LTC1660IGN#PBF [Linear]

LTC1660 - Micropower Octal 10-Bit DACs; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LTC1660IGN#PBF
型号: LTC1660IGN#PBF
厂家: Linear    Linear
描述:

LTC1660 - Micropower Octal 10-Bit DACs; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总18页 (文件大小:239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1665/LTC1660  
Micropower Octal  
8-Bit and 10-Bit DACs  
DESCRIPTION  
The 8-bit LTC®1665 and 10-bit LTC1660 integrate eight  
accurate, serially addressable digital-to-analog convert-  
ers (DACs) in tiny 16-pin narrow SSOP packages. Each  
buffered DAC draws just 56μA total supply current, yet  
is capable of supplying DC output currents in excess  
of 5mA and reliably driving capacitive loads to 1000pF.  
Sleep mode further reduces total supply current to 1μA.  
FEATURES  
n
Tiny: 8 DACs in the Board Space of an SO-8  
n
Micropower: 56μA per DAC Plus  
1μA Sleep Mode for Extended Battery Life  
n
Pin Compatible 8-Bit LTC1665 and 10-Bit LTC1660  
n
Wide 2.7V to 5.5V Supply Range  
n
Rail-to-Rail Voltage Outputs Drive 1000pF  
n
Reference Range Includes Supply for Ratiometric  
0V-to-V Output  
CC  
LinearTechnology’sproprietary,inherentlymonotonicvolt-  
age interpolation architecture provides excellent linearity  
whileallowingforanexceptionallysmallexternalformfactor.  
n
Reference Input Impedance is Constant—  
Eliminates External Buffer  
APPLICATIONS  
Ultralow supply current, power-saving Sleep mode and  
extremelycompactsizemaketheLTC1665andLTC1660  
ideal for battery-powered applications, while their ease  
of use, high performance and wide supply range make  
them excellent choices as general purpose converters.  
n
Mobile Communications  
n
Remote Industrial Devices  
n
Automatic Calibration for Manufacturing  
Portable Battery-Powered Instruments  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Trim/Adjust Applications  
LTC1665 Differential Nonlinearity (DNL)  
BLOCK DIAGRAM  
0.5  
V
V
= 5V  
REF  
CC  
0.4  
0.3  
= 4.096V  
GND  
1
16  
15  
V
V
CC  
0.2  
DAC A  
DAC B  
DAC C  
DAC D  
DAC H  
DAC G  
DAC F  
DAC E  
V
V
V
V
2
0.1  
OUT A  
OUT H  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
OUT G  
V
OUT F  
V
OUT E  
3
4
14  
13  
OUT B  
OUT C  
0
64  
128  
192  
255  
CODE  
166560 G09  
LTC1660 Differential Nonlinearity (DNL)  
1
V
V
= 5V  
REF  
CC  
0.8  
0.6  
= 4.096V  
5
6
7
8
12  
11  
10  
9
OUT D  
0.4  
REF  
CLR  
0.2  
0
CONTROL  
LOGIC  
ADDRESS  
DECODER  
CS/LD  
SCK  
D
D
–0.2  
–0.4  
–0.6  
–0.8  
–1  
OUT  
SHIFT REGISTER  
IN  
166560 BD  
0
256  
512  
768  
1023  
CODE  
166560 G13  
166560fa  
1
LTC1665/LTC1660  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
to GND ............................................... –0.2V to 7.5V  
CC  
1
2
3
4
5
6
7
8
V
V
V
V
V
16  
15  
14  
13  
12  
11  
10  
9
GND  
CC  
Logic Inputs to GND ................................. –0.2V to 7.5V  
V
V
V
V
OUT H  
OUT G  
OUT F  
OUT E  
OUT A  
OUT B  
OUT C  
V
, V  
, V  
,
OUT A OUT B OUT H  
REF to GND .................................–0.2V to (V + 0.2V)  
CC  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range  
OUT D  
REF  
CLR  
LTC1665C/LTC1660C.............................. 0°C to 70°C  
LTC1665I/LTC1660I ............................ –40°C to 85°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
D
CS/LD  
OUT  
D
SCK  
IN  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
N PACKAGE  
16-LEAD PDIP  
T
= 125°C, θ = 150°C/W (GN)  
JA  
= 125°C, θ = 100°C/W (N)  
JMAX  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1665CGN#PBF  
LTC1665IGN#PBF  
LTC1660CGN#PBF  
LTC1660IGN#PBF  
LTC1665CN#PBF  
LTC1665IN#PBF  
LTC1660CN#PBF  
LTC1660IN#PBF  
TAPE AND REEL  
LTC1665CGN#PBF  
LTC1665IGN#PBF  
LTC1660CGN#PBF  
LTC1660IGN#PBF  
LTC1665CN#PBF  
LTC1665IN#PBF  
LTC1660CN#PBF  
LTC1660IN#PBF  
PART MARKING*  
1665  
PACKAGE DESCRIPTION  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic PDIP  
16-Lead Plastic PDIP  
16-Lead Plastic PDIP  
16-Lead Plastic PDIP  
TEMPERATURE RANGE  
0°C to 70°C  
1665I  
–40°C to 85°C  
0°C to 70°C  
1660  
1660I  
–40°C to 85°C  
0°C to 70°C  
LTC1665CN  
LTC1665IN  
LTC1660CN  
LTC1660IN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
166560fa  
2
LTC1665/LTC1660  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VREF ≤ VCC, VOUT unloaded, unless otherwise noted.  
LTC1665  
TYP  
LTC1660  
TYP  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
MIN  
MAX  
MIN  
MAX UNITS  
l
l
l
l
l
l
l
l
Resolution  
8
8
10  
10  
Bits  
Bits  
Monotonicity  
V
V
V
≤ V – 0.1V (Note 2)  
CC  
REF  
REF  
REF  
DNL  
INL  
Differential Nonlinearity  
≤ V – 0.1V (Note 2)  
0.1  
0.2  
10  
0.5  
1.0  
30  
0.2  
0.6  
10  
0.75  
2.5  
30  
LSB  
LSB  
CC  
Integral Nonlinearity  
Offset Error  
≤ V – 0.1V (Note 2)  
CC  
V
OS  
(Note 7)  
mV  
V
OS  
Temperature Coefficient  
15  
15  
μV/°C  
LSB  
FSE  
Full-Scale Error  
V
CC  
= 5V, V = 4.096V  
1
4
3
15  
REF  
Full-Scale Error Temperature Coefficient  
Power Supply Rejection  
30  
30  
μV/°C  
LSB/V  
PSR  
V
REF  
= 2.5V  
0.045  
0.18  
The l denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 2.7V to 5.5V, VREF ≤ VCC, VOUT unloaded, unless otherwise noted.  
SYMBOL PARAMETER  
Reference Input  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Input Voltage Range  
0
V
CC  
V
kΩ  
pF  
Resistance  
Not in Sleep Mode  
(Note 6)  
35  
65  
15  
Capacitance  
l
l
I
Reference Current  
Sleep Mode  
0.001  
1
μA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
450  
340  
1
730  
530  
3
μA  
μA  
μA  
CC  
CC  
CC  
Sleep Mode (Note 3)  
DC Performance  
Short-Circuit Current Low  
l
l
V
= 0V, V = 5.5V, V = 5.1V, Code = Full  
10  
10  
30  
27  
100  
120  
mA  
mA  
OUT  
CC  
REF  
Scale  
Short-Circuit Current High  
AC Performance  
V
= V = 5.5V, V = 5.1V, Code = 0  
OUT CC REF  
Voltage Output Slew Rate  
Rising (Notes 4, 5)  
Falling (Notes 4, 5)  
0.60  
0.25  
V/μs  
V/μs  
Voltage Output Settling Time  
Capacitive Load Driving  
To 0.5LSB (Notes 4, 5)  
30  
μs  
pF  
1000  
Digital I/O  
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
l
l
V
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
IL  
CC  
CC  
l
l
l
l
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
I
I
= –1mA, D  
Only  
V – 1  
CC  
V
V
OH  
OUT  
OUT  
OUT  
= 1mA, D  
Only  
0.4  
10  
10  
OL  
OUT  
I
LK  
V
= GND to V  
CC  
μA  
pF  
IN  
C
IN  
Digital Input Capacitance  
(Note 6)  
166560fa  
3
LTC1665/LTC1660  
TIMING CHARACTERISTICS The l denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1)  
SYMBOL PARAMETER  
= 4.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
D
D
Valid to SCK Setup  
Valid to SCK Hold  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
IN  
IN  
2
SCK High Time  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
30  
30  
80  
30  
80  
5
3
SCK Low Time  
4
CS/LD Pulse Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
5
6
7
D
OUT  
Propagation Delay  
C = 15pF (Note 6)  
LOAD  
80  
8
SCK Low to CS/LD Low  
CLR Pulse Width  
(Note 6)  
(Note 6)  
(Note 6)  
20  
100  
30  
9
10  
11  
CS/LD High to SCK Positive Edge  
SCK Frequency  
l
l
l
Continuous Square Wave (Note 6)  
Continuous 23% Duty Cycle Pulse (Note 6)  
Gated Square Wave (Note 6)  
5.00  
7.69  
16.7  
MHz  
MHz  
MHz  
V
= 2.7V to 5.5V  
CC  
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
D
Valid to SCK Setup  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
IN  
IN  
D
Valid to SCK Hold  
2
SCK High Time  
50  
50  
100  
50  
100  
5
3
SCK Low Time  
4
CS/LD Pulse Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
5
6
7
D
OUT  
Propagation Delay  
C = 15pF (Note 6)  
LOAD  
150  
8
SCK Low to CS/LD Low  
CLR Pulse Width  
(Note 6)  
(Note 6)  
(Note 6)  
30  
120  
30  
9
10  
11  
CS/LD High to SCK Positive Edge  
SCK Frequency  
l
l
l
Continuous Square Wave (Note 6)  
Continuous 28% Duty Cycle Pulse  
Gated Square Wave  
3.85  
5.55  
10  
MHz  
MHz  
MHz  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Load is 10kΩ in parallel with 100pF.  
Note 5: V = V = 5V. DAC switched between 0.1V and 0.9V ,  
FS  
i.e., codes 26 and 230 for the LTC1665 or codes 102 and 922 for the  
LTC1660.  
CC  
REF  
FS  
Note 2: Nonlinearity and monotonicity are defined from code 4 to code  
255 for the LTC1665 and from code 20 to code 1023 for the LTC1660.  
See Applications Information.  
Note 6: Guaranteed by design and not production tested.  
Note 7: Measured at code 4 for the LTC1665 and code 20 for the  
LTC1660.  
Note 3: Digital inputs at 0V or V  
.
CC  
166560fa  
4
LTC1665/LTC1660  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC1665/LTC1660)  
Midscale Output Voltage  
vs Load Current  
Midscale Output Voltage  
vs Load Current  
Minimum Supply Headroom  
vs Load Current (Output Sourcing)  
1400  
1200  
1000  
800  
600  
400  
200  
0
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
V
REF  
= V  
CC  
V
= V  
CC  
V
= 4.096V  
OUT  
REF  
REF  
CODE = 128 (LTC1665)  
CODE = 512 (LTC1660)  
CODE = 128 (LTC1665)  
CODE = 512 (LTC1660)  
ΔV  
< 1LSB  
CODE = 255 (LTC1665)  
CODE = 1023 (LTC1660)  
V
CC  
= 3.6V  
125°C  
25°C  
V
V
= 5.5V  
= 5V  
CC  
CC  
V
CC  
= 3V  
–55°C  
V
CC  
= 2.7V  
V
CC  
= 4.5V  
SOURCE  
SINK  
10  
SOURCE  
–15 –12 8 –4  
SINK  
4
–30  
–20  
–10  
I
0
20  
30  
0
8
12 15  
0
2
4
6
8
10  
(mA)  
I
(mA)  
|I  
OUT  
|
(mA) (SOURCING)  
OUT  
OUT  
166560 G01  
166560 G02  
166560 G03  
Minimum VOUT  
vs Load Current (Output Sinking)  
Large-Signal Step Response  
1400  
1200  
1000  
800  
600  
400  
200  
0
5
4
3
2
1
0
V
= 5V  
V
CC  
= V  
= 5V  
REF  
CC  
CODE = 0  
10% TO  
90% STEP  
125°C  
25°C  
–55°C  
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
|
I
|
(mA) (SINKING)  
TIME (μs)  
OUT  
166560 G04  
166560 G05  
Supply Current  
vs Logic Input Voltage  
Supply Current vs Temperature  
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
2
1.6  
1.2  
0.8  
0.4  
0
ALL DIGITAL INPUTS  
SHORTED TOGETHER  
V
V
= 5.5V  
= 4.5V  
CC  
CC  
V
CC  
= 3.6V  
V
CC  
= 2.7V  
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
166560 G06  
166560 G07  
166560fa  
5
LTC1665/LTC1660  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC1665)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1
0.5  
0.4  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
0.8  
0.6  
= 4.096V  
= 4.096V  
0.3  
0.4  
0.2  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE  
CODE  
166560 G09  
1665/60 G08  
Load Regulation vs Output Current  
Load Regulation vs Output Current  
V
= V  
= 3V  
REF  
V
= V  
= 5V  
REF  
0.5  
0.25  
0
0.5  
0.25  
0
CC  
CC  
CODE = 128  
CODE = 128  
–0.25  
–0.5  
–0.25  
–0.5  
SOURCE  
–1  
SINK  
SOURCE  
SINK  
–2  
0
1
2
–500  
0
500  
I
(mA)  
I
(μA)  
OUT  
OUT  
166560 G10  
166560 G11  
166560fa  
6
LTC1665/LTC1660  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC1660)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
2.5  
1
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
2.0  
1.5  
= 4.096V  
= 4.096V  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
0.5  
–1.0  
–1.5  
2.0  
2.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
CODE  
CODE  
166560 G13  
166560 G12  
Load Regulation vs Output Current  
Load Regulation vs Output Current  
V
= V  
= 5V  
V
= V  
= 3V  
REF  
2
1.5  
1
2
1.5  
1
CC  
REF  
CC  
CODE = 512  
CODE = 512  
0.5  
0
0.5  
0
–0.5  
–1  
–0.5  
–1  
–1.5  
–2  
–1.5  
–2  
SOURCE  
–1  
SINK  
SOURCE  
SINK  
–2  
0
1
2
–500  
0
500  
I
(mA)  
I
(μA)  
OUT  
OUT  
166560 G14  
166560 G15  
166560fa  
7
LTC1665/LTC1660  
PIN FUNCTIONS (LTC1665/LTC1660)  
GND (Pin 1): System Ground.  
SCK (Pin 8): Serial Interface Clock Input. CMOS and TTL  
compatible.  
V
to V  
(Pins 2-5 and 12-15): DAC Analog Volt-  
OUT H  
OUT A  
age Outputs. The output range is  
D (Pin 9): Serial Interface Data Input. Data on the D  
IN IN  
pin is shifted into the 16-bit register on the rising edge of  
SCK. CMOS and TTL compatible.  
255  
256  
0 to  
0 to  
VREF for the LTC1665  
D
(Pin 10): Serial Interface Data Output. Data appears  
OUT  
on D  
16 positive SCK edges after being applied to D .  
1023  
1024  
OUT  
IN  
VREF for the LTC1660  
MaybetiedtoD ofanotherLTC1665/LTC1660fordaisy-  
chain operation. CMOS and TTL compatible.  
IN  
REF (Pin 6): Reference Voltage Input. 0V ≤ V ≤ V .  
REF  
CC  
CLR (Pin 11): Asynchronous Clear Input. All internal shift  
and DAC registers are cleared to zero at the falling edge of  
the CLR signal, forcing the analog outputs to zero scale.  
CMOS and TTL compatible.  
CS/LD (Pin 7): Serial Interface Chip Select/Load Input.  
When CS/LD is low, SCK is enabled for shifting data on  
D into the register. When CS/LD is pulled high, SCK is  
disabled and data is loaded from the shift register into the  
specified DAC register(s), updating the analog output(s).  
CMOS and TTL compatible.  
IN  
V
(Pin 16): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V.  
CC  
CC  
BLOCK DIAGRAM  
GND  
1
2
16  
15  
V
V
CC  
DAC A  
DAC B  
DAC C  
DAC D  
DAC H  
DAC G  
DAC F  
DAC E  
V
V
V
V
OUT A  
OUT H  
V
V
V
3
4
14  
13  
OUT B  
OUT C  
OUT G  
OUT F  
OUT E  
5
6
7
8
12  
11  
10  
9
OUT D  
REF  
CLR  
CONTROL  
LOGIC  
ADDRESS  
DECODER  
CS/LD  
SCK  
D
D
OUT  
SHIFT REGISTER  
IN  
166560 BD  
166560fa  
8
LTC1665/LTC1660  
TIMING DIAGRAM  
t
1
t
t
2
t
3
t
4
6
SCK  
t
9
t
11  
D
IN  
A3  
A2  
A1  
X1  
X0  
t
5
t
7
CS/LD  
t
8
D
A2  
A1  
X1  
X0  
A3  
A3  
OUT  
166560 F01  
Figure 1  
OPERATION  
Transfer Function  
Serial Interface  
The transfer function is:  
Referring to Figure 2a (2b): With CS/LD held low, data  
on the DIN input is shifted into the 16-bit shift register on  
the positive edge of SCK. The 4-bit DAC address, A3-A0,  
is loaded first (see Table 2), then the 8-bit (10-bit) input  
code, D7-D0 (D9-D0), ordered MSB-to-LSB in each case.  
Four(two)don’t-carebits,X3-X0(X1-X0),areloadedlast.  
Whenthefull16-bitinputwordhasbeenshiftedin, CS/LD  
is pulled high, loading the DAC register with the word  
and causing the addressed DAC output(s) to update. The  
clockisdisabledinternallywhenCS/LDishigh. Note:SCK  
must be low before CS/LD is pulled low.  
k
256  
VOUT(IDEAL)  
=
VREF for theLTC1665  
k
VOUT(IDEAL)  
=
VREF for theLTC1660  
1024  
where k is the decimal equivalent of the binary DAC input  
code and V is the voltage at REF (Pin 6).  
REF  
Power-On Reset  
The LTC1665 clears the outputs to zero scale when power  
is first applied, making system initialization consistent  
and repeatable.  
The buffered serial output of the shift register is available  
on the D  
pin, which swings from GND to V . Data  
OUT  
CC  
appears on D  
16 positive SCK edges after being ap-  
OUT  
plied to D .  
IN  
Power Supply Sequencing  
Multiple LTC1665/LTC1660’s can be controlled from a  
The voltage at REF (Pin 6) should be kept within the range  
single 3-wire serial port (i.e., SCK, D and CS/LD) by  
IN  
0.2V ≤ V ≤ V + 0.2V (see Absolute Maximum Rat-  
REF  
CC  
using the included “daisy-chain” facility. A series of m  
ings). Particular care should be taken to observe these  
chips is configured by connecting each D  
(except the  
OUT  
limitsduringpowersupplyturn-onandturn-offsequences,  
last) to D of the next chip, forming a single 16m-bit  
IN  
when the voltage at V (Pin 16) is in transition.  
CC  
shift register. The SCK and CS/LD signals are common  
to all chips in the chain. In use, CS/LD is held low while m  
16-bit words are clocked to D of the first chip; CS/LD  
IN  
is then pulled high, updating all of them simultaneously.  
166560fa  
9
LTC1665/LTC1660  
OPERATION  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X3  
X2  
X1  
X0  
D
IN  
ADDRESS/CONTROL  
INPUT CODE  
DON’T CARE  
INPUT WORD W  
0
(ENABLE CLK)  
(UPDATE OUTPUT)  
CS/LD  
D
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X3  
X2  
X1  
X0  
A3  
OUT  
INPUT WORD W  
INPUT WORD W  
–1  
0
166560 F02a  
Figure 2a. LTC1665 Register Loading Sequence  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
D
IN  
ADDRESS/CONTROL  
INPUT CODE  
DON’T CARE  
INPUT WORD W  
0
(ENABLE CLK)  
(UPDATE OUTPUT)  
CS/LD  
D
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
A3  
OUT  
INPUT WORD W  
INPUT WORD W  
–1  
0
166560 F02b  
Figure 2b. LTC1660 Register Loading Sequence  
Table 1a. LTC1665 Input Word  
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 X3 X2 X1 X0  
Sleep Mode  
DACaddress1110 isreservedforthespecialSleepinstruc-  
b
tion (see Table 2). In this mode, the digital interface stays  
active while the analog circuits are disabled; static power  
consumption is thus virtually eliminated. The reference  
input and analog outputs are set in a high impedance state  
and all DAC settings are retained in memory so that when  
Sleep mode is exited, the outputs of DACs not updated by  
the Wake command are restored to their last active state.  
ADDRESS/CONTROL  
INPUT CODE  
DON’T CARE  
Table 1b. LTC1660 Input Word  
A3 A2 A1 A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X1 X0  
ADDRESS/CONTROL  
INPUT CODE  
DON’T  
CARE  
166560fa  
10  
LTC1665/LTC1660  
OPERATION  
Table 2. DAC Address/Control Functions  
ADDRESS/CONTROL  
Voltage Outputs  
Each of the eight rail-to-rail output amplifiers contained  
in these parts can source or sink up to 5mA. The outputs  
swing to within a few millivolts of either supply rail when  
unloadedandhaveanequivalentoutputresistanceof85Ω  
when driving a load to the rails. The output amplifiers are  
stable driving capacitive loads up to 1000pF.  
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DAC STATUS  
No Change  
Load DAC A  
Load DAC B  
Load DAC C  
Load DAC D  
Load DAC E  
Load DAC F  
Load DAC G  
Load DAC H  
No Change  
No Change  
No Change  
No Change  
No Change  
No Change  
SLEEP STATUS  
Wake  
Wake  
Wake  
Wake  
Wake  
A small resistor placed in series with the output can be  
used to achieve stability for any load capacitance. A 1μF  
load can be successfully driven by inserting a 20Ω resis-  
tor; a 2.2μF load needs only a 10Ω resistor. In either case,  
larger values of resistance, capacitance or both may be  
safely substituted for the values given.  
Wake  
Wake  
Wake  
Wake  
Wake  
Wake  
Wake  
Rail-to-Rail Output Considerations  
Wake  
In any rail-to-rail output voltage DAC, the output is limited  
to voltages within the supply range.  
Wake  
Sleep  
Wake  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 3b.  
Load ALL DACs  
with Same  
8/10-Bit Code  
Similarly, limiting can occur near full scale when the REF  
Sleep mode is initiated by performing a load sequence  
pin is tied to V . If V = V and the DAC full-scale error  
CC  
REF  
CC  
to address 1110 (the DAC input word D7-D0 [D9-D0]  
b
(FSE) is positive, the output for the highest codes limits  
is ignored). Once in Sleep mode, a load sequence to any  
at V as shown in Figure 3c. No full-scale limiting can  
CC  
other address (including “No Change” addresses 0000  
b
occur if V is less than V – FSE.  
REF  
CC  
and 1001-1101 ) causes the LTC1665/LTC1660 to Wake.  
b
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
It is possible to keep one or more chips of a daisy chain  
in continuous Sleep mode by giving the Sleep instruction  
to these chips each time the active chips in the chain are  
updated.  
166560fa  
11  
LTC1665/LTC1660  
OPERATION  
POSITIVE  
FSE  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
0
128  
255  
INPUT CODE  
(a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
166560 F03  
Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC  
166560fa  
12  
LTC1665/LTC1660  
TYPICAL APPLICATIONS  
A Low Power Quad Trim Circuit with Coarse/Fine Adjustment  
3.3V  
3.3V  
R1  
R2  
0.1μF  
CC  
0.1μF  
R2  
R1  
4
U1  
V
GND  
1
2
16  
15  
13  
12  
LTC1665  
2
14  
1
U2A  
U2D  
LT1491  
R1  
R1  
LT®1491  
COARSE  
COARSE  
V
V
OUT4  
V
V
V
V
OUT1  
+ 3  
+
OUT A  
OUT H  
OUT G  
OUT F  
OUT E  
DAC A  
DAC B  
DAC C  
DAC D  
DAC H  
DAC G  
DAC F  
DAC E  
11  
0.1μF  
0.1μF  
R2  
FINE  
R2  
FINE  
V
V
V
OUT B  
OUT C  
R1  
R2  
R2  
R1  
3
4
14  
13  
6
9
8
7
U2B  
U2C  
LT1491  
R1  
COARSE  
R1  
COARSE  
LT1491 + 5  
10  
+
V
OUT3  
V
OUT2  
0.1μF  
0.1μF  
R2  
FINE  
R2  
FINE  
3.3V  
0.1μF  
V
OUT D  
5
6
7
8
12  
11  
10  
9
2
LTC1258-2.5  
1
REF  
CLR  
4
CONTROL  
LOGIC  
ADDRESS  
DECODER  
D
OUT  
IN  
CS/LD  
TO OTHER  
LTC1665s  
3-WIRE  
SERIAL  
D
SCK  
SHIFT REGISTER  
INTERFACE  
166560 TA01  
R2 >> R1  
= V  
R1  
V
+
V
OUT B  
OUT 1  
OUT A  
R2  
Similarly V  
, V  
, V  
OUT 2 OUT 3 OUT 4  
Example: For R1 = 110Ω and R2 = 11k,  
= V + 0.01 V  
V
OUT 1  
OUT A  
OUT B  
166560fa  
13  
LTC1665/LTC1660  
TYPICAL APPLICATIONS  
An 8-Channel Bipolar Output Voltage Circuit Configuration  
5V  
R
R
R
R
0.1μF  
0.1μF  
0.1μF  
+
+
V
V
4
S
S
U1  
V
V
GND  
CC  
4
2
1
2
16  
15  
LTC1660  
2
1
1
V
´
V
´
U2A  
LT1491 + 3  
U3A  
OUT A  
5V  
OUT H  
5V  
LT1491  
V
OUT A  
OUT H  
3 +  
DAC A  
DAC H  
0.1μF  
0.1μF  
11  
R
11  
V
V
S
S
R
R
R
R
R
R
R
R
R
6
6
7
8
7
V
V
V
´
V
V
V
´
U2B  
LT1491 + 5  
U3B  
LT1491  
OUT B  
OUT G  
5V  
5V  
V
V
V
OUT G  
V
OUT F  
V
OUT E  
OUT B  
5 +  
DAC B  
DAC C  
DAC D  
DAC G  
DAC F  
DAC E  
3
4
14  
13  
R
R
9
9
8
´
´
´
U2C  
LT1491 + 10  
U3C  
LT1491  
OUT C  
OUT F  
5V  
5V  
OUT C  
10 +  
13  
13  
14  
14  
´
U2D  
LT1491 + 12  
U3D  
LT1491  
OUT D  
OUT E  
5V  
5V  
V
OUT D  
12 +  
5
6
7
8
12  
11  
10  
9
REF  
CLR  
CONTROL  
LOGIC  
ADDRESS  
DECODER  
CS/LD  
CODE  
0
512  
V
D
OUT X  
– 5V  
0V  
OUT  
3-WIRE  
SERIAL  
D
IN  
CLK  
SHIFT REGISTER  
INTERFACE  
1023 +4.99V  
166560 TA04  
166560fa  
14  
LTC1665/LTC1660  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG #05-08-1641)  
.189 – .196*  
.045 .005  
(4.801 – 4.978)  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
w 45s  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
166560fa  
15  
LTC1665/LTC1660  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
16-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.770ꢀ  
(19.553ꢂ  
MAX  
14  
12  
10  
9
3
15  
1ꢁ  
11  
16  
.255 .015ꢀ  
(6.477 0.ꢁ31ꢂ  
2
1
4
6
5
7
.ꢁ00 – .ꢁ25  
(7.620 – 3.255ꢂ  
.1ꢁ0 .005  
(ꢁ.ꢁ02 0.127ꢂ  
.045 – .065  
(1.14ꢁ – 1.651ꢂ  
.020  
(0.503ꢂ  
MIN  
.065  
(1.651ꢂ  
TYP  
.003 – .015  
(0.20ꢁ – 0.ꢁ31ꢂ  
+.0ꢁ5  
–.015  
.ꢁ25  
.120  
(ꢁ.043ꢂ  
MIN  
.013 .00ꢁ  
(0.457 0.076ꢂ  
.100  
(2.54ꢂ  
BSC  
+0.339  
3.255  
–0.ꢁ31  
N16 REV I 0711  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
ꢀTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mmꢂ  
166560fa  
16  
LTC1665/LTC1660  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
1/12  
Removed Typical values in Timing Characteristics  
3, 4  
166560fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC1665/LTC1660  
TYPICAL APPLICATION  
A Pin Driver VH and VL Adjustment Circuit for ATE Applications  
5V  
0.1μF  
11  
16  
6
V
CLR  
V
REF  
H
CC  
(FROM MAIN DAC)  
U1 LTC1660  
10V  
0.1μF  
1
R
F
R
G
5k  
50k  
V
A
V
B
V
C
V
D
3
2
´
DAC H  
DAC A  
V
H
2
3
4
5
+
U2A  
LT1369  
QUAD  
´
V
= V + ΔV  
H
H
H
´
V
L
0.1μF  
R
G
0.1μF  
50k  
5V  
DAC G  
DAC F  
DAC E  
DAC B  
DAC C  
DAC D  
R
F
5k  
V
L
V
V
H
(FROM MAIN DAC)  
L
R
F
5k  
V
OUT  
R
50k  
G
PIN DRIVER  
(1 OF 2)  
5
6
+
´
V
L
= V + V  
L L  
U2B  
LT1369  
QUAD  
7
0.1μF  
LOGIC  
DRIVE  
R
50k  
R
F
5k  
G
166560 TA03  
CS/LD  
7
9
8
D
IN  
V = V = 2.5V  
A
C
SCK  
GND  
1
´
R
V
V
= V +  
F
H
H
(V – V )  
A
B
R
G
´
R
= V +  
F
L
L
(V – V )  
C
D
CODE A CODE B ΔV , ΔV  
H
L
R
G
512  
512  
512  
1023 250mV  
Note: DACs E Through H Can Be  
Configured for a Second Pin Driver  
With U2C and U2D of the LT1369  
For Resistor Values Shown:  
Adjustment Range = 250mV  
Adjustment Step Size = 500μV  
512  
0
0
+250mV  
RELATED PARTS  
PART NUMBER  
LTC1661  
DESCRIPTION  
Dual 10-Bit V  
COMMENTS  
DAC in 8-Lead MSOP Package  
V
CC  
V
CC  
= 2.7V to 5.5V Micropower Rail-to-Rail Output  
= 2.7V to 5.5V, Internal Reference, 60μA  
OUT  
LTC1663  
Single 10-Bit V  
DAC in SOT-23 Package  
OUT  
LTC1446/  
LTC1446L  
Dual 12-Bit V  
DACs in SO-8 Package with Internal Reference  
DAC in SO-8 Package  
LTC1446: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
OUT  
CC  
OUT  
LTC1446L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1448  
Dual 12-Bit V  
Dual 12-Bit V  
V = 2.7V to 5.5V, External Reference Can Be Tied to V  
CC CC  
OUT  
LTC1454/  
LTC1454L  
DACs in SO-16 Package with Added Functionality LTC1454: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1454L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1458/  
LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
Dual 12-Bit I DAC in SO-16 Package  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1590  
LTC1659  
V
CC  
= 4.5V to 5.5V, 4-Quadrant Multiplication  
OUT  
Single Rail-to-Rail 12-Bit V  
DAC in 8-Lead MSOP Package  
Low Power Multiplying V  
DAC. Output Swings from GND to  
OUT  
OUT  
V
: 2.7V to 5.5V  
REF. REF Input Can Be Tied to V  
CC  
CC  
LT1460  
Micropower Precision Series Reference, 2.5V, 5V, 10V Versions  
0.075% Max, 10ppm/°C Max, Only 130μA Supply Current  
166560fa  
LT 0112 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
© LINEAR TECHNOLOGY CORPORATION 1999  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1660IGN#TR

暂无描述
Linear

LTC1660IGN#TRPBF

暂无描述
Linear

LTC1660IN

Micropower Octal 8-Bit and 10-Bit DACs
Linear

LTC1660IN#PBF

LTC1660 - Micropower Octal 10-Bit DACs; Package: PDIP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1660_15

Micropower Octal 8-Bit and 10-Bit DACs
Linear

LTC1661

Micropower Dual 10-Bit DAC in MSOP
Linear

LTC1661C

Micropower Dual 10-Bit DAC in MSOP
Linear

LTC1661CMS8

Micropower Dual 10-Bit DAC in MSOP
Linear

LTC1661CMS8#PBF

LTC1661 - Micropower Dual 10-Bit DAC in MSOP; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1661CMS8#TR

LTC1661 - Micropower Dual 10-Bit DAC in MSOP; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1661CMS8#TRPBF

LTC1661 - Micropower Dual 10-Bit DAC in MSOP; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1661CN8

Micropower Dual 10-Bit DAC in MSOP
Linear