
60  
dBc  
50  
40  
30  
20  
10  
0
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
100 150 200 250 ꢀ00 ꢀ50  
INPUT FREQUENCY (MHz)  
50  
0
10  
20  
30  
40  
SAMPLE RATE (Msps)  
217212 G32  
217212 G24a  
217212 G54  
21721012fa  
14  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2171-12: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
LTC2170-12: Integral Nonlinearity  
(INL)  
LTC2170-12: Differential  
Nonlinearity (DNL)  
72  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
71  
70  
69  
68  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
67  
66  
0
2048  
3072  
4096  
0
2048  
3072  
4096  
1024  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.ꢀ  
1024  
OUTPUT CODE  
OUTPUT CODE  
SENSE PIN (V)  
217212 G42  
217212 G41  
217212 Gꢀ5  
LTC2170-12: 8k Point FFT, fIN = 30MHz  
–1dBFS, 25Msps  
LTC2170-12: 8k Point FFT, fIN = 70MHz  
–1dBFS, 25Msps  
LTC2170-12: 8k Point FFT, fIN = 5MHz  
–1dBFS, 25Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
0
10  
0
10  
5
5
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
217212 G43  
217212 G44  
217212 G45  
LTC2170-12: 8k Point 2-Tone FFT,  
fIN = 68MHz, 69MHz, –1dBFS,  
25Msps  
LTC2170-12: Shorted Input  
Histogram  
LTC2170-12: 8k Point FFT,  
fIN = 140MHz –1dBFS, 25Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
18000  
16000  
14000  
12000  
10000  
8000  
–80  
–90  
–100  
–110  
–120  
–80  
–90  
–100  
–110  
–120  
6000  
4000  
2000  
0
0
5
10  
0
5
10  
2049  
2050  
2051  
2052  
2053  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT CODE  
217212 G47  
217212 G46  
217212 G48  
21721012fa  
15  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2170-12: SFDR vs Input  
Frequency, 1dBFS, 2V Range,  
25Msps  
LTC2170-12: SNR vs Input  
Frequency, 1dBFS, 2V Range,  
25Msps  
LTC2170-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 25Msps  
110  
100  
90  
95  
90  
85  
80  
75  
70  
65  
72  
71  
70  
69  
68  
67  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
66  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
0
100 150 200 250 ꢀ00 ꢀ50  
INPUT FREQUENCY (MHz)  
50  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
217212 G52  
217212 Gꢀ7  
217212 G49  
LTC2170-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
LTC2170-12: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
DCO Cycle-Cycle Jitter vs Serial  
Data Rate  
80  
75  
70  
65  
350  
300  
250  
200  
150  
72  
71  
70  
69  
68  
67  
66  
100  
50  
0
60  
0
5
10  
15  
20  
25  
0
200  
400  
600  
800  
1000  
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.ꢀ  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
SERIAL DATA RATE (Mbps)  
217212 G55  
217212 G52  
217212 G55a  
21721012fa  
16  
LTC2172-12/  
LTC2171-12/LTC2170-12  
PIN FUNCTIONS  
+
A
(Pin 1): Channel 1 Positive Differential Analog  
(Pin 2): Channel 1 Negative Differential Analog  
(Pin 3): Common Mode Bias Output, Nominally  
ENC (Pin 18): Encode Complement Input. Conversion  
IN1  
Input.  
starts on the falling edge.  
A
CS(Pin19):Inserialprogrammingmode(PAR/SER=0V),  
CS is the serial interface chip select input. When CS is low,  
SCK is enabled for shifting data on SDI into the mode  
controlregisters.Inparallelprogrammingmode(PAR/SER  
IN1  
Input.  
V
CM12  
Equal to V /2. V should be used to bias the common  
DD  
CM  
= V ), CS selects two-lane or one-lane output mode. CS  
DD  
mode of the analog inputs of channels 1 and 2. Bypass  
can be driven with 1.8V to ꢀ.ꢀV logic.  
to ground with a 0.1μF ceramic capacitor.  
+
SCK (Pin 20): In serial programming mode (PAR/SER  
= 0V), SCK is the serial interface clock input. In parallel  
A
(Pin 4): Channel 2 Positive Differential Analog  
(Pin 5): Channel 2 Negative Differential Analog  
IN2  
Input.  
programmingmode(PAR/SER=V ),SCKselects.5mA  
DD  
A
IN2  
or 1.75mA LVDS output currents. SCK can be driven with  
1.8V to ꢀ.ꢀV logic.  
Input.  
REFH (Pins 6, 7): ADC High Reference. Bypass to Pin 8  
and Pin 9 with a 2.2μF ceramic capacitor, and to ground  
with a 0.1μF ceramic capacitor.  
SDI (Pin 21): In serial programming mode (PAR/SER =  
0V), SDI is the serial interface data input. Data on SDI  
is clocked into the mode control registers on the rising  
edge of SCK. In parallel programming mode (PAR/SER =  
REFL (Pins 8, 9): ADC Low Reference. Bypass to Pin 6  
and Pin 7 with a 2.2μF ceramic capacitor, and to ground  
with a 0.1μF ceramic capacitor.  
V ), SDI can be used to power down the part. SDI can  
DD  
be driven with 1.8V to ꢀ.ꢀV logic.  
+
A
(Pin 10): Channel ꢀ Positive Differential Analog  
(Pin 11): Channel ꢀ Negative Differential Analog  
(Pin 12): Common Mode Bias Output, Nominally  
GND (Pins 22, 45, 49, Exposed Pad Pin 53): ADC Power  
Ground. The exposed pad must be soldered to the PCB  
ground.  
IN3  
Input.  
A
IN3  
Input.  
OGND (Pin 33): Output Driver Ground. Must be shorted  
to the ground plane by a very low inductance path. Use  
multiple vias close to the pin.  
V
CM34  
Equal to V /2. V should be used to bias the common  
DD  
CM  
mode of the analog inputs of channels ꢀ and 4. Bypass  
OV (Pin 34): Output Driver Supply, 1.7V to 1.9V. Bypass  
DD  
to ground with a 0.1μF ceramic capacitor.  
to ground with a 0.1μF ceramic capacitor.  
+
A
(Pin 13): Channel 4 Positive Differential Analog  
(Pin 14): Channel 4 Negative Differential Analog  
IN4  
SDO (Pin 46): In serial programming mode (PAR/SER  
= 0V), SDO is the optional serial interface data output.  
Data on SDO is read back from the mode control reg-  
isters and can be latched on the falling edge of SCK.  
SDO is an open-drain N-channel MOSFET output that  
requires an external 2k pull-up resistor of 1.8V to ꢀ.ꢀV.  
If readback from the mode control registers is not  
needed, the pull-up resistor is not necessary and SDO  
can be left unconnected. In parallel programming mode  
Input.  
A
IN4  
Input.  
V
(Pins 15, 16, 51, 52): Analog Power Supply, 1.7V  
DD  
to 1.9V. Bypass to ground with 0.1μF ceramic capacitors.  
Adjacent pins can share a bypass capacitor.  
+
ENC (Pin 17): Encode Input. Conversion starts on the  
rising edge.  
(PAR/SER = V ), SDO is an input that enables internal  
DD  
100ꢁ termination resistors on the digital outputs. When  
used as an input, SDO can be driven with 1.8V to ꢀ.ꢀV  
logic through a 1k series resistor.  
21721012fa  
17  
LTC2172-12/  
LTC2171-12/LTC2170-12  
PIN FUNCTIONS  
PAR/SER (Pin 47): Programming Mode Selection Pin.  
Connect to ground to enable serial programming mode.  
CS, SCK, SDI and SDO become a serial interface that con-  
LVDS OUTPUTS  
The following pins are differential LVDS outputs. The  
output current level is programmable. There is an op-  
tional internal 100ꢀ termination resistor between the  
pins of each LVDS output pair.  
trols the A/D operating modes. Connect to V to enable  
DD  
parallel programming mode where CS, SCK, SDI and SDO  
become parallel logic inputs that control a reduced set of  
the A/D operating modes. PAR/SER should be connected  
directly to ground or the V of the part and not be driven  
by a logic signal.  
+
+
OUT4B /OUT4B , OUT4A /OUT4A (Pins 23/24,  
Pins 25/ 26): Serial Data Outputs for Channel 4. In 1-lane  
DD  
+
output mode, only OUT4A /OUT4A are used.  
+
+
OUT3B /OUT3B , OUT3A /OUT3A (Pins 27/28,  
V
(Pin48):ReferenceVoltageOutput.Bypasstoground  
REF  
Pins 29/30): Serial Data Outputs for Channel ꢀ. In  
with a 1μF ceramic capacitor, nominally 1.25V.  
+
1-lane output mode, only OUTꢀA /OUTꢀA are used.  
SENSE (Pin 50): Reference Programming Pin. Connect-  
+
FR /FR (Pin 31/Pin 32): Frame Start Output.  
ing SENSE to V selects the internal reference and a  
DD  
+
DCO /DCO (Pin 35/Pin 36): Data Clock Output.  
1V input range. Connecting SENSE to ground selects  
the internal reference and a 0.5V input range. An external  
reference between 0.625V and 1.ꢀV applied to SENSE  
+
+
OUT2B /OUT2B , OUT2A /OUT2A (Pins 37/38,  
Pins 39/40): Serial Data Outputs for Channel 2. In  
+
selects an input range of 0.8 • V  
.
1-lane output mode, only OUT2A /OUT2A are used.  
SENSE  
+
+
OUT1B /OUT1B , OUT1A /OUT1A (Pins 41/42,  
Pins 43/44): Serial Data Outputs for Channel 1. In  
1-lane output mode, only OUT1A /OUT1A are used.  
+
21721012fa  
18  
LTC2172-12/  
LTC2171-12/LTC2170-12  
FUNCTIONAL BLOCK DIAGRAM  
+
1.8V  
ENC ENC  
1.8V  
OV  
V
DD  
DD  
OUT1A  
OUT1B  
CHANNEL 1  
ANALOG  
INPUT  
12-BIT  
ADC CORE  
SAMPLE-  
AND-HOLD  
PLL  
OUT2A  
OUT2B  
CHANNEL 2  
ANALOG  
INPUT  
12-BIT  
ADC CORE  
SAMPLE-  
AND-HOLD  
DATA  
SERIALIZER  
OUTꢀA  
OUTꢀB  
CHANNEL ꢀ  
ANALOG  
INPUT  
SAMPLE-  
AND-HOLD  
12-BIT  
ADC CORE  
OUT4A  
OUT4B  
CHANNEL 4  
ANALOG  
INPUT  
SAMPLE-  
AND-HOLD  
12-BIT  
ADC CORE  
DATA  
CLOCK OUT  
V
REF  
1.25V  
REFERENCE  
FRAME  
1μF  
RANGE  
SELECT  
OGND  
REFH  
REFL  
REF  
BUF  
SENSE  
V
/2  
DD  
DIFF  
REF  
AMP  
MODE  
CONTROL  
REGISTERS  
217212 F01  
GND  
REFH  
REFL  
VCM12  
0.1μF  
VCMꢀ4  
0.1μF  
0.1μF  
2.2μF  
0.1μF  
PAR/SER CS SCK SDI SDO  
0.1μF  
Figure 1. Functional Block Diagram  
21721012fa  
19  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
or V  
output pins, which are nominally V /2. For the  
CMꢀ4 DD  
2V input range, the inputs should swing from V – 0.5V  
CM  
The LTC2172-12/LTC2171-12/LTC2170-12 are low power,  
4-channel, 12-bit, 65Msps/40Msps/25Msps A/D convert-  
ers that are powered by a single 1.8V supply. The analog  
inputs should be driven differentially. The encode input  
can be driven differentially for optimal jitter performance,  
or single-ended for lower power consumption. The digital  
outputs are serial LVDS to minimize the number of data  
lines. Each channel outputs two bits at a time (2-lane  
mode) or one bit at a time (1-lane mode). Many additional  
features can be chosen by programming the mode control  
registers through a serial SPI port.  
to V + 0.5V. There should be a 180° phase difference  
between the inputs.  
CM  
The four channels are simultaneously sampled by a  
shared encode circuit (Figure 2).  
INPUT DRIVE CIRCUITS  
Input Filtering  
If possible, there should be an RC lowpass filter right  
at the analog inputs. This lowpass filter isolates the  
drive circuitry from the A/D sample-and-hold switch-  
ing and limits wideband noise from the drive circuitry.  
Figure ꢀ shows an example of an input RC filter. The  
RC component values should be chosen based on the  
application’s input frequency.  
ANALOG INPUT  
The analog inputs are differential CMOS sample-and-hold  
circuits (Figure 2). The inputs should be driven differen-  
tially around a common mode voltage set by the V  
CM12  
50Ω  
V
LTC2172-12  
CM  
V
DD  
C
C
0.1μF  
SAMPLE  
ꢀ.5pF  
R
ON  
0.1μF  
T1  
1:1  
10Ω  
10ꢁ  
25Ω  
+
25Ω  
+
A
IN  
A
A
ANALOG  
INPUT  
IN  
C
PARASITIC  
LTC2172-12  
0.1μF  
25Ω  
25Ω  
1.8pF  
V
DD  
12pF  
SAMPLE  
ꢀ.5pF  
R
25Ω  
ON  
25Ω  
A
IN  
IN  
C
PARASITIC  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
1.8pF  
217212 F0ꢀ  
V
DD  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
1.2V  
10k  
+
ENC  
ENC  
10k  
1.2V  
217212 F02  
Figure 2. Equivalent Input Circuit. Only One of  
the Four Analog Channels Is Shown.  
21721012fa  
20  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
Transformer Coupled Circuits  
Amplifier Circuits  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC-coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distor-  
tion.  
Figure ꢀ shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
tap is biased with V , setting the A/D input at its opti-  
CM  
mal DC level. At higher input frequencies a transmission  
line balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
block is single-ended, then a transformer circuit (Figures  
4 to 6) should convert the signal to differential before  
driving the A/D.  
50Ω  
50Ω  
V
V
CM  
CM  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
+
+
A
A
IN  
ANALOG  
INPUT  
IN  
ANALOG  
INPUT  
T2  
T2  
LTC2172-12  
LTC2172-12  
T1  
T1  
0.1μF  
0.1μF  
25Ω  
25Ω  
25Ω  
25Ω  
4.7pF  
1.8pF  
A
A
IN  
IN  
217212 F04  
217212 F05  
T1: MA/COM MABA-007159-000000  
T2: MA/COM MABAES0060  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1LB  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 4. Recommended Front-End Circuit for Input  
Frequencies from 70MHz to 170MHz  
Figure 5. Recommended Front-End Circuit for Input  
Frequencies from 170MHz to 300MHz  
V
CM  
50Ω  
V
CM  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1μF  
200Ω 200Ω  
25Ω  
0.1μF  
A
0.1μF  
0.1μF  
+
0.1μF  
0.1μF  
A
IN  
2.7nH  
0.1μF  
+
IN  
ANALOG  
INPUT  
LTC2172-12  
ANALOG  
INPUT  
LTC2172-12  
+
+
25Ω  
25Ω  
T1  
12pF  
A
2.7nH  
A
25Ω  
IN  
IN  
217212 F06  
217212 F07  
T1: MA/COM ETC1-1-1ꢀ  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 7. Front-End Circuit Using a High Speed  
Differential Amplifier  
Figure 6. Recommended Front-End Circuit for Input  
Frequencies Above 300MHz  
21721012fa  
21  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
Reference  
Encode Input  
TheLTC2172-12/LTC2171-12/LTC2170-12hasaninternal  
1.25V voltage reference. For a 2V input range using the  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10), and the single-ended encode mode  
(Figure 11).  
internal reference, connect SENSE to V . For a 1V input  
DD  
range using the internal reference, connect SENSE to  
ground. For a 2V input range with an external reference,  
apply a 1.25V reference voltage to SENSE (Figure 9).  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.ꢀ0V. The input range  
V
REF  
will then be 1.6 V  
.
SENSE  
1μF  
LTC2172-12  
The reference is shared by all four ADC channels, so it is  
not possible to independently adjust the input range of  
individual channels.  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1μF  
217212 F09  
The V , REFH and REFL pins should be bypassed, as  
REF  
shown in Figure 8. The 0.1μF capacitor between REFH and  
REFL should be as close to the pins as possible (not on  
the backside of the circuit board).  
Figure 9. Using an External 1.25V Reference  
LTC2172-12  
LTC2172-12  
V
DD  
5Ω  
V
REF  
1.25V BANDGAP  
REFERENCE  
DIFFERENTIAL  
COMPARATOR  
1.25V  
V
DD  
1μF  
0.625V  
15k  
ꢀ0k  
RANGE  
DETECT  
AND  
+
ENC  
ENC  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
TIE TO GND FOR 1V RANGE;  
RANGE = 1.6 • V  
FOR  
SENSE  
BUFFER  
0.625V < V  
< 1.ꢀ00V  
SENSE  
INTERNAL ADC  
HIGH REFERENCE  
217212 F10  
0.1μF  
REFH  
0.1μF  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
2.2μF  
0.8x  
DIFF AMP  
0.1μF  
REFL  
LTC2172-12  
+
INTERNAL ADC  
LOW REFERENCE  
1.8V TO ꢀ.ꢀV  
0V  
ENC  
ENC  
217212 F08  
ꢀ0k  
CMOS LOGIC  
BUFFER  
Figure 8. Reference Circuit  
217212 F11  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
21721012fa  
22  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
The differential encode mode is recommended for sinu-  
soidal, PECL, or LVDS encode inputs (Figures 12 and 1ꢀ).  
The encode inputs are internally biased to 1.2V through  
10k equivalent resistance. The encode inputs can be taken  
In the serial programming mode it is possible to disable  
the duty cycle stabilizer, but this is not recommended. In  
the parallel programming mode the duty cycle stabilizer  
is always enabled.  
above V (up to ꢀ.6V), and the common mode range  
DD  
is from 1.1V to 1.6V. In the differential encode mode,  
DIGITAL OUTPUTS  
ENC should stay at least 200mV above ground to avoid  
The digital outputs of the LTC2172-12/LTC2171-12/  
LTC2170-12 are serialized LVDS signals. Each channel  
outputs two bits at a time (2-lane mode) or one bit at a  
time (1-lane mode). The data can be serialized with 16-,  
14-, or 12-bit serialization (see the Timing Diagrams sec-  
tion for details).  
falsely triggering the single-ended encode mode. For  
+
good jitter performance ENC should have fast rise and  
fall times.  
The single-ended encode mode should be used with  
CMOS encode inputs. To select this mode, ENC is con-  
+
nected to ground and ENC is driven with a square wave  
+
The output data should be latched on the rising and  
falling edges of the data clockout (DCO). A data frame  
output (FR) can be used to determine when the data  
from a new conversion result begins. In the 2-lane, 14-  
bit serialization mode, the frequency of the FR output  
is halved.  
encode input. ENC can be taken above V (up to ꢀ.6V)  
DD  
so 1.8V to ꢀ.ꢀV CMOS logic levels can be used. The  
+
+
ENC threshold is 0.9V. For good jitter performance  
ENC should have fast rise and fall times.  
Clock PLL and Duty Cycle Stabilizer  
Theencodeclockismultipliedbyaninternalphase-locked  
loop (PLL) to generate the serial digital output data. If the  
encode signal changes frequency or is turned off, the PLL  
requires 25μs to lock onto the input clock.  
The maximum serial data rate for the data outputs is  
1Gbps, so the maximum sample rate of the ADC will de-  
pend on the serialization mode as well as the speed grade  
of the ADC (see Table 1). The minimum sample rate for  
all serialization modes is 5Msps.  
A clock duty cycle stabilizer circuit allows the duty cycle  
of the applied encode signal to vary from ꢀ0% to 70%.  
0.1μF  
+
ENC  
0.1μF  
0.1μF  
+
T1  
ENC  
LTC2172-12  
PECL OR  
LTC2172-12  
LVDS  
50ꢁ  
50ꢁ  
CLOCK  
100ꢁ  
0.1μF  
ENC  
217212 F1ꢀ  
0.1μF  
ENC  
Figure 13. PECL or LVDS Encode Drive  
217212 F12  
T1 = MA/COM ETC1-1-1ꢀ  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 12. Sinusoidal Encode Drive  
21721012fa  
23  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
Table 1. Maximum Sampling Frequency for All Serialization Modes. Note That These Limits Are for the LTC2172-12. The Sampling  
Frequency for the Slower Speed Grades Cannot Exceed 40MHz (LTC2171-12) or 25MHz (LTC2170-12).  
MAXIMUM SAMPLING  
SERIALIZATION MODE  
2-Lane  
FREQUENCY, f (MHz)  
DCO FREQUENCY  
4 • f  
FR FREQUENCY  
SERIAL DATA RATE  
S
16-Bit Serialization  
14-Bit Serialization  
12-Bit Serialization  
16-Bit Serialization  
14-Bit Serialization  
12-Bit Serialization  
65  
65  
f
8 • f  
7 • f  
6 • f  
S
S
S
S
S
2-Lane  
ꢀ.5 • f  
0.5 • f  
S
S
2-Lane  
65  
ꢀ • f  
8 • f  
7 • f  
6 • f  
f
f
f
f
S
S
S
S
S
1-Lane  
62.5  
65  
16 • f  
14 • f  
12 • f  
S
S
S
S
S
S
1-Lane  
1-Lane  
65  
By default the outputs are standard LVDS levels: a ꢀ.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100ꢁ differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
DATA FORMAT  
Table 2 shows the relationship between the analog input  
voltage and the digital data output bits. By default the  
output data format is offset binary. The 2’s complement  
format can be selected by serially programming mode  
control register A1.  
The outputs are powered by OV and OGND which are  
DD  
In addition to the 12 data bits (D11 - D0), two additional  
bits (DX and DY) are sent out in the 14-bit and 16-bit  
serialization modes. These extra bits are to ensure com-  
plete software compatibility with the 14-bit versions of  
these A/Ds. During normal operation when the analog  
inputs are not overranged, DX and DY are always logic 0.  
When the analog inputs are overranged positive, DX and  
DYbecomelogic1.Whentheanaloginputsareoverranged  
negative, DX and DY become logic 0. DX and DY can also  
be controlled by the digital output test pattern. See the  
Timing Diagrams section for more information.  
isolated from the A/D core power and ground.  
Programmable LVDS Output Current  
Thedefaultoutputdrivercurrentis.5mA.Thiscurrentcan  
be adjusted by control register A2 in serial programming  
mode.Availablecurrentlevelsare1.75mA,2.1mA,2.5mA,  
ꢀmA, ꢀ.5mA, 4mA and 4.5mA. In parallel programming  
mode the SCK pin can select either ꢀ.5mA or 1.75mA.  
Optional LVDS Driver Internal Termination  
In most cases, using just an external 100ꢁ termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100ꢁ termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A2. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is doubled to maintain the same output voltage swing. In  
parallel programming mode the SDO pin enables internal  
termination. Internalterminationshouldonlybeusedwith  
1.75mA, 2.1mA or 2.5mA LVDS output current modes.  
Table 2. Output Codes vs Input Voltage  
+
A
– A  
D11-D0  
D11-D0  
IN  
IN  
(2V RANGE)  
>+1.000000V  
+0.999512V  
+0.999024V  
+0.000488V  
0.000000V  
(OFFSET BINARY) (2s COMPLEMENT)  
D , D  
X
Y
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
0111 1111 1111  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
1000 0000 0000  
11  
00  
00  
00  
00  
00  
00  
00  
00  
00  
–0.000488V  
–0.000976V  
–0.999512V  
–1.000000V  
≤–1.000000V  
21721012fa  
24  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
Digital Output Randomizer  
In nap mode any combination of A/D channels can be  
powereddownwhiletheinternalreferencecircuitsandthe  
PLL stay active, allowing a faster wake-up than from sleep  
mode. Recovering from nap mode requires at least 100  
clock cycles. If the application demands very accurate DC  
settling, then an additional 50μs should be allowed so the  
on-chip references can settle from the slight temperature  
shift caused by the change in supply current as the A/D  
leavesnapmode.Napmodeisenabledbythemodecontrol  
register A1 in the serial programming mode.  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones in  
the ADC output spectrum. These unwanted tones can be  
randomized by randomizing the digital output before it is  
transmitted off chip, which reduces the unwanted tone  
amplitude.  
The digital output is randomized by applying an exclu-  
sive-OR logic operation between the LSB and all other  
data output bits. To decode, the reverse operation is  
applied—an exclusive-OR operation is applied between  
the LSB and all other bits. The FR and DCO outputs are  
not affected. The output randomizer is enabled by serially  
programming mode control register A1.  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC2172-12/LTC2171-12/  
LTC2170-12 can be programmed by either a parallel  
interface or a simple serial interface. The serial interface  
has more flexibility and can program all available modes.  
Theparallelinterfaceismorelimitedandcanonlyprogram  
some of the more commonly used modes.  
Digital Output Test Pattern  
To allow in-circuit testing of the digital interface to the  
A/D, there is a test mode that forces the A/D data outputs  
Parallel Programming Mode  
(D11-D0, D , D ) of all channels to known values. The  
X
Y
To use the parallel programming mode, PAR/SER should  
digitaloutputtestpatternsareenabledbyseriallyprogram-  
ming mode control registers Aꢀ and A4. When enabled,  
the test patterns override all other formatting modes: 2’s  
complement and randomizer.  
be tied to V . The CS, SCK, SDI and SDO pins are binary  
DD  
logic inputs that set certain operating modes. These pins  
can be tied to V or ground, or driven by 1.8V, 2.5V or  
DD  
ꢀ.ꢀV CMOS logic. When used as an input, SDO should  
be driven through a 1k series resistor. Table ꢀ shows the  
modes set by CS, SCK, SDI and SDO.  
Output Disable  
The digital outputs may be disabled by serially program-  
ming mode control register A2. The current drive for all  
digitaloutputs, includingDCOandFR, aredisabledtosave  
powerorenablein-circuittesting.Whendisabled,thecom-  
mon mode of each output pair becomes high impedance,  
but the differential impedance may remain low.  
Table 3. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
2-Lane/1-Lane Selection Bit  
0 = 2-Lane, 16-Bit Serialization Output Mode  
1 = 1-Lane, 14-Bit Serialization Output Mode  
LVDS Current Selection Bit  
0 = ꢀ.5mA LVDS Current Mode  
1 = 1.75mA LVDS Current Mode  
Power Down Control Bit  
SCK  
SDI  
Sleep and Nap Modes  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire chip is powered down,  
resulting in 1mW power consumption. Sleep mode is  
enabled by mode control register A1 (serial program-  
ming mode), or by SDI (parallel programming mode).  
The amount of time required to recover from sleep mode  
0 = Normal Operation  
1 = Sleep Mode  
SDO  
Internal 100Ω Termination Selection Bit  
0 = Internal Termination Disabled  
1 = Internal Termination Enabled  
depends on the size of the bypass capacitors on V  
,
REF  
REFH and REFL. For the suggested values in Figure 8, the  
A/D will stabilize after 2ms.  
21721012fa  
25  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
Serial Programming Mode  
A0) will be read back on the SDO pin (see the Timing Dia-  
grams section). During a readback command the register  
is not updated and data on SDI is ignored.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become  
a serial interface that program the A/D mode control  
registers. Data is written to a register with a 16-bit serial  
word. Data can also be read back from a register to verify  
its contents.  
The SDO pin is an open-drain output that pulls to ground  
witha200impedance.Ifregisterdataisreadbackthrough  
SDO, an external 2k pull-up resistor is required. If serial  
data is only written and readback is not needed, then SDO  
can be left floating and no pull-up resistor is needed. Table  
4 shows a map of the mode control registers.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset is  
complete, bit D7 is automatically set back to zero.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
If the R/W bit is low, the serial data (D7:D0) will be written  
to the register set by the address bits (A6:A0). If the R/W  
bit is high, data in the register set by the address bits (A6:  
Table 4. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
D4  
X
Dꢀ  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers Are Reset to 00h. The ADC is momentarily placed in SLEEP mode. This Bit Is  
Automatically Set Back to Zero After the Reset Is Complete  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
DCSOFF  
RAND  
TWOSCOMP  
SLEEP  
NAP_4  
NAP_ꢀ  
NAP_2  
NAP_1  
Bit 7  
Bit 6  
Bit 5  
DCSOFF  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer On  
1 = Clock Duty Cycle Stabilizer Off. This is Not Recommended.  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Two’s Complement Mode Control Bit  
Bits 4-0  
SLEEP:NAP_4:NAP_1  
00000 = Normal Operation  
Sleep/Nap Mode Control Bits  
0XXX1 = Channel 1 in Nap Mode  
0XX1X = Channel 2 in Nap Mode  
0X1XX = Channel ꢀ in Nap Mode  
01XXX = Channel 4 in Nap Mode  
1XXXX = Sleep Mode. All Channels Are Disabled  
Note: Any Combination of Channels Can Be Placed in Nap Mode.  
21721012fa  
26  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
REGISTER A2: OUTPUT MODE REGISTER (ADDRESS 02h)  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE2  
OUTMODE1  
OUTMODE0  
Bits 7-5  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = ꢀ.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = ꢀ.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 4  
TERMON  
LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current is 2x the Current Set by ILVDS2:ILVDS0. Internal termination should only be  
used with 1.75mA, 2.1mA or 2.5mA LVDS output current modes.  
Bit ꢀ  
OUTOFF  
Output Disable Bit  
0 = Digital Outputs are enabled.  
1 = Digital Outputs are disabled.  
Bits 2-0  
OUTMODE2:OUTMODE0 Digital Output Mode Control Bits  
000 = 2-Lanes, 16-Bit Serialization  
001 = 2-Lanes, 14-Bit Serialization  
010 = 2-Lanes, 12-Bit Serialization  
011 = Not Used  
100 = Not Used  
101 = 1-Lane, 14-Bit Serialization  
110 = 1-Lane, 12-Bit Serialization  
111 = 1-Lane, 16-Bit Serialization  
REGISTER A3: TEST PATTERN MSB REGISTER (ADDRESS 03h)  
D7  
D6  
X
D5  
D4  
Dꢀ  
D2  
D1  
D0  
OUTTEST  
TP11  
TP10  
TP9  
TP8  
TP7  
TP6  
Bit 7  
OUTTEST  
Digital Output Test Pattern Control Bit  
0 = Digital Output Test Pattern Off  
1 = Digital Output Test Pattern On  
Bit 6  
Unused, Don’t Care Bit.  
Bits 5-0  
TP11:TP6  
Test Pattern Data Bits (MSB)  
TP11:TP6 Set the Test Pattern for Data Bit 11 (MSB) Through Data Bit 6.  
REGISTER A4: TEST PATTERN LSB REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
TP5  
TP4  
TPꢀ  
TP2  
TP1  
TP0  
TPX  
TPY  
Bits 7-2  
TP5:TP0  
Test Pattern Data Bits (LSB)  
TP5:TP0 Set the Test Pattern for Data Bit 5 Through Data Bit 0 (LSB).  
Bits 1-0  
TPX:TPY  
Set the Test Pattern for Extra Bits D and D . These Bits are for Compatibility with the 14-Bit Version of the A/D.  
X Y  
21721012fa  
27  
LTC2172-12/  
LTC2171-12/LTC2170-12  
APPLICATIONS INFORMATION  
GROUNDING AND BYPASSING  
between REFH and REFL can be somewhat further away.  
Thetracesconnectingthepinsandbypasscapacitorsmust  
be kept short and should be made as wide as possible.  
The LTC2172-12/LTC2171-12/LTC2170-12 requires a  
printed circuit board with a clean unbroken ground plane.  
A multilayer board with an internal ground plane in the  
first layer beneath the ADC is recommended. Layout for  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. In  
particular, care should be taken not to run any digital track  
alongside an analog signal track or underneath the ADC.  
The analog inputs, encode signals and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
HEAT TRANSFER  
High quality ceramic bypass capacitors should be used at  
MostoftheheatgeneratedbytheLTC2172-12/LTC2171-12/  
LTC2170-12 is transferred from the die through the bot-  
tom-side exposed pad and package leads onto the printed  
circuitboard.Forgoodelectricalandthermalperformance,  
the exposed pad must be soldered to a large grounded  
pad on the PC board. This pad should be connected to the  
internal ground planes by an array of vias.  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
capacitorsmustbelocatedasclosetothepinsaspossible.  
Of particular importance is the 0.1μF capacitor between  
REFH and REFL. This capacitor should be on the same  
side of the circuit board as the A/D, and as close to the  
device as possible (1.5mm or less). Size 0402 ceramic  
capacitors are recommended. The larger 2.2μF capacitor  
21721012fa  
28  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL APPLICATIONS  
Silkscreen Top  
Top Side  
Inner Layer 2 GND  
Inner Layer 3  
21721012fa  
29  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL APPLICATIONS  
Inner Layer 4  
Inner Layer 5 Power  
Bottom Side  
Silkscreen Bottom  
21721012fa  
30  
LTC2172-12/  
LTC2171-12/LTC2170-12  
TYPICAL APPLICATIONS  
LTC2172 Schematic  
SENSE  
PAR/SER  
C4  
1μF  
R14  
1k  
SDO  
C17  
1μF  
V
DD  
C5  
1μF  
52 51 50 49 48 47 46 45 44 4ꢀ 42 41  
A
IN1  
DIGITAL  
OUTPUTS  
1
2
40  
ꢀ9  
ꢀ8  
ꢀ7  
ꢀ6  
ꢀ5  
ꢀ4  
ꢀꢀ  
ꢀ2  
ꢀ1  
ꢀ0  
29  
28  
27  
+
+
+
+
C29  
0.1μF  
OUT2A  
A
A
V
A
A
A
A
A
IN1  
IN1  
IN2  
IN2  
OUT2A  
OUT2B  
OUT2B  
DCO  
IN1  
CM12  
4
+
IN2  
5
IN2  
6
DCO  
REFH  
REFH  
REFL  
LTC2172  
7
OV  
OV  
DD  
DD  
C1  
2.2μF  
Cꢀ0  
0.1μF  
8
C16  
0.1μF  
C2  
0.1μF  
OGND  
9
+
FR  
REFL  
+
Cꢀ  
0.1μF  
10  
11  
12  
1ꢀ  
14  
FR  
A
INꢀ  
+
OUTꢀA  
A
A
A
INꢀ  
INꢀ  
INꢀ  
OUTꢀA  
V
CMꢀ4  
+
+
OUTꢀB  
A
A
IN4  
IN4  
C59  
OUTꢀB  
0.1μF  
DIGITAL  
OUTPUTS  
A
A
IN4  
IN4  
15 16 17 18 19 20 21 22 2ꢀ 24 25 26  
V
DD  
C7  
0.1μF  
SPI BUS  
C47  
0.1μF  
C46  
0.1μF  
217212 TA02  
ENCODE  
CLOCK  
ENCODE  
CLOCK  
21721012fa  
31  
LTC2172-12/  
LTC2171-12/LTC2170-12  
PACKAGE DESCRIPTION  
UKG Package  
52-Lead Plastic QFN (7mm × 8mm)  
(Reference LTC DWG # 05-08-1729 Rev Ø)  
7.50 0.05  
6.10 0.05  
5.50 REF  
(2 SIDES)  
0.70 0.05  
6.45 0.05  
6.50 REF  
(2 SIDES)  
7.10 0.05 8.50 0.05  
5.41 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
5.50 REF  
(2 SIDES)  
0.75 0.05  
7.00 0.10  
(2 SIDES)  
R = 0.115  
TYP  
0.00 – 0.05  
51  
52  
0.40 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45°C  
CHAMFER  
6.45 0.10  
8.00 0.10  
(2 SIDES)  
6.50 REF  
(2 SIDES)  
5.41 0.10  
(UKG52) QFN REV  
Ø 0306  
R = 0.10  
TYP  
0.25 0.05  
0.50 BSC  
TOP VIEW  
SIDE VIEW  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.75 0.05  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
21721012fa  
32  
LTC2172-12/  
LTC2171-12/LTC2170-12  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
0ꢀ/10 Changed Sampling Frequency Max for LTC2171-12 from 45MHz to 40MHz in the Timing Characteristics section  
Added full part numbers to Grounding and Bypassing and Heat Transfer sections in Applications Information  
Revised Descriptions and Comments in the Related Parts section  
6
28  
ꢀ4  
21721012fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
33  
LTC2172-12/  
LTC2171-12/LTC2170-12  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2170-14/LTC2171-14/ 14-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2172-14 Quad ADCs, Ultralow Power  
162mW/202mW/ꢀ11mW, 7ꢀ.7dB SNR, 90dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTC217ꢀ-14/LTC2174-14/ 14-Bit, 80Msps/105Msps/125Msps 1.8V ꢀ76mW/450mW/558mW, 7ꢀ.4 dB SNR, 88dB SFDR, Serial LVDS Outputs,  
LTC2175-14  
LTC217ꢀ-12/LTC2174-12/ 12-Bit, 80Msps/105Msps/125Msps  
LTC2175-12 1.8V Quad ADCs, Ultralow Power  
LTC2256-14/LTC2257-14/ 14-Bit, 25Msps/40Msps/65Msps  
LTC2258-14 1.8V ADCs, Ultralow Power  
LTC2259-14/LTC2260-14/ 14-Bit, 80Msps/105Msps/125Msps  
Quad ADCs, Ultralow Power  
7mm × 8mm QFN-52  
ꢀ69mW/4ꢀ9mW/545mW, 70.6dB SNR, 88dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
ꢀ5mW/49mW/81mW, 74dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS  
Outputs, 6mm × 6mm QFN-40  
89mW/106mW/127mW, 7ꢀ.4dB SNR, 85dB SFDR, DDR LVDS/DDR CMOS/CMOS  
Outputs, 6mm × 6mm QFN-40  
LTC2261-14  
1.8V ADCs, Ultralow Power  
LTC2262-14  
14-Bit, 150Msps 1.8V ADC, Ultralow Power 149mW, 72.8dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS Outputs,  
6mm × 6mm QFN-40  
LTC226ꢀ-14/LTC2264-14/ 14-Bit, 25Msps/40Msps/65Msps  
LTC2265-14 1.8V Dual ADCs, Ultralow Power  
94mW/11ꢀmW/171mW, 7ꢀ.7dB SNR, 90dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC226ꢀ-12/LTC2264-12/ 12-Bit, 25Msps/40Msps/65Msps  
LTC2265-12 1.8V Dual ADCs, Ultralow Power  
94mW/112mW/167mW, 71dB SNR, 90dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC2266-14/LTC2267-14/ 14-Bit, 80Msps/105Msps/125Msps  
LTC2268-14 1.8V Dual ADCs, Ultralow Power  
20ꢀmW/24ꢀmW/299mW, 7ꢀ.1dB SNR, 88dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC2266-12/LTC2267-12/ 12-Bit, 80Msps/105Msps/125Msps  
200mW/2ꢀ8mW/292mW, 70.6dB SNR, 88dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC2268-12  
1.8V Dual ADCs, Ultralow Power  
RF Mixers/Demodulators  
LTC5517  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
High IIPꢀ: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LTC5527  
LTC5557  
LTC5575  
400MHz to ꢀ.7GHz High Linearity  
Downconverting Mixer  
24.5dBm IIPꢀ at 900MHz, 2ꢀ.5dBm IIPꢀ at 1900MHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports, 5V Supply  
400MHz to ꢀ.8GHz High Linearity  
Downconverting Mixer  
24dBm IIPꢀ at 1950MHz, 2ꢀ.7dBm IIPꢀ at 2.6GHz, NF = 1ꢀ.2dB, ꢀ.ꢀV Supply  
Operation, Integrated Transformer  
800MHz to 2.7GHz Direct Conversion  
Quadrature Demodulator  
High IIPꢀ: 28dBm at 900MHz, Integrated LO Quadrature Generator, Integrated RF  
and LO Transformer  
Amplifiers/Filters  
LTC6412  
800MHz, ꢀ1dB Range, Analog-Controlled Continuously Adjustable Gain Control, ꢀ5dBm OIPꢀ at 240MHz, 10dB Noise  
Variable Gain Amplifier  
Figure, 4mm × 4mm QFN-24  
LTC6420-20  
LTC6421-20  
Dual Low Noise, Low Distortion  
Fixed Gain 10V/V, 2.2nV/√Hz Total Input Referred Noise, 80mA Supply Current per  
Differential ADC Drivers for ꢀ00MHz IF  
Amplifier, 46dBm OIPꢀ at 100MHz, ꢀmm × 4mm QFN-20  
Dual Low Noise, Low Distortion  
Differential ADC Drivers for 140MHz IF  
Fixed Gain 10V/V, 2.2nV/√Hz Total Input Referred Noise, 40mA Supply Current per  
Amplifier, 42dBm OIPꢀ at 100MHz, ꢀmm × 4mm QFN-20  
LTC6605-7/ LTC6605-10/ Dual Matched 7MHz/10MHz/14MHz Filters Dual Matched 2nd Order Lowpass Filters with Differential Drivers,  
LTC6605-14  
with ADC Drivers  
Pin-Programmable Gain, 6mm × ꢀmm DFN-22  
Signal Chain Receivers  
LTM9002  
14-Bit Dual Channel IF/Baseband Receiver Integrated High Speed ADC, Passive Filters and Fixed Gain Differential Amplifiers  
Subsystem  
21721012fa  
LT 0310 REV A • PRINTED IN USA  
LinearTechnology Corporation  
16ꢀ0 McCarthy Blvd., Milpitas, CA 950ꢀ5-7417  
34  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 4ꢀ2-1900 FAX: (408) 4ꢀ4-0507 www.linear.com  

相关型号:

LTC2170CUKG-14#PBF

LTC2170-14 - 14-Bit, 25Msps Low Power Quad ADCs; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear
Linear

LTC2170CUKG-14PBF

14-Bit, 65Msps/40Msps/25Msps Low Power Quad ADCs
Linear

LTC2170CUKG-14TRPBF

14-Bit, 65Msps/40Msps/25Msps Low Power Quad ADCs
Linear

LTC2170IUKG-12#PBF

LTC2170-12 - 12-Bit, 25Msps Low Power Quad ADCs; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2170IUKG-12#TRPBF

LTC2170-12 - 12-Bit, 25Msps Low Power Quad ADCs; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2170IUKG-12PBF

12-Bit, 65Msps/40Msps/25Msps Low Power Quad ADCs
Linear

LTC2170IUKG-12TRPBF

12-Bit, 65Msps/40Msps/25Msps Low Power Quad ADCs
Linear

LTC2170IUKG-14#PBF

LTC2170-14 - 14-Bit, 25Msps Low Power Quad ADCs; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2170IUKG-14#TRPBF

LTC2170-14 - 14-Bit, 25Msps Low Power Quad ADCs; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2170IUKG-14#TRPBF

14-Bit, 25Msps Low Power Quad ADCs
ADI

LTC2170IUKG-14PBF

14-Bit, 65Msps/40Msps/25Msps Low Power Quad ADCs
Linear