LTC1855CG [Linear]

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown; 8通道,± 10V输入12位/ 14位/ 16位, 100ksps的ADC转换器,带有关断
LTC1855CG
型号: LTC1855CG
厂家: Linear    Linear
描述:

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
8通道,± 10V输入12位/ 14位/ 16位, 100ksps的ADC转换器,带有关断

转换器
文件: 总24页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1854/LTC1855/LTC1856  
8-Channel, ±10V Input  
12-/14-/16-Bit, 100ksps ADC  
Converters with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LTC®1854/LTC1855/LTC1856 are 8-channel, low  
power, 12-/14-/16-bit, 100ksps, analog-to-digital con-  
verters (ADCs). These ADCs operate from a single 5V  
supplyandthe8-channelmultiplexercanbeprogrammed  
for single-ended inputs, pairs of differential inputs, or  
combinations of both. In addition, all channels are fault  
protected to ±30V. A fault condition on any channel will  
not affect the conversion result of the selected channel.  
Single 5V Supply  
Sample Rate: 100ksps  
8-Channel Multiplexer with ±30V Protection  
±10V Bipolar Input Range  
Single Ended or Differential  
±3LSB INL for the LTC1856, ±1.5LSB INL for the  
LTC1855, ±1LSB INL for the LTC1854  
Power Dissipation: 40mW (Typ)  
SPI/MICROWIRETM Compatible Serial I/O  
An onboard precision reference minimizes external com-  
ponents. Powerdissipationis40mWat100kspsandlower  
in two power shutdown modes (27.5mW in Nap mode and  
40mW in Sleep mode.) DC specifications include ±3LSB  
INL for the LTC1856, ±1.5LSB INL for the LTC1855 and  
±1LSB for the LTC1854.  
Power Shutdown: Nap and Sleep  
SINAD: 87dB (LTC1856)  
Operates with Internal or External Reference  
Internal Synchronized Clock  
28-Pin SSOP Package  
U
APPLICATIO S  
The internal clock is trimmed for 5ms maximum conver-  
sion time and the sampling rate is guaranteed at 100ksps.  
Aseparateconvertstartinputanddatareadysignal(BUSY)  
ease connections to FIFOs, DSPs and microprocessors.  
Industrial Process Control  
Multiplexed Data Acquisition Systems  
High Speed Data Acquisition for PCs  
Digital Signal Processing  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
100kHz, 12-Bit/14-/16-Bit Sampling ADC  
LTC1856 Typical INL Curve  
2.0  
COM  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CONVST  
1.5  
1.0  
0.5  
0
RD  
SCK  
SDI  
LTC1854/  
LTC1855/  
LTC1856  
μP  
CONTROL  
LINES  
SOFTWARE-PROGRAMMABLE  
SINGLE-ENDED OR  
DGND  
SDO  
BUSY  
DIFFERENTIAL INPUTS  
±10V BIPOLAR INPUT RANGE  
–0.5  
–1.0  
–1.5  
–2.0  
3V TO 5V  
5V  
5V  
OV  
DV  
AV  
DD  
DD  
DD  
+
MUXOUT  
MUXOUT  
AGND3  
AGND2  
REFCOMP  
0.1μF  
10μF  
10μF  
0.1μF  
10μF  
0.1μF  
+
ADC  
ADC  
–32768  
–16384  
0
16384  
32767  
AGND1  
V
2.5V  
REF  
CODE  
1μF  
10μF  
0.1μF  
185456 G01  
185456fa  
1
LTC1854/LTC1855/LTC1856  
W W W  
U
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (OVDD = DVDD = AVDD = VDD) ........... 6V  
Ground Voltage Difference  
1
2
CONVST  
RD  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
COM  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
DGND, AGND1, AGND2, AGND3 ...................... ±0.3V  
Analog Input Voltage  
3
SCK  
4
SDI  
ADC+, ADC–  
5
DGND  
SDO  
(Note 3) ...................(AGND1 – 0.3V) to (AVDD + 0.3V)  
CH0-CH7, COM.................................................. ±30V  
Digital Input Voltage (Note 4) ...... (DGND – 0.3V) to 10V  
Digital Output Voltage .... (DGND – 0.3V) to (DVDD + 0.3V)  
Power Dissipation .............................................. 500mW  
Operating Temperature Range  
LTC1854C/LTC1855C/LTC1856C ............ 0C to 70C  
LTC1854I/LTC1855I/LTC1856I .......... 40C to 85C  
Storage Temperature Range ................. 65C to 150C  
Lead Temperature (Soldering, 10 sec) ................. 300C  
6
7
BUSY  
8
OV  
DD  
9
DV  
DD  
CH7  
+
10  
11  
12  
13  
14  
AV  
DD  
MUXOUT  
+
AGND3  
MUXOUT  
ADC  
AGND2  
REFCOMP  
ADC  
V
REF  
AGND1  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 110C, qJA = 95C/W  
ORDER PART NUMBER  
LTC1854CG  
LTC1854IG  
LTC1855CG  
LTC1855IG  
LTC1856CG  
LTC1856IG  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
U W  
CO VERTER A D ULTIPLEXER CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C.  
MUXOUT connected to ADC inputs. (Notes 5, 6)  
LTC1854  
MIN TYP MAX MIN  
LTC1855  
TYP MAX MIN  
LTC1856  
TYP MAX UNITS  
PARAMETER  
CONDITIONS  
Resolution  
12  
12  
14  
14  
16  
15  
Bits  
Bits  
No Missing Codes  
Transition Noise  
0.06  
0.25  
1
LSB  
RMS  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Bipolar Zero Error Match  
Bipolar Full-Scale Error  
(Note 7)  
(Note 8)  
±1  
1
±1.5  
1.5  
±3  
4
LSB  
–1  
–1  
–2  
LSB  
LSB  
±5  
±8  
±23  
±0.1  
±0.1  
±0.1  
ppm/C  
3
4
10  
LSB  
External Reference (Note 11)  
Internal Reference (Note 11)  
±0.34  
±0.45  
±0.14  
±0.40  
±0.1  
±0.4  
%
%
Bipolar Full-Scale Error Drift  
External Reference  
Internal Reference  
±2.5  
±7  
±2.5  
±7  
±2.5  
±7  
ppm/C  
ppm/C  
Bipolar Full-Scale Error Match  
Input Common Mode Range  
5
10  
15  
LSB  
V
±10  
±10  
±10  
Input Common Mode Rejection Ratio  
96  
96  
96  
dB  
185456fa  
2
LTC1854/LTC1855/LTC1856  
A ALOG I PUT The denotes the specifications which apply over the full operating temperature range, otherwise  
U
U
specifications are at TA = 25C. (Note 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Analog Input Range  
CH0 to CH7, COM  
±10  
+
ADC , ADC (Note 3)  
ADC ±2.048  
V
Impedance  
Capacitance  
CH0 to CH7, COM  
31  
5
kW  
kW  
pF  
+
MUXOUT , MUXOUT  
CH0 to CH7, COM  
5
+
Sample Mode ADC , ADC  
12  
4
pF  
+
Hold Mode ADC , ADC  
pF  
+
Input Leakage Current  
ADC , ADC , CONVST = Low  
±1  
mA  
U W  
DY A IC ACCURACY The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25C. MUXOUT connected to ADC inputs. (Note 5)  
LTC1854  
MIN TYP MAX MIN  
LTC1855  
TYP MAX MIN  
LTC1856  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
UNITS  
dB  
S/(N + D) Signal-to-(Noise + Distortion) Ratio 1kHz Input Signal  
74  
83  
87  
THD  
Total Harmonic Distortion  
1kHz Input Signal,  
First Five Harmonics  
–102  
–95  
–101  
dB  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Isolation  
–3dB Input Bandwidth  
Aperture Delay  
1kHz Input Signal  
1kHz Input Signal  
–99  
–120  
1
–99  
–120  
1
–103  
–120  
1
dB  
dB  
MHz  
ns  
–70  
60  
–70  
60  
–70  
60  
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
(Note 9)  
4
4
4
ms  
Overvoltage Recovery  
(Note 12)  
150  
150  
150  
ns  
185456fa  
3
LTC1854/LTC1855/LTC1856  
U U  
U
I TER AL REFERE CE CHARACTERISTICS  
The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25C. (Note 5)  
PARAMETER CONDITIONS  
MIN  
TYP  
2.50  
±10  
8
MAX  
UNITS  
V
V
V
V
Output Voltage  
I
I
= 0  
= 0  
2.475  
2.525  
V
ppm/C  
kW  
REF  
OUT  
OUT  
Output Temperature Coefficient  
Output Impedance  
REF  
–0.1mA £ I  
£ 0.1mA  
REF  
OUT  
Output Voltage  
I
= 0  
OUT  
4.096  
V
REFCOMP  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
Digital Input Capacitance  
High Level Output Voltage  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
±10  
mA  
pF  
IN  
DD  
C
V
5
IN  
V
V
= 4.75V, I = –10mA, OV = V  
DD  
4.74  
V
V
OH  
DD  
DD  
O
DD  
= 4.75V, I = –200mA, OV = V  
4
O
DD  
DD  
V
Low Level Output Voltage  
V
V
= 4.75V, I = 160mA, OV = V  
DD  
0.05  
0.10  
V
V
OL  
DD  
DD  
O
DD  
= 4.75V, I = 1.6mA, OV = V  
0.4  
O
DD  
DD  
I
Hi-Z Output Leakage  
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
V
= 0V to V , RD = High  
±10  
mA  
pF  
OZ  
OUT  
DD  
C
RD = High  
15  
–10  
10  
OZ  
I
I
V
V
= 0V  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
= V  
DD  
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25C. (Note 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply Voltage  
(Notes 9 and 10)  
4.75  
5.00  
5.25  
V
Positive Supply Current  
Nap Mode  
Sleep Mode  
8.0  
5.5  
8.0  
12  
7
13  
mA  
mA  
mA  
CONVST = 0V or 5V  
CONVST = 0V or 5V  
Power Dissipation  
Nap Mode  
Sleep Mode  
40.0  
27.5  
40.0  
mW  
mW  
mW  
185456fa  
4
LTC1854/LTC1855/LTC1856  
W U  
TI I G CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Maximum Sampling Frequency  
Through CH0 to CH7 Inputs  
Through ADC , ADC Only  
100  
kHz  
kHz  
SAMPLE(MAX)  
+
166  
4
t
t
Conversion Time  
Acquisition Time  
5
4
ms  
CONV  
ACQ  
Through CH0 to CH7 Inputs  
ms  
ms  
+
Through ADC , ADC Only  
(Note 13)  
1
f
t
t
t
t
t
t
t
t
t
SCK Frequency  
SDO Rise Time  
SDO Fall Time  
0
20  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
r
See Test Circuits  
See Test Circuits  
6
6
f
CONVST High Time  
CONVST to BUSY Delay  
SCK Period  
40  
1
C = 25pF, See Test Circuits  
L
15  
30  
2
50  
10  
10  
3
SCK High  
4
SCK Low  
5
Delay Time, SCKØ to SDO Valid  
C = 25pF, See Test Circuits  
L
25  
20  
45  
30  
6
Time from Previous SDO Data Remains C = 25pF, See Test Circuits  
Valid After SCKØ  
5
7
L
t
t
t
t
t
t
SDO Valid After RDØ  
C = 25pF, See Test Circuits  
L
11  
ns  
ns  
ns  
ns  
ns  
ns  
8
RDØ to SCK Setup Time  
SDI Setup Time Before SCK≠  
SDI Hold Time After SCK≠  
SDO Valid Before BUSY≠  
Bus Relinquish Time  
20  
0
9
10  
11  
12  
13  
7
RD = Low, C = 25pF, See Test Circuits  
5
20  
10  
L
See Test Circuits  
30  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to ground with DGND, AGND1,  
AGND2 and AGND3 wired together unless otherwise noted.  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual end points of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 8: Bipolar zero error is the offset voltage measured from 0.5LSB  
when the output code flickers between 0000 0000 0000 0000 and 1111  
1111 1111 1111 for the LTC1856, between 00 0000 0000 0000 and 11  
1111 1111 1111 for the LTC1855 and between 0000 0000 0000 and 1111  
1111 1111 for the LTC1854.  
Note 3: When these pin voltages are taken below ground or above AV  
=
DD  
DV = OV = V , they will be clamped by internal diodes. This product  
DD  
DD  
DD  
can handle currents of greater than 100mA below ground or above V  
without latchup.  
Note 4: When these pin voltages are taken below ground they will be  
clamped by internal diodes. This product can handle currents of greater  
than 100mA below ground without latchup. These pins are not clamped  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
Note 11: Full-scale bipolar error is the worst case of –FS or +FS  
untrimmed deviation from ideal first and last code transitions, divided by  
the full-scale range, and includes the effect of offset error.  
DD  
to V  
.
DD  
Note 12: Recovers to specified performance after (2 • FS) input  
overvoltage.  
Note 5: V = 5V, f  
= 100kHz, t = t = 5ns unless otherwise  
r f  
DD  
SAMPLE  
specified.  
Note 13: t of 45ns maximum allows f  
up to 10MHz for rising capture  
6
SCK  
Note 6: Linearity, offset and full-scale specifications apply for a single-  
with 50% duty cycle and f  
up to 20MHz for falling capture (with 5ns  
SCK  
+
ended analog MUX input with respect to ground or ADC with respect to  
setup time for the receiving logic).  
ADC tied to ground.  
185456fa  
5
LTC1854/LTC1855/LTC1856  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC1856 Nonaveraged  
4096-Point FFT Plot  
LTC1856 Typical INL Curve  
LTC1856 Typical DNL Curve  
2.0  
1.5  
2.0  
1.5  
0
–10  
–20  
–30  
1.0  
1.0  
–40  
–50  
–60  
–70  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
–130  
0
0
–32768  
–16384  
16384  
32767  
–32768  
–16384  
16384  
32767  
20  
0
5
10 15  
25 30 35 40 45 50  
CODE  
CODE  
FREQUENCY (kHz)  
185456 G01  
185456 G02  
185456 G03  
LTC1855 Nonaveraged  
4096-Point FFT Plot  
LTC1855 Typical INL Curve  
LTC1855 Typical DNL Curve  
0
–10  
–20  
1
1
0.8  
0.6  
0.4  
0.2  
f
f
= 100kHz  
SAMPLE  
IN  
= 1kHz  
0.8  
0.6  
0.4  
0.2  
SINAD = 83dB  
THD = –95dB  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–8192  
20  
0
5
10 15  
25 30 35 40 45 50  
0
–8192  
–4096  
4096  
8191  
0
–4096  
4096  
8191  
FREQUENCY (kHz)  
CODE  
CODE  
185456 G06  
185455 G04  
185456 G05  
LTC1854 Nonaveraged  
4096-Point FFT Plot  
LTC1854 Typical INL Curve  
LTC1854 Typical DNL Curve  
0
–10  
–20  
1.0  
0.8  
1.0  
0.8  
f
f
= 100kHz  
SAMPLE  
IN  
= 1kHz  
SINAD = 73.6dB  
THD = –102dB  
0.6  
0.6  
–30  
0.4  
–40  
0.4  
–50  
–60  
–70  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–130  
0
10  
20  
30  
40  
50  
–2048  
–1024  
0
1024  
2047  
–2048  
–1024  
0
1024  
2047  
FREQUENCY (kHz)  
CODE  
CODE  
185456 G09  
185456 G08  
185456 G07  
185456fa  
6
LTC1854/LTC1855/LTC1856  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LTC1856 Channel-to-Channel  
Offset Error Matching vs  
Temperature  
LTC1856 SINAD  
LTC1856 Total Harmonic  
vs Input Frequency  
Distortion vs Input Frequency  
90  
88  
86  
84  
82  
80  
78  
76  
74  
1.0  
0.5  
0
–70  
–80  
–90  
–0.5  
–100  
–110  
–1.0  
1
10  
100  
–50  
–25  
0
25  
50  
75  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
185456 G10  
185456 G12  
185456 G11  
LTC1855 Channel-to-Channel  
Offset Error Matching vs  
Temperature  
LTC1855 SINAD  
vs Input Frequency  
LTC1855 Total Harmonic  
Distortion vs Input Frequency  
–60  
–70  
85  
80  
75  
0.5  
0.25  
0
–80  
–90  
70  
–0.25  
–100  
–110  
65  
60  
–0.5  
1
10  
100  
–50  
–25  
0
25  
50  
75  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
185456 G14  
185456 G15  
185456 G13  
LTC1854 Channel-to-Channel  
Offset Error Matching vs  
Temperature  
LTC1854 SINAD  
LTC1854 Total Harmonic  
Distortion vs Input Frequency  
vs Input Frequency  
–60  
–70  
80  
75  
70  
65  
60  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–80  
–90  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–100  
–110  
100  
1
10  
1
10  
100  
–50 –25  
25  
50  
75  
100  
0
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
185456 G17  
185456 G16  
185456 G18  
185456fa  
7
LTC1854/LTC1855/LTC1856  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC1856 Channel-to-Channel Gain  
Error Matching vs Temperature  
LTC1855 Channel-to-Channel Gain  
Error Matching vs Temperature  
LTC1854 Channel-to-Channel Gain  
Error Matching vs Temperature  
1.0  
0.5  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.5  
0.25  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.5  
–0.25  
–1.0  
–0.5  
–50  
–25  
0
25  
50  
75  
100  
–50 –25  
25  
50  
75  
100  
0
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
185456 G19  
185456 G21  
185456 G20  
Internal Reference Voltage  
vs Temperature  
Change in REFCOMP Voltage  
vs Load Current  
LTC1856 Power Supply  
Feedthrough vs Ripple Frequency  
0.04  
0.02  
0
2.520  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
f
= 100kHz  
= 60mV  
SAMPLE  
RIPPLE  
V
–0.02  
–0.04  
–50 –40  
–30  
–20  
–10  
0
10  
–25  
0
50  
100  
1k  
10k  
100k  
1M  
–50  
75  
100  
25  
LOAD CURRENT (mA)  
RIPPLE FREQUENCY (Hz)  
TEMPERATURE (°C)  
185456 G24  
185456 G23  
185456 G22  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
9.0  
8.5  
8.0  
7.5  
9.0  
8.5  
8.0  
7.5  
7.0  
f = 100kHz  
SAMPLE  
f
= 100kHz  
SAMPLE  
7.0  
–50 –25  
0
25  
50  
75  
100  
5
5.25  
4.5  
5.5  
4.75  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
185456 G26  
185454 G25  
185456fa  
8
LTC1854/LTC1855/LTC1856  
U
U
U
PI FU CTIO S  
AGND1 (Pin 14): Analog Ground.  
COM (Pin 1): Common Input. This is the negative refer-  
ence point for all single-ended inputs. It must be free of  
noiseandisusuallyconnectedtotheanaloggroundplane.  
VREF (Pin 15): 2.5V Reference Output. Bypass to analog  
ground with a 1mF tantalum capacitor.  
CH0 (Pin 2): Analog MUX Input.  
CH1 (Pin 3): Analog MUX Input.  
CH2 (Pin 4): Analog MUX Input.  
CH3 (Pin 5): Analog MUX Input.  
CH4 (Pin 6): Analog MUX Input.  
CH5 (Pin 7): Analog MUX Input.  
CH6 (Pin 8): Analog MUX Input.  
CH7 (Pin 9): Analog MUX Input.  
REFCOMP (Pin 16): Reference Buffer Output. Bypass to  
analog ground with a 10mF tantalum and a 0.1mF ceramic  
capacitor. Nominal output voltage is 4.096V.  
AGND2 (Pin 17): Analog Ground.  
AGND3 (Pin 18): Analog Ground. This is the substrate  
connection.  
AVDD (Pin19):5VAnalogSupply.Bypasstoanalogground  
with a 0.1mF ceramic and a 10mF tantalum capacitor.  
DVDD (Pin20):5VDigitalSupply. Bypasstodigitalground  
with a 0.1mF ceramic and a 10mF tantalum capacitor.  
MUXOUT+ (Pin 10): Positive MUX Output. Output of the  
analogmultiplexer.ConnecttoADC+ fornormaloperation.  
OVDD (Pin 21): Positive Supply for the Digital Output  
Buffers (3V to 5V). Bypass to digital ground with a 0.1mF  
ceramic and a 10mF tantalum capacitor.  
MUXOUT(Pin 11): Negative MUX Output. Output of the  
analogmultiplexer.ConnecttoADCfornormaloperation.  
ADC+ (Pin 12): Positive Analog Input to the Analog-to-  
Digital Converter.  
BUSY (Pin 22): Output shows converter status. It is low  
when a conversion is in progress.  
ADC(Pin 13): Negative Analog Input to the Analog-to-  
Digital Converter.  
SDO (Pin 23): Serial Data Output.  
185456fa  
9
LTC1854/LTC1855/LTC1856  
U
U
U
PI FU CTIO S  
DGND (Pin 24): Digital Ground.  
SDI (Pin 25): Serial Data Input.  
SCK (Pin 26): Serial Data Clock.  
RD(Pin27):ReadInput. Thisactivelowsignalenablesthe  
digitaloutputpinSDOandenablestheserialinterface, SDI  
and SCK are ignored when RD is high.  
CONVST (Pin 28): Conversion Start. The ADC starts a  
conversion on CONVST’s rising edge.  
U
U
W
FU CTIO AL BLOCK DIAGRA  
DV  
AV  
DD  
20  
DD  
19  
MUX ADDRESS  
2
28  
25  
22  
CONVST  
CH0  
3
CONTROL  
LOGIC  
CH1  
SDI  
INTERNAL  
CLOCK  
BUSY  
INPUT MUX  
26  
SCK  
RD  
+
27  
21  
9
12-/14-/16-BIT  
SAMPLING ADC  
CH7  
DATA OUT  
1
SERIAL I/O  
OV  
DD  
COM  
23  
SDO  
4.096V  
2.5V  
REFERENCE  
1.6384X  
8k  
+
+
MUXOUT  
MUXOUT  
ADC  
ADC  
14  
AGND1  
11 10  
12 13  
15  
16  
REFCOMP  
17  
18  
24  
V
AGND2 AGND3 DGND  
REF  
18545 BD  
185456fa  
10  
LTC1854/LTC1855/LTC1856  
TEST CIRCUITS  
Load Circuits for Access Timing  
Load Circuits for Output Float Delay  
5V  
1k  
5V  
1k  
DN  
DN  
DN  
DN  
1k  
1k  
25pF  
25pF  
25pF  
25pF  
(A) Hi-Z TO V AND V TO V  
OH OL OH  
(B) Hi-Z TO V AND V TO V  
(A) V TO Hi-Z  
OH  
(B) V TO Hi-Z  
OL  
OL  
OH  
OL  
18545 TC01  
18545 TC02  
W U  
W
TI I G DIAGRA S  
t (CONVST to BUSY Delay)  
2
t
2
2.4V  
t
(For Short Pulse Mode)  
1
CONVST  
BUSY  
t
1
50%  
50%  
CONVST  
0.4V  
18545 TD01  
18545 TD02  
t (Delay Time, SCK to SDO Valid)  
6
t (Time from Previous Data Remains Valid After SCK )  
7
t
t
6
7
t , t , t (SCK Timing)  
3
4 5  
SCK  
SDO  
0.4V  
t
t
5
4
SCK  
2.4V  
0.4V  
18545 TD03  
t
3
18545 TD04  
t (RD to SCK Setup Time)  
9
t (SDO Valid After RD )  
8
t
8
t
9
RD  
0.4V  
RD  
0.4V  
Hi-Z  
2.4V  
2.4V  
0.4V  
SCK  
SDO  
18545 TD06  
18545 TD05  
185456fa  
11  
LTC1854/LTC1855/LTC1856  
WU  
W
TI I G DIAGRA S  
t
(SDI Setup Time Before SCK )  
t
11  
(SDI Hold Time After SCK )  
10  
t
t
11  
10  
2.4V  
2.4V  
SCK  
SDI  
SCK  
SDI  
2.4V  
0.4V  
2.4V  
0.4V  
18545 TD07  
18545 TD08  
t
(SDO Valid Before BUSY , RD = 0)  
t
(BUS Relinquish Time)  
13  
12  
t
t
12  
13  
2.4V  
2.4V  
BUSY  
SDO  
RD  
90%  
10%  
Hi-Z  
2.4V  
B15  
SDO  
18545 TD10  
18545 TD09  
185456fa  
12  
LTC1854/LTC1855/LTC1856  
W U U  
U
APPLICATIO S I FOR ATIO  
Before starting a conversion, an 8-bit data word is clocked  
into the SDI input on the first eight rising SCK edges to  
select the MUX address and power down mode. The ADC  
enters acquisition mode on the falling edge of the sixth  
clock in the 8-bit data word and ends on the rising edge of  
the CONVST signal which also starts a conversion (see  
Figure7).Aminimumtimeof4mswillprovideenoughtime  
for the sample-and-hold capacitors to acquire the analog  
signal. Once a conversion cycle has begun, it cannot be  
restarted.  
OVERVIEW  
The LTC1854/LTC1855/LTC1856 are innovative, multi-  
channel ADCs. The on-chip resistors provide attenuation  
andoffsetforeachchannel. Thepreciselytrimmedattenu-  
ators ensure an accurate input range. Because they pre-  
cede the multiplexer, errors due to multiplexer  
on-resistance are eliminated.  
The input word selects the single ended or differential  
inputs for each channel or pair of channels. Overrange  
protection is provided for unselected channels. An  
overrange condition on an unused channel will not affect  
the conversion result on the selected channel.  
Duringtheconversion,theinternaldifferential12-/14-/16-  
bitcapacitiveDACoutputissequencedbytheSARfromthe  
mostsignificantbit(MSB)totheleastsignificantbit(LSB).  
The input is successively compared with the binary  
weighted charges supplied by the differential capacitive  
DAC. Bit decisions are made by a high speed comparator.  
At the end of a conversion, the DAC output balances the  
analog input (ADC+ – ADC). The SAR contents (a 12-/14-  
/16-bitdataword)whichrepresentsthedifferenceofADC+  
and ADCare loaded into the 12-/14-/16-bit shift register.  
CONVERSION DETAILS  
TheLTC1854/LTC1855/LTC1856useasuccessiveapproxi-  
mation algorithm and an internal sample-and-hold circuit  
to convert an analog signal to a 12-/14-/16-bit serial out-  
put respectively. The ADCs are complete with a precision  
reference and an internal clock. The control logic provides  
easyinterfacetomicroprocessorsandDSPs.(Pleaserefer  
to the Digital Interface section for the data format.)  
DRIVING THE ANALOG INPUTS  
The analog signals applied at the MUX input channels are  
rescaled by the resistor divider network formed by R1, R2  
and R3 as shown below. The rescaled signals appear on  
theMUXOUT(Pins10,11)whicharealsoconnectedtothe  
ADC inputs (Pins 12, 13) under normal operation.  
The input range for the LTC1854/LTC1855/LTC1856 is  
±10V and the MUX inputs are overvoltage protected to  
±30V. The input impedance is typically 31kW; therefore, it  
should be driven with a low impedance source. Wideband  
noise coupling into the input can be minimized by placing  
a 3000pF capacitor at the input as shown in Figure 2. An  
NPO-type capacitor gives the lowest distortion. Place the  
capacitor as close to the device input pin as possible. If an  
amplifier is to be used to drive the input, care should be  
takentoselectanamplifierwithadequateaccuracy,linear-  
ity and noise for the application. The following list is a  
summary of the op amps that are suitable for driving the  
LTC1854/LTC1855/LTC1856. More detailed information  
isavailableintheLinearTechnologydatabooksandonline  
at www.linear.com.  
REFCOMP  
R3  
R1  
CH SEL  
10k  
25k  
MUX  
INPUT  
MUXOUT  
R2  
17k  
18545 AI01  
LT®1007: Low noise precision amplifier. 2.7mA supply  
current ±5V to ±15V supplies. Gain bandwidth product  
8MHz. DC applications.  
185456fa  
13  
LTC1854/LTC1855/LTC1856  
W U U  
U
APPLICATIO S I FOR ATIO  
DV  
AV  
DD  
DD  
MUX ADDRESS  
CONVST  
CH0  
CH1  
CONTROL  
LOGIC  
SDI  
INTERNAL  
CLOCK  
BUSY  
INPUT MUX  
SCK  
RD  
+
12-/14-/16-BIT  
SAMPLING ADC  
CH7  
DATA OUT  
SERIAL I/O  
OV  
DD  
COM  
SDO  
4.096V  
2.5V  
REFERENCE  
1.6384X  
8k  
+
+
18545 F01  
MUXOUT  
MUXOUT  
ADC  
ADC  
AGND1  
V
REFCOMP  
AGND2 AGND3 DGND  
REF  
Figure 1. LTC1854/LTC1855/LTC1856 Simplified Equivalent Circuit  
LT1792: Single, low noise JFET input op amp, ±5V  
supplies.  
+
A
A
CH0  
CH1  
IN  
3000pF  
IN  
LT1793: Single, low noise JFET input op amp, 10pA bias  
current, ±5V supplies.  
+
MUXOUT  
MUXOUT  
LT1881/LT1882: Dual and quad, 200pA bias current, rail-  
to-rail output op amps. Up to ±15V supplies.  
+
ADC  
ADC  
LT1844/LT1885: Dual and quad, 400pA bias current, rail-  
to-rail output op amps. Up to ±15V supplies. Faster  
response and settling time.  
18545 F02  
Figure 2. Analog Input Filtering  
INTERNAL VOLTAGE REFERENCE  
LT1227: 140MHz video current feedback amplifier. 10mA  
supply current. ±5V to ± 15V supplies. Low noise and low  
distortion.  
The LTC1854/LTC1855/LTC1856 have an on-chip, tem-  
perature compensated, curvature corrected, bandgap ref-  
erence, which is factory trimmed to 2.50V. The full-scale  
rangeoftheLTC1854/LTC1855/LTC1856isequalto ±10V.  
The output of the reference is connected to the input of a  
gain of 1.6384x buffer through an 8k resistor (see Figure  
3). The input to the buffer or the output of the reference is  
LT1468/LT1469: Single and dual 90MHz, 16-bit accurate  
op amp. Good AC/DC specs. ±5V to ±15V supplies.  
LT1677: Single, low noise op amp. Rail-to-rail input and  
output. Up to ±15V supplies.  
185456fa  
14  
LTC1854/LTC1855/LTC1856  
W U U  
APPLICATIO S I FOR ATIO  
U
available at VREF (Pin 15). The internal reference can be  
overdriven with an external reference if more accuracy is  
needed. The buffer output drives the internal DAC and is  
available at REFCOMP (Pin 16). The REFCOMP pin can be  
used to drive a steady DC load of less than 2mA. Driving  
an AC load is not recommended because it can cause the  
performance of the converter to degrade.  
successive integer LSB values (i.e., –FS+0.5LSB,  
–FS+1.5LSB, –FS+2.5LSB, … FS–1.5LSB, FS–0.5LSB).  
The output is two’s complement binary with:  
FS (–FS) 20V  
1LSB =  
=
= 305.2mV  
65566  
65536  
In applications where absolute accuracy is important,  
offset and full-scale errors can be adjusted to zero during  
a calibration sequence. Offset error must be adjusted  
before full-scale error. Zero offset is achieved by adjusting  
theoffsetappliedtotheinput. Forsingle-endedinputs,  
this offset should be applied to the COM pin. For differen-  
tial inputs, the “–” input is dictated by the MUX address.  
8k  
15  
1μF  
V
REF  
2.5V  
2.5V  
REFERENCE  
12-/14-/16-BIT  
CAPACITIVE DAC  
1.6384X BUFFER  
16 REFCOMP  
4.096V  
0.1μF  
For zero offset error, apply 0.5LSB to the “+” input and  
adjust the offset at the “–” input until the output code  
flickers between 0000 0000 0000 0000 and 1111 1111  
11111111fortheLTC1856,between00000000000000  
and 11 1111 1111 1111 for the LTC1855 and between  
0000 0000 0000 and 1111 1111 1111 for the LTC1854.  
18545 F03  
10μF  
Figure 3. Internal or External Reference Source  
For minimum code transition noise the VREF pin and the  
REFCOMPpinshouldeachbedecoupledwithacapacitor  
tofilterwidebandnoisefromthereferenceandthebuffer.  
Forfull-scaleadjustment, aninputvoltageofFS1.5LSBs  
should be applied to the “+” input and the appropriate  
reference adjusted until the output code flickers between  
0111 1111 1111 1110 and 0111 1111 1111 1111 for the  
LTC1856, between 01 1111 1111 1110 and 01 1111 1111  
1111 for the LTC1855 and between 0111 1111 1110 and  
0111 1111 1111 for the LTC1854.  
FULL SCALE AND OFFSET  
Figure 4 shows the ideal input/output characteristics for  
theLTC1856. Thecodetransitionsoccurmidwaybetween  
These adjustments as well as the factory trims affect all  
channels. The channel-to-channel offset and gain error  
matching are guaranteed by design to meet the specifica-  
tions in the Converter Characteristics table.  
011...111  
011...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
(FS – 1LSB)  
FS – 1LSB  
INPUT VOLTAGE (V)  
18545 F04  
Figure 4. Bipolar Transfer Characteristics  
185456fa  
15  
LTC1854/LTC1855/LTC1856  
W U U  
U
APPLICATIO S I FOR ATIO  
DC PERFORMANCE  
cated output supply pin (OVDD) that controls the output  
swings of the digital output pins (SDO, BUSY) and allows  
the part to interface to either 3V or 5V digital systems. The  
SDO output is two’s complement.  
One way of measuring the transition noise associated  
with a high resolution ADC is to use a technique where a  
DC signal is applied to the input of the MUX and the  
resulting output codes are collected over a large number  
of conversions. For example in Figure 5 the distribution of  
outputcodeisshownforaDCinputthathasbeendigitized  
4096 times. The distribution is Gaussian and the RMS  
code transition is about 1LSB for the LTC1856.  
Timing and Control  
Conversion start and data read are controlled by two  
digital inputs: CONVST and RD. To start a conversion and  
putthesample-and-holdintotheholdmodebringCONVST  
high for at least 40ns. Once initiated it cannot be restarted  
until the conversion is complete. Converter status is  
indicated by the BUSY output, which goes low while the  
conversion is in progress.  
DIGITAL INTERFACE  
Internal Clock  
Figures 6a and 6b show two different modes of operation  
for the LTC1856. For the 12-bit LTC1854 and 14-bit  
LTC1855, the last four and two bits of the SDO will output  
zeros, respectively. In mode 1 (Figure 6a), RD is tied low.  
TherisingedgeofCONVSTstartstheconversion. Thedata  
outputs are always enabled. The MSB of the data output is  
available after the conversion. In mode 2 (Figure 6b),  
CONVST and RD are tied together. The rising edge of the  
CONVST signal starts the conversion. Data outputs are in  
three-state at this time. When the conversion is complete  
(BUSY goes high), CONVST and RD go low to enable the  
data output for the previous conversion.  
The ADC has an internal clock that is trimmed to achieve  
a typical conversion time of 4ms. No external adjustments  
arerequiredand,withthemaximumacquisitiontimeof4ms,  
throughput performance of 100ksps is assured.  
3V Input/Output Compatible  
The LTC1854/LTC1855/LTC1856 operate on a 5V supply,  
which makes the devices easy to interface to 5V digital  
systems. These devices can also interface to 3V digital  
systems: the digital input pins (SCK, SDI, CONVST and  
RD) of the LTC1854/LTC1855/LTC1856 recognize 3V or  
5V inputs. The LTC1854/LTC1855/LTC1856 have a dedi-  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
–4 –3 –2 –1  
0
1
4
2
3
CODE  
185456 F05  
Figure 5. LTC1856 Histogram for 4096 Conversions  
185456fa  
16  
LTC1854/LTC1855/LTC1856  
W U U  
APPLICATIO S I FOR ATIO  
U
185456fa  
17  
LTC1854/LTC1855/LTC1856  
W U U  
U
APPLICATIO S I FOR ATIO  
SERIAL DATA INPUT (SDI) INTERFACE  
is delayed by one conversion from the input word re-  
questing it.  
The LTC1854/LTC1855/LTC1856 communicate with mi-  
croprocessors and other external circuitry via a synchro-  
nous, full duplex, 3-wire serial interface (see Figure 7).  
The shift clock (SCK) synchronizes the data transfer with  
each bit being transmitted on the falling SCK edge and  
captured on the rising SCK edge in both transmitting and  
receiving systems. The data is transmitted and received  
simultaneously (full duplex).  
SDI  
SDI WORD 1  
SDI WORD 2  
SDI WORD 3  
SDO SDO WORD 0  
SDO WORD 1  
SDO WORD 2  
18545 AI02  
t
t
CONV  
A/D  
CONV  
A/D  
DATA  
TRANSFER  
DATA  
TRANSFER  
CONVERSION  
CONVERSION  
INPUT DATA WORD  
TheLTC1854/LTC1855/LTC18568-bitdatawordisclocked  
into the SDI input on the first eight rising SCK edges.  
FurtherinputsontheSDIpinarethenignoreduntilthenext  
conversion. The eight bits of the input word are defined as  
follows:  
An 8-bit input word is shifted into the SDI input which  
configures the LTC1854/LTC1855/LTC1856 for the next  
conversion. Simultaneously, the result of the previous  
conversionisoutputontheSDOline.Attheendofthedata  
exchange the requested conversion begins by applying a  
rising edge on CONVST. After tCONV, the conversion is  
complete and the results will be available on the next data  
transfer cycle. As shown below, the result of a conversion  
SGL/  
DIFF  
ODD  
SIGN  
SELECT SELECT  
DON'T  
CARE  
DON'T  
CARE  
NAP  
SLEEP  
1
0
POWER DOWN  
SELECTION  
MUX ADDRESS  
18545 AI03  
Table 1. Multiplexer Channel Selection  
DIFFERENTIAL CHANNEL SELECTION  
SINGLE-ENDED CHANNEL SELECTION  
MUX ADDRESS  
ODD SELECT  
MUX ADDRESS  
SGL/ ODD SELECT  
SGL/  
DIFF SIGN  
0
1
2
3
4
5
6
7
COM  
0
1
2
3
4
5
6
7
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
DIFF SIGN  
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
+
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Combinations of  
Differential and Single-Ended  
Changing the  
MUX Assignment “On the Fly”  
4 Differential  
8 Single-Ended  
CHANNEL  
CHANNEL  
CHANNEL  
+
+
(
(
)
)
0
1
2
3
4
5
6
7
+
+
+
+
+
+
+
+
+
0,1  
0,1  
{
{
+
(
(
)
)
+
+
2,3  
2,3  
{
4,5  
6,7  
4,5  
{
6
7
{
{
{
+
+
+
4
5
6
7
+
+
+
+
+
(
(
)
)
4,5  
{
+
+
+
COM (UNUSED)  
COM ( )  
(
(
)
)
+
6,7  
{
+
COM (  
)
COM (  
)
1ST CONVERSION  
2ND CONVERSION  
18545 F08  
Figure 8. Examples of Multiplexer Options on the LTC1854/LTC1855/LTC1856  
185456fa  
18  
LTC1854/LTC1855/LTC1856  
W U U  
APPLICATIO S I FOR ATIO  
U
MUX ADDRESS  
Sleep mode will occur when Sleep = 1 is selected,  
regardless of the selection of the Nap input. The previous  
conversion result can be clocked out and the Sleep mode  
will start on the falling edge of the last (16th) SCK. Notice  
that the CONVST should stay either high or low in sleep  
mode (see Figure 10). To wake up from the sleep mode,  
apply a rising edge on the CONVST signal and then apply  
Sleep = 0 on the next SDI word and the part will wake up  
on the falling edge of the last (16th) SCK (see Figure 11).  
The first four bits of the input word assign the MUX  
configuration for the requested conversion. For a given  
channel selection, the converter will measure the voltage  
between the two channels indicated by the + and – signs  
in the selected row of Table 1. Note that in differential  
mode (SGL/DIFF = 0) measurements are limited to four  
adjacent input pairs with either polarity. In single-ended  
mode, all input channels are measured with respect to  
COM. Both the “+” and “–” inputs are sampled simulta-  
neously so common mode noise is rejected. Bits 5 and 6  
of the input words are Don’t Care bits.  
InSleepmode,allbiascurrentsareshutdownandonlythe  
power on reset circuit and leakage currents (about 10mA)  
remain. Sleep mode wake-up time is dependent on the  
valueofthecapacitorconnectedtotheREFCOMP(Pin16).  
The wake-up time is typically 40ms with the recom-  
mended 10mF capacitor connected on the REFCOMP pin.  
P
OWER DOWN SELECTION (NAP, SLEEP)  
The last two bits of the input word (Nap and Sleep) deter-  
minethepowershutdownmodeoftheLTC1854/LTC1855/  
LTC1856. See Table 2. Nap mode is selected when Nap =  
1 and Sleep = 0. The previous conversion result will be  
clocked out and a conversion will occur before entering  
the Nap mode. The Nap mode starts at the end of the con-  
version which is indicated by the rising edge of the BUSY  
signal. Napmodelastsuntilthefallingedgeofthe2ndSCK  
(see Figure 9). Automatic nap will be achieved if Nap = 1  
is selected each time an input word is written to the ADC.  
DYNAMIC PERFORMANCE  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined  
forfrequenciesoutsidethefundamental. Figure12shows  
a typical LTC1856 FFT plot which yields a SINAD of 87dB  
and THD of 101dB.  
Table 2. Power Down Selection  
NAP  
0
SLEEP  
POWER DOWN MODE  
0
0
1
Power On  
Nap  
1
X
Sleep  
185456fa  
19  
LTC1854/LTC1855/LTC1856  
W U U  
U
APPLICATIO S I FOR ATIO  
185456fa  
20  
LTC1854/LTC1855/LTC1856  
W U U  
APPLICATIO S I FOR ATIO  
U
SIGNAL-TO-NOISE AND DISTORTION RATIO  
BOARD LAYOUT, POWER SUPPLIES  
AND DECOUPLING  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 12 shows a typical SINAD of 87dB with  
a 100kHz sampling rate and a 1kHz input.  
Wire wrap boards are not recommended for high resolu-  
tion or high speed A/D converters. To obtain the best  
performance from the LTC1854/LTC1855/LTC1856, a  
printed circuit board is required. Layout for the printed  
circuit board should ensure the digital and analog signal  
linesareseparatedasmuchaspossible. Inparticular, care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC. The analog  
input should be screened by AGND.  
TOTAL HARMONIC DISTORTION  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD is  
expressed as:  
In applications where the MUX is connected to the ADC, it  
is possible to get noise coupling into the ADC from the  
trace connecting the MUXOUT to the ADC. Therefore,  
reducing the length of the traces connecting the MUXOUT  
pins (Pins 10, 11) to the ADC pins (Pins 12, 13) can  
minimize the problem. The unused MUX inputs should be  
grounded to prevent noise coupling into the inputs.  
2
2
V22 + V32 + V4 ... + VN  
THD = 20log  
V1  
Figure13showsthepowersupplygroundingthatwillhelp  
obtain the best performance from the 12-bit/14-bit/16-bit  
ADCs. Pay particular attention to the design of the analog  
and digital ground planes. The DGND pin of the LTC1854/  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
second through Nth harmonics.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
20  
0
5
10 15  
25 30 35 40 45 50  
FREQUENCY (kHz)  
185456 F12  
Figure 12. LTC1856 Nonaveraged 4096 Point FFT Plot  
185456fa  
21  
LTC1854/LTC1855/LTC1856  
W U U  
U
APPLICATIO S I FOR ATIO  
LTC1855/LTC1856canbetiedtotheanaloggroundplane.  
Placing the bypass capacitor as close as possible to the  
power supply pins, the reference and reference buffer  
outputisveryimportant.Lowimpedancecommonreturns  
for these bypass capacitors are essential to low noise op-  
erationoftheADC,andthefoilwidthforthesetracksshould  
beaswideaspossible. Also, sinceanypotentialdifference  
in grounds between the signal source and ADC appears as  
an error voltage in series with the input signal, attention  
should be paid to reducing the ground circuit impedance  
as much as possible. The digital output latches and the  
onboard sampling clock have been placed on the digital  
ground plane. The two ground planes are tied together at  
the ADC through a wide, low inductance path.  
LTC1854/  
LTC1855/  
LTC1856  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
10 12  
+
+
MUXOUT  
ADC  
ADC  
DIGITAL  
SYSTEM  
LTC1854/LTC1855/LTC1856  
MUXOUT  
+
V
REFCOMP AGND  
AV  
DV  
DGND  
24  
OV  
13  
REF  
15  
DD  
DD  
20  
DD  
21  
11  
16 14, 17, 18 19  
1μF  
10μF  
10μF  
10μF  
10μF  
DIGITAL  
GROUND PLANE  
ANALOG GROUND PLANE  
18545 F13  
Figure 13. Power Supply Grounding Practice  
185456fa  
22  
LTC1854/LTC1855/LTC1856  
U
PACKAGE DESCRIPTIO  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
9.90 – 10.50*  
(.390 – .413)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
1.25 ±0.12  
7.8 – 8.2  
5.3 – 5.7  
7.40 – 8.20  
(.291 – .323)  
0.42 ±0.03  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
RECOMMENDED SOLDER PAD LAYOUT  
2.0  
(.079)  
MAX  
5.00 – 5.60**  
(.197 – .221)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
(.0035 – .010)  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
G28 SSOP 0204  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
185456fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1854/LTC1855/LTC1856  
U
TYPICAL APPLICATIO  
5V  
5V  
10μF  
0.1μF  
10μF  
0.1μF  
19  
20  
AV  
DD  
DV  
DD  
CONVST 28  
1
2
3
COM  
CH0  
CH1  
MUX ADDRESS  
SDI 25  
CONTROL  
LOGIC  
SINGLE-ENDED  
OR DIFFERENTIAL  
CHANNEL  
8-BIT SERIAL  
DATA INPUT  
BUSY 22  
INTERNAL  
CLOCK  
SELECTION  
INPUT MUX  
(SEE TABLE 1)  
26  
SCK  
INPUT RANGE:  
±10V  
16 SHIFT CLOCK CYCLES  
+
RD 27  
CH7  
9
12-/14-/16-BIT  
SAMPLING ADC  
DATA OUT  
OV  
DD  
21  
3V TO 5V  
10μF  
0.1μF  
SERIAL I/O  
4.096V  
SDO 23  
2.5V  
REFERENCE  
16-BIT SERIAL DATA OUT  
1.6384X  
8k  
+
+
V
AGND1 MUXOUT  
MUXOUT  
10  
ADC  
12  
ADC  
13  
REFCOMP  
AGND2 AGND3 DGND  
17 18 24  
REF  
18545 TA03  
14  
11  
15  
16  
1μF  
0.1μF  
10μF  
RELATED PARTS  
PART NUMBER  
Sampling ADCs  
LTC1418  
DESCRIPTION  
COMMENTS  
15mW, Serial/Parallel I/O  
90dB SINAD, 220mW Power Dissipation, Pin Compatible with LTC1608  
±10V Inputs, 55mW, Byte or Parallel I/O, Pin Compatible with LTC1606  
±10V Inputs, 75mW, Byte or Parallel I/O, Pin Compatible with LTC1605  
90dB SINAD, 270mW Power Dissipation, Pin Compatible with LTC1604  
Configurable Unipolar/Bipolar Input, Up to 10V Single 5V Supply  
Programmable MUX and Sequencer, Parallel I/O  
14-Bit, 200ksps, Single 5V or ±5V ADC  
16-Bit, 333ksps, ±5V ADC  
LTC1604  
LTC1605  
LTC1606  
LTC1608  
16-Bit, 100ksps, Single 5V ADC  
16-Bit, 250ksps, Single 5V ADC  
16-Bit, 500ksps, ±5V ADC  
LTC1609  
16-Bit, 200ksps Serial ADC  
LTC1850/LTC1851  
10-Bit/12-Bit, 8-Channel, 1.25Msps ADC  
LTC1859/LTC1858/  
LTC1857  
16-Bit, 14-Bit, 12-Bit, 100ksps, SoftSpan ADCs  
Software-Selectable Spans, Pin Compatible with  
LTC1864/LTC1865  
16-Bit, 1-/2-Channel, 250ksps ADC in MSOP  
Single 5V Supply, 850mA with Autoshutdown  
LTC1864L/LTC1865L 3V, 16-Bit, 1-/2-Channel, 150ksps ADC in MSOP  
Single 3V Supply, 450mA with Autoshutdown  
LTC1856/LTC1855/LTC1854  
DACs  
LTC1588/LTC1589  
LTC1592  
12-/14-/16-Bit, Serial, SoftSpan I  
DACs  
Software-Selectable Spans, ±1LSB INL/DNL  
OUT  
LTC1595  
LTC1596  
LTC1597  
LTC1650  
16-Bit Serial Multiplying I  
16-Bit Serial Multiplying I  
DAC in SO-8  
DAC  
±1LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade  
±1LSB Max INL/DNL, Low Glitch, AD7543/DAC8143 16-Bit Upgrade  
±1LSB Max INL/DNL, Low Glitch, 4 Quadrant Resistors  
Low Power, Low Glitch, 4-Quadrant Multiplication  
OUT  
OUT  
16-Bit Parallel, Multiplying DAC  
16-Bit Serial V ±5V DAC  
OUT  
LTC2704-16/  
LTC2704-14/  
LTC2704-12  
16-Bit, 14-Bit, 12-Bit, Serial, Quad SoftSpan  
DACs  
Software-Selectable Spans, ±2LSB INL, ±1LSB INL,  
V
Force/Sense Output  
OUT  
185456fa  
LT 0407 REV A • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1855CG#PBF

LTC1855 - 8-Channel, ±10V Input 14-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1855CG#TR

LTC1855 - 8-Channel, ±10V Input 14-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1855CG#TRPBF

LTC1855 - 8-Channel, ±10V Input 14-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1855CG-PBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855CG-TR

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855CG-TRPBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855IG

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855IG#TRPBF

LTC1855 - 8-Channel, ±10V Input 14-Bit, 100ksps ADC Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1855IG-PBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855IG-TR

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855IG-TRPBF

8-Channel, ±10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear

LTC1855_15

8-Channel, 10V Input 12-/14-/16-Bit, 100ksps ADC Converters with Shutdown
Linear