LTC1546CG [Linear]

Software-Selectable Multiprotocol Transceiver with Termination; 软件可选的多协议收发器与终止
LTC1546CG
型号: LTC1546CG
厂家: Linear    Linear
描述:

Software-Selectable Multiprotocol Transceiver with Termination
软件可选的多协议收发器与终止

文件: 总20页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LTC1546  
Software-Selectable  
Multiprotocol Transceiver  
with Termination  
December 1999  
U
FEATURES  
DESCRIPTIO  
The LTC®1546 is a 3-driver/3-receiver multiprotocol trans-  
ceiver with on-chip cable termination. When combined with  
the LTC1544, this chip set forms a complete software-  
selectable DTE or DCE interface port that supports the  
RS232, RS449, EIA530, EIA530-A, V.35, V.36 and X.21  
protocols. All necessary cable termination is provided inside  
the LTC1546. In most applications, the LTC1546 replaces  
both an LTC1543 and an LTC1344A without any changes to  
the PC board.  
Software-Selectable Transceiver Supports:  
RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21  
TUV Telecom Services Inc. Certified NET1,  
NET2 and TBR2 Compliant  
On-Chip Cable Termination  
Pin Compatible with LTC1543  
Complete DTE or DCE Port with LTC1544  
Operates from Single 5V Supply  
Small Footprint  
The LTC1546 runs from a single 5V supply using an internal  
charge pump that requires only five space-saving surface  
mounted capacitors. The LTC1546 is available in a 28-lead  
SSOP surface mount package.  
U
APPLICATIO S  
Data Networking  
CSU and DSU  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Data Routers  
U
TYPICAL APPLICATIO  
Complete DTE or DCE Multiprotocol Serial Interface with DB-25 Connector  
LL  
CTS  
DSR  
DCD  
DTR  
RTS  
TXC  
SCTE  
TXD  
RXD  
RXC  
LTC1546  
LTC1544  
D3  
D4  
D2  
D1  
D3  
D2  
T
D1  
T
R4  
R3  
R2  
R1  
R3  
T
R2  
T
R1  
T
18  
13  
5
10  
8
22  
6
23 20 19  
4
1
7
16  
3
9
17  
12 15 11 24 14  
2
DB-25 CONNECTOR  
1546 TA01  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LTC1546  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Supply Voltage ....................................................... 6.5V  
Input Voltage  
Transmitters ........................... 0.3V to (VCC + 0.3V)  
Receivers............................................... 18V to 18V  
Logic Pins .............................. 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters ................. (VEE – 0.3V) to (VDD + 0.3V)  
Receivers................................ 0.3V to (VCC + 0.3V)  
VEE........................................................ 10V to 0.3V  
VDD ....................................................... 0.3V to 10V  
Short-Circuit Duration  
Transmitter Output ..................................... Indefinite  
Receiver Output.......................................... Indefinite  
VEE.................................................................. 30 sec  
Operating Temperature Range  
ORDER PART  
NUMBER  
TOP VIEW  
+
+
C1  
C1  
1
2
3
4
5
6
7
8
9
28 C2  
27 C2  
CHARGE PUMP  
V
26 V  
EE  
DD  
LTC1546CG  
LTC1546IG  
V
25 GND  
24 D1 A  
23 D1 B  
22 D2 A  
21 D2 B  
20 D3/R1 A  
19 D3/R1 B  
18 R2 A  
17 R2 B  
16 R3 A  
15 R3 B  
CC  
D1  
D2  
D3  
R1  
R2  
D1  
D2  
D3  
T
T
T
T
T
R3 10  
M0 11  
R1  
R2  
M1 12  
M2 13  
R3  
DCE/DTE 14  
LTC1546C ............................................... 0°C to 70°C  
LTC1546I........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 90°C/ W*  
*θJA SOLDERED TO A TYPICAL CIRCUIT BOARD  
IS TYPICALLY 60°C/W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3)  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
Supply Current (DCE Mode,  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.35 Mode  
V.28 Mode, No Load  
V.28 Mode, Full Load  
14  
100  
126  
20  
35  
60  
mA  
mA  
mA  
mA  
mA  
µA  
CC  
CC  
All Digital Pins = GND or V  
)
130  
170  
CC  
75  
500  
No-Cable Mode  
P
V
Internal Power Dissipation (DCE Mode)  
Positive Charge Pump Output Voltage  
RS530, RS530-A, X.21 Modes, Full Load  
V.35 Mode, Full Load  
V.28 Mode, Full Load  
410  
625  
150  
mW  
mW  
mW  
D
+
V.11 or V.28 Mode, No Load  
V.35 Mode  
V.28 Mode, with Load  
8.0  
7.0  
8.0  
9.3  
8.0  
8.7  
6.5  
V
V
V
V
V.28 Mode, with Load, I = 10mA  
DD  
V
Negative Charge Pump Output Voltage  
V.28 Mode, No Load  
V.28 Mode, Full Load  
V.35 Mode  
9.6  
8.5  
6.5  
6.0  
V
V
V
V
7.5  
5.5  
4.5  
RS530, RS530-A, X.21 Modes, Full Load  
2
LTC1546  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
500  
2
MAX  
UNITS  
kHz  
f
t
Charge Pump Oscillator Frequency  
Charge Pump Rise Time  
OSC  
r
No-Cable Mode/Power-Off to Normal Operation  
ms  
Logic Inputs and Outputs  
V
V
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
2
V
V
IH  
IL  
0.8  
I
D1, D2, D3  
M0, M1, M2, DCE = GND  
M0, M1, M2, DCE = V  
±10  
30  
±10  
µA  
µA  
µA  
IN  
120  
3
75  
CC  
V
V
Output High Voltage  
I = 3mA  
O
4.5  
0.3  
V
V
OH  
OL  
Output Low Voltage  
I = 3mA  
O
0.45  
50  
I
I
Output Short-Circuit Current  
Three-State Output Current  
0V V V  
CC  
50  
mA  
µA  
OSR  
OZR  
O
M0 = M1 = M2 = V , 0V V V  
CC  
±1  
CC  
O
V.11 Driver  
V
V
Open Circuit Differential Output Voltage  
Loaded Differential Output Voltage  
R = 1.95k (Figure 1)  
± 5  
V
ODO  
ODL  
L
R = 50(Figure 1)  
0.5V  
±2  
0.67V  
ODO  
V
V
L
ODO  
R = 50(Figure 1)  
L
V  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
V
OD  
V
Common Mode Output Voltage  
R = 50(Figure 1)  
3
V
V
OC  
L
V  
Change in Magnitude of Common Mode  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
OC  
I
I
Short-Circuit Current  
V
= GND  
±150  
±100  
mA  
SS  
OZ  
OUT  
Output Leakage Current  
V
and V 0.25V, Power Off or  
± 1  
µA  
A
B
No-Cable Mode or Driver Disabled  
t , t  
Rise or Fall Time  
(Figures 2, 13)  
2
15  
15  
0
15  
40  
40  
3
25  
65  
65  
12  
ns  
ns  
ns  
ns  
ns  
r
f
PLH  
PHL  
t
t
Input to Output Rising  
Input to Output Falling  
(Figures 2, 13)  
(Figures 2, 13)  
t  
Input to Output Difference, t  
Output to Output Skew  
– t  
(Figures 2, 13)  
PLH  
PHL  
t
(Figures 2, 13)  
3
SKEW  
V.11 Receiver  
V
Input Threshold Voltage  
Input Hysteresis  
7V V 7V  
0.2  
100  
0.2  
40  
V
mV  
TH  
CM  
V  
7V V 7V  
15  
103  
15  
50  
50  
4
TH  
CM  
R
Input Impedance  
–7V V 7V (Figure 3)  
CM  
IN  
t , t  
Rise or Fall Time  
C = 50pF (Figures 4, 14)  
L
ns  
ns  
ns  
ns  
r
f
PLH  
PHL  
t
t
Input to Output Rising  
Input to Output Falling  
Input to Output Difference, t  
C = 50pF (Figures 4, 14)  
L
90  
90  
25  
C = 50pF (Figures 4, 14)  
L
t  
– t  
C = 50pF (Figures 4, 14)  
L
0
PLH  
PHL  
V.35 Driver  
V
Differential Output Voltage  
Open Circuit, R = 1.95k (Figure 5)  
±1.2  
±0.66  
V
V
OD  
L
With Load, 4V V 4V (Figure 6)  
±0.44  
±0.55  
CM  
V
V
, V  
Single-Ended Output Voltage  
Transmitter Output Offset  
Open Circuit, R = 1.95k (Figure 5)  
±1.2  
±0.6  
V
V
OA OB  
L
R = 50(Figure 5)  
L
OC  
3
LTC1546  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
V , V = 0V  
MIN  
13  
9.0  
TYP  
11  
11  
±1  
100  
150  
5
MAX  
9.0  
13  
UNITS  
mA  
mA  
µA  
I
I
I
Transmitter Output High Current  
Transmitter Output Low Current  
Transmitter Output Leakage Current  
Transmitter Differential Mode Impedance  
Transmitter Common Mode Impedance  
Rise or Fall Time  
OH  
OL  
OZ  
A
B
V , V = 0V  
A
B
V
and V 0.25V  
±100  
150  
A
B
R
OD  
R
OC  
50  
2V V 2V (Figure 7)  
135  
165  
CM  
t , t  
(Figures 8, 13)  
(Figures 8, 13)  
(Figures 8, 13)  
(Figures 8, 13)  
(Figures 8, 13)  
ns  
r
f
PLH  
PHL  
t
t
Input to Output  
15  
15  
35  
35  
0
65  
65  
16  
ns  
Input to Output  
ns  
t  
Input to Output Difference, t  
Output to Output Skew  
– t  
ns  
PLH  
PHL  
t
4
ns  
SKEW  
V.35 Receiver  
V
Differential Receiver Input Threshold Voltage  
Receiver Input Hysteresis  
Receiver Differential Mode Impedance  
Receiver Common Mode Impedance  
Rise or Fall Time  
2V V 2V (Figure 9)  
0.2  
0.2  
40  
V
mV  
TH  
CM  
V  
2V V 2V (Figure 9)  
15  
103  
150  
15  
TH  
CM  
R
R
2V V 2V  
90  
110  
165  
ID  
IC  
CM  
2V V 2V (Figure 10)  
135  
CM  
t , t  
r
C = 50pF (Figures 4, 14)  
L
ns  
ns  
ns  
ns  
f
t
t
Input to Output  
C = 50pF (Figures 4, 14)  
L
50  
90  
90  
25  
PLH  
PHL  
Input to Output  
C = 50pF (Figures 4, 14)  
L
50  
t  
Input to Output Difference, t  
– t  
C = 50pF (Figures 4, 14)  
L
0
4
PLH  
PHL  
V.28 Driver  
V
Output Voltage  
Open Circuit  
R = 3k (Figure 11)  
L
±10  
V
V
O
±5  
±8.5  
I
Short-Circuit Current  
Power-Off Resistance  
V
= GND  
OUT  
±150  
mA  
SS  
R
2V < V < 2V, Power Off  
or No-Cable Mode  
300  
4
OZ  
O
SR  
Slew Rate  
R = 7k, C = 0 (Figures 11, 15)  
30  
2.5  
2.5  
V/µs  
µs  
L
L
t
t
Input to Output  
Input to Output  
R = 3k, C = 2500pF (Figures 11, 15)  
1.5  
1.5  
PLH  
PHL  
L
L
R = 3k, C = 2500pF (Figures 11, 15)  
µs  
L
L
V.28 Receiver  
V
V
Input Low Threshold Voltage  
Input High Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Impedance  
Rise or Fall Time  
(Figure 12)  
(Figure 12)  
(Figure 12)  
1.2  
1.2  
0.05  
5
0.8  
V
V
THL  
TLH  
2
0
3
V  
0.3  
7
V
TH  
R
15V V 15V  
kΩ  
ns  
ns  
ns  
IN  
A
t , t  
r
C = 50pF (Figures 12, 16)  
L
15  
f
t
t
Input to Output  
C = 50pF (Figures 12, 16)  
L
60  
300  
300  
PLH  
PHL  
Input to Output  
C = 50pF (Figures 12, 16)  
L
160  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 3: All typicals are given for V = 5V, C1 = C2 = C  
= C  
= 1µF,  
VDD  
CC  
VCC  
C
= 3.3µF and T = 25°C.  
VEE A  
Note 2: All currents into device pins are positive; all currents out of device  
are negative. All voltages are referenced to device ground unless otherwise  
specified.  
4
LTC1546  
U
U
U
PI FU CTIO S  
C1(Pin 1): Capacitor C1 Negative Terminal. Connect a  
R3 B (Pin 15): Receiver 3 Noninverting Input.  
1µF capacitor between C1+ and C1.  
R3 A (Pin 16): Receiver 3 Inverting Input.  
R2 B (Pin 17): Receiver 2 Noninverting Input.  
R2 A (Pin 18): Receiver 2 Inverting Input.  
C1+ (Pin 2): Capacitor C1 Positive Terminal. Connect a  
1µF capacitor between C1+ and C1.  
VDD (Pin 3): Generated Positive Supply Voltage for  
V.28. Connect a 1µF capacitor to ground.  
D3/R1 B (Pin 19): Receiver 1 Noninverting Input and  
Driver 3 Noninverting Output.  
V
CC (Pin 4): Positive Supply Voltage Input. 4.75V VCC  
5.25V. Bypass with a 1µF capacitor to ground.  
D3/R1 A (Pin 20): Receiver 1 Inverting Input and Driver 3  
Inverting Output.  
D1 (Pin 5): TTL Level Driver 1 Input.  
D2 B (Pin 21): Driver 2 Noninverting Output.  
D2 A (Pin 22): Driver 2 Inverting Output.  
D1 B (Pin 23): Driver 1 Noninverting Output.  
D1 A (Pin 24): Driver 1 Inverting Output.  
GND (Pin 25): Ground.  
D2 (Pin 6): TTL Level Driver 2 Input.  
D3 (Pin 7): TTL Level Driver 3 Input.  
R1 (Pin 8): CMOS Level Receiver 1 Output.  
R2 (Pin 9): CMOS Level Receiver 2 Output.  
R3 (Pin 10): CMOS Level Receiver 3 Output.  
V
EE (Pin 26): Negative Supply Voltage. Connect a 3.3µF  
M0 (Pin 11): TTL Level Mode Select Input 0 with Pull-Up  
to VCC. See Table 1.  
capacitor to GND.  
C2(Pin 27): Capacitor C2 Negative Terminal. Connect a  
M1 (Pin 12): TTL Level Mode Select Input 1 with Pull-Up  
to VCC. See Table 1.  
1µF capacitor between C2+ and C2.  
C2+ (Pin 28): Capacitor C2 Positive Terminal. Connect a  
1µF capacitor between C2+ and C2.  
M2 (Pin 13): TTL Level Mode Select Input 2 with Pull-Up  
to VCC. See Table 1.  
DCE/DTE (Pin 14): TTL Level Mode Select Input with Pull-  
Up to VCC. See Table 1.  
5
LTC1546  
W
BLOCK DIAGRA  
CHARGE  
PUMP  
+
+
+
C1  
C1  
C1  
V
C2  
C2  
V
C2  
C2  
V
1
2
3
4
28  
27  
26  
25  
+
C1  
V
DD  
DD  
CC  
EE  
EE  
V
V
GND  
GND  
CC  
24 D1A  
50  
S1  
D1  
5
D1  
S2  
125Ω  
50Ω  
D1B  
23  
22 D2A  
50Ω  
S1  
D2  
D3  
6
7
D2  
D3  
S2  
125Ω  
50Ω  
D2B  
21  
20 D3/R1 A  
20k  
10k  
6k  
51.5Ω  
S3  
S1  
S2  
125Ω  
DCE/DTE 14  
10k  
20k  
51.5Ω  
20k  
19 D3/R1 B  
R1  
R2  
8
9
R1  
R2A  
18  
6k  
S3  
10k  
51.5Ω  
S2  
R2  
125Ω  
10k  
51.5Ω  
R2B  
R3A  
17  
16  
20k  
20k  
6k  
S3  
10k  
51.5Ω  
51.5Ω  
S2  
R3 10  
R3  
125Ω  
10k  
20k  
R3B  
15  
1546 BD  
6
LTC1546  
TEST CIRCUITS  
C
L
R
R
L
100pF  
B
A
B
A
D
D
R
L
V
OD  
100Ω  
C
L
V
OC  
100pF  
L
1546 F02  
1546 F01  
Figure 1. V.11 Driver DC Test Circuit  
Figure 2. V.11 Driver AC Test Circuit  
I
B
B
R
B
I
A
R
C
A
L
A
+
= ±7V  
V
CM  
2(V – V )  
B
A
R
=
IN  
I
B
– I  
1546 F04  
A
1546 F03  
Figure 3. Input Impedance Test Circuit  
Figure 4. V.11, V.35 Receiver AC Test Circuit  
V
V
OB  
OB  
50  
50Ω  
R
R
50  
50Ω  
50Ω  
50Ω  
L
L
125Ω  
125Ω  
125Ω  
125Ω  
V
OD  
50Ω  
50Ω  
+
V
OC  
V
CM  
= ±2V  
V
CM  
1546 F05  
1546 F07  
1546 F06  
V
V
OA  
OA  
Figure 5. V.35 Driver Open-Circuit Test  
Figure 6. V.35 Driver Test Circuit  
Figure 7. V.35 Driver Common Mode  
Impedance Test Circuit  
51.5Ω  
125Ω  
50Ω  
50Ω  
50Ω  
125Ω  
125Ω  
+
+
V
V
CM  
= ±2V  
TH  
50Ω  
51.5Ω  
+
V
1546 F08  
CM  
1546 F09  
1546 F10  
Figure 8. V.35 Driver AC Test Circuit  
Figure 9. V.35 Receiver DC Test Circuit  
Figure 10. Receiver Common Mode  
Impedance Test Circuit  
D
A
A
R
R
C
V
C
L
L
L
A
1546 F11  
1546 F12  
Figure 11. V.28 Driver Test Circuit  
Figure 12. V.28 Receiver Test Circuit  
7
LTC1546  
W
U
ODE SELECTIO  
Table 1  
LTC1546 MODE NAME  
Not Used (Default V.11)  
RS530A  
M2  
M1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
M0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DCE/DTE  
D1  
D2  
D3  
Z
R1  
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
R2  
R3  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Z
RS530  
Z
X.21  
Z
V.35  
Z
RS449/V.36  
V.28/RS232  
No Cable  
Z
Z
Z
Not Used (Default V.11)  
RS530A  
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.28  
Z
Z
RS530  
Z
X.21  
Z
V.35  
Z
RS449/V.36  
V.28/RS232  
No Cable  
Z
Z
Z
U
W
W
SWITCHI G TI E WAVEFOR S  
5V  
f = 1MHz : t 10ns : t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
V
O
90%  
90%  
10%  
B – A  
50%  
50%  
10%  
–V  
O
1/2 V  
O
t
t
f
r
A
V
O
B
t
t
1546 F13  
SKEW  
SKEW  
Figure 13. V.11, V.35 Driver Propagation Delays  
V
B – A  
OD2  
f = 1MHz : t 10ns : t 10ns  
INPUT  
r
f
0V  
t
0V  
–V  
OD2  
t
PLH  
PHL  
V
R
OH  
OUTPUT  
1.5V  
1.5V  
V
OL  
1546 F14  
Figure 14. V.11, V.35 Receiver Propagation Delays  
8
LTC1546  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
1.5V  
t
1.5V  
D
0V  
PHL  
3V  
t
PLH  
V
O
3V  
SR =  
1546 F15  
6V  
f
6V  
r
0V  
0V  
SR =  
–3V  
A
t
t
–3V  
–V  
O
t
t
r
f
Figure 15. V.28 Driver Propagation Delays  
V
IH  
1.7V  
A
1.3V  
V
IL  
t
PHL  
t
PLH  
V
OH  
2.4V  
R
1546 F16  
0.8V  
V
OL  
Figure 16. V.28 Receiver Propagation Delays  
W U U  
U
APPLICATIO S I FOR ATIO  
Overview  
electrical mode. The DCE/DTE pin will configure the port  
for DCE mode when high, and DTE when low.  
The LTC1546 and LTC1544 form a complete software-  
selectable DTE or DCE interface port that supports the  
RS232, RS449, EIA530, EIA530-A, V.35, V.36 and X.21  
protocols. Cable termination is provided on-chip, elimi-  
nating the need for discrete termination designs.  
Theinterfaceprotocolmaybeselectedsimplybyplugging  
the appropriate interface cable into the connector. The  
mode pins are routed to the connector and are left uncon-  
nected (1) or wired to ground (0) in the cable as shown in  
Figure 18. The internal pull-up current sources will ensure  
a binary 1 when a pin is left unconnected.  
A complete DCE-to-DTE interface operating in EIA530  
modeisshowninFigure17. TheLTC1546halfofeachport  
is used to generate and appropriately terminate the clock  
and data signals. The LTC1544 is used to generate the  
control signals along with LL (Local Loopback).  
The mode selection may also be accomplished by using  
jumpers to connect the mode pins to ground or VCC.  
When the cable is removed, leaving all mode pins uncon-  
nected, the LTC1546/LTC1544 will enter no-cable mode.  
In this mode the LTC1546/LTC1544 supply current drops  
to less than 500µA and the LTC1546/LTC1544 driver  
outputs are forced into a high impedance state. At the  
same time, the R2 and R3 receivers of the LTC1546 are  
differentially terminated with 103and the other receiv-  
ers on the LTC1546 and LTC1544 are terminated with  
30kto ground.  
Mode Selection  
The interface protocol is selected using the mode select  
pins M0, M1 and M2 (see Table 1).  
For example, if the port is configured as a V.35 interface,  
the mode selection pins should be M2 =1, M1=0, M0 = 0.  
For the control signals, the drivers and receivers will  
operateinV.28(RS232)electricalmode. Fortheclockand  
data signals, the drivers and receivers will operate in V.35  
9
LTC1546  
W U U  
U
APPLICATIO S I FOR ATIO  
DTE  
DCE  
SERIAL  
CONTROLLER  
LTC1546  
LTC1546  
SERIAL  
CONTROLLER  
103Ω  
103Ω  
R3  
D1  
D2  
D3  
TXD  
TXD  
TXD  
SCTE  
R2  
R1  
SCTE  
SCTE  
D3  
TXC  
RXC  
RXD  
R1  
103Ω  
103Ω  
103Ω  
TXC  
RXC  
RXD  
TXC  
RXC  
R2  
R3  
D2  
D1  
RXD  
LTC1544  
R3  
LTC1544  
D1  
RTS  
DTR  
RTS  
DTR  
RTS  
DTR  
D2  
D3  
R2  
R1  
D3  
DCD  
DSR  
R1  
R2  
R3  
DCD  
DSR  
DCD  
DSR  
D2  
D1  
CTS  
LL  
CTS  
LL  
CTS  
LL  
D4  
R4  
R4  
D4  
1546 F17  
Figure 17. Complete Multiprotocol Interface in EIA530 Mode  
Cable Termination  
may contain termination in the cable head or route signals  
to various terminations on the board.  
Traditional implementations used expensive relays to  
switch resistors or required the user to change termina-  
tion modules every time a new interface standard was  
selected. Switching the terminations with FETs is difficult  
because the FETs must remain off when the signal voltage  
is beyond the supply voltage. Alternatively, custom cables  
The LTC1546/LTC1544 chipset solves the cable termina-  
tion switching problem by automatically providing the  
appropriate termination and switching on-chip for the  
V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35  
electrical protocols.  
10  
LTC1546  
W U U  
APPLICATIO S I FOR ATIO  
U
(DATA)  
CONNECTOR  
11  
12  
13  
14  
M0  
LTC1546  
M1  
M2  
NC  
NC  
DCE/DTE  
CABLE  
14  
13  
12  
11  
DCE/DTE  
M2  
LTC1544  
M1  
M0  
1546 F18  
(DATA)  
Figure 18: Single Port DCE V.35 Mode Selection in the Cable  
BALANCED  
INTERCONNECTING  
CABLE  
V.10 (RS423) Interface  
LOAD  
GENERATOR  
All V.10 drivers and receivers necessary for the RS449,  
EIA530, EIA530-A, V.36 and X.21 protocols are imple-  
mented on the LTC1544.  
CABLE  
TERMINATION  
RECEIVER  
A
A'  
A typical V.10 unbalanced interface is shown in Figure 19.  
A V.10 single-ended generator with output A and ground  
C is connected to a differential receiver with input A  
'
con-  
1546 F19  
C
C'  
nected to A, and ground C connected via the signal return  
'
Figure 19. Typical V.10 Interface  
to ground C. Usually, no cable termination is required for  
V.10 interfaces, but the receiver inputs must be compliant  
with the impedance curve shown in Figure 20.  
I
Z
3.25mA  
The V.10 receiver configuration in the LTC1544 is shown  
in Figure 21. In V.10 mode, switch S3 inside the LTC1544  
is turned off. The noninverting input is disconnected  
insidetheLTC1544receiverandconnectedtoground.The  
cable termination is then the 30k input impedance to  
ground of the LTC1544 V.10 receiver.  
–10V  
–3V  
V
Z
3V  
10V  
V.11 (RS422) Interface  
A typical V.11 balanced interface is shown in Figure 22. A  
V.11 differential generator with outputs A and B and  
ground C is connected to a differential receiver with input  
1546 F20  
–3.25mA  
A
'
connected to A, input B  
' connected to B, and ground C'  
connected via the signal return to ground C. The V.11  
Figure 20. V.10 Receiver Input Impedance  
11  
LTC1546  
APPLICATIO S I FOR ATIO  
W U U  
U
A
A'  
A'  
LTC1546  
LTC1544  
R5  
20k  
R5  
20k  
R1  
R8  
6k  
R8  
6k  
51.5Ω  
R6  
10k  
R6  
10k  
RECEIVER  
RECEIVER  
S3  
S1  
S2  
S3  
R3  
124Ω  
R7  
10k  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
R4  
20k  
B
B'  
B'  
C'  
C'  
1546 F23  
1546 F21  
GND  
GND  
Figure 21. V.10 Receiver Configuration  
Figure 23. V.11 Receiver Configuration  
connected to A and ground C  
return to ground C.  
'
connected via the signal  
BALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
In V.28 mode, S3 is closed inside the LTC1546/LTC1544  
which connects a 6k (R8) impedance to ground in parallel  
with 20k (R5) plus 10k (R6) for a combined impedance of  
5k as shown in Figure 25. Proper termination is only pro-  
videdwhentheBinputofthereceiversisfloating, sinceS1  
of the LTC1546’s R2 and R3 receivers remains on in V.28  
mode1. The noninverting input is disconnected inside the  
LTC1546/LTC1544 receiver and connected to a TTL level  
reference voltage to give a 1.4V receiver trip point.  
CABLE  
TERMINATION  
RECEIVER  
A
A'  
100Ω  
MIN  
B
C
B'  
C'  
1546 F22  
Figure 22. Typical V.11 Interface  
BALANCED  
interface has a differential termination at the receiver end  
that has a minimum value of 100. The termination  
resistor is optional in the V.11 specification, but for the  
high speed clock and data lines, the termination is essen-  
tial to prevent reflections from corrupting the data. The  
receiver inputs must also be compliant with the imped-  
ance curve shown in Figure 20.  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
A
A'  
1546 F24  
C
C'  
In V.11 mode, all switches are off except S1 of the  
LTC1546’s receivers which connects a 103differential  
termination impedance to the cable as shown in Figure  
231. The LTC1544 only handles control signals, so no  
terminationotherthanitsV.11receivers30kinputimped-  
ance is necessary.  
Figure 24. Typical V.28 Interface  
A
'
LTC1546  
R5  
20k  
R1  
51.5Ω  
R8  
6k  
R6  
10k  
RECEIVER  
S3  
S1  
S2  
R3  
124Ω  
V.28 (RS232) Interface  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
A typical V.28 unbalanced interface is shown in Figure 24.  
A V.28 single-ended generator with output A and ground  
B
'
C is connected to a single-ended receiver with input A  
'
1546 F25  
GND  
C
'
1Actually, there is no switch S1 in receivers R2 and R3. However, for simplicity, all termination  
networks on the LTC1546 can be treated identically if it is assumed that an S1 switch exists and is  
always closed on the R2 and R3 receivers.  
Figure 25. V.28 Receiver Configuration  
12  
LTC1546  
W U U  
APPLICATIO S I FOR ATIO  
V.35 Interface  
U
No-Cable Mode  
The no-cable mode (M0 = M1 = M2 = 1) is intended for  
the case when the cable is disconnected from the con-  
nector. The charge pump, bias circuitry, drivers and  
receiversareturnedoff, thedriveroutputsareforcedinto  
a high impedance state, and the supply current drops to  
less than 200µA. Note that the LTC1546’s R2 and R3  
receivers continue to be terminated by a 103differen-  
tial impedance.  
A typical V.35 balanced interface is shown in Figure 26. A  
V.35 differential generator with outputs A and B and  
ground C is connected to a differential receiver with input  
A' connected to A, input B' connected to B, and ground C'  
connected via the signal return to ground C. The V.35  
interface requires a T or delta network termination at the  
receiver end and the generator end. The receiver differen-  
tial impedance measured at the connector must be  
100Ω ±10, and the impedance between shorted termi-  
Charge Pump  
nals (A' and B') and ground (C') must be 150Ω ±15.  
The LTC1546 uses an internal capacitive charge pump to  
generate VDD and VEE as shown in Figure 28. A voltage  
doubler generates about 8V on VDD and a voltage inverter  
generates about 7.5V on VEE. Four 1µF surface mounted  
tantalum or ceramic capacitors are required for C1, C2, C3  
and C4. The VEE capacitor C5 should be a minimum of  
3.3µF.Allcapacitorsare16Vandshouldbeplacedasclose  
as possible to the LTC1546 to reduce EMI.  
InV.35mode,bothswitchesS1andS2insidetheLTC1546  
are on, connecting a T network impedance as shown in  
Figure 27. The 30k input impedance of the receiver is  
placed in parallel with the T network termination, but does  
not affect the overall input impedance significantly.  
The generator differential impedance must be 50to  
150and the impedance between shorted terminals (A  
and B) and ground (C) must be 150Ω ±15.  
BALANCED  
3
2
1
4
28  
27  
26  
25  
INTERCONNECTING  
+
V
C2  
C2  
DD  
+
CABLE  
GENERATOR  
LOAD  
C2  
1µF  
C3  
1µF  
CABLE  
TERMINATION  
C1  
C1  
V
RECEIVER  
C1  
1µF  
LTC1546  
A'  
A
V
EE  
C5  
3.3µF  
+
50Ω  
50Ω  
125Ω  
125Ω  
GND  
5V  
CC  
C4  
1µF  
50Ω  
50Ω  
B
'
B
C
1546 F28  
C'  
1546 F26  
Figure 28. Charge Pump  
Figure 26. Typical V.35 Interface  
Receiver Fail-Safe  
A
'
LTC1546  
All LTC1546/LTC1544 receivers feature fail-safe opera-  
tion in all modes. If the receiver inputs are left floating or  
areshortedtogetherbyaterminationresistor, thereceiver  
output will always be forced to a logic high.  
R5  
20k  
R1  
R8  
6k  
51.5Ω  
R6  
10k  
RECEIVER  
S1  
S2  
S3  
R3  
124Ω  
DTE vs DCE Operation  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
The DCE/DTE pin acts as an enable for Driver 3/Receiver  
1 in the LTC1546, and Driver 3/Receiver 1 and Driver 4/  
Receiver4intheLTC1544.TheINVERTpinintheLTC1544  
allowstheDriver4/Receiver4enabletobehighorlowtrue  
polarity.  
B
'
1546 F27  
GND  
C
'
Figure 27. V.35 Receiver Configuration  
13  
LTC1546  
W U U  
U
APPLICATIO S I FOR ATIO  
The LTC1546/LTC1544 can be configured for either DTE  
or DCE operation in one of two ways: a dedicated DTE or  
DCE port with a connector of appropriate gender or a port  
with one connector that can be configured for DTE or DCE  
operationbyreroutingthesignalstotheLTC1546/LTC1544  
using a dedicated DTE cable or dedicated DCE cable.  
Cable-Selectable Multiprotocol Interface  
A cable-selectable multiprotocol DTE/DCE interface is  
shown in Figure 33. The select lines M0, M1 and DCE/DTE  
are brought out to the connector. The mode is selected by  
the cable by wiring M0 (connector Pin 18) and M1 (con-  
nector Pin 21) and DCE/DTE (connector Pin 25) to ground  
(connector Pin 7) or letting them float. If M0, M1 or DCE/  
DTE is floating, internal pull-up current sources will pull  
the signals to VCC. The select bit M2 is hard wired to VCC.  
When the cable is pulled out, the interface will go into the  
no-cable mode.  
A dedicated DTE port using a DB-25 male connector is  
showninFigure29.Theinterfacemodeisselectedbylogic  
outputs from the controller or from jumpers to either VCC  
or GND on the mode select pins. A dedicated DCE port  
using a DB-25 female connector is shown in Figure 30.  
A port with one DB-25 connector, that can be configured  
for either DTE or DCE operation is shown in Figure 31. The  
configuration requires separate cables for proper signal  
routing in DTE or DCE operation. For example, in DTE  
mode, the TXD signal is routed to Pins 2 and 14 via the  
LTC1546’s Driver 1. In DCE mode, Driver 1 now routes the  
RXD signal to Pins 2 and 14.  
Compliance Testing  
The LTC1546/LTC1544 chipset has been tested by TUV  
Telecom Services Inc. and passed the NET1, NET2 and  
TBR2 requirements. Copies of the test reports are avail-  
able from LTC or TUV Telecom Services.  
The titles of the reports are:  
NET1 and NET2: Test Report No. NET2/091301/99.  
TBR2: Test Report No. CRT2/091301/99.  
The address of TUV Telecom Services Inc. is:  
Multiprotocol Interface with RL, LL, TM  
and a DB-25 Connector  
IftheRL,LLandTMsignalsareimplemented,therearenot  
enough drivers and receivers available in the LTC1546/  
LTC1544. In Figure 32, the required control signals are  
handled by the LTC1545. The LTC1545 has an additional  
single-endeddriver/receiverpairthatcanhandletwomore  
optional control signals such as TM and RL.  
TUV Telecom Services Inc.  
Type Approval Division  
1775 Old Highway 8, Ste 107  
St. Paul, MN 55112 USA  
TEL: +1 (612) 639-0775  
FAX: +1 (612) 639-0873  
14  
LTC1546  
U
TYPICAL APPLICATIO S  
V
CC  
5V  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
CHARGE  
PUMP  
2
4
1µF  
C4  
+
3.3µF  
25  
24  
C5  
1µF  
LTC1546  
2
TXD A (103)  
5
TXD  
D1  
T
T
T
14  
24  
23  
22  
TXD B  
SCTE A (113)  
6
7
SCTE  
D2  
D3  
11  
21  
SCTE B  
20  
15  
TXC A (114)  
8
9
TXC  
RXC  
RXD  
R1  
R2  
R3  
19  
18  
12  
17  
TXC B  
RXC A (115)  
T
T
17  
16  
9
3
RXC B  
RXD A (104)  
10  
16  
7
15  
11  
12  
13  
14  
RXD B  
SG  
M0  
M1  
M2  
1
SHIELD  
DCE/DTE  
DB-25 MALE  
CONNECTOR  
V
CC  
C10  
1µF  
C9  
1µF  
28  
27  
1
2
V
V
CC  
EE  
C11  
1µF  
V
GND  
DD  
26  
4
RTS A (105)  
RTS B  
3
4
5
RTS  
D1  
D2  
D3  
25  
24  
23  
19  
20  
23  
DTR A (108)  
DTR B  
DTR  
LTC1544  
8
10  
6
22  
21  
20  
19  
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
R4  
DCD  
DSR  
CTS  
LL  
DSR A (107)  
22  
DSR B  
5
18  
17  
CTS A (106)  
CTS B  
13  
10  
9
16  
18  
LL A (141)  
D4  
11  
12  
13  
14  
15  
NC  
M0  
M1  
M2  
M0  
M1  
M2  
INVERT  
DCE/DTE  
1546 F29  
Figure 29. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector  
15  
LTC1546  
TYPICAL APPLICATIO S  
U
V
CC  
5V  
3
1
28  
C2  
1µF  
C3  
1µF  
27  
26  
C1  
CHARGE  
PUMP  
2
4
1µF  
C4  
+
3.3µF  
25  
24  
C5  
1µF  
LTC1546  
3
RXD A (104)  
5
RXD  
RXC  
D1  
T
T
T
16  
17  
23  
22  
RXD B  
RXC A (115)  
6
7
D2  
D3  
9
21  
RXC B  
20  
15  
TXC A (114)  
8
9
TXC  
SCTE  
TXD  
R1  
R2  
R3  
19  
18  
12  
24  
TXC B  
SCTE A (113)  
T
T
17  
16  
11  
2
SCTE B  
TXD A (103)  
10  
14  
7
15  
11  
12  
13  
14  
TXD B  
M0  
M1  
M2  
SGND (102)  
1
SHIELD (101)  
NC  
DCE/DTE  
DB-25 FEMALE  
CONNECTOR  
V
CC  
C10  
1µF  
C9  
1µF  
28  
27  
1
2
V
V
CC  
EE  
C11  
1µF  
V
GND  
DD  
26  
5
CTS A (106)  
CTS B  
3
4
5
CTS  
D1  
D2  
D3  
25  
24  
23  
13  
6
DSR A (107)  
DSR B  
22  
DSR  
LTC1544  
8
10  
20  
23  
22  
21  
20  
19  
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
R4  
DCD  
DTR  
RTS  
LL  
DTR A (108)  
DTR B  
4
18  
17  
RTS A (105)  
RTS B  
19  
10  
9
16  
18  
LL A (141)  
D4  
11  
12  
13  
14  
15  
M0  
M1  
M2  
NC  
M0  
M1  
M2  
INVERT  
NC  
DCE/DTE  
1546 F30  
Figure 30. Controller-Selectable DCE Port with DB-25 Connector  
16  
LTC1546  
U
TYPICAL APPLICATIO S  
V
CC  
5V  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
CHARGE  
PUMP  
2
4
1µF  
C4  
+
3.3µF  
25  
24  
C5  
1µF  
DTE  
DCE  
LTC1546  
2
TXD A  
RXD A  
5
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
T
T
T
14  
24  
23  
22  
TXD B  
RXD B  
SCTE A RXC A  
6
7
D2  
D3  
11  
21  
SCTE B RXC B  
20  
15  
TXC A  
TXC A  
8
9
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
19  
18  
12  
17  
TXC B  
RXC A  
TXC B  
SCTE A  
T
T
17  
16  
9
3
RXC B  
RXD A  
SCTE B  
TXD A  
10  
16  
7
15  
11  
12  
13  
14  
RXD B  
SG  
TXD B  
M0  
M1  
M2  
1
SHIELD  
DCE/DTE  
DB-25  
CONNECTOR  
V
CC  
C10  
1µF  
C9  
1µF  
28  
27  
1
2
V
V
CC  
EE  
C11  
1µF  
V
DD  
GND  
26  
4
RTS A  
CTS A  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
25  
24  
23  
19  
20  
23  
RTS B  
DTR A  
DTR B  
CTS B  
DSR A  
DSR B  
LTC1544  
8
10  
6
22  
21  
20  
19  
6
7
8
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
DTE_LL/DCE_LL  
R1  
R2  
R3  
R4  
22  
DSR B  
CTS A  
CTS B  
DTR B  
RTS A  
RTS B  
5
18  
17  
13  
10  
9
16  
18  
LL A  
LL A  
D4  
11  
12  
13  
14  
15  
NC  
M0  
M1  
M0  
M1  
M2  
INVERT  
M2  
DCE/DTE  
DCE/DTE  
1546 F31  
Figure 31. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
17  
LTC1546  
U
TYPICAL APPLICATIO S  
V
CC  
5V  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
CHARGE  
PUMP  
1µF  
2
4
C4  
+
3.3µF  
25  
24  
C5  
1µF  
DTE  
TXD A  
DCE  
RXD A  
LTC1546  
2
5
6
7
D1  
D2  
D3  
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
T
T
T
14  
24  
23  
22  
TXD B  
RXD B  
RXC A  
SCTE A  
11  
21  
SCTE B  
RXC B  
20  
19  
18  
15  
12  
17  
TXC A  
TXC B  
RXC A  
TXC A  
TXC B  
SCTE A  
8
9
R1  
R2  
R3  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
T
T
17  
16  
9
3
RXC B  
RXD A  
SCTE B  
TXD A  
10  
11  
DTE_RXD/DCE_TXD  
15  
16  
7
RXD B  
SG  
TXD B  
M0  
M1  
M2  
12  
13  
14  
1
SHIELD  
DCE/DTE  
V
CC  
5V  
DB-25  
CONNECTOR  
C10  
1µF  
C9  
1µF  
36  
35  
1,19  
2,20  
V
V
EE  
GND  
CC  
C11  
1µF  
V
DD  
34  
4
RTS A  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
33  
32  
31  
19  
20  
23  
RTS B  
DTR A  
DTR B  
LTC1545  
8
10  
6
30  
29  
28  
27  
6
7
8
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
R1  
R2  
R3  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
22  
DSR B  
CTS A  
CTS B  
LL  
DTR B  
RTS A  
RTS B  
RI  
5
13  
18  
26  
25  
24  
9
D4  
R4  
DTE_LL/DCE_RI  
DTE_RI/DCE_LL  
23  
*
10  
RI  
LL  
25  
21  
22  
21  
17  
18  
R5  
TM  
RL  
RL  
DTE_TM/DCE_RL  
DTE_RL/DCE_TM  
D5  
TM  
15  
16  
11  
12  
13  
14  
M0  
M1  
M0  
M1  
M2  
D4ENB  
R4EN  
*OPTIONAL  
NC  
M2  
DCE/DTE  
DCE/DTE  
1546 F32  
Figure 32. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector  
18  
LTC1546  
U
TYPICAL APPLICATIO S  
V
CC  
5V  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
CHARGE  
PUMP  
2
4
1µF  
C4  
+
3.3µF  
25  
24  
C5  
1µF  
DTE  
DCE  
LTC1546  
D1  
2
TXD A  
RXD A  
5
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
T
T
T
14  
24  
23  
22  
TXD B  
RXD B  
RXC A  
SCTE A  
6
7
D2  
11  
21  
SCTE B  
RXC B  
D3  
R1  
20  
15  
TXC A  
TXC A  
8
9
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
12  
17  
19  
18  
TXC B  
RXC A  
TXC B  
SCTE A  
T
T
R2  
R3  
9
3
17  
16  
RXC B  
RXD A  
SCTE B  
TXD A  
10  
16  
7
15  
RXD B  
SG  
TXD B  
11  
12  
13  
14  
M0  
M1  
M2  
NC  
1
SHIELD  
DCE/DTE  
DB-25  
CONNECTOR  
V
CC  
C10  
1µF  
25  
21  
18  
C9  
1µF  
28  
27  
DCE/DTE  
1
2
V
V
CC  
EE  
C11  
1µF  
M1  
M0  
V
DD  
GND  
26  
4
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
D1  
D2  
D3  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
25  
24  
23  
19  
20  
23  
LTC1544  
22  
21  
20  
19  
8
10  
6
6
7
8
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
R1  
R2  
R3  
R4  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
22  
DSR B  
CTS A  
CTS B  
DTR B  
RTS A  
RTS B  
5
18  
17  
13  
CABLE WIRING FOR MODE SELECTION  
10  
9
16  
MODE  
V.35  
PIN 18  
PIN 7  
NC  
PIN 21  
PIN 7  
PIN 7  
NC  
D4  
RS449, V.36  
RS232  
11  
12  
13  
14  
PIN 7  
M0  
M1  
M2  
CABLE WIRING FOR  
DTE/DCE SELECTION  
NC  
15  
MODE  
DTE  
PIN 25  
PIN 7  
NC  
NC  
INVERT  
DCE/DTE  
1546 F33  
DCE  
Figure 33. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
19  
LTC1546  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
10.07 – 10.33*  
(0.397 – 0.407)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
7.65 – 7.90  
(0.301 – 0.311)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
5.20 – 5.38**  
(0.205 – 0.212)  
1.73 – 1.99  
(0.068 – 0.078)  
0° – 8°  
0.65  
(0.0256)  
BSC  
0.13 – 0.22  
0.55 – 0.95  
(0.005 – 0.009)  
(0.022 – 0.037)  
0.05 – 0.21  
(0.002 – 0.008)  
0.25 – 0.38  
(0.010 – 0.015)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
G28 SSOP 1098  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1321  
Dual RS232/RS485 Transceiver  
Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs  
4-Driver/4-Receiver for Data and Clock Signals  
LTC1334  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Cable Terminator  
Single Supply V.35 Transceiver  
LTC1343  
LTC1344A  
LTC1345  
Perfect for Terminating the LTC1543 (Not Needed with LTC1546)  
3-Driver/3-Receiver for Data and Clock Signals  
LTC1346A  
LTC1543  
Dual Supply V.35 Transceiver  
3-Driver/3-Receiver for Data and Clock Signals  
Software-Selectable Multiprotocol Transceiver  
Terminated with LTC1344A for Data and Clock Signals, Companion to  
LTC1544 or LTC1545 for Control Signals  
LTC1544  
LTC1545  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Companion to LTC1546 or LTC1543 for Control Signals Including LL  
5-Driver/5-Receiver Companion to LTC1546 or LTC1543  
for Control Signals Including LL, TM and RL  
1546i LT/TP 1299 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1546I

Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC1546IG

Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC1546IG#PBF

LTC1546 - Software-Selectable Multiprotocol Transceiver with Termination; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1546IG#TR

LTC1546 - Software-Selectable Multiprotocol Transceiver with Termination; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1546IG#TRPBF

LTC1546 - Software-Selectable Multiprotocol Transceiver with Termination; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1550

Low Noise, Switched Capacitor Regulated Voltage Inverters
Linear

LTC1550CGN

Low Noise, Switched Capacitor Regulated Voltage Inverters
Linear

LTC1550CGN#PBF

LTC1550 - Low Noise, Switched Capacitor-Regulated Voltage Inverters; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1550CGN-4.1

DC-to-DC Voltage Converter
ETC

LTC1550CS-4.1

IC SWITCHED CAPACITOR REGULATOR, 900 kHz SWITCHING FREQ-MAX, PDSO14, PLASTIC, SO-14, Switching Regulator or Controller
Linear

LTC1550CS8-4.1

Low Noise, Switched Capacitor Regulated Voltage Inverters
Linear

LTC1550CS8-4.1#PBF

LTC1550 - Low Noise, Switched Capacitor-Regulated Voltage Inverters; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear