LTC1660CGN [Linear]

Micropower Octal 8-Bit and 10-Bit DACs; 微八路8位和10位DAC
LTC1660CGN
型号: LTC1660CGN
厂家: Linear    Linear
描述:

Micropower Octal 8-Bit and 10-Bit DACs
微八路8位和10位DAC

文件: 总16页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1665/LTC1660  
Micropower Octal  
8-Bit and 10-Bit DACs  
U
FEATURES  
DESCRIPTIO  
The 8-bit LTC®1665 and 10-bit LTC1660 integrate eight  
accurate, serially addressable digital-to-analog convert-  
ers (DACs) in tiny 16-pin narrow SSOP packages. Each  
buffered DAC draws just 56µA total supply current, yet is  
capable of supplying DC output currents in excess of  
5mA and reliably driving capacitive loads to 1000pF.  
Sleep mode further reduces total supply current to 1µA.  
Tiny: 8 DACs in the Board Space of an SO-8  
Micropower: 56µA per DAC Plus  
1µA Sleep Mode for Extended Battery Life  
Pin Compatible 8-Bit LTC1665 and 10-Bit LTC1660  
Wide 2.7V to 5.5V Supply Range  
Rail-to-Rail Voltage Outputs Drive 1000pF  
Reference Range Includes Supply for Ratiometric  
0V-to-VCC Output  
Linear Technology’s proprietary, inherently monotonic  
voltage interpolation architecture provides excellent lin-  
earity while allowing for an exceptionally small external  
form factor.  
Reference Input Impedance is Constant—  
Eliminates External Buffer  
U
APPLICATIO S  
Ultralow supply current, power-saving Sleep mode and  
extremelycompactsizemaketheLTC1665andLTC1660  
idealforbattery-poweredapplications,whiletheireaseof  
use,highperformanceandwidesupplyrangemakethem  
excellent choices as general purpose converters.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Mobile Communications  
Remote Industrial Devices  
Automatic Calibration for Manufacturing  
Portable Battery-Powered Instruments  
Trim/Adjust Applications  
W
BLOCK DIAGRA  
LTC1665 Differential Nonlinearity (DNL)  
0.5  
V
V
= 5V  
REF  
CC  
0.4  
0.3  
= 4.096V  
GND  
1
16  
15  
V
V
CC  
0.2  
DAC A  
DAC B  
DAC C  
DAC D  
DAC H  
DAC G  
DAC F  
DAC E  
V
V
V
V
2
0.1  
OUT A  
OUT H  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
OUT G  
V
OUT F  
V
OUT E  
3
4
14  
13  
OUT B  
OUT C  
0
64  
128  
192  
255  
CODE  
1665/60 G09  
LTC1660 Differential Nonlinearity (DNL)  
1
V
V
= 5V  
REF  
CC  
0.8  
0.6  
= 4.096V  
5
6
7
8
12  
11  
10  
9
OUT D  
0.4  
REF  
CLR  
D
0.2  
0
CONTROL  
LOGIC  
ADDRESS  
DECODER  
CS/LD  
SCK  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
OUT  
SHIFT REGISTER  
D
IN  
1665/60 BD  
0
256  
512  
768  
1023  
CODE  
1665/60 G13  
1
LTC1665/LTC1660  
W
U
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
VCC to GND .............................................. 0.2V to 7.5V  
Logic Inputs to GND ................................ 0.2V to 7.5V  
ORDER PART  
TOP VIEW  
NUMBER  
VOUT A, VOUT B…VOUT H  
,
1
2
3
4
5
6
7
8
V
V
V
V
V
16  
15  
14  
13  
12  
11  
10  
9
GND  
CC  
LTC1665CGN  
LTC1665CN  
LTC1665IGN  
LTC1665IN  
LTC1660CGN  
LTC1660CN  
LTC1660IGN  
LTC1660IN  
REF to GND ................................. 0.2V to (VCC + 0.2V)  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LTC1665C/LTC1660C ............................ 0°C to 70°C  
LTC1665I/LTC1660I .......................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
V
V
V
V
OUT H  
OUT G  
OUT F  
OUT E  
OUT A  
OUT B  
OUT C  
OUT D  
REF  
CLR  
D
CS/LD  
SCK  
OUT  
D
IN  
GN PACKAGE  
N PACKAGE  
16-LEAD PLASTIC SSOP  
16-LEAD PDIP  
GN PART MARKING  
TJMAX = 125°C, θJA = 150°C/W (GN)  
JMAX = 125°C, θJA = 100°C/W (N)  
T
1665  
1660  
1665I 1660I  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications  
are at TA = 25°C. VCC = 2.7V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
LTC1665  
TYP  
LTC1660  
TYP  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Resolution  
8
8
10  
10  
Bits  
Bits  
Monotonicity  
V
V
V
V – 0.1V (Note 2)  
CC  
REF  
REF  
REF  
DNL  
INL  
Differential Nonlinearity  
V – 0.1V (Note 2)  
±0.1  
±0.2  
±10  
±15  
±1  
±0.5  
±1.0  
±30  
±0.2 ±0.75  
LSB  
CC  
Integral Nonlinearity  
Offset Error  
V – 0.1V (Note 2)  
±0.6  
±10  
±15  
±3  
±2.5  
±30  
LSB  
CC  
V
(Note 7)  
mV  
OS  
V
Temperature Coefficient  
µV/°C  
LSB  
OS  
FSE  
Full-Scale Error  
V
V
= 5V, V = 4.096V  
±4  
±15  
CC  
REF  
Full-Scale Error Temperature Coefficient  
Power Supply Rejection  
±30  
0.045  
±30  
0.18  
µV/°C  
LSB/V  
PSR  
= 2.5V  
REF  
The denotes specifications which apply over the full operating temperature range, otherwise specifications  
are at TA = 25°C. VCC = 2.7V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
SYMBOL PARAMETER  
Reference Input  
CONDITONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Not in Sleep Mode  
(Note 6)  
35  
65  
15  
Capacitance  
I
Reference Current  
Sleep Mode  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
I
V
CC  
V
CC  
= 5V (Note 3)  
= 3V (Note 3)  
450  
340  
1
730  
550  
3
µA  
µA  
µA  
CC  
Sleep Mode (Note 3)  
2
LTC1665/LTC1660  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications  
are at TA = 25°C. VCC = 2.7V to 5.5V, VREF VCC, VOUT unloaded, unless otherwise noted.  
SYMBOL PARAMETER  
DC Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Short-Circuit Current Low  
Short-Circuit Current High  
AC Performance  
V
V
= 0V, V = 5.5V, V = 5.1V, Code = Full Scale  
10  
10  
30  
27  
100  
120  
mA  
mA  
OUT  
OUT  
CC  
REF  
= V = 5.5V, V = 5.1V, Code = 0  
CC  
REF  
Voltage Output Slew Rate  
Rising (Notes 4, 5)  
Falling (Notes 4, 5)  
0.60  
0.25  
V/µs  
V/µs  
Voltage Output Settling Time  
Capacitive Load Driving  
To ±0.5LSB (Notes 4, 5)  
30  
µs  
1000  
pF  
Digital I/O  
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
V
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
IL  
CC  
CC  
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
I
I
= 1mA, D  
Only  
V – 1  
CC  
V
V
OH  
OL  
OUT  
OUT  
OUT  
= 1mA, D  
Only  
0.4  
±10  
10  
OUT  
I
V
= GND to V  
CC  
µA  
pF  
LK  
IN  
C
Digital Input Capacitance  
(Note 6)  
IN W U  
The denotes specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C. (See Figure 1)  
SYMBOL PARAMETER  
= 4.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
t
t
t
t
t
t
t
t
t
t
t
D
D
Valid to SCK Setup  
Valid to SCK Hold  
40  
0
15  
–11  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
IN  
IN  
2
SCK High Time  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
30  
30  
80  
30  
80  
5
3
SCK Low Time  
7
4
CS/LD Pulse Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
30  
4
5
6
26  
26  
0
7
D
OUT  
Propagation Delay  
C = 15pF (Note 6)  
LOAD  
80  
8
SCK Low to CS/LD Low  
CLR Pulse Width  
(Note 6)  
(Note 6)  
(Note 6)  
20  
100  
30  
9
37  
0
10  
11  
CS/LD High to SCK Positive Edge  
SCK Frequency  
Continuous Square Wave (Note 6)  
Continuous 23% Duty Cycle Pulse (Note 6)  
Gated Square Wave (Note 6)  
5.00  
7.69  
16.7  
MHz  
MHz  
MHz  
V
= 2.7V to 5.5V  
CC  
t
t
t
t
t
D
Valid to SCK Setup  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
60  
0
20  
–14  
8
ns  
ns  
ns  
ns  
ns  
1
IN  
IN  
D
Valid to SCK Hold  
2
3
4
5
SCK High Time  
SCK Low Time  
50  
50  
100  
12  
30  
CS/LD Pulse Width  
3
LTC1665/LTC1660  
W U  
The denotes specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C. (See Figure 1)  
SYMBOL PARAMETER  
CONDITIONS  
(Note 6)  
MIN  
50  
TYP  
5
MAX  
UNITS  
ns  
t
t
t
t
t
t
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
6
(Note 6)  
100  
5
27  
47  
0
ns  
7
D
OUT  
Propagation Delay  
C = 15pF (Note 6)  
LOAD  
150  
ns  
8
SCK Low to CS/LD Low  
CLR Pulse Width  
(Note 6)  
(Note 6)  
(Note 6)  
30  
ns  
9
120  
30  
41  
0
ns  
10  
11  
CS/LD High to SCK Positive Edge  
SCK Frequency  
ns  
Continuous Square Wave (Note 6)  
Continuous 28% Duty Cycle Pulse  
Gated Square Wave  
3.85  
5.55  
10  
MHz  
MHz  
MHz  
Note 1: Absolute maximum ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Nonlinearity and monotonicity are defined from code 4 to code  
255 for the LTC1665 and from code 20 to code 1023 for the LTC1660.  
See Applications Information.  
Note 5: V = V = 5V. DAC switched between 0.1V and 0.9V ,  
CC REF FS FS  
i.e., codes 26 and 230 for the LTC1665 or codes 102 and 922 for the  
LTC1660.  
Note 6: Guaranteed by design and not production tested.  
Note 7: Measured at code 4 for the LTC1665 and code 20 for the  
Note 3: Digital inputs at 0V or V  
.
CC  
LTC1660.  
Note 4: Load is 10kin parallel with 100pF.  
U W  
(LTC1665/LTC1660)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Midscale Output Voltage  
vs Load Current  
Midscale Output Voltage  
vs Load Current  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
V
= V  
CC  
V
= V  
CC  
REF  
REF  
CODE = 128 (LTC1665)  
CODE = 512 (LTC1660)  
CODE = 128 (LTC1665)  
CODE = 512 (LTC1660)  
V
= 3.6V  
CC  
V
V
= 5.5V  
= 5V  
CC  
V
= 3V  
CC  
CC  
V
CC  
= 2.7V  
V
CC  
= 4.5V  
SOURCE  
–10  
SINK  
10  
SOURCE  
–15 –12 8 –4  
SINK  
4
–30  
–20  
0
20  
30  
0
8
12 15  
I
(mA)  
I
(mA)  
OUT  
OUT  
1665/60 G01  
1665/60 G02  
4
LTC1665/LTC1660  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC1665/LTC1660)  
Minimum VOUT vs  
Load Current (Output Sinking)  
Minimum Supply Headroom vs  
Load Current (Output Sourcing)  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
V
= 5V  
V
= 4.096V  
OUT  
CC  
REF  
CODE = 0  
V  
< 1LSB  
125°C  
CODE = 255 (LTC1665)  
CODE = 1023 (LTC1660)  
125°C  
25°C  
25°C  
–55°C  
–55°C  
0
2
4
6
8
10  
0
2
4
6
8
10  
|I  
|
(mA) (Sourcing)  
|I  
|
(mA) (Sinking)  
OUT  
OUT  
1665/60 G03  
1665/60 G04  
Supply Current vs Temperature  
Large-Signal Step Response  
Supply Current vs Logic Input Voltage  
5
4
3
2
1
0
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
2
1.6  
1.2  
0.8  
0.4  
0
V
CC  
= V  
= 5V  
ALL DIGITAL INPUTS  
SHORTED TOGETHER  
REF  
10% TO  
90% STEP  
V
V
= 5.5V  
= 4.5V  
CC  
CC  
V
CC  
= 3.6V  
V
CC  
= 2.7V  
0
20  
40  
60  
80  
100  
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
TIME (µs)  
TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
1665/60 G05  
1665/60 G06  
1665/60 G07  
U W  
(LTC1665)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1
0.8  
0.5  
0.4  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
0.3  
0.4  
0.2  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE  
CODE  
1665/60 G09  
1665/60 G08  
5
LTC1665/LTC1660  
U W  
(LTC1665)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Load Regulation vs Output Current  
Load Regulation vs Output Current  
V
= V  
= 3V  
V
= V  
= 5V  
REF  
0.5  
0.25  
0
CC  
REF  
0.5  
0.25  
0
CC  
CODE = 128  
CODE = 128  
–0.25  
–0.5  
–0.25  
–0.5  
SOURCE  
SINK  
SOURCE  
–1  
SINK  
–500  
0
500  
–2  
0
1
2
I
(µA)  
I
(mA)  
OUT  
OUT  
1665/60 G11  
1665/60 G10  
U W  
(LTC1660)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
2.5  
2.0  
1
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
1.5  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
0.5  
–1.0  
–1.5  
2.0  
2.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
CODE  
CODE  
1665/60 G13  
1665/60 G12  
Load Regulation vs Output Current  
Load Regulation vs Output Current  
V
= V  
= 5V  
REF  
V
= V  
= 3V  
2
1.5  
1
2
1.5  
1
CC  
CODE = 512  
CC  
REF  
CODE = 512  
0.5  
0
0.5  
0
–0.5  
–1  
–0.5  
–1  
–1.5  
–2  
–1.5  
–2  
SOURCE  
–1  
SINK  
SOURCE  
SINK  
–2  
0
1
2
–500  
0
500  
I
(mA)  
I
(µA)  
OUT  
OUT  
1665/60 G14  
1665/60 G15  
6
LTC1665/LTC1660  
U
U
U
PIN FUNCTIONS  
(LTC1665/LTC1660)  
GND (Pin 1): System Ground.  
SCK (Pin 8): Serial Interface Clock Input. CMOS and TTL  
compatible.  
VOUT A to VOUT H (Pins 2-5 and 12-15): DAC Analog  
Voltage Outputs. The output range is  
DIN (Pin 9): Serial Interface Data Input. Data on the DIN pin  
is shifted into the 16-bit register on the rising edge of SCK.  
CMOS and TTL compatible.  
255  
256  
0 to  
0 to  
VREF for the LTC1665  
VREF for the LTC1660  
DOUT (Pin 10): Serial Interface Data Output. Data appears  
1023  
1024  
on DOUT 16 positive SCK edges after being applied to DIN.  
MaybetiedtoDIN ofanotherLTC1665/LTC1660fordaisy-  
chain operaton. CMOS and TTL compatible.  
REF (Pin 6): Reference Voltage Input. 0V VREF VCC.  
CLR (Pin 11): Asynchronous Clear Input. All internal shift  
and DAC registers are cleared to zero at the falling edge of  
the CLR signal, forcing the analog outputs to zero scale.  
CMOS and TTL compatible.  
CS/LD (Pin 7): Serial Interface Chip Select/Load Input.  
WhenCS/LDislow, SCKisenabledforshiftingdataonDIN  
into the register. When CS/LD is pulled high, SCK is  
disabled and data is loaded from the shift register into the  
specified DAC register(s), updating the analog output(s).  
CMOS and TTL compatible.  
VCC (Pin 16): Supply Voltage Input. 2.7V VCC 5.5V.  
W
BLOCK DIAGRA  
GND  
1
2
16  
15  
V
V
CC  
DAC A  
DAC B  
DAC C  
DAC D  
DAC H  
DAC G  
DAC F  
DAC E  
V
V
V
V
OUT A  
OUT H  
V
V
V
3
4
14  
13  
OUT B  
OUT C  
OUT G  
OUT F  
OUT E  
5
6
7
8
12  
11  
10  
9
OUT D  
REF  
CLR  
CONTROL  
LOGIC  
ADDRESS  
DECODER  
CS/LD  
SCK  
D
D
OUT  
SHIFT REGISTER  
IN  
1665/60 BD  
7
LTC1665/LTC1660  
W U  
W
TI I G DIAGRA  
t
1
t
t
t
3
t
4
6
2
SCK  
t
t
11  
9
D
IN  
A1  
X1  
A3  
A2  
X0  
t
t
7
5
CS/LD  
t
8
D
A2  
A1  
X1  
X0  
A3  
A3  
OUT  
1665/60 F01  
Figure 1  
U
OPERATIO  
Serial Interface  
Transfer Function  
Referring to Figure 2a (2b): With CS/LD held low, data on  
the DIN input is shifted into the 16-bit shift register on the  
positive edge of SCK. The 4-bit DAC address, A3-A0, is  
loaded first (see Table 2), then the 8-bit (10-bit) input  
code, D7-D0 (D9-D0), ordered MSB-to-LSB in each case.  
Four(two)don’t-carebits,X3-X0(X1-X0),areloadedlast.  
Whenthefull16-bitinputwordhasbeenshiftedin, CS/LD  
is pulled high, loading the DAC register with the word and  
causing the addressed DAC output(s) to update. The  
clockisdisabledinternallywhenCS/LDishigh. Note: SCK  
must be low before CS/LD is pulled low.  
The transfer function is  
k
256  
k
VOUT(IDEAL)  
VOUT(IDEAL)  
=
=
VREF for theLTC1665  
VREF for theLTC1660  
1024  
where k is the decimal equivalent of the binary DAC input  
code and VREF is the voltage at REF (Pin 6).  
Power-On Reset  
The buffered serial output of the shift register is available  
on the DOUT pin, which swings from GND to VCC. Data  
appearsonDOUT 16positiveSCKedgesafterbeingapplied  
to DIN.  
The LTC1665 clears the outputs to zero scale when power  
isfirstapplied,makingsysteminitializationconsistentand  
repeatable.  
Power Supply Sequencing  
Multiple LTC1665/LTC1660’s can be controlled from a  
single 3-wire serial port (i.e., SCK, DIN and CS/LD) by  
using the included “daisy-chain” facility. A series of m  
chips is configured by connecting each DOUT (except the  
last) to DIN of the next chip, forming a single 16m-bit shift  
register. The SCK and CS/LD signals are common to all  
The voltage at REF (Pin 6) should be kept within the range  
0.2V VREF VCC + 0.2V (see Absolute Maximum  
Ratings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at VCC (Pin 16) is in transition.  
8
LTC1665/LTC1660  
U
OPERATIO  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X3  
X2  
X1  
X0  
D
IN  
ADDRESS/CONTROL  
INPUT CODE  
DON’T CARE  
INPUT WORD W  
0
(ENABLE CLK)  
(UPDATE OUTPUT)  
CS/LD  
D
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X3  
X2  
X1  
X0  
A3  
OUT  
INPUT WORD W  
INPUT WORD W  
–1  
0
1665/60 F02a  
Figure 2a. LTC1665 Register Loading Sequence  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
D
IN  
ADDRESS/CONTROL  
INPUT CODE  
DON’T CARE  
INPUT WORD W  
0
(ENABLE CLK)  
(UPDATE OUTPUT)  
CS/LD  
D
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
A3  
OUT  
INPUT WORD W  
INPUT WORD W  
–1  
0
1665/60 F02b  
Figure 2b. LTC1660 Register Loading Sequence  
Table 1a. LTC1665 Input Word  
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 X3 X2 X1 X0  
chips in the chain. In use, CS/LD is held low while m  
16-bit words are clocked to DIN of the first chip; CS/LD is  
then pulled high, updating all of them simultaneously.  
Address/Control  
Input Code  
Don’t Care  
Sleep Mode  
Table 1b. LTC1660 Input Word  
A3 A2 A1 A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X1 X0  
DAC address 1110b is reserved for the special Sleep  
instruction(seeTable2). Inthismode, thedigitalinterface  
stays active while the analog circuits are disabled; static  
power consumption is thus virtually eliminated. The refer-  
ence input and analog outputs are set in a high impedance  
Address/Control  
Input Code  
Don’t  
Care  
9
LTC1665/LTC1660  
U
OPERATIO  
Table 2. DAC Address/Control Functions  
Voltage Outputs  
ADDRESS/CONTROL  
Each of the eight rail-to-rail output amplifiers contained in  
these parts can source or sink up to 5mA. The outputs  
swing to within a few millivolts of either supply rail when  
unloadedandhaveanequivalentoutputresistanceof85Ω  
when driving a load to the rails. The output amplifiers are  
stable driving capacitive loads up to 1000pF.  
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DAC STATUS  
No Change  
Load DAC A  
Load DAC B  
Load DAC C  
Load DAC D  
Load DAC E  
Load DAC F  
Load DAC G  
Load DAC H  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
SLEEP STATUS  
Wake  
Wake  
Wake  
Wake  
Wake  
A small resistor placed in series with the output can be  
used to achieve stability for any load capacitance. A 1µF  
load can be successfully driven by inserting a 20resis-  
tor; a 2.2µF load needs only a 10resistor. In either case,  
larger values of resistance, capacitance or both may be  
safely substituted for the values given.  
Wake  
Wake  
Wake  
Wake  
Wake  
Wake  
Wake  
Rail-to-Rail Output Considerations  
Wake  
In any rail-to-rail output voltage DAC, the output is limited  
to voltages within the supply range.  
Wake  
Sleep  
Wake  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 3b.  
Load ALL DACs  
with Same  
8/10-Bit Code  
Similarly, limiting can occur near full scale when the REF  
pin is tied to VCC. If VREF = VCC and the DAC full-scale error  
(FSE) is positive, the output for the highest codes limits at  
VCC as shown in Figure 3c. No full-scale limiting can occur  
if VREF is less than VCC – FSE.  
state and all DAC settings are retained in memory so that  
when Sleep mode is exited, the outputs of DACs not  
updated by the Wake command are restored to their last  
active state.  
Sleep mode is initiated by performing a load sequence to  
address 1110b (the DAC input word D7-D0 [D9-D0] is  
ignored). Once in Sleep mode, a load sequence to any  
other address (including “No Change” addresses 0000b  
and 1001-1101b) causes the LTC1665/LTC1660 to Wake.  
It is possible to keep one or more chips of a daisy chain in  
continuous Sleep mode by giving the Sleep instruction to  
these chips each time the active chips in the chain are  
updated.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
10  
LTC1665/LTC1660  
U
OPERATIO  
POSITIVE  
FSE  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
0
128  
255  
INPUT CODE  
(a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
1665/60 F03  
Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC  
11  
LTC1665/LTC1660  
U
TYPICAL APPLICATIONS  
A Low Power Quad Trim Circuit with Coarse/Fine Adjustment  
3.3V  
4
3.3V  
R1  
R2  
0.1µF  
0.1µF  
R2  
R1  
U1  
V
V
CC  
GND  
1
2
16  
15  
13  
12  
LTC1665  
2
14  
1
U2A  
U2D  
LT1491  
R1  
R1  
LT®1491  
COARSE  
COARSE  
V
OUT1  
V
OUT4  
V
V
V
+ 3  
+
OUT A  
OUT H  
OUT G  
OUT F  
OUT E  
DAC A  
DAC B  
DAC C  
DAC D  
DAC H  
DAC G  
DAC F  
DAC E  
11  
0.1µF  
0.1µF  
R2  
FINE  
R2  
FINE  
V
V
V
OUT B  
OUT C  
R1  
R2  
R2  
R1  
3
4
14  
13  
6
9
8
7
U2B  
LT1491  
U2C  
LT1491  
R1  
R1  
COARSE  
COARSE  
V
V
OUT2  
+ 5  
10  
+
OUT3  
0.1µF  
0.1µF  
R2  
FINE  
R2  
FINE  
3.3V  
0.1µF  
V
OUT D  
5
6
7
8
12  
11  
10  
9
2
1
REF  
CLR  
LTC1258-2.5  
4
CONTROL  
LOGIC  
ADDRESS  
DECODER  
D
OUT  
IN  
CS/LD  
SCK  
TO OTHER  
LTC1665s  
3-WIRE  
D
SHIFT REGISTER  
SERIAL  
INTERFACE  
1665/60 TA01  
R2 >> R1  
= V  
R1  
V
+
V
OUT B  
OUT 1  
OUT A  
)
)
R2  
Similarly V  
, V  
, V  
OUT 2 OUT 3 OUT 4  
Example: For R1 = 110and R2 = 11k,  
= V + 0.01 V  
V
OUT 1  
OUT A  
OUT B  
12  
LTC1665/LTC1660  
U
TYPICAL APPLICATIONS  
An 8-Channel Bipolar Output Voltage Circuit Configuration  
5V  
R
R
R
R
0.1µF  
0.1µF  
0.1µF  
+
+
V
V
4
S
S
U1  
V
V
CC  
GND  
4
1
2
16  
15  
LTC1660  
2
2
3
1
1
V
V
U2A  
LT1491  
U3A  
LT1491  
OUT A  
±5V  
OUT H  
±5V  
V
+
3
OUT A  
OUT H  
+
DAC A  
DAC H  
0.1µF  
0.1µF  
11  
R
11  
V
V
S
S
R
R
R
R
R
R
R
R
R
6
5
6
5
7
8
7
V
V
V
V
U2B  
LT1491  
U3B  
LT1491  
OUT B  
OUT G  
±5V  
±5V  
V
V
V
V
V
OUT B  
OUT G  
OUT F  
OUT E  
+
+
DAC B  
DAC C  
DAC D  
DAC G  
DAC F  
DAC E  
3
4
14  
13  
R
R
9
9
8
V
U2C  
LT1491  
U3C  
LT1491  
OUT C  
OUT F  
±5V  
±5V  
OUT C  
+
10  
10  
+
+
13  
13  
12  
14  
14  
V
U2D  
LT1491  
U3D  
LT1491  
OUT D  
OUT E  
±5V  
±5V  
V
OUT D  
12  
+
5
6
7
8
12  
11  
10  
9
REF  
CLR  
D
CONTROL  
LOGIC  
ADDRESS  
DECODER  
CS/LD  
CLK  
CODE  
0
512  
V
OUT X  
– 5V  
0V  
OUT  
3-WIRE  
SERIAL  
D
IN  
SHIFT REGISTER  
INTERFACE  
1023 +4.99V  
1665/60 TA01  
13  
LTC1665/LTC1660  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
0.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
0.015 ± 0.004  
(0.38 ± 0.10)  
× 45°  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.0250  
(0.635)  
BSC  
0.008 – 0.012  
(0.203 – 0.305)  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
GN16 (SSOP) 1098  
14  
LTC1665/LTC1660  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
16-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
14  
12  
10  
9
8
15  
13  
11  
16  
0.255 ± 0.015*  
(6.477 ± 0.381)  
2
1
3
4
6
5
7
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
–0.015  
0.325  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N16 1098  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1665/LTC1660  
U
TYPICAL APPLICATION  
A Pin Driver VH and VL Adjustment Circuit for ATE Applications  
5V  
0.1µF  
11  
16  
6
V
CLR  
V
REF  
H
CC  
(FROM MAIN DAC)  
U1 LTC1660  
10V  
0.1µF  
1
R
F
R
G
5k  
50k  
V
A
V
B
V
C
V
D
3
2
DAC H  
DAC A  
V
H
2
3
4
5
+
U2A  
LT1369  
QUAD  
V
= V + V  
H
H
H
V
L
0.1µF  
R
G
0.1µF  
50k  
5V  
DAC G  
DAC F  
DAC E  
DAC B  
DAC C  
DAC D  
R
F
5k  
V
L
V
V
H
(FROM MAIN DAC)  
L
R
F
5k  
V
OUT  
R
50k  
G
PIN DRIVER  
(1 OF 2)  
5
6
+
V
= V + V  
L L  
U2B  
L
7
LT1369  
QUAD  
0.1µF  
LOGIC  
DRIVE  
R
50k  
R
F
5k  
G
1665/60 TA03  
CS/LD  
7
9
8
D
IN  
V = V = 2.5V  
A
C
SCK  
GND  
1
R
V
V
= V +  
F
H
H
(V – V )  
A
B
R
G
R
= V +  
F
L
L
(V – V )  
C
D
CODE A CODE B V , V  
H
L
R
G
512  
512  
512  
1023 250mV  
Note: DACs E Through H Can Be  
Configured for a Second Pin Driver  
With U2C and U2D of the LT1369  
For Resistor Values Shown:  
Adjustment Range = ±250mV  
Adjustment Step Size = 500µV  
512  
0
0
+250mV  
RELATED PARTS  
PART NUMBER  
LTC1661  
DESCRIPTION  
Dual 10-Bit V  
COMMENTS  
DAC in 8-Lead MSOP Package  
V
V
= 2.7V to 5.5V Micropower Rail-to-Rail Output  
OUT  
CC  
CC  
LTC1663  
Single 10-Bit V  
DAC in SOT-23 Package  
= 2.7V to 5.5V, Internal Reference, 60µA  
OUT  
LTC1446/LTC1446L  
Dual 12-Bit V  
DACs in SO-8 Package with Internal Reference  
LTC1446: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
OUT  
CC  
OUT  
LTC1446L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1448  
Dual 12-Bit V  
Dual 12-Bit V  
DAC in SO-8 Package  
V
= 2.7V to 5.5V, External Reference Can Be Tied to V  
CC CC  
OUT  
LTC1454/LTC1454L  
DACs in SO-16 Package with Added Functionality LTC1454: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
= 0V to 2.5V  
OUT  
CC  
OUT  
LTC1454L: V = 2.7V to 5.5V, V  
CC  
OUT  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
Dual 12-Bit I DAC in SO-16 Package  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1590  
LTC1659  
V
= 4.5V to 5.5V, 4-Quadrant Multiplication  
CC  
OUT  
Single Rail-to-Rail 12-Bit V  
DAC in 8-Lead MSOP Package  
Low Power Multiplying V  
DAC. Output Swings from  
OUT  
OUT  
V
: 2.7V to 5.5V  
GND to REF. REF Input Can Be Tied to V  
CC  
CC  
LT1460  
Micropower Precision Series Reference, 2.5V, 5V, 10V Versions  
0.075% Max, 10ppm/°C Max, Only 130µA Supply Current  
166560f LT/TP 0999 4K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 1999  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1660CGN#TRPBF

LTC1660 - Micropower Octal 10-Bit DACs; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1660CN

Micropower Octal 8-Bit and 10-Bit DACs
Linear

LTC1660I

Micropower Octal 8-Bit and 10-Bit DACs
Linear

LTC1660IGN

Micropower Octal 8-Bit and 10-Bit DACs
Linear

LTC1660IGN#PBF

LTC1660 - Micropower Octal 10-Bit DACs; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1660IGN#TR

暂无描述
Linear

LTC1660IGN#TRPBF

暂无描述
Linear

LTC1660IN

Micropower Octal 8-Bit and 10-Bit DACs
Linear

LTC1660IN#PBF

LTC1660 - Micropower Octal 10-Bit DACs; Package: PDIP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1660_15

Micropower Octal 8-Bit and 10-Bit DACs
Linear

LTC1661

Micropower Dual 10-Bit DAC in MSOP
Linear

LTC1661C

Micropower Dual 10-Bit DAC in MSOP
Linear