LTC1545CG#TR [Linear]

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C;
LTC1545CG#TR
型号: LTC1545CG#TR
厂家: Linear    Linear
描述:

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总16页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1545  
Software-Selectable  
Multiprotocol Transceiver  
U
FEATURES  
DESCRIPTIO  
The LTC®1545 is a 5-driver/5-receiver multiprotocol trans-  
ceiver. The LTC1545 and LTC1543 form the core of a  
complete software-selectable DTE or DCE interface port that  
supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36  
or X.21 protocols. Cable termination may be implemented  
using the LTC1344A software-selectable cable termination  
chip or by using existing discrete designs.  
Software-Selectable Transceiver Supports:  
RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21  
TUV/Detecon Inc. Certified NET1 and NET2  
Compliant (Test Report No. NET2/071601/98)  
TBR2 Compliant (Test Report No. CTR2/071601/98)  
Software-Selectable Cable Termination Using  
the LTC1344A  
Complete DTE or DCE Port with LTC1543, LTC1344A  
TheLTC1545runsfroma5Vsupplyandthechargepumpon  
the LTC1543. The part is available in a 36-lead SSOP surface  
mount package.  
Operates from Single 5V Supply with LTC1543  
U
APPLICATIO S  
Data Networking  
CSU and DSU  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Data Routers  
U
TYPICAL APPLICATIO  
DTE or DCE Multiprotocol Serial Interface with DB-25 Connector  
RL TM  
RI  
LL CTS  
DSR  
DCD  
DTR  
RTS  
TXC  
SCTE  
TXD  
D1  
RXD  
RXC  
LTC1543  
LTC1545  
D3  
D2  
D3  
D2  
D1  
D5  
R5  
D4  
R3  
R3  
R2  
R1  
R2  
R1  
R4  
LTC1344A  
21 25  
*
18 13  
5
22  
6
10  
8
23 20 19  
4
1
7
16  
3
9
17  
12 15 11 24 14  
2
*OPTIONAL  
DB-25 CONNECTOR  
1545 TA01  
1
LTC1545  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Supply Voltage  
ORDER PART  
VCC ..................................................................... 6.5V  
VEE........................................................ 10V to 0.3V  
VDD ....................................................... 0.3V to 10V  
Input Voltage  
V
V
1
2
36 V  
EE  
NUMBER  
CC  
35 GND  
34 D1 A  
33 D1 B  
32 D2 A  
31 D2 B  
30 D3/R1 A  
29 D3/R1 B  
28 R2 A  
27 R2 B  
26 R3 A  
25 R3 B  
24 D4 A  
23 R4 A  
22 R5 A  
21 D5 A  
DD  
D1  
3
D1  
D2  
D3  
D2  
D3  
R1  
R2  
R3  
D4  
R4  
4
LTC1545CG  
LTC1545IG  
5
Transmitters ........................... 0.3V to (VCC + 0.3V)  
Receivers............................................... 18V to 18V  
Logic Pins .............................. 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters .................. (VEE – 0.3V) to (VDD + 0.3V)  
Receivers................................ 0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
Transmitter Output ..................................... Indefinite  
Receiver Output.......................................... Indefinite  
VEE.................................................................. 30 sec  
Operating Temperature Range  
LTC1545C .............................................. 0°C to 70°C  
LTC1545I........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
6
7
8
9
R1  
10  
R2  
R3  
M0 11  
M1  
M2  
12  
13  
14  
15  
16  
17  
18  
D4  
D5  
DCE/DTE  
D4ENB  
R4EN  
R5  
R4  
R5  
20  
19  
V
DD  
V
CC  
D5  
G PACKAGE  
36-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 65°C/ W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3)  
SYMBOL PARAMETER  
Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
V
Supply Current (DCE Mode,  
CC  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode, D4ENB = HIGH  
2.7  
110  
1
1
10  
5
150  
3
3
500  
mA  
mA  
mA  
mA  
µA  
CC  
EE  
All Digital Pins = GND or V  
)
CC  
V
Supply Current (DCE Mode,  
RS530, RS530-A, X.21 Modes, No Load  
RS530, X.21 Modes, Full Load  
RS530-A, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
2.0  
23  
34  
1
12  
10  
4.0  
35  
50  
3
18  
500  
mA  
mA  
mA  
mA  
mA  
µA  
EE  
All Digital Pins = GND or V  
)
CC  
No-Cable Mode, D4ENB = HIGH  
I
V
Supply Current (DCE Mode,  
DD  
RS530, RS530-A, X.21 Modes, NoLoad  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode, D4ENB = HIGH  
0.3  
0.3  
1
13.5  
10  
2
2
3
18  
500  
mA  
mA  
mA  
mA  
µA  
DD  
All Digital Pins = GND or V  
)
CC  
P
Internal Power Dissipation (DCE Mode,  
(All Digital Pins = GND or V  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, Full Load  
340  
64  
mW  
mW  
D
)
CC  
2
LTC1545  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3)  
SYMBOL PARAMETER  
Logic Inputs and Outputs  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
2
V
V
IH  
IL  
0.8  
I
IN  
D1, D2, D3, D4, D5  
M0, M1, M2, DCE, D4ENB, R4EN = GND (LTC1545C)  
M0, M1, M2, DCE, D4ENB, R4EN = GND (LTC1545I)  
±10  
30  
30  
±10  
µA  
µA  
µA  
µA  
100  
120  
50  
50  
M0, M1, M2, DCE, D4ENB, R4EN = V  
CC  
V
V
Output High Voltage  
I = 4mA  
3
4.5  
0.3  
40  
V
V
OH  
OL  
O
Output Low Voltage  
I = 4mA  
O
0.8  
50  
I
I
Output Short-Circuit Current  
Three-State Output Current  
0V V V  
CC  
50  
mA  
µA  
OSR  
OZR  
O
M0 = M1 = M2 = V , 0V V V  
CC  
±1  
CC  
O
V.11 Driver  
V
V
Open Circuit Differential Output Voltage  
Loaded Differential Output Voltage  
R = 1.95k (Figure 1)  
±5  
V
ODO  
ODL  
L
R = 50(Figure 1)  
0.5V  
±2  
0.67V  
ODO  
L
ODO  
R = 50(Figure 1)  
L
V
V
V  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
OD  
V
Common Mode Output Voltage  
R = 50(Figure 1)  
3
V
V
OC  
L
V  
Change in Magnitude of Common Mode R = 50(Figure 1)  
0.2  
OC  
L
Output Voltage  
I
I
Short-Circuit Current  
V
= GND  
±150  
±100  
mA  
SS  
OZ  
OUT  
Output Leakage Current  
0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
± 1  
µA  
O
t , t  
Rise or Fall Time  
LTC1545C (Figures 2, 5)  
LTC1545I (Figures 2, 5)  
2
2
15  
15  
25  
35  
ns  
ns  
r
f
PLH  
PHL  
t
t
Input to Output  
LTC1545C (Figures 2, 5)  
LTC1545I (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
Input to Output  
LTC1545C (Figures 2, 5)  
LTC1545I (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
t  
Input to Output Difference, t  
Output to Output Skew  
– t  
PHL  
LTC1545C (Figures 2, 5)  
LTC1545I (Figures 2, 5)  
0
0
3
3
12  
17  
ns  
ns  
PLH  
t
(Figures 2, 5)  
3
ns  
SKEW  
V.11 Receiver  
V
Input Threshold Voltage  
Input Hysteresis  
7V V 7V  
0.2  
15  
0.2  
40  
V
mV  
mA  
kΩ  
ns  
TH  
CM  
V  
7V V 7V  
15  
TH  
CM  
I
Input Current (A, B)  
Input Impedance  
Rise or Fall Time  
Input to Output  
10V V 10V  
±0.66  
IN  
A,B  
R
10V V 10V  
30  
15  
IN  
A,B  
t , t  
r
(Figures 2, 6)  
f
t
LTC1545C (Figures 2, 6)  
LTC1545I (Figures 2, 6)  
50  
50  
80  
90  
ns  
ns  
PLH  
t
Input to Output  
LTC1545C (Figures 2, 6)  
LTC1545I (Figures 2, 6)  
50  
50  
80  
90  
ns  
ns  
PHL  
t  
Input to Output Difference, t  
– t  
PHL  
LTC1545C (Figures 2, 6)  
LTC1545I (Figures 2, 6)  
0
0
4
4
16  
21  
ns  
ns  
PLH  
3
LTC1545  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V.10 Driver  
V
V
Output Voltage  
Output Voltage  
Open Circuit, R = 3.9k  
±4  
±6  
V
V
O
T
L
R = 450(Figure 3)  
±3.6  
0.9V  
L
R = 450(Figure 3)  
L
O
I
I
Short-Circuit Current  
V = GND  
±150  
±100  
mA  
SS  
OZ  
O
Output Leakage Current  
0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
±0.1  
µA  
O
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
R = 450, C = 100pF (Figures 3, 7)  
2
1
1
µs  
µs  
µs  
r
f
PLH  
PHL  
L
L
t
t
R = 450, C = 100pF (Figures 3, 7)  
L L  
R = 450, C = 100pF (Figures 3, 7)  
L
L
V.10 Receiver  
V
Receiver Input Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Current  
Receiver Input Impedance  
Rise or Fall Time  
0.25  
15  
0.25  
50  
V
mV  
mA  
kΩ  
ns  
TH  
V  
25  
TH  
I
10V V 10V  
±0.66  
IN  
A
R
10V V 10V  
30  
15  
IN  
A
t , t  
r
(Figures 4, 8)  
(Figures 4, 8)  
(Figures 4, 8)  
(Figures 4, 8)  
f
t
t
Input to Output  
55  
ns  
PLH  
PHL  
Input to Output  
109  
60  
ns  
t  
Input to Output Difference, t  
Output Voltage  
– t  
PHL  
ns  
PLH  
V.28 Driver  
V
Open Circuit  
R = 3k (Figure 3)  
L
±10  
V
V
O
±5  
±8.5  
±1  
I
I
Short-Circuit Current  
V = GND  
O
±150  
±100  
mA  
SS  
OZ  
Output Leakage Current  
0.25V V 0.25V, Power Off or  
µA  
O
No-Cable Mode or Driver Disabled  
SR  
Slew Rate  
R = 3k, C = 2500pF (Figures 3, 7)  
4
30  
2.5  
2.5  
V/µs  
µs  
L
L
t
t
Input to Output  
Input to Output  
R = 3k, C = 2500pF (Figures 3, 7)  
1.3  
1.3  
PLH  
PHL  
L
L
R = 3k, C = 2500pF (Figures 3, 7)  
µs  
L
L
V.28 Receiver  
V
V
Input Low Threshold Voltage  
Input High Threshold Voltage  
Receiver Input Hysterisis  
Receiver Input Impedance  
Rise or Fall Time  
1.5  
1.6  
0.1  
5
0.8  
V
V
THL  
TLH  
2
3
V  
0.3  
7
V
TH  
R
15V V 15V  
kΩ  
ns  
ns  
ns  
IN  
A
t , t  
r
(Figures 4, 8)  
(Figures 4, 8)  
(Figures 4, 8)  
15  
f
t
t
Input to Output  
60  
100  
450  
PLH  
PHL  
Input to Output  
150  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: All typicals are given for V = 5V, V = 8V, V = 7V for V.28,  
CC DD EE  
5.5V for V.10, V.11 and T = 25°C.  
A
Note 2: All currents into device pins are positive; all currents out of device  
are negative. All voltages are referenced to device ground unless otherwise  
specified.  
4
LTC1545  
U
U
U
PIN FUNCTIONS  
VCC (Pins 1, 19): Positive Supply for the Transceivers.  
4.75V VCC 5.25V. Connect a 1µF capacitor to ground.  
R5 (Pin 17): CMOS Level Receiver 5 Output.  
D5 (Pin 18): TTL Level Driver 5 Input.  
D5 A (Pin 21): Driver 5 Output.  
VDD (Pins 2, 20): Positive Supply Voltage for V.28. Con-  
nect to VDD Pin 3 on LTC1543 or 8V supply. Connect a 1µF  
capacitor to ground.  
R5 A (Pin 22): Receiver 5 Input.  
R4 A (Pin 23): Receiver 4 Input.  
D1 (Pin 3): TTL Level Driver 1 Input.  
D2 (Pin 4): TTL Level Driver 2 Input.  
D3 (Pin 5): TTL Level Driver 3 Input.  
R1 (Pin 6): CMOS Level Receiver 1 Output.  
R2 (Pin 7): CMOS Level Receiver 2 Output.  
R3 (Pin 8): CMOS Level Receiver 3 Output.  
D4 (Pin 9): TTL Level Driver 4 Input.  
R4 (Pin 10): CMOS Level Receiver 4 Output.  
D4 A (Pin 24): Driver 4 Input.  
R3 B (Pin 25): Receiver 3 Noninverting Input.  
R3 A (Pin 26): Receiver 3 Inverting Input.  
R2 B (Pin 27): Receiver 2 Noninverting Input.  
R2 A (Pin 28): Receiver 2 Inverting Input.  
D3/R1 B (Pin 29): Receiver 1 Noninverting Input and  
Driver 3 Noninverting Output.  
D3/R1 A (Pin 30): Receiver 1 Inverting Input and Driver 3  
Inverting Output.  
M0 (Pin 11): TTL Level Mode Select Input 0 with Pull-Up  
to VCC.  
D2 B (Pin 31): Driver 2 Noninverting Output.  
D2 A (Pin 32): Driver 2 Inverting Output.  
D1 B (Pin 33): Driver 1 Noninverting Output.  
D1 A (Pin 34): Driver 1 Inverting Output.  
GND (Pin 35): Ground.  
M1 (Pin 12): TTL Level Mode Select Input 1 with Pull-Up  
to VCC.  
M2 (Pin 13): TTL Level Mode Select Input 2 with Pull-Up  
to VCC.  
DCE/DTE (Pin 14): TTL Level Mode Select Input with  
Pull-Up to VCC. Logic high enables Driver 3. Logic low  
enables Receiver 1.  
VEE (Pin 36): Negative Supply Voltage. Connect to VEE Pin  
26 on LTC1543. Connect a 1µF capacitor to ground.  
D4ENB (Pin 15): TTL Level Enable Input with Pull-Up to  
VCC. Logic low enables Driver 4.  
R4EN(Pin16):TTLLevelEnableInputwithPull-UptoVCC.  
Logic high enables Receiver 4.  
TEST CIRCUITS  
A
C
L
B
A
100pF  
B
A
R
R
L
R
L
100  
C
L
100pF  
V
OD  
15pF  
V
OC  
R
L
1545 F02  
1545 F01  
B
Figure 1. V.11 Driver Test Circuit  
Figure 2. V.11 Driver/Receiver AC Test Circuit  
5
LTC1545  
TEST CIRCUITS  
D
A
A
R
D
A
15pF  
R
C
L
L
1545 F04  
1545 F03  
Figure 3. V.10/V.28 Driver Test Circuit  
Figure 4. V.10/V.28 Receiver Test Circuit  
W
U
ODE SELECTIO  
(Note 1) (Note 2)  
(Note 1)  
R1  
(Note 3)  
R4  
LTC1545 MODE NAME  
M2  
0
M1  
0
M0  
0
D1  
D2  
D3  
D4  
D5  
R2  
R3  
R5  
Not Used (Default V.11)  
RS530A  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
0
0
1
RS530  
0
1
0
X.21  
0
1
1
V.35  
1
0
0
RS449/V.36  
V.28/RS232  
1
0
1
1
1
0
D4ENB = 1, R4EN = 0  
M0 = M1 = M2 = 1  
1
1
1
Note 1: Driver 3 and Receiver 1 are enabled (and disabled) by  
DCE/DTE (Pin 14). Logic high enables Driver 3. Logic low enables  
Receiver 1.  
Note 2: Driver 4 is enabled by D4ENB = 0 (Pin 15).  
Note 3: Receiver 4 is enabled by R4EN = 1 (Pin 16).  
U
W
W
SWITCHI G TI E WAVEFOR S  
5V  
f = 1MHz : t 10ns : t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
V
O
90%  
90%  
10%  
V
= V(B) – V(A)  
DIFF  
B – A  
50%  
50%  
10%  
–V  
O
1/2 V  
O
t
t
f
r
A
V
O
B
t
t
1545 F05  
SKEW  
SKEW  
Figure 5. V.11 Driver Propagation Delays  
6
LTC1545  
U
W
W
SWITCHI G TI E WAVEFOR S  
V
OD2  
f = 1MHz : t 10ns : t 10ns  
INPUT  
r
f
0V  
0V  
B – A  
–V  
OD2  
t
t
PLH  
PHL  
V
R
OH  
OUTPUT  
1.5V  
1.5V  
V
OL  
1545 F06  
Figure 6. V.11 Receiver Propagation Delays  
3V  
0V  
D
1.5V  
t
1.5V  
PHL  
3V  
t
PLH  
V
O
3V  
1545 F07  
0V  
0V  
A
–3V  
–3V  
–V  
O
t
t
r
f
Figure 7. V.10, V.28 Driver Propagation Delays  
V
IH  
1.5V  
A
1.5V  
V
IL  
t
PHL  
t
PLH  
V
OH  
1.5V  
1.5V  
R
1545 F08  
V
OL  
Figure 8. V.10, V.28 Receiver Propagation Delays  
U
W U U  
APPLICATIONS INFORMATION  
Mode Selection  
Overview  
The interface protocol is selected using the mode select  
pins M0, M1 and M2 (see the Mode Selection table).  
The LTC1543/LTC1545 form the core of a complete soft-  
ware-selectable DTE or DCE interface port that supports  
the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21  
protocols. Cable termination may be implemented using  
the LTC1344A software-selectable cable termination chip  
or by using existing discrete designs.  
For example, if the port is configured as a V.35 interface,  
the mode selection pins should be M2 =1, M1= 0, M0 = 0.  
For the control signals, the drivers and receivers will  
operateinV.28(RS232)electricalmode. Fortheclockand  
data signals, the drivers and receivers will operate in V.35  
electrical mode. The DCE/DTE pin will configure the port  
for DCE mode when high, and DTE when low.  
A complete DCE-to-DTE interface operating in EIA530  
mode is shown in Figure 9. The LTC1543 of each port is  
used to generate the clock and data signals. The LTC1545  
isusedtogeneratethecontrolsignalsalongwithLL(Local  
Loop-Back), RL (Remote Loop-Back), TM (Test Mode)  
and RI (Ring Indicate). The LTC1344A cable termination  
chip is used only for the clock and data signals because  
they must support V.35 cable termination. The control  
signals do not need any external resistors.  
Theinterfaceprotocolmaybeselectedsimplybyplugging  
the appropriate interface cable into the connector. The  
mode pins are routed to the connector and are left uncon-  
nected (1) or wired to ground (0) in the cable as shown in  
Figure 10.  
7
LTC1545  
U
W U U  
APPLICATIONS INFORMATION  
DTE  
DCE  
SERIAL  
LTC1344A  
LTC1543  
D1  
LTC1344A  
LTC1543  
SERIAL  
CONTROLLER  
CONTROLLER  
TXD  
103Ω  
R3  
R2  
R1  
TXD  
TXD  
SCTE  
103Ω  
D2  
D3  
SCTE  
SCTE  
D3  
D2  
D1  
TXC  
RXC  
RXD  
R1  
R2  
R3  
103Ω  
103Ω  
103Ω  
TXC  
RXC  
RXD  
TXC  
RXC  
RXD  
LTC1545  
D1  
LTC1545  
R3  
RTS  
DTR  
RTS  
DTR  
RTS  
DTR  
D2  
D3  
R2  
R1  
D3  
DCD  
DSR  
R1  
R2  
R3  
DCD  
DSR  
CTS  
DCD  
DSR  
D2  
D1  
CTS  
CTS  
LL  
LL  
LL  
D4  
R4  
R4  
D4  
TM  
TM  
TM  
RI  
RI  
R5  
D5  
RI  
D5  
R5  
RL  
RL  
RL  
1545 F09  
Figure 9. Complete Multiprotocol Interface in EIA530 Mode  
The mode selection may also be accomplished by using  
jumpers to connect the mode pins to ground or VCC.  
The internal pull-up current sources will ensure a binary 1  
when a pin is left unconnected and that the LTC1543/  
LTC1545 and the LTC1344A enter the no-cable mode  
when the cable is removed. In the no-cable mode the  
LTC1543/LTC1545 supply current drops to less than  
200µA and all LTC1543/LTC1545 driver outputs and  
LTC1344A resistive terminations are forced into a high  
impedance state.  
Cable Termination  
Traditional implementations have included switching  
resistors with expensive relays, or required the user to  
change termination modules every time the interface  
standard has changed. Custom cables have been used  
8
LTC1545  
U
W U U  
APPLICATIONS INFORMATION  
21  
LATCH  
LTC1344A  
DCE/  
DTE M2 M1 M0 (DATA)  
22 23 24  
1
(DATA)  
M0  
CONNECTOR  
11  
12  
13  
14  
LTC1543  
M1  
M2  
NC  
NC  
DCE/DTE  
14  
13  
12  
11  
15  
16  
CABLE  
V
CC  
DCE/DTE  
M2  
M1  
M0  
D4ENB  
R4EN  
LTC1545  
10k  
(DATA)  
1545 F10  
Figure 10: Single Port DCE V.35 Mode Selection in the Cable  
The V.10 receiver configuration in the LTC1545 is shown  
in Figure 13. In V.10 mode switch S3 inside the LTC1545  
is turned off. The noninverting input is disconnected  
inside the LTC1545 receiver and connected to ground.The  
cable termination is then the 30k input impedance to  
ground of the LTC1545 V.10 receiver.  
withtheterminationinthecableheadorseparatetermina-  
tions are built on the board and a custom cable routes the  
signals to the appropriate termination. Switching the  
terminations with FETs is difficult because the FETs must  
remain off even though the signal voltage is beyond the  
supply voltage for the FET drivers or the power is off.  
Using the LTC1344A along with the LTC1543/LTC1545  
solves the cable termination switching problem. Via soft-  
ware control, the LTC1344A provides termination for the  
V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35  
electrical protocols.  
V.11 (RS422) Interface  
A typical V.11 balanced interface is shown in Figure 14. A  
V.11 differential generator with outputs A and B with  
ground C is connected to a differential receiver with  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
V.11 interface has a differential termination at the receiver  
end that has a minimum value of 100. The termination  
resistor is optional in the V.11 specification, but for the  
highspeedclockanddatalines,theterminationisrequired  
to prevent reflections from corrupting the data. The  
receiver inputs must also be compliant with the imped-  
ance curve shown in Figure 12.  
V.10 (RS423) Interface  
A typical V.10 unbalanced interface is shown in Figure 11.  
A V.10 single-ended generator output A with ground C is  
connected to a differential receiver with inputs A  
' con-  
nected to A, and input C connected to the signal return  
'
ground C. Usually, no cable termination is required for  
V.10 interfaces, but the receiver inputs must be compliant  
with the impedance curve shown in Figure 12.  
9
LTC1545  
U
W U U  
APPLICATIONS INFORMATION  
BALANCED  
INTERCONNECTING  
CABLE  
BALANCED  
INTERCONNECTING  
LOAD  
CABLE  
LOAD  
GENERATOR  
GENERATOR  
CABLE  
TERMINATION  
CABLE  
TERMINATION  
RECEIVER  
RECEIVER  
A
A'  
A
A'  
100  
MIN  
B
C
B'  
C'  
1545 F11  
C
C'  
1545 F14  
Figure 11. Typical V.10 Interface  
Figure 14. Typical V.11 Interface  
A'  
A
LTC1543  
LTC1545  
I
Z
3.25mA  
LTC1344A  
R5  
20k  
R1  
R8  
6k  
51.5Ω  
R6  
10k  
RECEIVER  
S1  
S2  
S3  
R3  
124Ω  
–10V  
–3V  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
V
Z
B
3V  
10V  
B
'
1545 F15  
GND  
C
'
Figure 15. V.11 Receiver Configuration  
1545 F12  
–3.25mA  
In V.11 mode, all switches are off except S1 inside the  
LTC1344A which connects a 103differential termina-  
tion impedance to the cable as shown in Figure 15.  
Figure 12. V.10 Receiver Input Impedance  
V.28 (RS232) Interface  
A
'
A
LTC1545  
A typical V.28 unbalanced interface is shown in Figure 16.  
A V.28 single-ended generator output A with ground C is  
R5  
R8  
6k  
20k  
R6  
RECEIVER  
connected to a single-ended receiver with input A  
'
con-  
10k  
S3  
nected to A, ground C' connected via the signal return  
ground C.  
R7  
10k  
R4  
20k  
In V.28 mode, all switches are off except S3 inside the  
LTC1543/LTC1545 which connects a 6k (R8) impedance  
to ground in parallel with 20k (R5) plus 10k (R6) for a  
combined impedance of 5k as shown in Figure 17. The  
noninverting input is disconnected inside the LTC1543/  
LTC1545 receiver and connected to a TTL level reference  
voltage for a 1.4V receiver trip point.  
B'  
B
C'  
GND  
1545 F13  
Figure 13. V.10 Receiver Configuration  
10  
LTC1545  
U
W U U  
APPLICATIONS INFORMATION  
BALANCED  
V.35 interface requires a T or delta network termination at  
the receiver end and the generator end. The receiver  
differentialimpedancemeasuredattheconnectormustbe  
100Ω ±10, and the impedance between shorted termi-  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
A
A'  
nals (A' and B') and ground C' must be 150Ω ±15.  
InV.35mode,bothswitchesS1andS2insidetheLTC1344A  
are on, connecting the T network impedance as shown in  
Figure 19. Both switches in the LTC1543 are off. The 30k  
input impedance of the receiver is placed in parallel with  
the T network termination, but does not affect the overall  
input impedance significantly.  
1545 F16  
C
C'  
Figure 16. Typical V.28 Interface  
A'  
The generator differential impedance must be 50to  
150and the impedance between shorted terminals (A  
and B) and ground C must be 150Ω ±15. For the  
generatortermination,switchesS1andS2arebothonand  
the top side of the center resistor is brought out to a pin so  
it can be bypassed with an external capacitor to reduce  
common mode noise as shown in Figure 20.  
A
LTC1543  
LTC1545  
LTC1344A  
R5  
R1  
R8  
6k  
20k  
51.5  
R6  
RECEIVER  
10k  
S3  
S1  
S2  
R3  
124Ω  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
B
B'  
A'  
GND  
A
C'  
LTC1543  
1545 F17  
LTC1344A  
R5  
20k  
R1  
R8  
6k  
51.5Ω  
R6  
10k  
Figure 17. V.28 Receiver Configuration  
RECEIVER  
S1  
S2  
S3  
R3  
124Ω  
BALANCED  
R7  
10k  
R2  
51.5Ω  
INTERCONNECTING  
R4  
20k  
CABLE  
GENERATOR  
LOAD  
B
CABLE  
TERMINATION  
B
'
RECEIVER  
1545 F19  
GND  
C
'
A'  
A
50Ω  
50Ω  
Figure 19. V.35 Receiver Configuration  
125Ω  
125Ω  
50Ω  
50Ω  
A
B
'
B
C
LTC1344A  
C'  
51.5Ω  
1545 F18  
S1  
ON  
V.35 DRIVER  
S2  
ON  
Figure 18. Typical V.35 Interface  
124Ω  
51.5Ω  
V.35 Interface  
B
C1  
100pF  
A typical V.35 balanced interface is shown in Figure 18. A  
V.35 differential generator with outputs A and B with  
ground C is connected to a differential receiver with  
C
1545 F20  
Figure 20. V.35 Driver Using the LTC1344A  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
11  
LTC1545  
U
W U U  
APPLICATIONS INFORMATION  
Any mismatch in the driver rise and fall times or skew in  
the driver propagation delays will force current through  
the center termination resistor to ground, causing a high  
frequency common mode spike on the A and B terminals.  
ThecommonmodespikecancauseEMIproblemsthatare  
reduced by capacitor C1 which shunts much of the com-  
mon mode energy to ground rather than down the cable.  
DTE vs DCE Operation  
The DCE/DTE pin acts as an enable for Driver 3/Receiver  
1 in the LTC1543, and Driver 3/Receiver 1 in the LTC1545.  
The LTC1543/LTC1545 can be configured for either DTE  
or DCE operation in one of two ways: a dedicated DTE or  
DCE port with a connector of appropriate gender, or a port  
with one connector that can be configured for DTE or DCE  
operationbyreroutingthesignalstotheLTC1543/LTC1545  
using a dedicated DTE cable or dedicated DCE cable.  
No-Cable Mode  
The no-cable mode (M0=M1=M2=D4ENB=1, R4EN = 0)  
is intended for the case when the cable is disconnected  
from the connector. The charge pump, bias circuitry,  
drivers and receivers are turned off, the driver outputs are  
forced into a high impedance state, and the supply current  
drops to less than 200µA.  
A dedicated DTE port using a DB-25 male connector is  
showninFigure22.Theinterfacemodeisselectedbylogic  
outputs from the controller or from jumpers to either VCC  
or GND on the mode select pins. A dedicated DCE port  
using a DB-25 female connector is shown in Figure 23.  
A port with one DB-25 connector, can be configured for  
either DTE or DCE operation is shown in Figure 24. The  
configuration requires separate cables for proper signal  
routing in DTE or DCE operation. For example, in DTE  
mode, the TXD signal is routed to Pins 2 and 14 via Driver  
1 in the LTC1543. In DCE mode, Driver 1 now routes the  
RXD signal to Pins 2 and 14.  
Charge Pump  
The LTC1543 uses an internal capacitive charge pump to  
generate VDD and VEE as shown in Figure 21. A voltage  
doubler generates about 8V on VDD and a voltage inverter  
generates about 7.5V for VEE. Four 1µF surface mounted  
tantalum or ceramic capacitors are required for C1, C2, C3  
and C4. The VEE capacitor C5 should be a minimum of  
3.3µF.Allcapacitorsare16Vandshouldbeplacedasclose  
as possible to the LTC1543 to reduce EMI. The turn-on  
time for the charge pump is 60ms.  
Compliance Testing  
A European standard EN 45001 test report is available for  
the LTC1343/LTC1545/LTC1344A chipset. A copy of the  
test report is available from LTC or TUV Telecom Services  
Inc. (formerly Detecon Inc.)  
3
2
1
4
28  
27  
26  
25  
+
V
C2  
C2  
V
DD  
+
C2  
C3  
1µF  
1µF  
C1  
C1  
V
The title of the report is:  
C1  
LTC1543  
1µF  
Test Report No. NET2/071601/98.  
The address of TUV Telecom Services Inc. is:  
EE  
C5  
3.3µF  
+
GND  
5V  
CC  
C4  
1µF  
TUV Telecom Services Inc.  
Suite 107  
1545 F21  
1775 Old Highway 8  
St. Paul, MN 55112 USA  
Tel. +1 (612) 639-0775  
Fax. +1 (612) 639-0873  
Figure 21. Charge Pump  
Receiver Fail-Safe  
All LTC1543/LTC1545 receivers feature fail-safe opera-  
tion in all modes. If the receiver inputs are left floating or  
shorted together by a termination resistor, the receiver  
output will always be forced to a logic high.  
12  
LTC1545  
U
TYPICAL APPLICATIONS  
C6  
C7  
C8  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
14  
21  
V
CC  
LATCH  
C13  
1µF  
3
1
28  
C2  
C3  
1µF  
27  
26  
1µF  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
2
4
C4  
C12  
+
3.3µF  
1µF  
25  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
LTC1543  
D1  
2
24  
TXD A (103)  
5
6
7
TXD  
23  
22  
14  
24  
TXD B  
SCTE A (113)  
SCTE B  
SCTE  
D2  
D3  
11  
21  
20  
19  
18  
17  
16  
15  
15  
12  
TXC A (114)  
TXC B  
8
9
R1  
R2  
R3  
TXC  
RXC  
RXD  
17  
9
RXC A (115)  
RXC B  
3
16  
7
RXD A (104)  
RXD B  
10  
11  
12  
13  
14  
M0  
M1  
M2  
SG  
1
SHIELD  
DCE/DTE  
V
CC  
5V  
DB-25 MALE  
CONNECTOR  
C10  
1µF  
C9  
1µF  
36  
35  
1,19  
2,20  
V
V
EE  
GND  
CC  
C11  
1µF  
V
DD  
34  
4
RTS A (105)  
RTS B  
3
4
5
RTS  
D1  
D2  
D3  
33  
32  
31  
19  
20  
23  
DTR A (108)  
DTR B  
DTR  
LTC1545  
30  
29  
28  
27  
8
10  
6
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
DCD  
DSR  
CTS  
DSR A (107)  
22  
DSR B  
5
13  
18  
26  
25  
24  
CTS A (106)  
CTS B  
9
LL (141)  
D4  
R4  
LL  
RI  
23  
*
10  
RI (125)  
22  
21  
17  
18  
25  
21  
TM (142)  
RL (140)  
R5  
TM  
RL  
D5  
11  
12  
13  
14  
15  
16  
M0  
M1  
M2  
D4ENB  
R4EN  
NC  
*OPTIONAL  
DCE/DTE  
M0  
M1  
M2  
1544 F22  
Figure 22. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector  
13  
LTC1545  
TYPICAL APPLICATIONS  
U
C6  
C7  
C8  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
21  
14  
LATCH  
V
CC  
C13  
1µF  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
2
4
C4  
C12  
+
3.3µF  
1µF  
25  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
LTC1543  
D1  
V
CC  
3
24  
RXD A (104)  
RXD B  
5
6
7
RXD  
RXC  
23  
22  
16  
17  
9
RXC A (115)  
RXC B  
D2  
D3  
21  
20  
19  
18  
17  
16  
15  
15  
12  
TXC A (114)  
TXC B  
8
9
R1  
R2  
R3  
TXC  
SCTE  
TXD  
24  
11  
SCTE A (113)  
SCTE B  
2
14  
7
TXD A (103)  
TXD B  
10  
11  
12  
13  
14  
M0  
M1  
M2  
SGND (102)  
1
SHIELD (101)  
DCE/DTE  
NC  
V
CC  
5V  
DB-25 FEMALE  
CONNECTOR  
C9  
1µF  
C10  
1µF  
36  
35  
1,19  
2,20  
V
V
EE  
GND  
CC  
C11  
1µF  
V
DD  
5
34  
CTS A (106)  
CTS B  
3
4
5
CTS  
13  
6
D1  
D2  
D3  
33  
32  
31  
DSR A (107)  
DSR B  
22  
DSR  
LTC1545  
30  
29  
28  
27  
8
10  
20  
23  
DCD A (109)  
DCD B  
6
7
8
R1  
R2  
R3  
DCD  
DTR  
DTR A (108)  
DTR B  
4
19  
*
26  
25  
24  
RTS A (105)  
RTS B  
RTS  
RI  
9
D4  
R4  
RI (125)  
18  
23  
10  
LL  
LL (141)  
22  
21  
21  
25  
17  
18  
RL (140)  
TM (142)  
R5  
RL  
D5  
TM  
11  
12  
13  
14  
15  
16  
M0  
M1  
M2  
D4ENB  
R4EN  
NC  
NC  
*OPTIONAL  
DCE/DTE  
M0  
M1  
M2  
1544 F23  
Figure 23. Controller-Selectable DCE Port with DB-25 Connector  
14  
LTC1545  
U
TYPICAL APPLICATIONS  
C6  
C7  
C8  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
14  
21  
V
LATCH  
CC  
C13  
1µF  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
2
4
C4  
C12  
+
3.3µF  
1µF  
25  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
LTC1543  
D1  
DTE  
TXD A  
DCE  
RXD A  
2
24  
5
6
7
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
23  
22  
14  
24  
TXD B  
RXD B  
RXC A  
RXC B  
SCTE A  
SCTE B  
D2  
D3  
11  
21  
20  
19  
18  
17  
16  
15  
15  
12  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
8
9
R1  
R2  
R3  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
17  
9
3
16  
7
10  
11  
M0  
M1  
M2  
12  
13  
14  
SG  
1
SHIELD  
DCE/DTE  
V
CC  
5V  
DB-25  
CONNECTOR  
C10  
1µF  
C9  
1µF  
36  
35  
1,19  
2,20  
V
V
EE  
GND  
CC  
C11  
1µF  
V
DD  
34  
4
RTS A  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
33  
32  
31  
19  
20  
23  
RTS B  
DTR A  
DTR B  
LTC1545  
30  
29  
28  
27  
8
10  
6
6
7
8
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
R1  
R2  
R3  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
22  
DSR B  
CTS A  
CTS B  
LL  
DTR B  
RTS A  
RTS B  
RI  
5
13  
18  
26  
25  
24  
9
D4  
R4  
DTE_LL/DCE_RI  
DTE_RI/DCE_LL  
23  
*
10  
RI  
LL  
25  
21  
22  
21  
17  
18  
R5  
TM  
RL  
RL  
DTE_TM/DCE_RL  
DTE_RL/DCE_TM  
D5  
TM  
15  
16  
11  
12  
13  
14  
M0  
M1  
M2  
D4ENB  
R4EN  
NC  
DCE/DTE  
*OPTIONAL  
DCE/DTE  
M0  
M1  
M2  
1544 F24  
Figure 24. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1545  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
36-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
12.67 – 12.93*  
(0.499 – 0.509)  
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19  
7.65 – 7.90  
(0.301 – 0.311)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14 15 16 17 18  
5.20 – 5.38**  
(0.205 – 0.212)  
1.73 – 1.99  
(0.068 – 0.078)  
0° – 8°  
0.65  
(0.0256)  
BSC  
0.13 – 0.22  
0.55 – 0.95  
(0.005 – 0.009)  
(0.022 – 0.037)  
0.05 – 0.21  
(0.002 – 0.008)  
0.25 – 0.38  
(0.010 – 0.015)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
G36 SSOP 1098  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1321  
Dual RS232/RS485 Transceiver  
Dual RS232/RS485 Transceiver  
Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
Four RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
Two RS232 Driver/Receiver Pairs or Four RS232 Driver/Receiver Pairs  
Four RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
4-Driver/4-Receiver for Data and Clock Signals  
LTC1322  
LTC1334  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Dual RS232/RS485 Transceiver  
LTC1335  
LTC1343  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Cable Terminator  
Single Supply V.35 Transceiver  
LTC1344A  
LTC1345  
Perfect for Terminating the LTC1543  
3-Driver/3-Receiver for Data and Clock Signals  
LTC1346A  
LTC1543  
Dual Supply V.35 Transceiver  
3-Driver/3-Receiver for Data and Clock Signals  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Companion to LTC1544/LTC1545 for Data and Clock Signals  
4-Driver/4-Receiver for Control Signals  
LTC1544  
LTC1387  
Two RS232 Driver/Receiver Pairs or One RS485 Driver/Receiver Pair  
sn1545 1545fas LT/TP 1199 2K REV A • PRINTED IN  
USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 1998  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1545CG#TRPBF

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC1545I

Software-Selectable Multiprotocol Transceiver
Linear

LTC1545IG

Software-Selectable Multiprotocol Transceiver
Linear

LTC1545IG#PBF

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC1545IG#TR

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC1545IG#TRPBF

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC1546

Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC1546C

Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC1546CG

Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC1546I

Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC1546IG

Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC1546IG#PBF

LTC1546 - Software-Selectable Multiprotocol Transceiver with Termination; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C
Linear