LTC1407AIMSE-1 [Linear]

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; 串行12位/ 14位, 3MSPS同时采样ADC ,带有关断
LTC1407AIMSE-1
型号: LTC1407AIMSE-1
厂家: Linear    Linear
描述:

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
串行12位/ 14位, 3MSPS同时采样ADC ,带有关断

转换器 光电二极管
文件: 总24页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1407-1/LTC1407A-1  
Serial 12-Bit/14-Bit, 3Msps  
Simultaneous Sampling  
ADCs with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LTC®1407-1/LTC1407A-1 are 12-bit/14-bit, 3Msps  
ADCswithtwo1.5Mspssimultaneouslysampleddifferen-  
tial inputs. The devices draw only 4.7mA from a single 3V  
supply and come in a tiny 10-lead MS package. A Sleep  
shutdown feature lowers power consumption to 10µW.  
The combination of speed, low power and tiny package  
makestheLTC1407-1/LTC1407A-1suitableforhighspeed,  
portable applications.  
3Msps Sampling ADC with Two Simultaneous  
Differential Inputs  
1.5Msps Throughput per Channel  
Low Power Dissipation: 14mW (Typ)  
3V Single Supply Operation  
±1.25V Differential Input Range  
Pin Compatible 0V to 2.5V Input Range Version  
(LTC1407/LTC1407A)  
2.5V Internal Bandgap Reference with External  
The LTC1407-1/LTC1407A-1 contain two separate differ-  
entialinputsthataresampledsimultaneouslyontherising  
edge of the CONV signal. These two sampled inputs are  
then converted at a rate of 1.5Msps per channel.  
Overdrive  
3-Wire Serial Interface  
Sleep (10µW) Shutdown Mode  
Nap (3mW) Shutdown Mode  
The 80dB common mode rejection allows users to elimi-  
nategroundloopsandcommonmodenoisebymeasuring  
signals differentially from the source.  
80dB Common Mode Rejection at 100kHz  
Tiny 10-Lead MS Package  
U
APPLICATIO S  
The devices convert –1.25V to 1.25V bipolar inputs differ-  
entially. The absolute voltage swing for CH0+, CH0, CH1+  
and CH1extends from ground to the supply voltage.  
Telecommunications  
Data Acquisition Systems  
Uninterrupted Power Supplies  
Multiphase Motor Control  
I & Q Demodulation  
Industrial Radio  
The serial interface sends out the two conversion results in  
32 clocks for compatibility with standard serial interfaces.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U.S. patent numbers 6084440, 6522187  
W
BLOCK DIAGRA  
10µF 3V  
THD, 2nd and 3rd vs Input  
Frequency for Differential  
Input Signals  
7
V
DD  
LTC1407A-1  
+
–44  
–50  
–56  
–62  
CH0  
1
2
+
S & H  
CH0  
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
3Msps  
14-BIT ADC  
MUX  
8
SDO  
–68  
–74  
+
CH1  
CH1  
4
5
3
+
THD 3rd  
S & H  
–80  
–86  
10  
9
CONV  
SCK  
–92  
TIMING  
LOGIC  
V
2nd  
REF  
–98  
10µF  
–104  
GND  
2.5V  
REFERENCE  
6
0.1  
1
10 20  
FREQUENCY (MHz)  
EXPOSED PAD  
11  
14071 G22  
1407A1 BD  
14071f  
1
LTC1407-1/LTC1407A-1  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
PACKAGE/ORDER I FOR ATIO  
Supply Voltage (VDD)................................................. 4V  
Analog Input Voltage  
(Note 3) ................................... – 0.3V to (VDD + 0.3V)  
Digital Input Voltage .................... – 0.3V to (VDD + 0.3V)  
Digital Output Voltage.................. – 0.3V to (VDD + 0.3V)  
Power Dissipation.............................................. 100mW  
Operation Temperature Range  
LTC1407C-1/LTC1407AC-1 ..................... 0°C to 70°C  
LTC1407I-1/LTC1407AI-1 .................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
+
LTC1407CMSE-1  
LTC1407IMSE-1  
LTC1407ACMSE-1  
LTC1407AIMSE-1  
CH0  
CH0  
V
1
2
3
4
5
10 CONV  
9
8
7
6
SCK  
SDO  
DD  
GND  
11  
REF  
+
CH1  
CH1  
V
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
MSE PART MARKING  
TJMAX = 125°C, θJA = 150°C/ W  
EXPOSED PAD IS GND (PIN 11)  
MUST BE SOLDERED TO PCB  
LTBGT  
LTBGV  
LTBGW  
LTBGX  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
CO VERTER CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
LTC1407-1  
MIN TYP MAX  
LTC1407A-1  
MIN TYP MAX  
PARAMETER  
CONDITIONS  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Offset Error  
12  
14  
(Notes 5, 17)  
(Notes 4, 17)  
(Note 17)  
–2 ±0.25  
–10 ±1  
–5 ±0.5  
2
10  
5
–4 ±0.5  
4
LSB  
LSB  
LSB  
LSB  
LSB  
–20  
–10  
±2  
±1  
20  
10  
Offset Match from CH0 to CH1  
Gain Error  
(Notes 4, 17)  
(Note 17)  
–30  
–5  
±5  
±1  
30  
5
–60 ±10 60  
Gain Match from CH0 to CH1  
Gain Tempco  
–10  
±2  
10  
Internal Reference (Note 4)  
External Reference  
±15  
±1  
±15  
±1  
ppm/°C  
ppm/°C  
U
U
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Analog Differential Input Range (Notes 3, 8, 9)  
2.7V V 3.3V  
–1.25 to 1.25  
V
V
IN  
DD  
Analog Common Mode + Differential  
Input Range (Note 10)  
0 to V  
CM  
DD  
I
Analog Input Leakage Current  
1
µA  
pF  
ns  
ns  
ps  
ps  
IN  
C
Analog Input Capacitance  
(Note 18)  
(Note 6)  
13  
IN  
t
t
t
t
Sample-and-Hold Acquisition Time  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Sample-and-Hold Aperture Skew from CH0 to CH1  
Analog Input Common Mode Rejection Ratio  
39  
ACQ  
AP  
1
0.3  
JITTER  
SK  
200  
CMRR  
f
f
= 1MHz, V = 0V to 3V  
= 100MHz, V = 0V to 3V  
–60  
–15  
dB  
dB  
IN  
IN  
IN  
IN  
14071f  
2
LTC1407-1/LTC1407A-1  
U W  
DY A IC ACCURACY  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V. Single ended signal drive CH0+/CH1+ with  
CHO/CH1= 1.5V DC. Differential signals drive both inputs of each channel with VCM = 1.5V DC.  
LTC1407-1  
MIN TYP MAX  
LTC1407A-1  
MIN TYP MAX  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
SINAD  
Signal-to-Noise Plus  
Distortion Ratio  
100kHz Input Signal (Note 19)  
750kHz Input Signal (Note 19)  
100kHz Input Signal, External V = 3.3V,  
70.5  
68 70.5  
72.0  
73.5  
70 73.5  
76.3  
dB  
dB  
dB  
REF  
V
DD  
3.3V (Note 19)  
750kHz Input Signal, External V = 3.3V,  
72.0  
76.3  
dB  
REF  
V
DD  
3.3V (Note 19)  
THD  
SFDR  
IMD  
Total Harmonic  
Distortion  
100kHz First 5 Harmonics (Note 19)  
750kHz First 5 Harmonics (Note 19)  
–87  
–83 –77  
–90  
–86 –80  
dB  
dB  
Spurious Free  
Dynamic Range  
100kHz Input Signal (Note 19)  
750kHz Input Signal (Note 19)  
–87  
–83  
–90  
–86  
dB  
dB  
Intermodulation  
Distortion  
0.625V 1.4MHz Summed with 0.625V , 1.56MHz  
–82  
–82  
dB  
P-P  
+
P-P  
into CH0 and Inverted into CHO . Also Applicable  
+
to CH1 and CH1  
Code-to-Code  
V
REF  
= 2.5V (Note 17)  
0.25  
1
LSB  
RMS  
Transition Noise  
Full Power Bandwidth  
V
= 2.5V , SDO = 11585LSB (–3dBFS) (Note 15)  
50  
5
50  
5
MHz  
MHz  
IN  
P-P  
P-P  
Full Linear Bandwidth S/(N + D) 68dB  
U U  
U
TA = 25°C. VDD = 3V.  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
2.5  
15  
MAX  
UNITS  
V
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
Settling Time  
I
OUT  
REF  
REF  
REF  
REF  
REF  
ppm/°C  
µV/V  
V
= 2.7V to 3.6V, V = 2.5V  
600  
0.2  
2
DD  
REF  
Load Current = 0.5mA  
ms  
U
U
The denotes the specifications which apply over the  
DIGITAL I PUTS A D DIGITAL OUTPUTS  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 3.3V  
= 2.7V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.6  
I
= 0V to V  
±10  
µA  
pF  
V
IN  
DD  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
5
IN  
V
= 3V, I = 200µA  
OUT  
2.5  
2.9  
OH  
OL  
DD  
V
V
= 2.7V, I  
= 2.7V, I  
= 160µA  
= 1.6mA  
0.05  
0.10  
V
V
DD  
DD  
OUT  
OUT  
0.4  
I
Hi-Z Output Leakage D  
V
= 0V to V  
DD  
±10  
µA  
pF  
OZ  
OUT  
OUT  
C
Hi-Z Output Capacitance D  
1
OZ  
OUT  
I
I
Output Short-Circuit Source Current  
Output Short-Circuit Sink Current  
V
V
= 0V, V = 3V  
20  
15  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
DD  
= V = 3V  
DD  
14071f  
3
LTC1407-1/LTC1407A-1  
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
2.7  
3.6  
V
DD  
I
Active Mode, f  
Nap Mode  
Sleep Mode (LTC1407)  
Sleep Mode (LTC1407A)  
= 1.5Msps  
SAMPLE  
4.7  
1.1  
2.0  
2.0  
7.0  
1.5  
15  
mA  
mA  
µA  
DD  
10  
µA  
PD  
Power Dissipation  
Active Mode with SCK in Fixed State (Hi or Lo)  
12  
mW  
W U  
TI I G CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Maximum Sampling Frequency per Channel  
(Conversion Rate)  
1.5  
MHz  
SAMPLE(MAX)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Minimum Sampling Period (Conversion + Acquisiton Period)  
Clock Period  
667  
ns  
THROUGHPUT  
(Note 16)  
(Note 6)  
19.6  
32  
2
10000  
ns  
SCK  
Conversion Time  
34  
SCLK cycles  
CONV  
Minimum Positive or Negative SCLK Pulse Width  
CONV to SCK Setup Time  
(Note 6)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
1
(Notes 6, 10)  
(Note 6)  
3
2
SCK Before CONV  
0
3
Minimum Positive or Negative CONV Pulse Width  
SCK to Sample Mode  
(Note 6)  
4
4
(Note 6)  
4
5
CONV to Hold Mode  
(Notes 6, 11)  
1.2  
45  
8
6
32nd SCKto CONVInterval (Affects Acquisition Period) (Notes 6, 7, 13)  
7
Minimum Delay from SCKto Valid Bits 0 Through 11  
SCK to Hi-Z at SDO  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 14)  
8
6
9
Previous SDO Bit Remains Valid After SCK  
2
10  
12  
V
Settling Time After Sleep-to-Wake Transition  
2
REF  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground GND.  
Note 10: If less than 3ns is allowed, the output data will appear one clock  
cycle later. It is best for CONV to rise half a clock before SCK, when  
running the clock at rated speed.  
Note 11: Not the same as aperture delay. Aperture delay (1ns) is the  
difference between the 2.2ns delay through the sample-and-hold and the  
1.2ns CONV to Hold mode delay.  
Note 12: The rising edge of SCK is guaranteed to catch the data coming  
out into a storage latch.  
Note 3: When these pins are taken below GND or above V , they will be  
clamped by internal diodes. This product can handle input currents greater  
DD  
than 100mA below GND or greater than V without latchup.  
DD  
+
Note 4: Offset and range specifications apply for a single-ended CH0 or  
+
CH1 input with CH0 or CH1 grounded and using the internal 2.5V  
reference.  
Note 13: The time period for acquiring the input signal is started by the  
32nd rising clock and it is ended by the rising edge of CONV.  
Note 14: The internal reference settles in 2ms after it wakes up from Sleep  
mode with one or more cycles at SCK and a 10µF capacitive load.  
Note 5: Integral linearity is tested with an external 2.55V reference and is  
defined as the deviation of a code from the straight line passing through  
the actual endpoints of a transfer curve. The deviation is measured from  
the center of quantization band.  
Note 15: The full power bandwidth is the frequency where the output code  
Note 6: Guaranteed by design, not subject to test.  
Note 7: Recommended operating conditions.  
swing drops by 3dB with a 2.5V input sine wave.  
Note 16: Maximum clock period guarantees analog performance during  
conversion. Output data can be read with an arbitrarily long clock period.  
Note 17: The LTC1407A-1 is measured and specified with 14-bit  
Resolution (1LSB = 152µV) and the LTC1407-1 is measured and specified  
with 12-bit Resolution (1LSB = 610µV).  
P-P  
Note 8: The analog input range is defined for the voltage difference  
+
+
between CH0 and CH0 or CH1 and CH1 . Performance is specified with  
+
CHO = 1.5V DC while driving CHO and with CH1 = 1.5V DC while  
driving CH1 .  
Note 9: The absolute voltage at CH0 , CH0 , CH1 and CH1 must be  
+
+
+
Note 18: The sampling capacitor at each input accounts for 4.1pF of the  
within this range.  
input capacitance.  
Note 19: Full-scale sinewaves are fed into the noninverting inputs while  
the inverting inputs are kept at 1.5V DC.  
14071f  
4
LTC1407-1/LTC1407A-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VDD = 3V, TA = 25°C. Single ended signals drive  
+CH0/+CH1 with –CH0/–CH1 = 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1407A-1)  
ENOBs and SINAD  
vs Input Sinewave Frequency  
THD, 2nd and 3rd  
vs Input Frequency  
SFDR vs Input Frequency  
–44  
–50  
–56  
–62  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
–68  
–74  
THD  
2nd  
3rd  
10  
–80  
–86  
9.0  
–92  
8.5  
–98  
–104  
8.0  
0.1  
0.1  
1
100  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
14071 G02  
14071 G01  
14071 G03  
THD, 2nd and 3rd vs Input  
Frequency for Differential Input  
Signals  
ENOBs and SINAD vs Input  
Sinewave Frequency for  
Differential Input Signals  
SNR vs Input Frequency  
–44  
–50  
–56  
–62  
74  
71  
68  
65  
62  
59  
56  
53  
50  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
–68  
–74  
THD 3rd  
–80  
–86  
9.0  
–92  
2nd  
8.5  
–98  
–104  
8.0  
0.1  
0.1  
1
10 20  
0.1  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
14071 G22  
14071 G04  
14071 G21  
SFDR vs Input Frequency for  
Differential Input Signals  
98kHz Sine Wave 4096 Point  
FFT Plot  
748kHz Sine Wave 4096 Point  
FFT Plot  
0
–10  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
0
–10  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
100 200 300 400 500 600 700  
FREQUENCY (kHz)  
0
100 200 300 400 500 600 700  
0.1  
1
10  
100  
FREQUENCY (kHz)  
14071 G06  
FREQUENCY (MHz)  
14071 G23  
14071 G05  
14071f  
5
LTC1407-1/LTC1407A-1  
U W  
VDD = 3V, TA = 25°C. Single ended signals drive  
TYPICAL PERFOR A CE CHARACTERISTICS  
+CH0/+CH1 with –CH0/–CH1 = 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1407A-1)  
1403kHz Input Summed with  
1563kHz Input IMD 4096 Point FFT  
Plot for Differential Input Signals  
10.7MHz Sine Wave 4096 Point  
FFT Plot for Differential Input  
Signals  
748kHz Sine Wave 4096 Point FFT  
Plot for Differential Input Signals  
0
–10  
0
–10  
–20  
0
–10  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–70  
–60  
–70  
–80  
–80  
–80  
–90  
–100  
–110  
–120  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
185k  
371k  
556k  
741k  
0
185k  
371k  
FREQUENCY (Hz)  
556k  
741k  
0
100 200 300 400 500 600 700  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
14071 G25  
14071 G24  
14071 G07  
Integral Linearity End Point Fit for  
CH0 with Internal 2.5V Reference  
for Differential Input Signals  
Differential Linearity for CH0 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH0 with Internal 2.5V Reference  
4.0  
3.2  
1.0  
0.8  
4.0  
3.2  
2.4  
0.6  
2.4  
1.6  
0.4  
1.6  
0.8  
0.2  
0.8  
0
0
0
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
0
8192  
12288  
4096  
16384  
0
8192  
12288  
4096  
16384  
0
8192  
12288  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
14071 G26  
14071 G08  
14071 G09  
Integral Linearity End Point Fit for  
CH1 with Internal 2.5V Reference  
for Differential Input Signals  
Differential Linearity for CH1 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH1 with Internal 2.5V Reference  
1.0  
0.8  
4.0  
3.2  
4.0  
3.2  
0.6  
2.4  
2.4  
0.4  
1.6  
1.6  
0.2  
0.8  
0.8  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
0
8192  
12288  
4096  
16384  
0
8192  
12288  
0
8192  
12288  
4096  
16384  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
14071 G10  
14071 G11  
14071 G27  
14071f  
6
LTC1407-1/LTC1407A-1  
U W  
VDD = 3V, TA = 25°C. Single ended signals drive  
+CH0/+CH1 with –CH0/–CH1 = 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1407A-1)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Differential and Integral Linearity  
vs Conversion Rate  
SINAD vs Conversion Rate  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
8
7
6
5
4
3
MAX INL  
2
1
MAX DNL  
0
MIN DNL  
MIN INL  
–1  
–2  
–3  
–4  
EXTERNAL V  
EXTERNAL V  
INTERNAL V  
= 3.3V, f ~ fS/3  
IN  
REF  
REF  
REF  
REF  
= 3.3V, f ~ fS/40  
IN  
= 2.5V, f ~ fS/3  
IN  
= 2.5V, f ~ fS/40  
IN  
INTERNAL V  
2
2.5  
3
3.5  
4
3
3.25  
3.5 3.75  
CONVERSION RATE (MSPS)  
2
2.25 2.5 2.75  
4
CONVERSION RATE (Msps)  
14071 G13  
14071 G12  
VDD = 3V, TA = 25°C (LTC1407-1/LTC1407A-1)  
Full-Scale Signal Frequency  
Response  
CMRR vs Frequency  
Crosstalk vs Frequency  
0
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
12  
6
0
–20  
–40  
–6  
–12  
–18  
–60  
–80  
CH0  
CH1  
CH1 TO CH0  
CH0 TO CH1  
–24  
–30  
–36  
–100  
–120  
100  
1k  
10k 100k  
1M  
10M 100M  
100  
1k  
10k  
100k  
1M  
10M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
14071 G15  
14071 G16  
14071 G14  
Output Match with Simultaneous  
Input Steps at CH0 and CH1 from  
25Ω  
PSSR vs Frequency  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
16384  
14336  
12288  
10240  
CH0 AND CH1  
RISING  
CH0  
CH1  
8192  
6144  
4096  
2048  
0
CH0 AND CH1  
FALLING  
1
10  
100  
1k  
10k 100k  
1M  
0
5
15  
–5  
20  
25  
10  
FREQUENCY (Hz)  
TIME (ns)  
14071 G18  
14071 G17  
14071f  
7
LTC1407-1/LTC1407A-1  
U W  
VDD = 3V, TA = 25°C (LTC1407-1/LTC1407A-1)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Reference Voltage  
vs Load Current  
Reference Voltage vs VDD  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
LOAD CURRENT (mA)  
V
DD  
14071 G19  
14071 G20  
U
U
U
PI FU CTIO S  
CH0+ (Pin1):NoninvertingChannel0. CH0+ operatesfully  
differentially with respect to CH0, with a –1.25V to 1.25V  
differential swing with respect to CH0and a 0 to VDD  
absolute input range.  
CH0(Pin 2): Inverting Channel 0. CH0operates fully  
differentially with respect to CH0+, with a 1.25V to –1.25V  
differential swing with respect to CH0+ and a 0 to VDD  
absolute input range.  
the solid ground plane under the part. Keep in mind that  
analog signal currents and digital output signal currents  
flow through these connections.  
VDD (Pin 7): 3V Positive Supply. This single power pin  
supplies3Vtotheentirechip. BypasstoGNDpinandsolid  
analog ground plane with a 10µF ceramic capacitor (or  
10µF tantalum) in parallel with 0.1µF ceramic. Keep in  
mindthatinternalanalogcurrentsanddigitaloutputsignal  
currents flow through this pin. Care should be taken to  
place the 0.1µF bypass capacitor as close to Pins 6 and 7  
as possible.  
VREF (Pin 3): 2.5V Internal Reference. Bypass to GND and  
a solid analog ground plane with a 10µF ceramic capacitor  
(or 10µF tantalum in parallel with 0.1µF ceramic). Can be  
overdriven by an external reference voltage 2.55V and  
VDD.  
CH1+ (Pin4):NoninvertingChannel1. CH1+ operatesfully  
differentially with respect to CH1, with a –1.25V to 1.25V  
differential swing with respect to CH1and a 0 to VDD  
absolute input range.  
CH1(Pin 5): Inverting Channel 1. CH1operates fully  
differentially with respect to CH1+, with a 1.25V to –1.25V  
differential swing with respect to CH1+ and a 0 to VDD  
absolute input range.  
SDO (Pin 8): Three-state Serial Data Output. Each pair of  
output data words represent the two analog input chan-  
nels at the start of the previous conversion. The output  
format is 2’s complement.  
SCK (Pin 9): External Clock Input. Advances the conver-  
sion process and sequences the output data on the rising  
edge. One or more pulses wake from sleep.  
CONV (Pin 10): Convert Start. Holds the two analog input  
signals and starts the conversion on the rising edge. Two  
pulses with SCK in fixed high or fixed low state starts Nap  
mode. Four or more pulses with SCK in fixed high or fixed  
low state starts Sleep mode.  
GND (Pins 6, 11): Ground and Exposed Pad. This single  
ground pin and the Exposed Pad must be tied directly to  
14071f  
8
LTC1407-1/LTC1407A-1  
W
BLOCK DIAGRA  
10µF 3V  
7
V
DD  
LTC1407A-1  
+
CH0  
1
2
+
S & H  
CH0  
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
3Msps  
14-BIT ADC  
MUX  
8
SDO  
+
CH1  
4
5
3
+
S & H  
CH1  
10  
9
CONV  
SCK  
TIMING  
LOGIC  
V
REF  
10µF  
GND  
2.5V  
REFERENCE  
6
EXPOSED PAD  
11  
1407A1 BD  
14071f  
9
LTC1407-1/LTC1407A-1  
W U  
W
TI I G DIAGRA S  
14071f  
10  
LTC1407-1/LTC1407A-1  
W U  
W
TI I G DIAGRA S  
Nap Mode and Sleep Mode Waveforms  
SCK  
t
1
t
1
CONV  
NAP  
SLEEP  
t
12  
V
14071 TD02  
REF  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS  
SCK to SDO Delay  
SCK  
SCK  
V
IH  
V
IH  
t
10  
8
t
t
9
V
V
90%  
10%  
OH  
SDO  
SDO  
OL  
14071 TD03  
14071f  
11  
LTC1407-1/LTC1407A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
DRIVING THE ANALOG INPUT  
increasing the time between conversions. The best choice  
for an op amp to drive the LTC1407-1/LTC1407A-1 de-  
pends on the application. Generally, applications fall into  
two categories: AC applications where dynamic specifica-  
tionsaremostcriticalandtimedomainapplicationswhere  
DC accuracy and settling time are most critical. The  
followinglistisasummaryoftheopampsthataresuitable  
for driving the LTC1407-1/LTC1407A-1. (More detailed  
informationisavailableintheLinearTechnologyDatabooks  
and on the LinearViewTM CD-ROM.)  
The differential analog inputs of the LTC1407-1/  
LTC1407A-1 are easy to drive. The inputs may be driven  
differentially or as a single-ended input (i.e., the CH0–  
input is AC grounded at VCC/2). All four analog inputs of  
both differential analog input pairs, CH0+ with CH0and  
CH1+ with CH1, are sampled at the same instant. Any  
unwanted signal that is common to both inputs of each  
input pair will be reduced by the common mode rejection  
of the sample-and-hold circuit. The inputs draw only one  
small current spike while charging the sample-and-hold  
capacitors at the end of conversion. During conversion,  
the analog inputs draw only a small leakage current. If the  
source impedance of the driving circuit is low, then the  
LTC1407-1/LTC1407A-1 inputs can be driven directly. As  
source impedance increases, so will acquisition time. For  
minimum acquisition time with high source impedance, a  
buffer amplifier must be used. The main requirement is  
that the amplifier driving the analog input(s) must settle  
after the small current spike before the next conversion  
starts(settlingtimemustbe39nsforfullthroughputrate).  
Also keep in mind, while choosing an input amplifier, the  
amount of noise and harmonic distortion added by the  
amplifier.  
LTC1566-1: Low Noise 2.3MHz Continuous Time Low-  
pass Filter.  
LT®1630: Dual 30MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to ±15V supplies. Very high AVOL, 500µV offset and  
520ns settling to 0.5LSB for a 4V swing. THD and noise  
are 93dB to 40kHz and below 1LSB to 320kHz (AV = 1,  
2VP-P into1k,VS =5V),makingthepartexcellentforAC  
applications (to 1/3 Nyquist) where rail-to-rail perfor-  
mance is desired. Quad version is available as LT1631.  
LT1632: Dual 45MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to ±15V supplies. Very high AVOL, 1.5mV offset and  
400ns settling to 0.5LSB for a 4V swing. It is suitable for  
applications with a single 5V supply. THD and noise are  
93dB to 40kHz and below 1LSB to 800kHz (AV = 1,  
2VP-P into1k,VS =5V),makingthepartexcellentforAC  
applications where rail-to-rail performance is desired.  
Quad version is available as LT1633.  
CHOOSING AN INPUT AMPLIFIER  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
output impedance (< 100) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain of  
1 and has a unity-gain bandwidth of 50MHz, then the  
output impedance at 50MHz must be less than 100. The  
second requirement is that the closed-loop bandwidth  
must be greater than 40MHz to ensure adequate small-  
signal settling for full throughput rate. If slower op amps  
are used, more time for settling can be provided by  
LT1801: 80MHz GBWP, –75dBc at 500kHz, 2mA/ampli-  
fier, 8.5nV/Hz.  
LT1806/LT1807: 325MHz GBWP, –80dBc distortion at  
5MHz, unity gain stable, rail-to-rail in and out,  
10mA/amplifier, 3.5nV/Hz.  
LT1810: 180MHz GBWP, –90dBc distortion at 5MHz,  
unity gain stable, rail-to-rail in and out, 15mA/amplifier,  
16nV/Hz.  
LinearView is a trademark of Linear Technology Corporation.  
14071f  
12  
LTC1407-1/LTC1407A-1  
W U U  
APPLICATIO S I FOR ATIO  
U
LT1818/LT1819: 400MHz, 2500V/µs, 9mA, Single/Dual  
can add distortion. NPO and silvermica type dielectric  
capacitors have excellent linearity. Carbon surface mount  
resistors can generate distortion from self heating and  
from damage that may occur during soldering. Metal film  
surface mount resistors are much less susceptible to both  
problems.Whenhighamplitudeunwantedsignalsareclose  
in frequency to the desired signal frequency a multiple  
pole filter is required.  
Voltage Mode Operational Amplifier.  
LT6200: 165MHz GBWP, –85dBc distortion at 1MHz,  
unity gain stable, rail-to-rail in and out, 15mA/amplifier,  
0.95nV/Hz.  
LT6203: 100MHz GBWP, –80dBc distortion at 1MHz,  
unity gain stable, rail-to-rail in and out, 3mA/amplifier,  
1.9nV/Hz.  
High external source resistance, combined with 13pF of  
inputcapacitance,willreducetherated50MHzinputband-  
width and increase acquisition time beyond 39ns.  
LT6600: Amplifier/Filter Differential In/Out with 10MHz  
Cutoff.  
INPUT FILTERING AND SOURCE IMPEDANCE  
INPUT RANGE  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1407-1/LTC1407A-1 noise and distortion. The  
small-signal bandwidth of the sample-and-hold circuit is  
50MHz. Any noise or distortion products that are present  
at the analog inputs will be summed over this entire band-  
width. Noisy input circuitry should be filtered prior to the  
analog inputs to minimize noise. A simple 1-pole RC filter  
is sufficient for many applications. For example, Figure 1  
shows a 47pF capacitor from CHO+ to ground and a 51Ω  
source resistor to limit the net input bandwidth to 30MHz.  
The 47pF capacitor also acts as a charge reservoir for the  
input sample-and-hold and isolates the ADC input from  
sampling-glitch sensitive circuitry. High quality capaci-  
torsandresistorsshouldbeusedsincethesecomponents  
The analog inputs of the LTC1407-1/LTC1407A-1 may be  
driven fully differentially with a single supply. Either input  
may swing up to 3V, provided the differential swing is no  
greater than 1.25V. In the valid input range, each input of  
each channel is always up to ±1.25V away from the other  
input of each channel. The –1.25V to 1.25V range is also  
ideally suited for AC-coupled signals in single supply  
applications. Figure 2 shows how to AC couple signals in  
asinglesupplysystemwithoutneedingamid-supply1.5V  
DC external reference. The DC common mode level is  
supplied by the previous stage that is already bounded by  
single supply voltage of the system. The common mode  
range of the inputs extends from ground to the supply  
voltage VDD. If the difference between the CH0+ and CH0–  
inputs or the CH1+ and CH1inputs exceeds 1.25V, the  
output code will stay fixed at zero and all ones, and if this  
difference goes below –1.25V, the ouput code will stay  
fixed at one and all zeros.  
51*  
1
ANALOG  
+
CH0  
INPUT  
47pF*  
2
V
CM  
CH0  
1.5V DC  
LTC1407-1/  
LTC1407A-1  
C2  
1µF  
3
V
REF  
10µF  
11  
LTC1407-1/  
R2  
GND  
LTC1407A-1  
1.6k  
1
R3  
51*  
+
ANALOG  
INPUT  
4
CHO  
CHO  
V
+
51Ω  
CH1  
2
V
IN  
47pF*  
4.09V 3  
R1  
1.6k  
REF  
C4  
10µF  
C3  
56pF  
C1  
1µF  
5
V
CM  
CH1  
+
14071 F02  
1.5V DC  
14071 F01  
C1, C2: FILM TYPE  
C3: COG TYPE  
C4: CERAMIC BYPASS  
*TIGHT TOLERANCE REQUIRED TO AVOID  
APERTURE SKEW DEGRADATION  
Figure 1. RC Input Filter  
Figure 2. AC Coupling of AC Signals with 1kHz Low Cut  
14071f  
13  
LTC1407-1/LTC1407A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
INTERNAL REFERENCE  
nonlinearity errors (DNL) are largely independent of the  
common mode voltage. However, the offset error will  
vary. CMRR is typically better than 60dB.  
The LTC1407-1/LTC1407A-1 have an on-chip, tempera-  
ture compensated, bandgap reference that is factory  
trimmed near 2.5V to obtain a precise ±1.25V input span.  
The reference amplifier output VREF, (Pin 3) must be by-  
passed with a capacitor to ground. The reference ampli-  
fierisstablewithcapacitorsof1µForgreater. Forthebest  
noise performance, a 10µF ceramic or a 10µF tantalum in  
parallel with a 0.1µF ceramic is recommended. The VREF  
pincanbeoverdrivenwithanexternalreferenceasshown  
in Figure 3. The voltage of the external reference must be  
higher than the 2.5V of the open-drain P-channel output  
of the internal reference. The recommended range for an  
external reference is 2.55V to VDD. An external reference  
at 2.55V will see a DC quiescent load of 0.75mA and as  
much as 3mA during conversion.  
Figure 5 shows the ideal input/output characteristics for  
the LTC1407-1/LTC1407A-1. The code transitions occur  
midway between successive integer LSB values (i.e.,  
0.5LSB, 1.5LSB, 2.5LSB, FS – 1.5LSB). The output code  
is 2’s complement with 1LSB = 2.5V/16384 = 153µV for  
the LTC1407A-1 and 1LSB = 2.5V/4096 = 610µV for the  
LTC1407-1. The LTC1407A-1 has 1LSB RMS of Gaussian  
white noise. Figure 6a shows the LTC1819 converting a  
single ended input signal to differential input signals for  
optimumTHDandSFDRperformanceasshownintheFFT  
plot (Figure 6b).  
0
–20  
–40  
3
3V REF  
V
REF  
LTC1407-1/  
10µF  
–60  
LTC1407A-1  
11  
CH0  
CH1  
GND  
–80  
14071 F02  
–100  
–120  
Figure 3  
100  
1k  
10k 100k  
FREQUENCY (Hz)  
1M  
10M 100M  
INPUT SPAN VERSUS REFERENCE VOLTAGE  
14071 G15  
The differential input range has a unipolar voltage span  
that equals the difference between the voltage at the  
reference buffer output VREF (Pin 3) and the voltage at the  
Exposed Pad ground. The differential input range of ADC  
is –1.25V to 1.25V when using the internal reference. The  
internal ADC is referenced to these two nodes. This  
relationship also holds true with an external reference.  
Figure 4. CMRR vs Frequency  
011...111  
011...110  
011...101  
DIFFERENTIAL INPUTS  
The ADC will always convert the bipolar difference of  
CH0+ minusCH0orthebipolardifferenceofCH1+ minus  
CH1, independent of the common mode voltage at either  
set of inputs. The common mode rejection holds up at  
high frequencies (see Figure 4). The only requirement is  
100...010  
100...001  
100...000  
–FS  
FS – 1LSB  
INPUT VOLTAGE (V)  
14071 F05  
that both inputs not go below ground or exceed VDD  
.
Integral nonlinearity errors (INL) and differential  
Figure 5. LTC1407-1/LTC1407A-1 Transfer Characteristic  
14071f  
14  
LTC1407-1/LTC1407A-1  
W U U  
APPLICATIO S I FOR ATIO  
U
0
5V  
C5  
0.1µF  
–10  
–20  
–30  
–40  
–50  
C3  
R1  
1µF  
–60  
–70  
51Ω  
U1  
+CH0 OR  
+CH1  
1/2 LT1819  
V
P-P  
MAX  
IN  
+
C1  
–80  
1.25V  
C6  
0.1µF  
47pF  
–90  
R5  
1k  
–100  
–110  
–120  
R4  
499Ω  
R3  
499Ω  
1.5V  
CM  
LTC1407A-1  
–5V  
R6  
1k  
0
185k  
371k  
FREQUENCY (Hz)  
556k  
741k  
C4  
1µF  
R2  
51Ω  
14031 F06b  
U2  
–CH0 OR  
–CH1  
1/2 LT1819  
+
C2  
47pF  
Figure 6b. LTC1407-1 6MHz Sine Wave 4096 Point FFT Plot  
with the LT1819 Driving the Inputs Differentially  
1407A F06a  
Figure 6a. The LT1819 Driving the LTC1407A-1 Differentially  
Board Layout and Bypassing  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performance from the LTC1407-1/LTC1407A-1, a printed  
circuit board with ground plane is required. Layout for the  
printed circuit board should ensure that digital and analog  
signal lines are separated as much as possible. In particu-  
lar, care should be taken not to run any digital track  
alongside an analog signal track. If optimum phase match  
between the inputs is desired, the length of the four input  
wires of the two input channels should be kept matched.  
But each pair of input wires to the two input channels  
should be kept separated by a ground trace to avoid high  
frequency crosstalk between channels.  
Highqualitytantalumandceramicbypasscapacitorsshould  
be used at the VDD and VREF pins as shown in the Block  
Diagram on the first page of this data sheet. For optimum  
performance, a 10µF surface mount tantalum capacitor  
witha0.1µFceramicisrecommendedfortheVDD andVREF  
pins. Alternatively, 10µF ceramic chip capacitors such as  
X5R or X7R may be used. The capacitors must be located  
as close to the pins as possible. The traces connecting the  
pins and the bypass capacitors must be kept short and  
should be made as wide as possible. The VDD bypass ca-  
pacitorreturnstoGND(Pin6)andtheVREF bypasscapaci-  
torreturnstotheExposedPadground(Pin11).Careshould  
1407-1 F07  
Figure 7. Recommended Layout  
be taken to place the 0.1µF VDD bypass capacitor as close  
to Pins 6 and 7 as possible.  
Figure7showstherecommendedsystemgroundconnec-  
tions. All analog circuitry grounds should be terminated at  
14071f  
15  
LTC1407-1/LTC1407A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
Conversion Start Input (CONV)  
the LTC1407-1/LTC1407A-1 Exposed Pad. The ground  
return from the LTC1407-1/LTC1407A-1 Pin 6 to the  
power supply should be low impedance for noise-free  
operation. The Exposed Pad of the 10-lead MSE package  
is also tied to Pin 6 and the LTC1407-1/LTC1407A-1 GND.  
The Exposed Pad should be soldered on the PC board to  
reduce ground connection inductance. Digital circuitry  
groundsmustbeconnectedtothedigitalsupplycommon.  
The rising edge of CONV starts a conversion, but subse-  
quentrisingedgesatCONVareignoredbytheLTC1407-1/  
LTC1407A-1 until the following 32 SCK rising edges have  
occurred.ThedutycycleofCONVcanbearbitrarilychosen  
to be used as a frame sync signal for the processor serial  
port. A simple approach to generate CONV is to create a  
pulse that is one SCK wide to drive the LTC1407-1/  
LTC1407A-1 and then buffer this signal to drive the frame  
sync input of the processor serial port. It is good practice  
to drive the LTC1407-1/LTC1407A-1 CONV input first to  
avoid digital noise interference during the sample-to-hold  
transition triggered by CONV at the start of conversion. It  
is also good practice to keep the width of the low portion  
of the CONV signal greater than 15ns to avoid introducing  
glitches in the front end of the ADC just before the sample-  
and-hold goes into Hold mode at the rising edge of CONV.  
POWER-DOWN MODES  
Upon power-up, the LTC1407-1/LTC1407A-1 are initial-  
izedtotheactivestateandisreadyforconversion.TheNap  
and Sleep mode waveforms show the power down modes  
for the LTC1407-1/LTC1407A-1. The SCK and CONV in-  
puts control the power down modes (see Timing Dia-  
grams).TworisingedgesatCONV,withoutanyintervening  
rising edges at SCK, put the LTC1407-1/LTC1407A-1 in  
Napmodeandthepowerdraindropsfrom14mWto6mW.  
The internal reference remains powered in Nap mode. One  
or more rising edges at SCK wake up the LTC1407-1/  
LTC1407A-1 for service very quickly and CONV can start  
an accurate conversion within a clock cycle. Four rising  
edges at CONV, without any intervening rising edges at  
SCK, put the LTC1407-1/LTC1407A-1 in Sleep mode and  
the power drain drops from 14mW to 10µW. One or more  
rising edges at SCK wake up the LTC1407-1/LTC1407A-1  
for operation. The internal reference (VREF ) takes 2ms to  
slew and settle with a 10µF load. Using sleep mode more  
frequently compromises the settled accuracy of the inter-  
nal reference. Note that for slower conversion rates, the  
Nap and Sleep modes can be used for substantial reduc-  
tions in power consumption.  
Minimizing Jitter on the CONV Input  
Inhighspeedapplicationswherehighamplitudesinewaves  
above 100kHz are sampled, the CONV signal must have as  
little jitter as possible (10ps or less). The square wave  
output of a common crystal clock module usually meets  
this requirement easily. The challenge is to generate a  
CONV signal from this crystal clock without jitter corrup-  
tion from other digital circuits in the system. A clock  
divider and any gates in the signal path from the crystal  
clock to the CONV input should not share the same  
integratedcircuitwithotherpartsofthesystem. Asshown  
intheinterfacecircuitexamples,the SCKandCONVinputs  
should be driven first, with digital buffers used to drive the  
serial port interface. Also note that the master clock in the  
DSP may already be corrupted with jitter, even if it comes  
directly from the DSP crystal. Another problem with high  
speed processor clocks is that they often use a low cost,  
low speed crystal (i.e., 10MHz) to generate a fast, but  
jittery, phase-locked-loop system clock (i.e., 40MHz). The  
jitter in these PLL-generated high speed clocks can be  
several nanoseconds. Note that if you choose to use the  
frame sync signal generated by the DSP port, this signal  
will have the same jitter of the DSP’s master clock.  
DIGITAL INTERFACE  
The LTC1407-1/LTC1407A-1 have a 3-wire SPI (Serial  
Protocol Interface) interface. The SCK and CONV inputs  
and SDO output implement this interface. The SCK and  
CONV inputs accept swings from 3V logic and are TTL  
compatible, if the logic swing does not exceed VDD. A  
detaileddescriptionofthethreeserialportsignalsfollows:  
14071f  
16  
LTC1407-1/LTC1407A-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Serial Clock Input (SCK)  
validbythenextrisingedgeofSCK. The32-bitoutputdata  
stream is compatible with the 16-bit or 32-bit serial port of  
most processors.  
The rising edge of SCK advances the conversion process  
and also udpates each bit in the SDO data stream. After  
CONV rises, the third rising edge of SCK sends out two  
sets of 12/14 data bits, with the MSB sent first. A simple  
approach is to generate SCK to drive the LTC1407-1/  
LTC1407A-1 first and then buffer this signal with the  
appropriate number of inverters to drive the serial clock  
input of the processor serial port. Use the falling edge of  
the clock to latch data from the Serial Data Output (SDO)  
into your processor serial port. The 14-bit Serial Data will  
be received right justified, in two 16-bit words with 32 or  
moreclocksperframesync. Itisgoodpracticetodrivethe  
LTC1407-1/LTC1407A-1 SCK input first to avoid digital  
noise interference during the internal bit comparison  
decision by the internal high speed comparator. Unlike the  
CONVinput, theSCKinputisnotsensitivetojitterbecause  
the input signal is already sampled and held constant.  
HARDWARE INTERFACE TO TMS320C54x  
TheLTC1407-1/LTC1407A-1areserialoutputADCswhose  
interface has been designed for high speed buffered serial  
ports in fast digital signal processors (DSPs). Figure 8  
shows an example of this interface using a TMS320C54X.  
The buffered serial port in the TMS320C54x has direct  
accesstoa2kBsegmentofmemory. TheADC’sserialdata  
can be collected in two alternating 1kB segments, in real  
time, at the full 3Msps conversion rate of the LTC1407-1/  
LTC1407A-1. The DSP assembly code sets frame sync  
mode at the BFSR pin to accept an external positive going  
pulse and the serial clock at the BCLKR pin to accept an  
external positive edge clock. Buffers near the LTC1407-1/  
LTC1407A-1 may be added to drive long tracks to the DSP  
to prevent corruption of the signal to LTC1407-1/  
LTC1407A-1. This configuration is adequate to traverse a  
typical system board, but source resistors at the buffer  
outputs and termination resistors at the DSP, may be  
neededtomatchthecharacteristicimpedanceofverylong  
transmission lines. If you need to terminate the SDO  
transmission line, buffer it first with one or two 74ACxx  
gates. The TTL threshold inputs of the DSP port respond  
properly to the 3V swing used with the LTC1407-1/  
LTC1407A-1.  
Serial Data Output (SDO)  
Upon power-up, the SDO output is automatically reset to  
the high impedance state. The SDO output remains in high  
impedance until a new conversion is started. SDO sends  
out two sets of 12/14 bits in 2’s complement format in the  
output data stream after the third rising edge of SCK after  
the start of conversion with the rising edge of CONV. The  
two 12-/14-bit words are separated by two clock cycles in  
high impedance mode. Please note the delay specification  
from SCK to a valid SDO. SDO is always guaranteed to be  
3V  
5V  
7
V
V
CC  
DD  
10  
9
CONV  
LTC1407-1/  
LTC1407A-1  
SCK  
BFSR  
TMS320C54x  
BCLKR  
B13 B12  
8
6
SDO  
GND  
BDR  
CONV  
CLK  
3-WIRE SERIAL  
INTERFACELINK  
14071 F08  
0V TO 3V LOGIC SWING  
Figure 8. DSP Serial Interface to TMS320C54x  
14071f  
17  
LTC1407-1/LTC1407A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
; 12-03-03 ******************************************************************  
; Files: 014SIAB.ASM ->  
1407A Sine wave collection with Serial Port interface  
both channels collected in sequence in the same 2k record.  
Buffered mode 2k buffer size.  
;
;
bvectors.asm  
s2k14ini.asm  
; First element at 1024, last element at 1023, two middles at 2047 and 0000  
; bipolar mode  
; Works 16 or 64 clock frames.  
; negative edge BCLKR  
; negative BFSR pulse  
; -0 data shifted  
; ***************************************************************************  
.width  
160  
.length 110  
.title “sineb0 BSP in auto buffer mode”  
.mmregs  
.setsect “.text”,  
0x500,0  
;Set address of executable  
.setsect “vectors”, 0x180,0  
.setsect “buffer”, 0x800,0  
.setsect “result”, 0x1800,0  
.text  
;Set address of incoming 1403 data  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
;.text marks start of code  
start:  
;this label seems necessary  
;Make sure /PWRDWN is low at J1-9  
;to turn off AC01 adc  
tim=#0fh  
prd=#0fh  
tcr = #10h  
tspc = #0h  
pmst = #01a0h  
sp = #0700h  
dp = #0  
; stop timer  
; stop TDM serial port to AC01  
; set up iptr. Processor Mode STatus register  
; init stack pointer.  
; data page  
ar2 = #1800h  
ar3 = #0800h  
ar4 = #0h  
; pointer to computed receive buffer.  
; pointer to Buffered Serial Port receive buffer  
; reset record counter  
call sineinit  
; Double clutch the initialization to insure a proper  
sinepeek:  
call sineinit  
; reset. The external frame sync must occur 2.5 clocks  
; or more after the port comes out of reset.  
wait  
;
goto  
wait  
————————Buffered Receive Interrupt Routine —————————  
breceive:  
ifr = #10h  
TC = bitf(@BSPCE,#4000h) ; check which half (bspce(bit14)) of buffer  
if (NTC) goto bufull ; if this still the first half get next half  
; clear interrupt flags  
bspce = #(2023h + 08000h); turn on halt for second half (bspce(bit15))  
return_enable  
14071f  
18  
LTC1407-1/LTC1407A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
;
———————mask and shift input data ——————————————  
bufull:  
b = *ar3+ << -0  
b = #07FFFh & b  
b = b ^ #2000h  
; load acc b with BSP buffer and shift right -0  
; mask out the TRISTATE bits with #03FFFh  
; invert the MSB for bipolar operation  
;
*ar2+ = data(#0bh)  
; store B to out buffer and advance AR2 pointer  
TC = (@ar2 == #02000h) ; output buffer is 2k starting at 1800h  
if (TC) goto start  
goto bufull  
; restart if out buffer is at 1fffh  
;
—————————dummy bsend return————————————  
return_enable ;this is also a dummy return to define bsend  
;in vector table file BVECTORS.ASM  
bsend  
;
——————————— end ISR ——————————————  
.copy “c:\dskplus\1403\s2k14ini.asm”  
;initialize buffered serial port  
.space 16*32  
;clear a chunk at the end to mark the end  
;======================================================================  
;
;
;
VECTORS  
;======================================================================  
.sect “vectors” ;The vectors start here  
.copy “c:\dskplus\1403\bvectors.asm” ;get BSP vectors  
.sect “buffer”  
.space 16*0x800  
.sect “result”  
.space 16*0x800  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
.end  
; ***************************************************************************  
; File: BVECTORS.ASM -> Vector Table for the ‘C54x DSKplus 10.Jul.96  
;
;
BSP vectors and Debugger vectors  
TDM vectors just return  
; ***************************************************************************  
; The vectors in this table can be configured for processing external and  
; internal software interrupts. The DSKplus debugger uses four interrupt  
; vectors. These are RESET, TRAP2, INT2, and HPIINT.  
;
;
*
DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  
*
; All other vector locations are free to use. When programming always be sure  
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and  
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the  
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.  
;
;
;
14071f  
19  
LTC1407-1/LTC1407A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
.title “Vector Table”  
.mmregs  
reset  
nmi  
goto #80h  
nop  
nop  
;00; RESET * DO NOT MODIFY IF USING DEBUGGER *  
;04; non-maskable external interrupt  
return_enable  
nop  
nop  
nop  
trap2  
int0  
goto #88h  
nop  
nop  
.space 52*16  
return_enable  
;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *  
;0C-3F: vectors for software interrupts 18-30  
;40; external interrupt int0  
nop  
nop  
nop  
int1  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
goto breceive  
nop  
nop  
nop  
;44; external interrupt int1  
;48; external interrupt int2  
;4C; internal timer interrupt  
;50; BSP receive interrupt  
;54; BSP transmit interrupt  
;58; TDM receive interrupt  
int2  
tint  
brint  
bxint  
trint  
goto bsend  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
txint  
int3  
return_enable  
nop  
nop  
;5C; TDM transmit interrupt  
;60; external interrupt int3  
return_enable  
nop  
nop  
nop  
hpiint  
dgoto #0e4h  
;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *  
nop  
nop  
14071f  
20  
LTC1407-1/LTC1407A-1  
W U U  
APPLICATIO S I FOR ATIO  
U
.space 24*16  
**********************************************************************  
(C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996  
**********************************************************************  
;68-7F; reserved area  
*
*
*
*
*
*
*
*
* File: s2k14ini.ASM BSP initialization code for the ‘C54x DSKplus  
*
*
*
for use with 1407 in buffered mode  
BSPC and SPC are the same in the ‘C542  
BSPCE and SPCE seem the same in the ‘C542  
**********************************************************************  
.title “Buffered Serial Port Initialization Routine”  
ON  
.set 1  
OFF  
YES  
.set !ON  
.set 1  
NO  
.set !YES  
.set 2  
.set 1  
.set 3  
.set 0  
BIT_8  
BIT_10  
BIT_12  
BIT_16  
GO  
.set 0x80  
**********************************************************************  
* This is an example of how to initialize the Buffered Serial Port (BSP).  
* The BSP is initialized to require an external CLK and FSX for  
* operation. The data format is 16-bits, burst mode, with autobuffering  
* enabled.  
*
*****************************************************************************************************  
*LTC1407 timing from board with 10MHz crystal.  
*
*10MHz, divided from 40MHz, forced to CLKIN by 1407 board.  
*
*Horizontal scale is 25ns/chr or 100ns period at BCLKR  
*
*Timing measured at DSP pins. Jxx pin labels for jumper cable.  
*
*BFSR Pin J1-20 ~~\____/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\____/  
~~~~~~~~~~~*  
*BCLKR Pin J1-14 _/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/  
~\_/~\_/~*  
*BDR  
B12*  
Pin J1-26 _—_—_—<B13-B12-B11-B10-B09-B08-B07-B06-B05-B04-B03-B02-B01-B00>—_—<B13-  
*CLKIN Pin J5-09 ~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/  
~~~~~~~\_______/~~~~~*  
*C542 read  
0
B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B00  
0
0
B13 B12*  
*
*
* negative edge BCLKR  
* negative BFSR pulse  
* no data shifted  
* 1' cable from counter to CONV at DUT  
14071f  
21  
LTC1407-1/LTC1407A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
* 2' cable from counter to CLK at DUT  
*No right shift is needed to right justify the input data in the main program  
*
*the two msbs should also be masked  
*
*****************************************************************************************************  
*
Loopback  
Format  
IntSync  
IntCLK  
BurstMode  
CLKDIV  
PCM_Mode  
FS_polarity  
CLK_polarity  
Frame_ignore  
XMTautobuf  
RCVautobuf  
XMThalt  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
NO  
BIT_16  
NO  
NO  
YES  
3
NO  
YES  
NO  
!YES  
NO  
YES  
NO  
;(digital looback mode?)  
;(Data format? 16,12,10,8)  
;(internal Frame syncs generated?) TXM bit  
;(internal clks generated?) MCM bit  
;(if BurstMode=NO, then Continuous) FSM bit  
;(3=default value, 1/4 CLOCKOUT)  
;(Turn on PCM mode?)  
;(change polarity)YES=^^^\_/^^^, NO=___/^\___  
;(change polarity)for BCLKR YES=_/^, NO=~\_  
;(inverted !YES -ignores frame)  
;(transmit autobuffering)  
DLB bit  
FO bit  
;(receive autobuffering)  
;(transmit buff halt if XMT buff is full)  
;(receive buff halt if RCV buff is full)  
;(address of transmit buffer)  
;(length of transmit buffer)  
;(address of receive buffer)  
RCVhalt  
NO  
XMTbufAddr  
XMTbufSize  
RCVbufAddr  
RCVbufSize  
*
0x800  
0x000  
0x800  
0x800  
;(length of receive buffer)works up to 800  
* See notes in the ‘C54x CPU and Peripherals Reference Guide on setting up  
* valid buffer start and length values. Page 9-44  
*
*
**********************************************************************  
.eval ((Loopback >> 1)|((Format & 2)<<1)|(BurstMode <<3)|(IntCLK <<4)|(IntSync  
<<5)) ,SPCval  
.eval ((CLKDIV)|(FS_polarity <<5)|(CLK_polarity<<6)|((Format &  
1)<<7)|(Frame_ignore<<8)|(PCM_Mode<<9)), SPCEval  
.eval (SPCEval|(XMTautobuf<<10)|(XMThalt<<12)|(RCVautobuf<<13)|(RCVhalt<<15)),  
SPCEval  
sineinit:  
bspc = #SPCval  
ifr = #10h  
; places buffered serial port in reset  
; clear interrupt flags  
imr = #210h  
; Enable HPINT,enable BRINT0  
intm = 0  
; all unmasked interrupts are enabled.  
; programs BSPCE and ABU  
bspce = #SPCEval  
axr = #XMTbufAddr  
bkx = #XMTbufSize  
arr = #RCVbufAddr  
bkr = #RCVbufSize  
bspc = #(SPCval | GO)  
return  
; initializes transmit buffer start address  
; initializes transmit buffer size  
; initializes receive buffer start address  
; initializes receive buffer size  
; bring buffered serial port out of reset  
;for transmit and receive because GO=0xC0  
14071f  
22  
LTC1407-1/LTC1407A-1  
U
PACKAGE DESCRIPTIO  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1663)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
(.081 ± .004)  
2.794 ± 0.102  
(.110 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
1
1.83 ± 0.102  
(.072 ± .004)  
5.23  
(.206)  
MIN  
2.083 ± 0.102 3.20 – 3.45  
(.082 ± .004) (.126 – .136)  
10  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MSE) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
14071f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1407-1/LTC1407A-1  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC1608  
16-Bit, 500ksps Parallel ADC  
16-Bit, 250ksps Serial ADC  
12-/14-Bit, 2.8Msps Serial ADC  
±5V Supply, ±2.5V Span, 90dB SINAD  
5V Configurable Bipolar/Unipolar Inputs  
3V, 15mW, Unipolar Inputs, MSOP Package  
3V, 15mW, Bipolar Inputs, MSOP Package  
3V, 14mW, 2-Channel Unipolar Input Range  
5V, Selectable Spans, 80dB SINAD  
LTC1609  
LTC1403/LTC1403A  
LTC1403-1/LTC1403A-1 12-/14-Bit, 2.8Msps Serial ADC  
LTC1407/LTC1407A  
LTC1411  
12-/14-Bit, 3Msps Simultaneous Sampling ADC  
14-Bit, 2.5Msps Parallel ADC  
12-Bit, 10Msps Parallel ADC  
12-Bit, 5Msps Parallel ADC  
LTC1420  
5V, Selectable Spans, 72dB SINAD  
LTC1405  
5V, Selectable Spans, 115mW  
LTC1412  
12-Bit, 3Msps Parallel ADC  
±5V Supply, ±2.5V Span, 72dB SINAD  
5V or ±5V Supply, 4.096V or ±2.5V Span  
5V or 3V (L-Version), Micropower, MSOP Package  
LTC1402  
12-Bit, 2.2Msps Serial ADC  
LTC1864/LTC1865  
LTC1864L/LTC1865L  
16-Bit, 250ksps 1-/2-Channel Serial ADCs  
DACs  
LTC1666/LTC1667  
LTC1668  
12-/14-/16-Bit, 50Msps DAC  
87dB SFDR, 20ns Settling Time  
LTC1592  
16-Bit, Serial SoftSpanTM  
I
DAC  
±1LSB INL/DNL, Software Selectable Spans  
OUT  
References  
LT1790-2.5  
LT1461-2.5  
LT1460-2.5  
Micropower Series Reference in SOT-23  
Precision Voltage Reference  
0.05% Initial Accuracy, 10ppm Drift  
0.04% Initial Accuracy, 3ppm Drift  
0.10% Initial Accuracy, 10ppm Drift  
Micropower Series Voltage Reference  
SoftSpan is a trademark of Linear Technology Corporation.  
14071f  
LT/TP 0404 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1407CMSE

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling
Linear

LTC1407CMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407CMSE#TRPBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407CMSE-1

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
Linear

LTC1407CMSE-1#PBF

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407CMSE-1#TR

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407HMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1407IMSE

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling
Linear

LTC1407IMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1407IMSE#TR

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1407IMSE#TRPBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1407IMSE-1

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
Linear