LTC1854IG#PBF [Linear]

LTC1854 - 8-Channel, ±10V Input 12-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C;
LTC1854IG#PBF
型号: LTC1854IG#PBF
厂家: Linear    Linear
描述:

LTC1854 - 8-Channel, ±10V Input 12-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总24页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1854/LTC1855/LTC1856  
8-Channel, ±10V Input  
12-/14-/16-Bit, 100ksps ADC  
Converters with Shutdown  
DescripTion  
The LTC®1854/LTC1855/LTC1856 are 8-channel, low  
power, 12-/14-/16-bit, 100ksps, analog-to-digital con-  
verters (ADCs). These ADCs operate from a single 5V  
supplyandthe8-channelmultiplexercanbeprogrammed  
for single-ended inputs, pairs of differential inputs, or  
combinations of both. In addition, all channels are fault  
protectedto±±0V.Afaultconditiononanychannelwillnot  
affect the conversion result of the selected channel.  
FeaTures  
n
Single 5V Supply  
Sample Rate: 100ksps  
8-Channel Multiplexer with 30V Protection  
10V Bipolar ꢀnput Range  
n
n
n
Single Ended or Differential  
3ꢁSB ꢀIꢁ for the TC1856, 1ꢂ5ꢁSB ꢀIꢁ for the  
n
TC1855, 1ꢁSB ꢀIꢁ for the TC1854  
Power Dissipation: 40mW (Typ)  
SPꢀ/MꢀCROWꢀRE™ Compatible Serial ꢀ/O  
Power Shutdown: Nap and Sleep  
SINAD: 87dꢀ (LTC1856)  
Operates with Internal or External Reference  
Internal Synchronized Clock  
28-Pin SSOP Package  
n
n
An onboard precision reference minimizes external com-  
ponents.Powerdissipationis40mWat100kspsandlower  
intwopowershutdownmodes(27.5mWinNapmodeand  
40µW in Sleep mode.) DC specifications include ±±LSꢀ  
INL for the LTC1856, ±1.5LSꢀ INL for the LTC1855 and  
±1LSꢀ for the LTC1854.  
n
n
n
n
n
Theinternalclockistrimmedfor5µsmaximumconversion  
time and the sampling rate is guaranteed at 100ksps. A  
separate convert start input and data ready signal (BUSY)  
ease connections to FIFOs, DSPs and microprocessors.  
applicaTions  
n
Industrial Process Control  
Multiplexed Data Acquisition Systems  
High Speed Data Acquisition for PCs  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
n
Digital Signal Processing  
Typical applicaTion  
100kHz, 12-Bit/14-/16-Bit Sampling ADC  
TC1856 Typical ꢀIꢁ Curve  
2.0  
COM  
CH0  
CONVST  
RD  
1.5  
1.0  
0.5  
0
LTC1854/  
CH1 LTC1855/ SCK  
LTC1856  
µP  
CONTROL  
LINES  
CH2  
SDI  
DGND  
SDO  
SOFTWARE-PROGRAMMABLE  
SINGLE-ENDED OR  
CH3  
CH4  
DIFFERENTIAL INPUTS  
10V BIPOLAR INPUT RANGE  
CH5  
BUSY  
3V TO 5V  
–0.5  
CH6  
CH7  
MUXOUT  
MUXOUT  
ADC  
OV  
DV  
AV  
AGND3  
AGND2  
DD  
DD  
DD  
5V  
+
5V  
–1.0  
0.1µF  
10µF  
10µF  
0.1µF  
10µF  
0.1µF  
+
–1.5  
ADC  
AGND1  
REFCOMP  
–2.0  
V
2.5V  
–32768  
–16384  
0
16384  
32767  
REF  
1µF  
10µF  
0.1µF  
CODE  
185456 G01  
1854565af  
1
LTC1854/LTC1855/LTC1856  
absoluTe maximum raTings  
package/orDer inFormaTion  
(Iotes 1, 2)  
TOP VIEW  
Supply Voltage (OV = DV = AV = V )............ 6V  
DD  
DD  
DD  
DD  
1
2
28 CONVST  
27 RD  
COM  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Ground Voltage Difference  
3
26 SCK  
DGND, AGND1, AGND2, AGND± ....................... ±0.±V  
Analog Input Voltage  
4
25 SDI  
5
24 DGND  
23 SDO  
22 BUSY  
+
ADC , ADC  
6
7
(Note ±)...................(AGND1 – 0.±V) to (AV + 0.±V)  
DD  
8
21 OV  
DD  
CH0-CH7, COM ................................................... ±±0V  
9
20 DV  
DD  
+
Digital Input Voltage (Note 4) ......(DGND – 0.±V) to 10V  
10  
11  
12  
13  
14  
19 AV  
DD  
MUXOUT  
18 AGND3  
17 AGND2  
16 REFCOMP  
MUXOUT  
Digital Output Voltage ....(DGND – 0.±V) to (DV + 0.±V)  
DD  
+
ADC  
Power Dissipation................................................ 500mW  
ADC  
Operating Temperature Range  
15  
V
REF  
AGND1  
LTC1854C/LTC1855C/LTC1856C.............. 0°C to 70°C  
LTC1854I/LTC1855I/LTC1856I............. 40°C to 85°C  
Storage Temperature Range ................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. ±00°C  
G PACKAGE  
28-LEAD PLASTIC SSOP  
T
= 125°C, θ = 160°C/W  
JA  
JMAX  
EXPOSED PAD (PIN #) IS GND, MUST ꢀE SOLDERED TO PCꢀ  
ORDER PART NUMꢀER  
LTC1854CG  
LTC1854IG  
LTC1855CG  
LTC1855IG  
LTC1856CG  
LTC1856IG  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PꢀF Lead Free Tape and Reel: Add #TRPꢀF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
converTer anD mulTiplexer characTerisTics  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°Cꢂ  
MUXOUT connected to ADC inputsꢂ (Iotes 5, 6)  
TC1854  
TYP  
TC1855  
TYP  
TC1856  
TYP  
PARAMETER  
COIDꢀTꢀOIS  
MꢀI  
12  
MAX MꢀI  
MAX MꢀI  
MAX  
UIꢀTS  
ꢀits  
l
l
Resolution  
14  
14  
15  
15  
No Missing Codes  
Transition Noise  
12  
ꢀits  
0.06  
±0.1  
0.25  
±0.1  
1
LSꢀ  
RMS  
l
l
l
Integral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero Error  
ꢀipolar Zero Error Drift  
ꢀipolar Zero Error Match  
ꢀipolar Full-Scale Error  
(Note 7)  
(Note 8)  
±1  
±1.5  
±±  
4
LSꢀ  
–1  
1
–1  
1.5  
±8  
–2  
LSꢀ  
LSꢀ  
±5  
±2±  
±0.1  
ppm/°C  
LSꢀ  
±
4
10  
l
External Reference (Note 11)  
Internal Reference (Note 11)  
±0.±4  
±0.45  
±0.14  
±0.40  
±0.1  
±0.4  
%
%
ꢀipolar Full-Scale Error Drift  
External Reference  
Internal Reference  
±2.5  
±7  
±2.5  
±7  
±2.5  
±7  
ppm/°C  
ppm/°C  
ꢀipolar Full-Scale Error Match  
Input Common Mode Range  
5
10  
15  
LSꢀ  
V
l
±10  
96  
±+10  
96  
±10  
96  
Input Common Mode Rejection Ratio  
dꢀ  
185456fa  
2
LTC1854/LTC1855/LTC1856  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°Cꢂ (Iote 5)  
PARAMETER  
COIDꢀTꢀOIS  
MꢀI  
TYP  
MAX  
UIꢀTS  
V
Analog Input Range  
CH0 to CH7, COM  
±10  
+
ADC , ADC (Note ±)  
ADC ±2.048  
V
Impedance  
Capacitance  
CH0 to CH7, COM  
±1  
5
kΩ  
kΩ  
pF  
+
MUXOUT , MUXOUT  
CH0 to CH7, COM  
5
+
Sample Mode ADC , ADC  
12  
4
pF  
+
Hold Mode ADC , ADC  
pF  
+
l
Input Leakage Current  
ADC , ADC , CONVST = Low  
±1  
µA  
Dynamic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°Cꢂ MUXOUT connected to ADC inputsꢂ (Iote 5)  
TC1854  
MꢀI TYP  
TC1855  
MAX MꢀI TYP  
TC1856  
SYMBOꢁ PARAMETER  
COIDꢀTꢀOIS  
MAX MꢀI TYP MAX  
UIꢀTS  
dꢀ  
S/(N + D) Signal-to-(Noise + Distortion) Ratio 1kHz Input Signal  
74  
8±  
87  
THD  
Total Harmonic Distortion  
1kHz Input Signal  
First Five Harmonics  
–102  
–95  
–101  
dꢀ  
Peak Harmonic or Spurious Noise 1kHz Input Signal  
–99  
–120  
1
–99  
–120  
1
–10±  
–120  
1
dꢀ  
dꢀ  
Channel-to-Channel Isolation  
–±dꢀ Input ꢀandwidth  
Aperture Delay  
1kHz Input Signal  
MHz  
ns  
–70  
60  
–70  
60  
–70  
60  
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
(Note 9)  
4
4
4
µs  
Overvoltage Recovery  
(Note 12)  
150  
150  
150  
ns  
1854565af  
3
LTC1854/LTC1855/LTC1856  
inTernal reFerence characTerisTics  
The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°Cꢂ (Iote 5)  
PARAMETER  
COIDꢀTꢀOIS  
MꢀI  
TYP  
2.50  
±10  
8
MAX  
UIꢀTS  
l
V
V
V
V
Output Voltage  
I
I
= 0  
= 0  
2.475  
2.525  
V
ppm/°C  
kΩ  
REF  
OUT  
OUT  
Output Temperature Coefficient  
Output Impedance  
REF  
–0.1mA ≤ I  
≤ 0.1mA  
REF  
OUT  
Output Voltage  
I
= 0  
4.096  
V
REFCOMP  
OUT  
DigiTal inpuTs anD DigiTal ouTpuTs  
The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°Cꢂ (Iote 5)  
SYMBOꢁ  
PARAMETER  
COIDꢀTꢀOIS  
MꢀI  
TYP  
MAX  
UIꢀTS  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
Digital Input Capacitance  
High Level Output Voltage  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
IN  
±10  
µA  
pF  
DD  
C
IN  
5
V
V
DD  
V
DD  
= 4.75V, I = 10µA, OV = V  
DD  
= 4.75V, I = 200µA, OV = V  
DD  
4.74  
V
V
OH  
O
O
DD  
DD  
l
4
V
Low Level Output Voltage  
V
V
= 4.75V, I = 160µA, OV = V  
DD  
0.05  
0.10  
V
V
OL  
DD  
DD  
O
DD  
l
l
= 4.75V, I = 1.6mA, OV = V  
DD  
0.4  
O
DD  
I
Hi-Z Output Leakage  
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
V
OUT  
= 0V to V , RD = High  
±10  
µA  
pF  
OZ  
DD  
C
RD = High  
15  
–10  
10  
OZ  
I
I
V
OUT  
V
OUT  
= 0V  
mA  
mA  
SOURCE  
SINK  
= V  
DD  
power requiremenTs  
The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°Cꢂ (Iote 5)  
PARAMETER  
COIDꢀTꢀOIS  
MꢀI  
TYP  
MAX  
UIꢀTS  
Positive Supply Voltage  
(Notes 9 and 10)  
4.75  
5.00  
5.25  
V
l
Positive Supply Current  
Nap Mode  
Sleep Mode  
8.0  
5.5  
8.0  
12  
7
1±  
mA  
mA  
µA  
CONVST = 0V or 5V  
CONVST = 0V or 5V  
Power Dissipation  
Nap Mode  
Sleep Mode  
40.0  
27.5  
40.0  
mW  
mW  
µW  
185456fa  
4
LTC1854/LTC1855/LTC1856  
Timing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°Cꢂ (Iote 5)  
SYMBOꢁ  
PARAMETER  
COIDꢀTꢀOIS  
MꢀI  
TYP  
MAX  
UIꢀTS  
l
f
Maximum Sampling Frequency  
Through CH0 to CH7 Inputs  
100  
kHz  
kHz  
SAMPLE(MAX)  
+
Through ADC , ADC Only  
166  
4
l
l
t
t
Conversion Time  
Acquisition Time  
5
4
µs  
CONV  
Through CH0 to CH7 Inputs  
µs  
µs  
ACQ  
+
Through ADC , ADC Only  
(Note 1±)  
1
l
f
t
t
t
t
t
t
t
t
t
SCK Frequency  
SDO Rise Time  
SDO Fall Time  
0
20  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
See Test Circuits  
See Test Circuits  
6
6
r
f
l
l
l
l
l
l
l
CONVST High Time  
CONVST to BUSY Delay  
SCK Period  
40  
1
C = 25pF, See Test Circuits  
L
15  
±0  
2
50  
10  
10  
±
SCK High  
4
SCK Low  
5
Delay Time, SCKto SDO Valid  
C = 25pF, See Test Circuits  
L
25  
20  
45  
±0  
6
Time from Previous SDO Data Remains C = 25pF, See Test Circuits  
Valid After SCK↓  
5
7
L
l
l
l
l
l
l
t
t
t
t
t
t
SDO Valid After RD↓  
C = 25pF, See Test Circuits  
L
11  
ns  
ns  
ns  
ns  
ns  
ns  
8
RDto SCK Setup Time  
SDI Setup Time ꢀefore SCK↑  
SDI Hold Time After SCK↑  
SDO Valid ꢀefore BUSY↑  
ꢀus Relinquish Time  
20  
0
9
10  
11  
12  
1±  
7
RD = Low, C = 25pF, See Test Circuits  
5
20  
10  
L
See Test Circuits  
±0  
Iote 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Iote 2: All voltage values are with respect to ground with DGND, AGND1,  
AGND2 and AGND± wired together unless otherwise noted.  
Iote 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual end points of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Iote 8: ꢀipolar zero error is the offset voltage measured from 0.5LSꢀ  
when the output code flickers between 0000 0000 0000 0000 and 1111  
1111 1111 1111 for the LTC1856, between 00 0000 0000 0000 and 11  
1111 1111 1111 for the LTC1855 and between 0000 0000 0000 and 1111  
1111 1111 for the LTC1854.  
Iote 3: When these pin voltages are taken below ground or above AV  
=
DD  
DV = OV = V , they will be clamped by internal diodes. This product  
DD  
DD  
DD  
can handle currents of greater than 100mA below ground or above V  
without latchup.  
Iote 9: Guaranteed by design, not subject to test.  
Iote 10: Recommended operating conditions.  
DD  
Iote 4: When these pin voltages are taken below ground they will be  
clamped by internal diodes. This product can handle currents of greater  
than 100mA below ground without latchup. These pins are not clamped to  
Iote 11: Full-scale bipolar error is the worst case of –FS or +FS  
untrimmed deviation from ideal first and last code transitions, divided by  
the full-scale range, and includes the effect of offset error.  
Iote 12: Recovers to specified performance after (2 • FS) input  
overvoltage.  
V
DD  
.
Iote 5: V = 5V, f  
= 100kHz, t = t = 5ns unless otherwise  
r f  
DD  
SAMPLE  
specified.  
Iote 13: t of 45ns maximum allows f  
up to 10MHz for rising capture  
6
SCK  
Iote 6: Linearity, offset and full-scale specifications apply for a single-  
with 50% duty cycle and f  
up to 20MHz for falling capture (with 5ns  
SCK  
+
ended analog MUX input with respect to ground or ADC with respect to  
setup time for the receiving logic).  
ADC tied to ground.  
1854565af  
5
LTC1854/LTC1855/LTC1856  
Typical perFormance characTerisTics  
TC1856 Ionaveraged  
4096-Point FFT Plot  
TC1856 Typical ꢀIꢁ Curve  
TC1856 Typical DIꢁ Curve  
2.0  
1.5  
2.0  
1.5  
0
–10  
–20  
–30  
1.0  
1.0  
–40  
–50  
0.5  
0.5  
–60  
–70  
0
0
–80  
–90  
–100  
–110  
–120  
–130  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
0
–32768  
–16384  
16384  
32767  
–32768  
–16384  
16384  
32767  
20  
0
5
10 15  
25 30 35 40 45 50  
CODE  
CODE  
FREQUENCY (kHz)  
185456 G02  
185456 G01  
185456 G03  
TC1855 Ionaveraged  
4096-Point FFT Plot  
TC1855 Typical ꢀIꢁ Curve  
TC1855 Typical DIꢁ Curve  
1
0
–10  
–20  
–30  
–40  
1
0.8  
0.6  
0.4  
0.2  
f
f
= 100kHz  
SAMPLE  
IN  
SINAD = 83dB  
THD = –95dB  
0.8  
0.6  
0.4  
0.2  
= 1kHz  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–8192  
0
0
8191  
20  
10 15  
25 30 35 40 45 50  
–8192  
–4096  
4096  
8191  
–4096  
4096  
0
5
CODE  
CODE  
FREQUENCY (kHz)  
185455 G04  
185456 G05  
185456 G06  
TC1854 Ionaveraged  
4096-Point FFT Plot  
TC1854 Typical ꢀIꢁ Curve  
TC1854 Typical DIꢁ Curve  
1.0  
0.8  
1.0  
0.8  
0
–10  
–20  
f
f
= 100kHz  
SAMPLE  
IN  
SINAD = 73.6dB  
THD = –102dB  
= 1kHz  
0.6  
0.6  
–30  
0.4  
0.4  
–40  
–50  
0.2  
0.2  
–60  
–70  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–130  
–2048  
–1024  
0
1024  
2047  
0
10  
30  
40  
50  
–2048  
–1024  
0
1024  
2047  
20  
CODE  
CODE  
FREQUENCY (kHz)  
185456 G08  
185456 G09  
185456 G07  
185456fa  
6
LTC1854/LTC1855/LTC1856  
Typical perFormance characTerisTics  
TC1856 Channel-to-Channel  
Offset Error Matching vs  
Temperature  
TC1856 SꢀIAD  
vs ꢀnput Frequency  
TC1856 Total Harmonic  
Distortion vs ꢀnput Frequency  
–70  
–80  
90  
88  
86  
84  
82  
80  
78  
76  
74  
1.0  
0.5  
0
–90  
–0.5  
–100  
–110  
–1.0  
–50  
–25  
0
25  
50  
75  
100  
1
10  
100  
1
10  
100  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
185456 G12  
185456 G11  
185456 G10  
TC1855 Channel-to-Channel  
Offset Error Matching vs  
Temperature  
TC1855 SꢀIAD  
vs ꢀnput Frequency  
TC1855 Total Harmonic  
Distortion vs ꢀnput Frequency  
85  
80  
75  
–60  
–70  
0.5  
0.25  
0
–80  
–90  
70  
–0.25  
65  
60  
–100  
–110  
–0.5  
1
10  
100  
–50  
–25  
0
25  
50  
75  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
185456 G13  
185456 G15  
185456 G14  
TC1854 Channel-to-Channel  
Offset Error Matching vs  
Temperature  
TC1854 SꢀIAD  
TC1854 Total Harmonic  
vs ꢀnput Frequency  
Distortion vs ꢀnput Frequency  
80  
75  
70  
65  
60  
–60  
–70  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–80  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–90  
–100  
–110  
1
10  
100  
100  
–50  
–25  
25  
50  
75  
100  
1
10  
0
INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
185456 G17  
185456 G16  
185456 G18  
1854565af  
7
LTC1854/LTC1855/LTC1856  
Typical perFormance characTerisTics  
TC1856 Channel-to-Channel Gain  
Error Matching vs Temperature  
TC1854 Channel-to-Channel Gain  
Error Matching vs Temperature  
TC1855 Channel-to-Channel Gain  
Error Matching vs Temperature  
0.5  
0.25  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.5  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.25  
–0.5  
–0.5  
–1.0  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
25  
50  
75  
100  
0
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
185456 G20  
185456 G21  
185456 G19  
ꢀnternal Reference Voltage  
vs Temperature  
Change in REFCOMP Voltage  
vs ꢁoad Current  
TC1856 Power Supply  
Feedthrough vs Ripple Frequency  
2.520  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
0.04  
0.02  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
f
= 100kHz  
= 60mV  
SAMPLE  
RIPPLE  
V
–0.02  
–0.04  
–50 –40  
–30  
–20  
–10  
0
10  
–25  
0
50  
100  
100  
1k  
10k  
100k  
1M  
–50  
75  
25  
LOAD CURRENT (mA)  
RIPPLE FREQUENCY (Hz)  
TEMPERATURE (°C)  
185456 G24  
185456 G23  
185456 G22  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
9.0  
8.5  
8.0  
7.5  
7.0  
9.0  
8.5  
8.0  
7.5  
f
= 100kHz  
f
= 100kHz  
SAMPLE  
SAMPLE  
7.0  
5
5.25  
–50  
–25  
0
25  
50  
75  
100  
4.5  
5.5  
4.75  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
185456 G26  
185454 G25  
185456fa  
8
LTC1854/LTC1855/LTC1856  
pin FuncTions  
COM(Pin1):CommonInput.Thisisthenegativereference  
point for all single-ended inputs. It must be free of noise  
and is usually connected to the analog ground plane.  
AGID1 (Pin 14): Analog Ground.  
V
(Pin 15): 2.5V Reference Output. ꢀypass to analog  
REF  
ground with a 1µF tantalum capacitor.  
CH0 (Pin 2): Analog MUX Input.  
CH1 (Pin 3): Analog MUX Input.  
CH2 (Pin 4): Analog MUX Input.  
CH3 (Pin 5): Analog MUX Input.  
CH4 (Pin 6): Analog MUX Input.  
CH5 (Pin 7): Analog MUX Input.  
CH6 (Pin 8): Analog MUX Input.  
CH7 (Pin 9): Analog MUX Input.  
REFCOMP (Pin 16): Reference ꢀuffer Output. ꢀypass to  
analog ground with a 10µF tantalum and a 0.1µF ceramic  
capacitor. Nominal output voltage is 4.096V.  
AGID2 (Pin 17): Analog Ground.  
AGID3 (Pin 18): Analog Ground. This is the substrate  
connection.  
AV (Pin19):5VAnalogSupply.ypasstoanalogground  
DD  
with a 0.1µF ceramic and a 10µF tantalum capacitor.  
DV (Pin 20): 5V Digital Supply. ꢀypass to digital ground  
DD  
+
with a 0.1µF ceramic and a 10µF tantalum capacitor.  
MUXOUT (Pin 10): Positive MUX Output. Output of the  
+
analog multiplexer. Connect to ADC for normal opera-  
OV (Pin 21): Positive Supply for the Digital Output  
DD  
tion.  
ꢀuffers (±V to 5V). ꢀypass to digital ground with a 0.1µF  
ceramic and a 10µF tantalum capacitor.  
MUXOUT (Pin 11): Negative MUX Output. Output of the  
analog multiplexer. Connect to ADC for normal opera-  
BUSY (Pin 22): Output shows converter status. It is low  
when a conversion is in progress.  
tion.  
+
ADC (Pin 12): Positive Analog Input to the Analog-to-  
SDO (Pin 23): Serial Data Output.  
Digital Converter.  
ADC (Pin 13): Negative Analog Input to the Analog-to-  
Digital Converter.  
1854565af  
9
LTC1854/LTC1855/LTC1856  
pin FuncTions  
DGID (Pin 24): Digital Ground.  
SDꢀ (Pin 25): Serial Data Input.  
SCK (Pin 26): Serial Data Clock.  
RD (Pin 27): Read Input. This active low signal enables  
the digital output pin SDO and enables the serial interface,  
SDI and SCK are ignored when RD is high.  
COIVST (Pin 28): Conversion Start. The ADC starts a  
conversion on CONVST’s rising edge.  
FuncTional block Diagram  
DV  
AV  
DD  
DD  
19  
20  
MUX ADDRESS  
2
3
28  
25  
22  
CONVST  
CH0  
CH1  
CONTROL  
LOGIC  
SDI  
INTERNAL  
CLOCK  
BUSY  
INPUT MUX  
26  
SCK  
+
27  
21  
9
1
RD  
12-/14-/16-BIT  
SAMPLING ADC  
CH7  
DATA OUT  
SERIAL I/O  
OV  
DD  
COM  
23  
SDO  
4.096V  
2.5V  
REFERENCE  
1.6384X  
8k  
+
+
MUXOUT  
MUXOUT  
ADC  
ADC  
14  
11 10  
12 13  
15  
16  
REFCOMP  
17  
18  
24  
AGND1  
V
REF  
AGND2 AGND3 DGND  
18545 BD  
185456fa  
10  
LTC1854/LTC1855/LTC1856  
TesT circuiTs  
ꢁoad Circuits for Access Timing  
ꢁoad Circuits for Output Float Delay  
5V  
5V  
1k  
1k  
DN  
DN  
DN  
DN  
1k  
25pF  
25pF  
1k  
25pF  
25pF  
(A) V TO Hi-Z  
OH  
(B) V TO Hi-Z  
OL  
(A) Hi-Z TO V AND V TO V  
OH OL  
(B) Hi-Z TO V AND V TO V  
OL OH  
OH  
OL  
18545 TC02  
18545 TC01  
Timing Diagrams  
t (CONVST to BUSY Delay)  
2
t
2
2.4V  
t (For Short Pulse Mode)  
1
CONVST  
t
1
50%  
50%  
BUSY  
CONVST  
0.4V  
18545 TD02  
18545 TD01  
t (Delay Time, SCKto SDO Valid)  
6
t (Time from Previous Data Remains Valid After SCK)  
7
t
t
6
7
t , t , t (SCK Timing)  
3
4 5  
SCK  
SDO  
0.4V  
t
4
t
5
SCK  
2.4V  
0.4V  
18545 TD03  
t
3
18545 TD04  
t (RDto SCK Setup Time)  
9
t (SDO Valid After RD)  
8
t
8
t
9
RD  
0.4V  
RD  
0.4V  
Hi-Z  
2.4V  
0.4V  
2.4V  
SCK  
SDO  
18545 TD05  
18545 TD06  
1854565af  
11  
LTC1854/LTC1855/LTC1856  
Timing Diagrams  
t
11  
(SDI Hold Time After SCK)  
t
10  
(SDI Setup Time Before SCK)  
t
t
11  
10  
2.4V  
2.4V  
SCK  
SDI  
SCK  
SDI  
2.4V  
0.4V  
2.4V  
0.4V  
18545 TD08  
18545 TD07  
t
(SDO Valid Before BUSY, RD = 0)  
t
13  
(BUS Relinquish Time)  
13  
12  
t
t
12  
2.4V  
2.4V  
BUSY  
RD  
90%  
10%  
Hi-Z  
2.4V  
SDO  
SDO  
B15  
18545 TD10  
18545 TD09  
185456fa  
12  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
OVERVꢀEW  
ꢀefore starting a conversion, an 8-bit data word is clocked  
into the SDI input on the first eight rising SCK edges to  
select the MUX address and power down mode. The ADC  
enters acquisition mode on the falling edge of the sixth  
clock in the 8-bit data word and ends on the rising edge  
of the CONVST signal which also starts a conversion (see  
Figure7).Aminimumtimeof4µswillprovideenoughtime  
for the sample-and-hold capacitors to acquire the analog  
signal. Once a conversion cycle has begun, it cannot be  
restarted.  
The LTC1854/LTC1855/LTC1856 are innovative, multi-  
channel ADCs. The on-chip resistors provide attenuation  
andoffsetforeachchannel.Thepreciselytrimmedattenua-  
torsensureanaccurateinputrange.ecausetheyprecede  
the multiplexer, errors due to multiplexer on-resistance  
are eliminated.  
The input word selects the single ended or differential  
inputs for each channel or pair of channels. Overrange  
protection is provided for unselected channels. An over-  
range condition on an unused channel will not affect the  
conversion result on the selected channel.  
During the conversion, the internal differential 12-/14-/16-  
bit capacitive DAC output is sequenced by the SAR from  
the most significant bit (MSꢀ) to the least significant bit  
(LSꢀ). The input is successively compared with the binary  
weighted charges supplied by the differential capacitive  
DAC.itdecisionsaremadebyahighspeedcomparator.At  
theendofaconversion,theDACoutputbalancestheanalog  
COIVERSꢀOI DETAꢀꢁS  
The LTC1854/LTC1855/LTC1856 use a successive ap-  
proximation algorithm and an internal sample-and-hold  
circuittoconvertananalogsignaltoa12-/14-/16-bitserial  
outputrespectively.TheADCsarecompletewithaprecision  
reference and an internal clock. The control logic provides  
easyinterfacetomicroprocessorsandDSPs.(Pleaserefer  
to the Digital Interface section for the data format.)  
+
input (ADC – ADC ). The SAR contents (a 12-/14-/16-bit  
+
data word) which represents the difference of ADC and  
ADC are loaded into the 12-/14-/16-bit shift register.  
DRꢀVꢀIG THE AIAꢁOG ꢀIPUTS  
The analog signals applied at the MUX input channels are  
rescaled by the resistor divider network formed by R1, R2  
and R± as shown below. The rescaled signals appear on  
the MUXOUT (Pins 10, 11) which are also connected to  
the ADC inputs (Pins 12, 1±) under normal operation.  
The input range for the LTC1854/LTC1855/LTC1856 is  
±10V and the MUX inputs are overvoltage protected to  
±±0V. The input impedance is typically ±1kΩ; therefore, it  
should be driven with a low impedance source. Wideband  
noise coupling into the input can be minimized by placing  
a ±000pF capacitor at the input as shown in Figure 2. An  
NPO-type capacitor gives the lowest distortion. Place the  
capacitor as close to the device input pin as possible. If  
an amplifier is to be used to drive the input, care should  
be taken to select an amplifier with adequate accuracy,  
linearity and noise for the application. The following list is  
a summary of the op amps that are suitable for driving the  
LTC1854/LTC1855/LTC1856. More detailed information is  
available in the Linear Technology data books and online  
at www.linear.com.  
REFCOMP  
R3  
R1  
CH SEL  
10k  
25k  
MUX  
INPUT  
MUXOUT  
R2  
17k  
185456 AI01  
LT®1007: Low noise precision amplifier. 2.7mA supply  
current ±5V to ±15V supplies. Gain bandwidth product  
8MHz. DC applications.  
1854565af  
13  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
DV  
DD  
AV  
DD  
MUX ADDRESS  
CONVST  
CH0  
CH1  
CONTROL  
LOGIC  
SDI  
INTERNAL  
CLOCK  
BUSY  
INPUT MUX  
SCK  
+
RD  
12-/14-/16-BIT  
SAMPLING ADC  
CH7  
DATA OUT  
SERIAL I/O  
OV  
DD  
COM  
SDO  
4.096V  
2.5V  
REFERENCE  
1.6384X  
8k  
+
+
18545 F01  
MUXOUT  
AGND1  
MUXOUT  
ADC  
ADC  
V
REF  
REFCOMP  
AGND2 AGND3 DGND  
Figure 1ꢂ TC1854/TC1855/TC1856 Simplified Equivalent Circuit  
LT1792: Single, low noise JFET input op amp, ±5V sup-  
plies.  
+
A
A
CH0  
CH1  
IN  
IN  
3000pF  
LT179±: Single, low noise JFET input op amp, 10pA bias  
current, ±5V supplies.  
+
MUXOUT  
LT1881/LT1882: Dual and quad, 200pA bias current, rail-  
to-rail output op amps. Up to ±15V supplies.  
MUXOUT  
+
ADC  
LT1844/LT1885: Dual and quad, 400pA bias current,  
rail-to-rail output op amps. Up to ±15V supplies. Faster  
response and settling time.  
ADC  
18545 F02  
Figure 2ꢂ Analog ꢀnput Filtering  
ꢀITERIAꢁ VOTAGE REFEREICE  
LT1227: 140MHz video current feedback amplifier. 10mA  
supply current. ±5V to ±15V supplies. Low noise and low  
distortion.  
The LTC1854/LTC1855/LTC1856 have an on-chip, tem-  
perature compensated, curvature corrected, bandgap  
reference,whichisfactorytrimmedto2.50V.Thefull-scale  
range of the LTC1854/LTC1855/LTC1856 is equal to ±10V.  
The output of the reference is connected to the input of a  
gain of 1.6±84x buffer through an 8k resistor (see Figure  
±). The input to the buffer or the output of the reference  
LT1468/LT1469: Single and dual 90MHz, 16-bit accurate  
op amp. Good AC/DC specs. ±5V to ±15V supplies.  
LT1677: Single, low noise op amp. Rail-to-rail input and  
output. Up to ±15V supplies.  
185456fa  
14  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
is available at V (Pin 15). The internal reference can be  
tween successive integer LSꢀ values (i.e., –FS+0.5LSꢀ,  
–FS+1.5LSꢀ, –FS+2.5LSꢀ, … FS–1.5LSꢀ, FS–0.5LSꢀ).  
The output is two’s complement binary with:  
REF  
overdriven with an external reference if more accuracy is  
needed. The buffer output drives the internal DAC and is  
available at REFCOMP (Pin 16). The REFCOMP pin can be  
used to drive a steady DC load of less than 2mA. Driving  
an AC load is not recommended because it can cause the  
performance of the converter to degrade.  
FS(FS) 20V  
1LSB =  
=
= 305.2µV  
65566  
65536  
In applications where absolute accuracy is important,  
offsetandfull-scaleerrorscanbeadjustedtozeroduringa  
calibrationsequence. Offseterrormustbeadjustedbefore  
full-scale error. Zero offset is achieved by adjusting the  
offsetappliedtotheinput.Forsingle-endedinputs,this  
offset should be applied to the COM pin. For differential  
inputs, the “–” input is dictated by the MUX address.  
8k  
15  
1µF  
V
REF  
2.5V  
2.5V  
REFERENCE  
12-/14-/16-BIT  
CAPACITIVE DAC  
1.6384X BUFFER  
16 REFCOMP  
4.096V  
0.1µF  
For zero offset error, apply 0.5LSꢀ to the “+” input and  
adjusttheoffsetattheinputuntiltheoutputcodeick-  
ers between 0000 0000 0000 0000 and 1111 1111 1111  
1111 for the LTC1856, between 00 0000 0000 0000 and  
11 1111 1111 1111 for the LTC1855 and between 0000  
0000 0000 and 1111 1111 1111 for the LTC1854.  
18545 F03  
10µF  
Figure 3ꢂ ꢀnternal or External Reference Source  
For minimum code transition noise the V pin and the  
REF  
REFCOMPpinshouldeachbedecoupledwithacapacitorto  
filter wideband noise from the reference and the buffer.  
Forfull-scaleadjustment, aninputvoltageofFS1.5LSꢀs  
should be applied to the “+” input and the appropriate  
reference adjusted until the output code flickers between  
0111 1111 1111 1110 and 0111 1111 1111 1111 for the  
LTC1856, between 01 1111 1111 1110 and 01 1111 1111  
1111 for the LTC1855 and between 0111 1111 1110 and  
0111 1111 1111 for the LTC1854.  
FUꢁꢁ SCAꢁE AID OFFSET  
Figure 4 shows the ideal input/output characteristics for  
the LTC1856. The code transitions occur midway be-  
These adjustments as well as the factory trims affect all  
channels. The channel-to-channel offset and gain error  
matching are guaranteed by design to meet the specifica-  
tions in the Converter Characteristics table.  
011...111  
011...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
–(FS – 1LSB)  
FS – 1LSB  
INPUT VOLTAGE (V)  
185456 F04  
Figure 4ꢂ Bipolar Transfer Characteristics  
1854565af  
15  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
DC PERFORMAICE  
output supply pin (OV ) that controls the output swings  
DD  
of the digital output pins (SDO, BUSY) and allows the part  
to interface to either ±V or 5V digital systems. The SDO  
output is two’s complement.  
One way of measuring the transition noise associated  
with a high resolution ADC is to use a technique where  
a DC signal is applied to the input of the MUX and the  
resulting output codes are collected over a large number  
of conversions. For example in Figure 5 the distribution  
of output code is shown for a DC input that has been  
digitized 4096 times. The distribution is Gaussian and the  
RMS code transition is about 1LSꢀ for the LTC1856.  
Timing and Control  
Conversionstartanddatareadarecontrolledbytwodigital  
inputs: CONVST and RD. To start a conversion and put the  
sample-and-hold into the hold mode bring CONVST high  
for at least 40ns. Once initiated it cannot be restarted until  
the conversion is complete. Converter status is indicated  
by the BUSY output, which goes low while the conversion  
is in progress.  
DꢀGꢀTAꢁ ꢀITERFACE  
ꢀnternal Clock  
Figures 6a and 6b show two different modes of opera-  
tion for the LTC1856. For the 12-bit LTC1854 and 14-bit  
LTC1855, the last four and two bits of the SDO will output  
zeros, respectively. In mode 1 (Figure 6a), RD is tied low.  
TherisingedgeofCONVSTstartstheconversion. Thedata  
outputs are always enabled. The MSꢀ of the data output  
is available after the conversion. In mode 2 (Figure 6b),  
CONVST and RD are tied together. The rising edge of the  
CONVST signal starts the conversion. Data outputs are in  
three-state at this time. When the conversion is complete  
(BUSY goes high), CONVST and RD go low to enable the  
data output for the previous conversion.  
The ADC has an internal clock that is trimmed to achieve  
a typical conversion time of 4µs. No external adjustments  
are required and, with the maximum acquisition time of  
4µs, throughput performance of 100ksps is assured.  
3V ꢀnput/Output Compatible  
The LTC1854/LTC1855/LTC1856 operate on a 5V supply,  
which makes the devices easy to interface to 5V digital  
systems. These devices can also interface to ±V digital  
systems: the digital input pins (SCK, SDI, CONVST and  
RD)oftheLTC1854/LTC1855/LTC1856recognize±Vor5V  
inputs. The LTC1854/LTC1855/LTC1856 have a dedicated  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
–4 –3 –2 –1  
0
1
4
2
3
CODE  
185456 F05  
Figure 5ꢂ TC1856 Histogram for 4096 Conversions  
185456fa  
16  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
1854565af  
17  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
SERIAL DATA INPUT (SDI) INTERFACE  
conversion is delayed by one conversion from the input  
word requesting it.  
TheLTC1854/LTC1855/LTC1856communicatewithmicro-  
processorsandotherexternalcircuitryviaasynchronous,  
full duplex, 3-wire serial interface (see Figure 7). The shift  
clock (SCK) synchronizes the data transfer with each bit  
being transmitted on the falling SCK edge and captured  
on the rising SCK edge in both transmitting and receiving  
systems. The data is transmitted and received simultane-  
ously (full duplex).  
SDI  
SDI WORD 1  
SDI WORD 2  
SDI WORD 3  
SDO SDO WORD 0  
SDO WORD 1  
SDO WORD 2  
185456 AI02  
t
t
CONV  
A/D  
CONV  
A/D  
DATA  
TRANSFER  
DATA  
TRANSFER  
CONVERSION  
CONVERSION  
INPUT DATA WORD  
An 8-bit input word is shifted into the SDI input which  
configures the LTC1854/LTC1855/LTC1856 for the next  
conversion. Simultaneously, the result of the previous  
conversion is output on the SDO line. At the end of the  
data exchange the requested conversion begins by ap-  
plying a rising edge on CONVST. After tCONV, the conver-  
sion is complete and the results will be available on the  
next data transfer cycle. As shown below, the result of a  
TheLTC1854/LTC1855/LTC18568-bitdatawordisclocked  
into the SDI input on the first eight rising SCK edges. Fur-  
ther inputs on the SDI pin are then ignored until the next  
conversion. The eight bits of the input word are defined  
as follows:  
SGL/  
ODD  
SIGN  
SELECT SELECT  
DON'T  
CARE  
DON'T  
CARE  
NAP  
SLEEP  
DIFF  
1
0
POWER DOWN  
SELECTION  
MUX ADDRESS  
185456 AI03  
Table 1. Multiplexer Channel Selection  
MUX ADDRESS  
DIFFERENTIAL CHANNEL SELECTION  
MUX ADDRESS  
SINGLE-ENDED CHANNEL SELECTION  
SGL/ ODD SELECT  
SGL/ ODD SELECT  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
COM  
DIFF SIGN  
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
DIFF SIGN  
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
+
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Combinations of  
Differential and Single-Ended  
Changing the  
MUX Assignment “On the Fly”  
4 Differential  
8 Single-Ended  
CHANNEL  
CHANNEL  
CHANNEL  
+ (  
)
)
0
1
2
3
4
5
6
7
+
+
+
+
+
+
+
+
+
+
0,1  
0,1  
{
{
(
+ (  
)
)
+
+
2,3  
2,3  
4,5  
6,7  
4,5  
{
6
7
{
{
{
(
+
+
4
5
6
7
+
+
+
+
+ (  
)
)
+
4,5  
{
+
{
(
+
COM (UNUSED)  
COM ( )  
+ (  
)
)
+
+
6,7  
{
(
COM (  
)
COM (  
)
1ST CONVERSION  
2ND CONVERSION  
18545 F08  
Figure 8. Examples of Multiplexer Options on the LTC1854/LTC1855/LTC1856  
185456fa  
18  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
MUX ADDRESS  
Sleep mode will occur when Sleep = 1 is selected,  
regardless of the selection of the Nap input. The previ-  
ous conversion result can be clocked out and the Sleep  
mode will start on the falling edge of the last (16th) SCK.  
Notice that the CONVST should stay either high or low in  
sleep mode (see Figure 10). To wake up from the sleep  
mode, apply a rising edge on the CONVST signal and  
then apply Sleep = 0 on the next SDI word and the part  
will wake up on the falling edge of the last (16th) SCK  
(see Figure 11).  
The first four bits of the input word assign the MUX  
configuration for the requested conversion. For a given  
channel selection, the converter will measure the voltage  
between the two channels indicated by the + and – signs in  
the selected row of Table 1. Note that in differential mode  
(SGL/DIFF = 0) measurements are limited to four adjacent  
input pairs with either polarity. In single-ended mode, all  
input channels are measured with respect to COM. Both  
the “+” and “–” inputs are sampled simultaneously so  
common mode noise is rejected. Bits 5 and 6 of the input  
words are Don’t Care bits.  
InSleepmode,allbiascurrentsareshutdownandonlythe  
power on reset circuit and leakage currents (about 10µA)  
remain.Sleepmodewake-uptimeisdependentonthevalue  
of the capacitor connected to the REFCOMP (Pin 16). The  
wake-up time is typically 40ms with the recommended  
10µF capacitor connected on the REFCOMP pin.  
P
OWER DOWN SELECTION (NAP, SLEEP)  
The last two bits of the input word (Nap and Sleep) deter-  
minethepowershutdownmodeoftheLTC1854/LTC1855/  
LTC1856. See Table 2. Nap mode is selected when Nap =  
1 and Sleep = 0. The previous conversion result will be  
clocked out and a conversion will occur before entering  
the Nap mode. The Nap mode starts at the end of the  
conversion which is indicated by the rising edge of the  
BUSY signal. Nap mode lasts until the falling edge of the  
2nd SCK (see Figure 9). Automatic nap will be achieved  
if Nap = 1 is selected each time an input word is written  
to the ADC.  
DYNAMIC PERFORMANCE  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion  
sine wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined  
forfrequenciesoutsidethefundamental. Figure12shows  
a typical LTC1856 FFT plot which yields a SINAD of 87dB  
and THD of 101dB.  
Table 2. Power Down Selection  
NAP  
0
SLEEP  
POWER DOWN MODE  
0
0
1
Power On  
Nap  
1
X
Sleep  
1854565af  
19  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
185456fa  
20  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
SIGNAL-TO-NOISE AND DISTORTION RATIO  
BOARD LAYOUT, POWER SUPPLIES  
AND DECOUPLING  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 12 shows a typical SINAD of 87dB with  
a 100kHz sampling rate and a 1kHz input.  
Wire wrap boards are not recommended for high reso-  
lution or high speed A/D converters. To obtain the best  
performance from the LTC1854/LTC1855/LTC1856, a  
printed circuit board is required. Layout for the printed  
circuit board should ensure the digital and analog signal  
lines are separated as much as possible. In particular, care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC. The analog  
input should be screened by AGND.  
TOTAL HARMONIC DISTORTION  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
InapplicationswheretheMUXisconnectedtotheADC,itis  
possible to get noise coupling into the ADC from the trace  
connecting the MUXOUT to the ADC. Therefore, reducing  
thelengthofthetracesconnectingtheMUXOUTpins(Pins  
10, 11) to the ADC pins (Pins 12, 13) can minimize the  
problem. The unused MUX inputs should be grounded to  
prevent noise coupling into the inputs.  
2
2
2
2
V2 + V3 + V4 ...+ VN  
THD = 20log  
V1  
Figure13showsthepowersupplygroundingthatwillhelp  
obtain the best performance from the 12-bit/14-bit/16-bit  
ADCs. Pay particular attention to the design of the analog  
and digital ground planes. The DGND pin of the LTC1854/  
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
N
through Nth harmonics.  
0
–10  
–20  
f
f
= 100kHz  
SAMPLE  
IN  
= 1kHz  
SINAD = 87dB  
THD = –101dB  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
20  
0
5
10 15  
25 30 35 40 45 50  
FREQUENCY (kHz)  
185456 F12  
Figure 12. LTC1856 Nonaveraged 4096 Point FFT Plot  
1854565af  
21  
LTC1854/LTC1855/LTC1856  
applicaTions inFormaTion  
LTC1855/LTC1856 can be tied to the analog ground plane.  
Placing the bypass capacitor as close as possible to the  
power supply pins, thereferenceand reference bufferout-  
putisveryimportant.Lowimpedancecommonreturnsfor  
thesebypasscapacitorsareessentialtolownoiseoperation  
of the ADC, and the foil width for these tracks should be  
as wide as possible. Also, since any potential difference in  
grounds between the signal source and ADC appears as  
an error voltage in series with the input signal, attention  
should be paid to reducing the ground circuit impedance  
as much as possible. The digital output latches and the  
onboard sampling clock have been placed on the digital  
ground plane. The two ground planes are tied together at  
the ADC through a wide, low inductance path.  
LTC1854/  
LTC1855/  
LTC1856  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
10 12  
+
+
MUXOUT  
ADC  
DIGITAL  
SYSTEM  
LTC1854/LTC1855/LTC1856  
ADC  
MUXOUT  
+
V
REFCOMP AGND  
AV  
DV  
DD  
DGND  
24  
OV  
13  
REF  
DD  
DD  
11  
15  
16 14, 17, 18 19  
20  
21  
1µF  
10µF  
10µF  
10µF  
10µF  
DIGITAL  
GROUND PLANE  
ANALOG GROUND PLANE  
18545 F13  
Figure 13. Power Supply Grounding Practice  
185456fa  
22  
LTC1854/LTC1855/LTC1856  
package DescripTion  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
9.90 – 10.50*  
(.390 – .413)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
1.25 0.12  
5.3 – 5.7  
7.8 – 8.2  
7.40 – 8.20  
(.291 – .323)  
0.42 0.03  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
RECOMMENDED SOLDER PAD LAYOUT  
2.0  
(.079)  
MAX  
5.00 – 5.60**  
(.197 – .221)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
(.0035 – .010)  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
G28 SSOP 0204  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
1854565af  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC1854/LTC1855/LTC1856  
Typical applicaTion  
5V  
5V  
10µF  
0.1µF  
10µF  
0.1µF  
19  
20  
AV  
DV  
DD  
DD  
CONVST 28  
1
2
3
COM  
CH0  
CH1  
MUX ADDRESS  
SDI 25  
CONTROL  
LOGIC  
SINGLE-ENDED  
OR DIFFERENTIAL  
CHANNEL  
8-BIT SERIAL  
DATA INPUT  
BUSY 22  
INTERNAL  
CLOCK  
SELECTION  
INPUT MUX  
(SEE TABLE 1)  
26  
SCK  
INPUT RANGE:  
10V  
16 SHIFT CLOCK CYCLES  
+
RD 27  
CH7  
9
12-/14-/16-BIT  
SAMPLING ADC  
DATA OUT  
OV  
DD  
21  
3V TO 5V  
SERIAL I/O  
10µF  
0.1µF  
4.096V  
SDO 23  
2.5V  
REFERENCE  
16-BIT SERIAL DATA OUT  
1.6384X  
8k  
+
+
V
AGND1 MUXOUT  
MUXOUT  
10  
ADC  
12  
ADC  
13  
REFCOMP  
AGND2 AGND3 DGND  
17 18 24  
REF  
18545 TA03  
14  
11  
15  
16  
1µF  
10µF  
0.1µF  
relaTeD parTs  
PART NUMBER  
Sampling ADCs  
LTC1418  
DESCRIPTION  
COMMENTS  
14-Bit, 200ksps, Single 5V or ±5V ADC  
16-Bit, 333ksps, ±5V ADC  
15mW, Serial/Parallel I/O  
LTC1604  
90dB SINAD, 220mW Power Dissipation, Pin Compatible with LTC1608  
±10V Inputs, 55mW, Byte or Parallel I/O, Pin Compatible with LTC1606  
±10V Inputs, 75mW, Byte or Parallel I/O, Pin Compatible with LTC1605  
90dB SINAD, 270mW Power Dissipation, Pin Compatible with LTC1604  
Configurable Unipolar/Bipolar Input, Up to 10V Single 5V Supply  
Programmable MUX and Sequencer, Parallel I/O  
LTC1605  
16-Bit, 100ksps, Single 5V ADC  
16-Bit, 250ksps, Single 5V ADC  
16-Bit, 500ksps, ±5V ADC  
LTC1606  
LTC1608  
LTC1609  
16-Bit, 200ksps Serial ADC  
LTC1850/LTC1851  
10-Bit/12-Bit, 8-Channel, 1.25Msps ADC  
LTC1859/LTC1858/ 16-Bit, 14-Bit, 12-Bit, 100ksps, SoftSpan ADCs  
LTC1857  
Software-Selectable Spans, Pin Compatible with  
LTC1864/LTC1865  
16-Bit, 1-/2-Channel, 250ksps ADC in MSOP  
Single 5V Supply, 850µA with Autoshutdown  
LTC1864L/LTC1865L 3V, 16-Bit, 1-/2-Channel, 150ksps ADC in MSOP  
Single 3V Supply, 450µA with Autoshutdown  
LTC1856/LTC1855/LTC1854  
DACs  
LTC1588/LTC1589  
LTC1592  
12-/14-/16-Bit, Serial, SoftSpan I  
DACs  
Software-Selectable Spans, ±1LSB INL/DNL  
OUT  
LTC1595  
LTC1596  
LTC1597  
LTC1650  
16-Bit Serial Multiplying I  
16-Bit Serial Multiplying I  
DAC in SO-8  
DAC  
±1LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade  
±1LSB Max INL/DNL, Low Glitch, AD7543/DAC8143 16-Bit Upgrade  
±1LSB Max INL/DNL, Low Glitch, 4 ꢀuadrant Resistors  
Low Power, Low Glitch, 4-ꢀuadrant Multiplication  
OUT  
OUT  
16-Bit Parallel, Multiplying DAC  
16-Bit Serial V ±5V DAC  
OUT  
LTC2704-16/  
LTC2704-14/  
LTC2704-12  
16-Bit, 14-Bit, 12-Bit, Serial, ꢀuad SoftSpan  
DACs  
Software-Selectable Spans, ±2LSB INL, ±1LSB INL,  
Force/Sense Output  
V
OUT  
185456fa  
LT 0407 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1854IG-PBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1854IG-TR

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1854IG-TRPBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1854_15

8-Channel, 10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855CG

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855CG#PBF

LTC1855 - 8-Channel, ±10V Input 14-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1855CG#TR

LTC1855 - 8-Channel, ±10V Input 14-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1855CG#TRPBF

LTC1855 - 8-Channel, ±10V Input 14-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1855CG-PBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855CG-TR

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855CG-TRPBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear