LTC1544IG [Linear]

Software-Selectable Multiprotocol Transceiver; 软件可选的多协议收发器
LTC1544IG
型号: LTC1544IG
厂家: Linear    Linear
描述:

Software-Selectable Multiprotocol Transceiver
软件可选的多协议收发器

文件: 总20页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1544  
Software-Selectable  
Multiprotocol Transceiver  
U
FEATURES  
DESCRIPTIO  
The LTC®1544 is a 4-driver/4-receiver multiprotocol trans-  
ceiver. The LTC1544 and LTC1543 form the core of a  
complete software-selectable DTE or DCE interface port that  
supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36  
orX.21protocols. CableterminationfortheLTC1543maybe  
implemented using the LTC1344A software-selectable cable  
termination chip or by using existing discrete designs. The  
LTC1546 includes software-selectable cable termination on-  
chip.  
Software-Selectable Transceiver Supports:  
RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21  
TUV/Detecon Inc. Certified NET1 and NET2  
Compliant (Test Report No. NET2/102201/97)  
TBR2 Compliant (Test Report No. CTR2/022701/98)  
Software-Selectable Cable Termination Using  
the LTC1344A  
Complete DTE or DCE Port with LTC1543, LTC1344A  
or LTC1546 with Integrated Termination  
Operates from Single 5V Supply with LTC1543  
TheLTC1544runsfroma5Vsupplyandthechargepumpon  
the LTC1543 or LTC1546. The part is available in a 28-lead  
SSOP surface mount package.  
U
APPLICATIO S  
Data Networking  
CSU and DSU  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Data Routers  
U
TYPICAL APPLICATIO  
DTE or DCE Multiprotocol Serial Interface with DB-25 Connector  
LL  
CTS  
DSR  
DCD  
DTR  
RTS  
TXC  
SCTE  
TXD  
RXD  
RXC  
LTC1543  
LTC1544  
D3  
D2  
D1  
D3  
D4  
D2  
D1  
R3  
R2  
R1  
R4  
R3  
R2  
R1  
LTC1344A  
18  
13  
5
10  
8
22  
6
23 20 19  
4
1
7
16  
3
9
17  
12 15 11 24 14  
2
DB-25 CONNECTOR  
1544 TA01  
1
LTC1544  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
Supply Voltage, VCC ................................................ 6.5V  
Input Voltage  
Transmitters ........................... 0.3V to (VCC + 0.3V)  
Receivers............................................... 18V to 18V  
Logic Pins .............................. 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters .................. (VEE – 0.3V) to (VDD + 0.3V)  
Receivers................................ 0.3V to (VCC + 0.3V)  
VEE........................................................ 10V to 0.3V  
VDD ....................................................... 0.3V to 10V  
Short-Circuit Duration  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
V
1
2
3
4
5
6
7
8
9
28 V  
EE  
CC  
V
27 GND  
DD  
D1  
D2  
D3  
R1  
R2  
R3  
D4  
26 D1 A  
D1  
D2  
LTC1544CG  
LTC1544IG  
25 D1 B  
24 D2 A  
23 D2 B  
D3  
22 D3/R1 A  
21 D3/R1 B  
20 R2 A  
R1  
R2  
R3  
R4 10  
M0 11  
19 R2 B  
18 R3 A  
D4  
R4  
Transmitter Output ..................................... Indefinite  
Receiver Output.......................................... Indefinite  
VEE.................................................................. 30 sec  
Operating Temperature Range  
M1 12  
17 R3 B  
M2 13  
16 D4/R4 A  
15 INVERT  
DCE/DTE 14  
G PACKAGE  
28-LEAD PLASTIC SSOP  
LTC1544CG ............................................. 0°C to 70°C  
LTC1544IG ........................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TJMAX = 150°C, θJA = 65°C/ W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3)  
SYMBOL PARAMETER  
Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
Supply Current (DCE Mode,  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode  
2.7  
95  
1
1
10  
mA  
mA  
mA  
mA  
µA  
CC  
CC  
All Digital Pins = GND or V  
)
120  
2
2
CC  
200  
I
V
Supply Current (DCE Mode,  
RS530, RS530-A, X.21 Modes, No Load  
RS530, X.21 Modes, Full Load  
2.1  
14  
25  
1
12  
10  
mA  
mA  
mA  
mA  
mA  
µA  
EE  
EE  
All Digital Pins = GND or V  
)
CC  
V
V
= 5.6V (RS530, RS530-A Modes) RS530-A, Full Load  
= 8.46V (V.28 Mode)  
EE  
EE  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode  
I
V
Supply Current (DCE Mode,  
RS530, RS530-A, X.21 Modes, NoLoad  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, No Load  
V.28 Mode, Full Load  
No-Cable Mode  
0.2  
0.2  
1
12  
10  
mA  
mA  
mA  
mA  
µA  
DD  
DD  
All Digital Pins = GND or V  
)
CC  
V
= 8.73V  
DD  
P
D
Internal Power Dissipation (DCE Mode,  
(All Digital Pins = GND or V  
RS530, RS530-A, X.21 Modes, Full Load  
V.28 Mode, Full Load  
300  
54  
mW  
mW  
)
CC  
2
LTC1544  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Logic Inputs and Outputs  
V
V
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
2
V
V
IH  
IL  
0.8  
I
D1, D2, D3, D4  
M0, M1, M2, DCE, INVERT = GND (LTC1544C)  
M0, M1, M2, DCE, INVERT = GND (LTC1544I)  
M0, M1, M2, DCE, INVERT = V  
±10  
30  
30  
±10  
µA  
µA  
µA  
µA  
IN  
100  
120  
50  
50  
CC  
V
V
Output High Voltage  
I = 4mA  
3
4.5  
0.3  
40  
V
V
OH  
OL  
O
Output Low Voltage  
I = 4mA  
O
0.8  
50  
I
I
Output Short-Circuit Current  
Three-State Output Current  
0V V V  
CC  
50  
mA  
µA  
OSR  
OZR  
O
M0 = M1 = M2 = V , 0V V V  
CC  
±1  
CC  
O
V.11 Driver  
V
V
Open Circuit Differential Output Voltage  
Loaded Differential Output Voltage  
R = 1.95k (Figure 1)  
±5  
V
ODO  
ODL  
L
R = 50(Figure 1)  
0.5V  
±2  
0.67V  
ODO  
V
V
L
ODO  
R = 50(Figure 1)  
L
V  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
V
OD  
V
Common Mode Output Voltage  
R = 50(Figure 1)  
3
V
V
OC  
L
V  
Change in Magnitude of Common Mode  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
OC  
I
I
Short-Circuit Current  
V
= GND  
±150  
±100  
mA  
SS  
OZ  
OUT  
Output Leakage Current  
0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
± 1  
µA  
O
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
LTC1544C (Figures 2, 5)  
LTC1544I (Figures 2, 5)  
2
2
15  
15  
25  
35  
ns  
ns  
r
f
PLH  
PHL  
t
t
LTC1544C (Figures 2, 5)  
LTC1544I (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
LTC1544C (Figures 2, 5)  
LTC1544I (Figures 2, 5)  
20  
20  
40  
40  
65  
75  
ns  
ns  
t  
Input to Output Difference,  
Output to Output Skew  
t
– t  
PHL  
LTC1544C (Figures 2, 5)  
LTC1544I (Figures 2, 5)  
0
0
3
3
12  
17  
ns  
ns  
PLH  
t
(Figures 2, 5)  
3
ns  
SKEW  
V.11 Receiver  
V
Input Threshold Voltage  
Input Hysteresis  
7V V 7V  
0.2  
15  
0.2  
40  
V
mV  
mA  
kΩ  
ns  
TH  
CM  
V  
7V V 7V  
15  
TH  
CM  
I
Input Current (A, B)  
Input Impedance  
Rise or Fall Time  
Input to Output  
10V V 10V  
±0.66  
IN  
A,B  
R
10V V 10V  
30  
15  
IN  
A,B  
t , t  
r
(Figures 2, 6)  
f
t
LTC1544C (Figures 2, 6)  
LTC1544I (Figures 2, 6)  
50  
50  
80  
90  
ns  
ns  
PLH  
t
Input to Output  
LTC1544C (Figures 2, 6)  
LTC1544I (Figures 2, 6)  
50  
50  
80  
90  
ns  
ns  
PHL  
t  
Input to Output Difference,  
t
– t  
PHL  
LTC1544C (Figures 2, 6)  
LTC1544I (Figures 2, 6)  
0
0
4
4
16  
21  
ns  
ns  
PLH  
3
LTC1544  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V.10 Driver  
V
V
Output Voltage  
Output Voltage  
Open Circuit, R = 3.9k  
±4  
±6  
V
V
O
T
L
R = 450(Figure 3)  
±3.6  
0.9V  
L
R = 450(Figure 3)  
L
O
I
I
Short-Circuit Current  
V = GND  
±150  
±100  
mA  
SS  
OZ  
O
Output Leakage Current  
0.25V V 0.25V, Power Off or  
No-Cable Mode or Driver Disabled  
±0.1  
µA  
O
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
R = 450, C = 100pF (Figures 3, 7)  
2
1
1
µs  
µs  
µs  
r
f
PLH  
PHL  
L
L
t
t
R = 450, C = 100pF (Figures 3, 7)  
L L  
R = 450, C = 100pF (Figures 3, 7)  
L
L
V.10 Receiver  
V
Receiver Input Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Current  
Receiver Input Impedance  
Rise or Fall Time  
0.25  
15  
0.25  
50  
V
mV  
mA  
kΩ  
ns  
TH  
V  
25  
TH  
I
10V V 10V  
±0.66  
IN  
A
R
10V V 10V  
30  
15  
IN  
A
t , t  
r
(Figures 4, 8)  
(Figures 4, 8)  
(Figures 4, 8)  
(Figures 4, 8)  
f
t
t
Input to Output  
55  
ns  
PLH  
PHL  
Input to Output  
109  
60  
ns  
t  
Input to Output Difference,  
Output Voltage  
t
– t  
PHL  
ns  
PLH  
V.28 Driver  
V
Open Circuit  
R = 3k (Figure 3)  
L
±10  
V
V
O
±5  
±8.5  
±1  
I
I
Short-Circuit Current  
V = GND  
O
±150  
±100  
mA  
SS  
OZ  
Output Leakage Current  
0.25V V 0.25V, Power Off or  
µA  
O
No-Cable Mode or Driver Disabled  
SR  
Slew Rate  
R = 3k, C = 2500pF (Figures 3, 7)  
4
30  
2.5  
2.5  
V/µs  
µs  
L
L
t
t
Input to Output  
Input to Output  
R = 3k, C = 2500pF (Figures 3, 7)  
1.3  
1.3  
PLH  
PHL  
L
L
R = 3k, C = 2500pF (Figures 3, 7)  
µs  
L
L
V.28 Receiver  
V
V
Input Low Threshold Voltage  
Input High Threshold Voltage  
Receiver Input Hysterisis  
Receiver Input Impedance  
Rise or Fall Time  
1.5  
1.6  
0.1  
5
0.8  
V
V
THL  
TLH  
2
0
3
V  
0.3  
7
V
TH  
R
15V V 15V  
kΩ  
ns  
ns  
ns  
IN  
A
t , t  
r
(Figures 4, 8)  
(Figures 4, 8)  
(Figures 4, 8)  
15  
f
t
t
Input to Output  
60  
100  
450  
PLH  
PHL  
Input to Output  
150  
Note 1: Absolute Maximum Ratings are those beyond which the safety of a  
device may be impaired.  
Note 3: All typicals are given for V = 5V, V = 8V, V = 7V for V.28,  
CC DD EE  
5.5V for V.10, V.11 and T = 25°C.  
A
Note 2: All currents into device pins are positive; all currents out of device  
are negative. All voltages are referenced to device ground unless otherwise  
specified.  
4
LTC1544  
U
U
U
PI FU CTIO S  
VCC (Pin 1): Positive Supply for the Transceivers. 4.75V ≤  
INVERT (Pin 15): TTL Level Mode Select Input with Pull-  
Up to VCC.  
V
CC 5.25V. Connect a 1µF capacitor to ground.  
V
DD (Pin 2): Positive Supply Voltage for V.28. Connect to  
D4/R4 A (Pin 16): Receiver 4 Inverting Input and Driver 4  
VDD Pin 3 on LTC1543 or 8V supply. Connect a 1µF  
Output.  
capacitor to ground.  
R3 B (Pin 17): Receiver 3 Noninverting Input.  
R3 A (Pin 18): Receiver 3 Inverting Input.  
R2 B (Pin 19): Receiver 2 Noninverting Input.  
R2 A (Pin 20): Receiver 2 Inverting Input.  
D1 (Pin 3): TTL Level Driver 1 Input.  
D2 (Pin 4): TTL Level Driver 2 Input.  
D3 (Pin 5): TTL Level Driver 3 Input.  
R1 (Pin 6): CMOS Level Receiver 1 Output.  
R2 (Pin 7): CMOS Level Receiver 2 Output.  
R3 (Pin 8): CMOS Level Receiver 3 Output.  
D4 (Pin 9): TTL Level Driver 4 Input.  
R4 (Pin 10): CMOS Level Receiver 4 Output.  
D3/R1 B (Pin 21): Receiver 1 Noninverting Input and  
Driver 3 Noninverting Output.  
D3/R1 A (Pin 22): Receiver 1 Inverting Input and Driver 3  
Inverting Output.  
D2 B (Pin 23): Driver 2 Noninverting Output.  
D2 A (Pin 24): Driver 2 Inverting Output.  
D1 B (Pin 25): Driver 1 Noninverting Output.  
D1 A (Pin 26): Driver 1 Inverting Output.  
GND (Pin 27): Ground.  
M0 (Pin 11): TTL Level Mode Select Input 0 with Pull-Up  
to VCC.  
M1 (Pin 12): TTL Level Mode Select Input 1 with Pull-Up  
to VCC.  
M2 (Pin 13): TTL Level Mode Select Input 2 with Pull-Up  
to VCC.  
VEE (Pin 28): Negative Supply Voltage. Connect to VEE Pin  
26 on LTC1543 or to 8V supply. Connect a 1µF capacitor  
to ground.  
DCE/DTE (Pin 14): TTL Level Mode Select Input with  
Pull-Up to VCC.  
TEST CIRCUITS  
A
R
L
C
L
50Ω  
B
A
100pF  
B
A
R
R
L
100Ω  
V
C
L
100pF  
OD  
15pF  
R
L
V
OC  
50Ω  
1544 F01  
B
1544 F02  
Figure 1. V.11 Driver Test Circuit  
Figure 2. V.11 Driver/Receiver AC Test Circuit  
5
LTC1544  
TEST CIRCUITS  
D
A
A
R
D
A
15pF  
R
C
L
L
1544 F04  
1544 F03  
Figure 4. V.10/V.28 Receiver Test Circuit  
Figure 3. V.10/V.28 Driver Test Circuit  
W
U
ODE SELECTIO  
LTC1544 MODE NAME  
Not Used (Default V.11)  
RS530A  
M2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
M1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
M0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DCE/DTE INVERT  
D1  
D2  
D3  
Z
R1  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
R2  
R3  
D4  
Z
R4  
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
Z
Z
RS530  
Z
Z
X.21  
Z
Z
V.35  
Z
Z
RS449/V.36  
V.28/RS232  
No Cable  
Z
Z
Z
Z
Z
Z
Not Used (Default V.11)  
RS530A  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
Z
Z
Z
RS530  
Z
Z
X.21  
Z
Z
V.35  
Z
Z
RS449/V.36  
V.28/RS232  
No Cable  
Z
Z
Z
Z
Z
Z
Not Used (Default V.11)  
RS530A  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
Z
Z
Z
RS530  
Z
Z
X.21  
Z
Z
V.35  
Z
Z
RS449/V.36  
V.28/RS232  
No Cable  
Z
Z
Z
Z
Z
Z
Not Used (Default V.11)  
RS530A  
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
Z
V.11  
V.10  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
V.11  
V.11  
V.11  
V.11  
V.28  
V.11  
V.28  
Z
Z
V.10  
V.10  
V.10  
V.10  
V.28  
V.10  
V.28  
Z
Z
Z
RS530  
Z
Z
X.21  
Z
Z
V.35  
Z
Z
RS449/V.36  
V.28/RS232  
No Cable  
Z
Z
Z
Z
Z
Z
6
LTC1544  
U W  
W
SWITCHI G TI E WAVEFOR S  
5V  
f = 1MHz : t 10ns : t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
V
O
90%  
90%  
10%  
V
= V(A) – V(B)  
DIFF  
B – A  
50%  
50%  
10%  
–V  
O
1/2 V  
O
t
t
f
r
A
V
O
B
t
t
1544 F05  
SKEW  
SKEW  
Figure 5. V.11, V.35 Driver Propagation Delays  
V
B – A  
OD2  
f = 1MHz : t 10ns : t 10ns  
INPUT  
r
f
0V  
t
0V  
–V  
OD2  
t
PLH  
PHL  
V
R
OH  
OUTPUT  
1.5V  
1.5V  
V
OL  
1544 F06  
Figure 6. V.11, V.35 Receiver Propagation Delays  
3V  
0V  
D
A
1.5V  
t
1.5V  
PHL  
3V  
t
PLH  
V
O
3V  
1544 F07  
0V  
0V  
–3V  
–3V  
–V  
O
t
t
r
f
Figure 7. V.10, V.28 Driver Propagation Delays  
V
IH  
1.7V  
A
1.3V  
V
IL  
t
PHL  
t
PLH  
V
OH  
2.4V  
R
1544 F08  
0.8V  
V
OL  
Figure 8. V.10, V.28 Receiver Propagation Delays  
7
LTC1544  
U
W U U  
APPLICATIONS INFORMATION  
Overview  
A complete DCE-to-DTE interface operating in EIA530  
mode is shown in Figure 9. The LTC1543 of each port is  
used to generate the clock and data signals. The LTC1544  
isusedtogeneratethecontrolsignalsalongwithLL(Local  
Loop-back).The LTC1344A cable termination chip is used  
only for the clock and data signals because they must  
supportV.35cabletermination. Thecontrolsignalsdonot  
need any external resistors.  
The LTC1543/LTC1544 form the core of a complete soft-  
ware-selectable DTE or DCE interface port that supports  
the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21  
protocols. Cable termination may be implemented using  
the LTC1344A software-selectable cable termination chip  
or by using existing discrete designs.  
DTE  
DCE  
SERIAL  
CONTROLLER  
LTC1344A  
LTC1543  
LTC1344A  
LTC1543  
SERIAL  
CONTROLLER  
D1  
TXD  
103Ω  
R3  
TXD  
TXD  
SCTE  
103Ω  
R2  
R1  
D2  
D3  
SCTE  
SCTE  
D3  
D2  
D1  
TXC  
RXC  
RXD  
R1  
R2  
R3  
103Ω  
103Ω  
103Ω  
TXC  
RXC  
RXD  
TXC  
RXC  
RXD  
LTC1544  
R3  
LTC1544  
D1  
RTS  
DTR  
RTS  
DTR  
RTS  
DTR  
D2  
D3  
R2  
R1  
D3  
DCD  
DSR  
R1  
R2  
R3  
DCD  
DSR  
DCD  
DSR  
D2  
D1  
CTS  
LL  
CTS  
LL  
CTS  
LL  
D4  
R4  
R4  
D4  
1544 F09  
Figure 9. Complete Multiprotocol Interface in EIA530 Mode  
8
LTC1544  
U
W U U  
APPLICATIONS INFORMATION  
Mode Selection  
unconnected (1) or wired to ground (0) in the cable as  
shown in Figure 10.  
The interface protocol is selected using the mode select  
pins M0, M1 and M2 (see the Mode Selection table).  
The internal pull-up current sources will ensure a binary 1  
when a pin is left unconnected and that the LTC1543/  
LTC1544 and the LTC1344A enter the no-cable mode  
when the cable is removed. In the no-cable mode the  
LTC1543/LTC1544 supply current drops to less than  
200µA and all LTC1543/LTC1544 driver outputs and  
LTC1344A resistive terminations are forced into a high  
impedance state.  
For example, if the port is configured as a V.35 interface,  
the mode selection pins should be M2 =1, M1=0, M0 = 0.  
For the control signals, the drivers and receivers will  
operateinV.28(RS232)electricalmode. Fortheclockand  
data signals, the drivers and receivers will operate in V.35  
electrical mode. The DCE/DTE pin will configure the port  
for DCE mode when high, and DTE when low.  
The mode selection may also be accomplished by using  
jumpers to connect the mode pins to ground or VCC.  
The interface protocol may be selected simply by plug-  
ging the appropriate interface cable into the connector.  
The mode pins are routed to the connector and are left  
21  
LATCH  
LTC1344A  
DCE/  
DTE M2 M1 M0 (DATA)  
22 23 24  
1
CONNECTOR  
(DATA)  
M0  
11  
12  
13  
14  
LTC1543  
M1  
M2  
NC  
DCE/DTE  
NC  
CABLE  
LTC1544  
14  
13  
12  
11  
DCE/DTE  
M2  
M1  
M0  
1544 F10  
(DATA)  
Figure 10: Single Port DCE V.35 Mode Selection in the Cable  
9
LTC1544  
U
W U U  
APPLICATIONS INFORMATION  
The V.10 receiver configuration in the LTC1544 is shown  
in Figure 13. In V.10 mode switch S3 inside the LTC1544  
isturnedoff.Thenoninvertinginputisdisconnectedinside  
the LTC1544 receiver and connected to ground. The cable  
termination is then the 30k input impedance to ground of  
the LTC1544 V.10 receiver.  
Cable Termination  
Traditional implementations have included switching  
resistors with expensive relays, or requiring the user to  
change termination modules every time the interface  
standard has changed. Custom cables have been used  
withtheterminationinthecableheadorseparatetermina-  
tions are built on the board and a custom cable routes the  
signals to the appropriate termination. Switching the  
terminations with FETs is difficult because the FETs must  
remain off even though the signal voltage is beyond the  
supply voltage for the FET drivers or the power is off.  
I
Z
3.25mA  
Using the LTC1344A along with the LTC1543/LTC1544  
solves the cable termination switching problem. Via soft-  
ware control, the LTC1344A provides termination for the  
V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35  
electrical protocols.  
–10V  
–3V  
V
Z
3V  
10V  
V.10 (RS423) Interface  
1544 F12  
–3.25mA  
A typical V.10 unbalanced interface is shown in Figure 11.  
A V.10 single-ended generator output A with ground C is  
connected to a differential receiver with inputs A  
' con-  
nected to A, and input C connected to the signal return  
'
Figure 12. V.10 Receiver Input Impedance  
ground C. Usually, no cable termination is required for  
V.10 interfaces, but the receiver inputs must be compliant  
with the impedance curve shown in Figure 12.  
A
'
A
LTC1544  
R5  
20k  
BALANCED  
R8  
6k  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
R6  
10k  
RECEIVER  
CABLE  
TERMINATION  
S3  
RECEIVER  
A
A'  
R7  
10k  
R4  
20k  
B
'
B
1544 F11  
1544 F13  
C
'
C
C'  
GND  
Figure 13. V.10 Receiver Configuration  
Figure 11. Typical V.10 Interface  
10  
LTC1544  
U
W U U  
APPLICATIONS INFORMATION  
V.11 (RS422) Interface  
V.28 (RS232) Interface  
A typical V.11 balanced interface is shown in Figure 14. A A typical V.28 unbalanced interface is shown in Figure 16.  
V.11 differential generator with outputs A and B with A V.28 single-ended generator output A with ground C is  
ground C is connected to a differential receiver with connected to a single-ended receiver with input A  
'
con-  
groundC',inputsA'connectedtoA,B'connectedtoB.The nected to A, ground C' connected via the signal return  
V.11 interface has a differential termination at the receiver ground C.  
end that has a minimum value of 100. The termination  
In V.28 mode all switches are off except S3 inside the  
LTC1543/LTC1544 which connects a 6k (R8) impedance  
to ground in parallel with 20k (R5) plus 10k (R6) for a  
combined impedance of 5k as shown in Figure 17. The  
noninverting input is disconnected inside the LTC1543/  
LTC1544 receiver and connected to a TTL level reference  
resistor is optional in the V.11 specification, but for the  
highspeedclockanddatalines,theterminationisrequired  
to prevent reflections from corrupting the data. The  
receiver inputs must also be compliant with the imped-  
ance curve shown in Figure 12.  
In V.11 mode, all switches are off except S1 inside the voltage for a 1.4V receiver trip point.  
LTC1344A which connects a 103differential termina-  
tion impedance to the cable as shown in Figure 15.  
BALANCED  
INTERCONNECTING  
CABLE  
BALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
CABLE  
TERMINATION  
RECEIVER  
RECEIVER  
A
A'  
A
A'  
100Ω  
MIN  
B
C
B'  
C'  
1544 F16  
C
C'  
1544 F14  
Figure 14. Typical V.11 Interface  
Figure 16. Typical V.28 Interface  
A'  
A'  
A
A
LTC1543  
LTC1544  
LTC1543  
LTC1544  
LTC1344A  
R5  
LTC1344A  
R5  
20k  
R1  
51.5Ω  
R1  
R8  
R8  
6k  
20k  
51.5Ω  
6k  
R6  
10k  
R6  
10k  
RECEIVER  
RECEIVER  
S3  
S1  
S2  
S1  
S2  
S3  
R3  
124Ω  
R3  
124Ω  
R7  
10k  
R7  
10k  
R2  
51.5Ω  
R2  
51.5Ω  
R4  
20k  
R4  
20k  
B
B
B
'
B'  
GND  
GND  
C
'
C'  
1544 F15  
1544 F17  
Figure 15. V.11 Receiver Configuration  
Figure 17. V.28 Receiver Configuration  
11  
LTC1544  
U
W U U  
APPLICATIONS INFORMATION  
V.35 Interface  
100Ω ±10, and the impedance between shorted termi-  
nals (A and B ) and ground C must be 150Ω ±15.  
'
'
'
A typical V.35 balanced interface is shown in Figure 18. A  
V.35 differential generator with outputs A and B with  
ground C is connected to a differential receiver with  
InV.35mode,bothswitchesS1andS2insidetheLTC1344A  
are on, connecting the T network impedance as shown in  
Figure 19. The switch in the LTC1543 is off. The 30k input  
impedance of the receiver is placed in parallel with the T  
network termination, but does not affect the overall input  
impedance significantly.  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
V.35 interface requires a T or delta network termination at  
the receiver end and the generator end. The receiver  
differentialimpedancemeasuredattheconnectormustbe  
BALANCED  
INTERCONNECTING  
CABLE  
GENERATOR  
LOAD  
CABLE  
TERMINATION  
RECEIVER  
A'  
A
50Ω  
50Ω  
125Ω  
125Ω  
50Ω  
50Ω  
B
'
B
C
C'  
1544 F18  
Figure 18. Typical V.35 Interface  
A
'
A
LTC1543  
LTC1344A  
R5  
20k  
R1  
51.5Ω  
R8  
6k  
R6  
10k  
RECEIVER  
S1  
S2  
S3  
R3  
124Ω  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
B
B'  
GND  
1544 F19  
C'  
Figure 19. V.35 Receiver Configuration  
12  
LTC1544  
U
W U U  
APPLICATIONS INFORMATION  
The generator differential impedance must be 50to  
150and the impedance between shorted terminals (A  
and B) and ground C must be 150Ω ±15. For the  
generatortermination,switchesS1andS2arebothonand  
the top side of the center resistor is brought out to a pin so  
it can be bypassed with an external capacitor to reduce  
common mode noise as shown in Figure 20.  
Charge Pump  
The LTC1543 uses an internal capacitive charge pump to  
generate VDD and VEE as shown in Figure 21. A voltage  
doubler generates about 8V on VDD and a voltage inverter  
generates about 7.5V for VEE. Four 1µF surface mounted  
tantalum or ceramic capacitors are required for C1, C2, C3  
and C4. The VEE capacitor C5 should be a minimum of  
3.3µF.Allcapacitorsare16Vandshouldbeplacedasclose  
as possible to the LTC1543 to reduce EMI.  
A
LTC1344A  
51.5Ω  
3
2
1
4
28  
27  
26  
25  
S1  
+
V
C2  
C2  
DD  
+
V.35 DRIVER  
S2  
ON  
C2  
C3  
1µF  
124Ω  
ON  
1µF  
C1  
C1  
V
C1  
LTC1543  
51.5Ω  
1µF  
V
EE  
B
C5  
3.3µF  
+
C1  
100pF  
GND  
5V  
CC  
C
C4  
1µF  
1544 F20  
1544 F21  
Figure 20. V.35 Driver Using the LTC1344A  
Figure 21. Charge Pump  
Any mismatch in the driver rise and fall times or skew in  
the driver propagation delays will force current through  
the center termination resistor to ground, causing a high  
frequency common mode spike on the A and B terminals.  
ThecommonmodespikecancauseEMIproblemsthatare  
reduced by capacitor C1 which shunts much of the com-  
mon mode energy to ground rather than down the cable.  
Receiver Fail-Safe  
All LTC1543/LTC1544 receivers feature fail-safe opera-  
tion in all modes. If the receiver inputs are left floating or  
shorted together by a termination resistor, the receiver  
output will always be forced to a logic high.  
DTE vs DCE Operation  
No-Cable Mode  
The DCE/DTE pin acts as an enable for Driver 3/Receiver  
1 in the LTC1543, and Driver 3/Receiver 1 and Driver 4/  
Receiver4intheLTC1544.TheINVERTpinintheLTC1544  
allowstheDriver4/Receiver4enabletobehighorlowtrue  
polarity.  
The no-cable mode (M0 = M1 = M2 = 1) is intended for the  
case when the cable is disconnected from the connector.  
The charge pump, bias circuitry, drivers and receivers are  
turned off, the driver outputs are forced into a high  
impedancestate, andthesupplycurrentdropstolessthan  
200µA.  
13  
LTC1544  
U
W U U  
APPLICATIONS INFORMATION  
The LTC1543/LTC1544 can be configured for either DTE  
or DCE operation in one of two ways: a dedicated DTE or  
DCE port with a connector of appropriate gender or a port  
with one connector that can be configured for DTE or DCE  
operationbyreroutingthesignalstotheLTC1543/LTC1544  
using a dedicated DTE cable or dedicated DCE cable.  
Cable-Selectable Multiprotocol Interface  
A cable-selectable multiprotocol DTE/DCE interface is  
shown in Figure 26. The select lines M0, M1 and DCE/DTE  
are brought out to the connector. The mode is selected by  
the cable by wiring M0 (connector Pin 18) and M1 (con-  
nector Pin 21) and DCE/DTE (connector Pin 25) to ground  
(connector Pin 7) or letting them float. If M0, M1 or DCE/  
DTE is floating, internal pull-up current sources will pull  
the signals to VCC. The select bit M2 is hard wired to VCC.  
When the cable is pulled out, the interface will go into the  
no-cable mode.  
A dedicated DTE port using a DB-25 male connector is  
showninFigure22.Theinterfacemodeisselectedbylogic  
outputs from the controller or from jumpers to either VCC  
or GND on the mode select pins. A dedicated DCE port  
using a DB-25 female connector is shown in Figure 23.  
A port with one DB-25 connector, but can be configured  
for either DTE or DCE operation is shown in Figure 24. The  
configuration requires separate cables for proper signal  
routing in DTE or DCE operation. For example, in DTE  
mode, the TXD signal is routed to Pins 2 and 14 via Driver  
1 in the LTC1543. In DCE mode, Driver 1 now routes the  
RXD signal to Pins 2 and 14.  
Compliance Testing  
A European standard EN 45001 test report is available for  
the LTC1543/LTC1544/LTC1344A chipset. A copy of the  
test report is available from LTC or TUV Telecom Services  
Inc. (formerly Detecon Inc.)  
The title of the report is:  
Test Report No. NET2/102201/97.  
The address of TUV Telecom Services Inc. is:  
Multiprotocol Interface with RL, LL, TM and a DB-25  
Connector  
IftheRL,LLandTMsignalsareimplemented,therearenot  
enough drivers and receivers available in the LTC1543/  
LTC1544. In Figure 25, the required control signals are  
handled by the LTC1544 but the clock/data signals use the  
LTC1343. The LTC1343 has an additional single-ended  
driver/receiver pair that can handle two more optional  
control signals such as TM and LL.  
TUV Telecom Services Inc.  
Type Approval Division  
1775 Old Highway 8, Ste 107  
St. Paul, MN 55112 USA  
Tel. +1 (612) 639-0775  
Fax. +1 (612) 639-0873  
14  
LTC1544  
U
TYPICAL APPLICATIO S  
C6  
C7  
C8  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
14  
21  
V
LATCH  
CC  
C13  
1µF  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
2
4
C4  
C12  
+
3.3µF  
1µF  
25  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
LTC1543  
D1  
2
24  
TXD A (103)  
TXD B  
5
6
7
TXD  
23  
22  
14  
24  
SCTE A (113)  
SCTE B  
SCTE  
D2  
D3  
11  
21  
20  
19  
18  
17  
16  
15  
15  
12  
TXC A (114)  
TXC B  
8
9
R1  
R2  
R3  
TXC  
RXC  
RXD  
17  
9
RXC A (115)  
RXC B  
3
16  
7
RXD A (104)  
RXD B  
10  
11  
12  
13  
14  
M0  
M1  
M2  
SG  
1
SHIELD  
DCE/DTE  
DB-25 MALE  
CONNECTOR  
V
CC  
C10  
1µF  
C9  
1µF  
28  
27  
1
2
V
V
CC  
EE  
C11  
1µF  
V
GND  
DD  
26  
4
RTS A (105)  
RTS B  
3
4
5
RTS  
D1  
D2  
D3  
25  
24  
23  
19  
20  
23  
DTR A (108)  
DTR B  
DTR  
LTC1544  
22  
21  
20  
19  
8
10  
6
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
R4  
DCD  
DSR  
CTS  
LL  
DSR A (107)  
22  
DSR B  
5
18  
17  
CTS A (106)  
CTS B  
13  
10  
9
16  
18  
LL A (141)  
D4  
11  
12  
13  
14  
15  
NC  
M0  
M1  
M2  
INVERT  
DCE/DTE  
M2  
M1  
M0  
1544 F22  
Figure 22. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector  
15  
LTC1544  
TYPICAL APPLICATIO S  
U
C6  
C7  
C8  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
21  
14  
LATCH  
V
CC  
C13  
1µF  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
2
4
C4  
C12  
+
3.3µF  
1µF  
25  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
LTC1543  
D1  
V
CC  
3
24  
RXD A (104)  
RXD B  
5
6
7
RXD  
RXC  
23  
22  
16  
17  
RXC A (115)  
RXC B  
D2  
D3  
9
21  
20  
19  
18  
17  
16  
15  
15  
12  
TXC A (114)  
TXC B  
8
9
R1  
R2  
R3  
TXC  
SCTE  
TXD  
24  
11  
SCTE A (113)  
SCTE B  
2
14  
7
TXD A (103)  
TXD B  
10  
11  
12  
13  
14  
M0  
M1  
M2  
SGND (102)  
1
SHIELD (101)  
DCE/DTE  
NC  
DB-25 FEMALE  
CONNECTOR  
V
CC  
C10  
1µF  
C9  
1µF  
28  
27  
1
2
V
V
CC  
EE  
C11  
1µF  
V
GND  
DD  
26  
5
CTS A (106)  
CTS B  
3
4
5
CTS  
D1  
D2  
D3  
25  
24  
23  
13  
6
DSR A (107)  
DSR B  
22  
DSR  
LTC1544  
22  
21  
20  
19  
8
10  
20  
23  
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
R4  
DCD  
DTR  
RTS  
LL  
DTR A (108)  
DTR B  
4
18  
17  
RTS A (105)  
RTS B  
19  
10  
9
16  
18  
LL A (141)  
D4  
11  
12  
13  
14  
15  
NC  
M0  
M1  
M2  
INVERT  
NC  
DCE/DTE  
M2  
M1  
M0  
1544 F23  
Figure 23. Controller-Selectable DCE Port with DB-25 Connector  
16  
LTC1544  
U
C6  
C7  
C8  
TYPICAL APPLICATIO S  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
14  
21  
V
CC  
LATCH  
C13  
1µF  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
2
4
C4  
C12  
+
3.3µF  
1µF  
25  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
DTE  
DCE  
LTC1543  
D1  
2
24  
TXD A  
RXD A  
5
6
7
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
23  
22  
14  
24  
TXD B  
RXD B  
RXC A  
RXC B  
SCTE A  
SCTE B  
D2  
D3  
11  
21  
20  
19  
18  
17  
16  
15  
15  
12  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
8
9
R1  
R2  
R3  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
17  
9
3
16  
7
10  
11  
M0  
M1  
M2  
12  
13  
14  
SG  
1
SHIELD  
DCE/DTE  
DB-25  
CONNECTOR  
V
1
2
CC  
C10  
1µF  
C9  
1µF  
28  
27  
V
V
CC  
EE  
C11  
1µF  
V
DD  
GND  
26  
4
RTS A  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
D1  
D2  
D3  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
25  
24  
23  
19  
20  
23  
RTS B  
DTR A  
DTR B  
LTC1544  
22  
21  
20  
19  
8
10  
6
6
7
8
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
R1  
R2  
R3  
R4  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
DTE_LL/DCE_LL  
22  
DSR B  
CTS A  
CTS B  
DTR B  
RTS A  
RTS B  
5
18  
17  
13  
10  
9
16  
18  
LL A  
LL A  
D4  
11  
12  
13  
14  
15  
NC  
M0  
M1  
M2  
INVERT  
DCE/DTE  
DCE/DTE  
M2  
M1  
M0  
1544 F24  
Figure 24. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
17  
LTC1544  
TYPICAL APPLICATIO S  
U
C6  
C7  
C8  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
21  
14  
LATCH  
V
CC  
C13  
1µF  
1
2
44  
C2  
C3  
1µF  
43  
42  
1µF  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
4
3
C4  
C12  
+
3.3µF  
1µF  
41  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
8
5
LTC1343  
D1  
DTE  
DCE  
18  
2
39  
DTE_LL/DCE_TM  
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
LL A  
TM A  
38  
37  
36  
35  
34  
33  
TXD A  
TXD B  
SCTE A  
SCTE B  
RXD A  
RXD B  
RXC A  
RXC B  
6
7
D2  
D3  
D4  
14  
24  
11  
9
10  
12  
13  
15  
12  
32  
31  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
R1  
R2  
R3  
R4  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
DTE_TM/DCE_LL  
30  
29  
17  
9
14  
15  
28  
27  
3
16  
26  
25  
7
16  
TM A  
SG  
LL A  
20  
22  
11  
25  
21  
19  
18  
17  
CTRL  
DCE  
M2  
M1  
M0  
LATCH  
INVERT  
423SET  
1
SHIELD  
R1  
100k  
V
CC  
24  
40  
GND  
EC  
LB  
23  
DB-25  
CONNECTOR  
LB  
V
CC  
C9  
1µF  
C10  
1µF  
28  
27  
1
2
V
V
V
CC  
EE  
C11  
1µF  
GND  
DD  
26  
4
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
3
4
D1  
D2  
D3  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
25  
24  
23  
19  
20  
23  
CTS B  
DSR A  
DSR B  
5
LTC1544  
R1  
22  
21  
20  
19  
8
10  
6
6
7
8
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
DTE_RL/DCE_RL  
R2  
R3  
22  
DSR B  
CTS A  
CTS B  
DTR B  
RTS A  
RTS B  
5
18  
17  
13  
10  
9
16  
21  
R4  
D4  
RL A  
RL A  
15  
11  
12  
13  
14  
INVERT  
M0  
NC  
M1  
M2  
DCE/DTE  
DCE/DTE  
M2  
1544 F25  
M1  
M0  
Figure 25. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector  
18  
LTC1544  
U
TYPICAL APPLICATIO S  
C6  
C7  
C8  
100pF 100pF 100pF  
3
8
11 12 13  
LTC1344A  
V
CC  
5V  
14  
21  
V
CC  
LATCH  
C13  
1µF  
3
1
28  
C2  
C3  
1µF  
1µF  
27  
26  
C1  
1µF  
2
CHARGE  
PUMP  
V
EE  
2
4
C4  
C12  
+
3.3µF  
1µF  
25  
5
4
6
7
9
10  
16 15 18 17 19 20 22 23 24 1  
C5  
1µF  
DTE  
DCE  
LTC1543  
D1  
V
CC  
2
24  
TXD A  
TXD B  
RXD A  
RXD B  
5
6
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
23  
22  
14  
24  
SCTE A RXC A  
SCTE B RXC B  
D2  
11  
21  
7
8
D3  
R1  
20  
19  
18  
17  
16  
15  
15  
12  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
17  
9
9
R2  
R3  
3
10  
11  
12  
13  
14  
16  
7
M0  
M1  
M2  
SG  
NC  
1
SHIELD  
DCE/DTE  
DB-25  
CONNECTOR  
V
CC  
C9  
1µF  
25  
21  
18  
C10  
1µF  
28  
27  
DCE/DTE  
1
2
V
V
CC  
EE  
C11  
1µF  
M1  
M0  
V
DD  
GND  
26  
4
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
D1  
D2  
D3  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
25  
24  
23  
19  
20  
23  
LTC1544  
22  
21  
20  
19  
8
10  
6
6
7
8
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
R1  
R2  
R3  
R4  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
22  
DSR B  
CTS A  
CTS B  
DTR B  
RTS A  
RTS B  
5
18  
17  
13  
10  
9
16  
CABLE WIRING FOR MODE SELECTION  
CABLE WIRING FOR  
DTE/DCE SELECTION  
D4  
MODE  
V.35  
PIN 18  
PIN 7  
NC  
PIN 21  
PIN 7  
PIN 7  
NC  
MODE  
DTE  
PIN 25  
PIN 7  
NC  
11  
12  
13  
14  
M0  
M1  
M2  
RS449, V.36  
RS232  
DCE  
PIN 7  
NC  
15  
NC  
INVERT  
DCE/DTE  
1544 F26  
Figure 26. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1544  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
10.07 – 10.33*  
(0.397 – 0.407)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
7.65 – 7.90  
(0.301 – 0.311)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
5.20 – 5.38**  
(0.205 – 0.212)  
1.73 – 1.99  
(0.068 – 0.078)  
0° – 8°  
0.65  
(0.0256)  
BSC  
0.13 – 0.22  
0.55 – 0.95  
(0.005 – 0.009)  
(0.022 – 0.037)  
0.05 – 0.21  
(0.002 – 0.008)  
0.25 – 0.38  
(0.010 – 0.015)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
G28 SSOP 1098  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1321  
Dual RS232/RS485 Transceiver  
Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs  
4-Driver/4-Receiver for Data and Clock Signals  
LTC1334  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Cable Terminator  
Single Supply V.35 Transceiver  
LTC1343  
LTC1344A  
LTC1345  
Perfect for Terminating the LTC1543  
3-Driver/3-Receiver for Data and Clock Signals  
LTC1346A  
LTC1543  
Dual Supply V.35 Transceiver  
3-Driver/3-Receiver for Data and Clock Signals  
Software-Selectable Multiprotocol Transceiver  
Multiprotocol Transceiver with Termination  
Companion to LTC1544 for Data and Clock Signals  
Companion to LTC1544 for Data and Clock Signals  
LTC1546  
1544fa LT/TP 0100 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1544IG#PBF

LTC1544 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1544IG#TR

暂无描述
Linear

LTC1544IG#TRPBF

LTC1544 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1545

Software-Selectable Multiprotocol Transceiver
Linear

LTC1545C

Software-Selectable Multiprotocol Transceiver
Linear

LTC1545CG

Software-Selectable Multiprotocol Transceiver
Linear

LTC1545CG#PBF

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC1545CG#TR

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC1545CG#TRPBF

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC1545I

Software-Selectable Multiprotocol Transceiver
Linear

LTC1545IG

Software-Selectable Multiprotocol Transceiver
Linear

LTC1545IG#PBF

LTC1545 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear