LTC1407CMSE-1#PBF [Linear]

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0°C to 70°C;
LTC1407CMSE-1#PBF
型号: LTC1407CMSE-1#PBF
厂家: Linear    Linear
描述:

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总26页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1407-1/LTC1407A-1  
Serial 12-Bit/14-Bit, 3Msps  
Simultaneous Sampling  
ADCs with Shutdown  
DESCRIPTION  
FEATURES  
The LTC®1407-1/LTC1407A-1 are 12-bit/14-bit, 3Msps  
ADCs with two 1.5Msps simultaneously sampled differ-  
ential inputs. The devices draw only 4.7mA from a single  
3V supply and come in a tiny 10-lead MS package. A sleep  
shutdown feature lowers power consumption to 10μW.  
The combination of speed, low power and tiny package  
makestheLTC1407-1/LTC1407A-1suitableforhighspeed,  
portable applications.  
n
3Msps Sampling ADC with Two Simultaneous  
Differential Inputs  
n
1.5Msps Throughput per Channel  
n
Low Power Dissipation: 14mW (Typ)  
n
3V Single Supply Operation  
n
1.25V Differential ꢀnput ꢁange  
n
Pin Compatible 0V to 2.5V ꢀnput ꢁange Version  
(LTC1407/LTC1407A)  
n
2.5V ꢀnternal Bandgap ꢁeference with External  
The LTC1407-1/LTC1407A-1 contain two separate differ-  
entialinputsthataresampledsimultaneouslyontherising  
edge of the CONV signal. These two sampled inputs are  
then converted at a rate of 1.5Msps per channel.  
Overdrive  
3-Wire Serial ꢀnterface  
Sleep (10μW) Shutdown Mode  
Nap (3mW) Shutdown Mode  
n
n
n
n
The80dBcommonmoderejectionallowsuserstoeliminate  
ground loops and common mode noise by measuring  
signals differentially from the source.  
80dB Common Mode ꢁejection at 100kHz  
n
Tiny 10-Lead MS Package  
The devices convert –1.25V to 1.25V bipolar inputs differ-  
APPLICATIONS  
+
+
entially. The absolute voltage swing for CH0 , CH0 , CH1  
n
Telecommunications  
and CH1 extends from ground to the supply voltage.  
n
Data Acquisition Systems  
Theserialinterfacesendsoutthetwoconversionresultsin32  
clocks for compatibility with standard serial interfaces.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6084440, 6522187.  
n
Uninterrupted Power Supplies  
n
Multiphase Motor Control  
ꢀ & Q Demodulation  
n
n
ꢀndustrial ꢁadio  
BLOCK DIAGRAM  
10μF 3V  
THD, 2nd and 3rd vs Input Frequency  
for Differential Input Signals  
–44  
–50  
–56  
–62  
7
V
DD  
LTC1407A-1  
+
CH0  
CH0  
1
2
+
S & H  
THꢁEE-  
STATE  
SEꢁꢀAL  
OUTPUT  
POꢁT  
3Msps  
14-BꢀT ADC  
MUX  
8
SDO  
–68  
–74  
+
CH1  
4
5
3
+
THD  
3ꢁD  
–80  
–86  
S & H  
CH1  
10  
9
CONV  
SCK  
–92  
TꢀMꢀNG  
LOGꢀC  
V
–98  
ꢁEF  
2ND  
–104  
10μF  
GND  
0.1  
1
10 20  
2.5V  
ꢁEFEꢁENCE  
6
FꢁEQUENCY (MHz)  
14071 TA01b  
EXPOSED PAD  
11  
1407A1 BD  
14071fb  
1
LTC1407-1/LTC1407A-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VꢀEW  
+
CH0  
CH0  
ꢁEF  
CH1  
CH1  
1
2
3
4
5
10 CONV  
Supply Voltage (V ) .................................................4V  
DD  
9
8
7
6
SCK  
SDO  
DD  
GND  
Analog ꢀnput Voltage (Note 3) ..... 0.3V to (V + 0.3V)  
V
11  
DD  
+
V
Digital ꢀnput Voltage .................... 0.3V to (V + 0.3V)  
DD  
Digital Output Voltage ................. 0.3V to (V + 0.3V)  
MSE PACKAGE  
10-LEAD PLASTꢀC MSOP  
DD  
Power Dissipation...............................................100mW  
T
= 125°C, θ = 40°C/W  
JA  
JMAX  
Operation Temperature ꢁange  
EXPOSED PAD ꢀS GND (PꢀN 11), MUST BE SOLDEꢁED TO PCB  
LTC1407C-1/LTC1407AC-1 ...................... 0°C to 70°C  
LTC1407ꢀ-1/LTC1407Aꢀ-1.....................40°C to 85°C  
Storage Temperature ꢁange...................65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
LTBGT  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
TEMPERATURE RANGE  
LTC1407CMSE-1#PBF  
LTC1407ꢀMSE-1#PBF  
LTC1407ACMSE-1#PBF  
LTC1407AꢀMSE-1#PBF  
LTC1407CMSE-1#TꢁPBF  
LTC1407ꢀMSE-1#TꢁPBF  
LTC1407ACMSE-1#TꢁPBF  
LTC1407AꢀMSE-1#TꢁPBF  
0°C to 70°C  
LTBGV  
–40°C to 85°C  
0°C to 70°C  
LTBGW  
LTBGX  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
CONVERTER CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
LTC1407-1  
LTC1407A-1  
TYP  
PARAMETER  
CONDITIONS  
MIN  
12  
TYP  
MAX  
MIN  
14  
MAX  
l
l
l
ꢁesolution (No Missing Codes)  
ꢀntegral Linearity Error  
Offset Error  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
(Notes 5, 17)  
(Notes 4, 17)  
(Note 17)  
–2  
0.25  
1
2
10  
5
–4  
0.5  
2
4
–10  
–5  
–20  
–10  
–60  
–10  
20  
10  
60  
10  
Offset Match from CH0 to CH1  
Gain Error  
0.5  
5
1
l
(Notes 4, 17)  
(Note 17)  
–30  
–5  
30  
5
10  
2
Gain Match from CH0 to CH1  
Gain Tempco  
1
ꢀnternal ꢁeference (Note 4)  
External ꢁeference  
15  
1
15  
1
ppm/°C  
ppm/°C  
14071fb  
2
LTC1407-1/LTC1407A-1  
ANALOG INPUT  
The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Analog Differential ꢀnput ꢁange (Notes 3, 8, 9)  
2.7V ≤ V ≤ 3.3V  
–1.25 to 1.25  
V
V
ꢀN  
DD  
Analog Common Mode + Differential  
ꢀnput ꢁange (Note 10)  
0 to V  
CM  
DD  
l
l
Analog ꢀnput Leakage Current  
1
μA  
pF  
ns  
ns  
ps  
ps  
ꢀN  
C
Analog ꢀnput Capacitance  
(Note 18)  
(Note 6)  
13  
ꢀN  
t
t
t
t
Sample-and-Hold Acquisition Time  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Sample-and-Hold Aperture Skew from CH0 to CH1  
Analog ꢀnput Common Mode ꢁejection ꢁatio  
39  
ACQ  
AP  
1
0.3  
JꢀTTEꢁ  
SK  
200  
CMꢁꢁ  
f
ꢀN  
f
ꢀN  
= 1MHz, V = 0V to 3V  
–60  
–15  
dB  
dB  
ꢀN  
= 100MHz, V = 0V to 3V  
ꢀN  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V. Single-ended signal drive CH0+/CH1+ with  
CHO/CH1= 1.5V DC. Differential signals drive both inputs of each channel with VCM = 1.5V DC.  
LTC1407-1  
LTC1407A-1  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP MAX MIN  
UNITS  
SꢀNAD  
Signal-to-Noise Plus 100kHz ꢀnput Signal (Note 19)  
70.5  
70.5  
72.0  
73.5  
73.5  
76.3  
dB  
dB  
dB  
l
Distortion ꢁatio  
750kHz ꢀnput Signal (Note 19)  
100kHz ꢀnput Signal, External V = 3.3V,  
68  
70  
ꢁEF  
V
≥ 3.3V (Note 19)  
DD  
750kHz ꢀnput Signal, External V = 3.3V,  
72.0  
76.3  
dB  
ꢁEF  
V
≥ 3.3V (Note 19)  
DD  
THD  
SFDꢁ  
ꢀMD  
Total Harmonic  
Distortion  
100kHz First 5 Harmonics (Note 19)  
750kHz First 5 Harmonics (Note 19)  
–87  
–83  
–90  
–86  
dB  
dB  
l
–77  
–80  
Spurious Free  
Dynamic ꢁange  
100kHz ꢀnput Signal (Note 19)  
750kHz ꢀnput Signal (Note 19)  
87  
83  
90  
86  
dB  
dB  
ꢀntermodulation  
Distortion  
0.625V 1.4MHz Summed with 0.625V , 1.56MHz  
–82  
–82  
dB  
P-P  
P-P  
+
into CH0 and ꢀnverted into CHO . Also Applicable  
+
to CH1 and CH1  
Code-to-Code  
Transition Noise  
V
ꢁEF  
= 2.5V (Note 17)  
0.25  
1
LSB  
ꢁMS  
Full Power Bandwidth  
V
= 2.5V , SDO = 11585LSB (–3dBFS) (Note 15)  
50  
5
50  
5
MHz  
MHz  
ꢀN  
P-P  
P-P  
Full Linear Bandwidth S/(N + D) ≥ 68dB  
14071fb  
3
LTC1407-1/LTC1407A-1  
TA = 25°C. VDD = 3V.  
INTERNAL REFERENCE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
ꢀ = 0  
OUT  
MIN  
TYP  
2.5  
15  
MAX  
UNITS  
V
V
ꢁEF  
V
ꢁEF  
V
ꢁEF  
V
ꢁEF  
V
ꢁEF  
Output Voltage  
Output Tempco  
Line ꢁegulation  
Output ꢁesistance  
Setting Time  
ppm/°C  
μV/V  
Ω
V
= 2.7V to 3.6V, V = 2.5V  
600  
0.2  
2
DD  
ꢁEF  
Load Current = 0.5mA  
ms  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
High Level ꢀnput Voltage  
Low Level ꢀnput Voltage  
Digital ꢀnput Current  
V
V
V
= 3.3V  
= 2.7V  
2.4  
V
V
ꢀH  
ꢀL  
DD  
DD  
ꢀN  
0.6  
10  
= 0V to V  
μA  
pF  
V
ꢀN  
DD  
C
V
V
Digital ꢀnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
5
ꢀN  
l
V
DD  
= 3V, ꢀ = 200μA  
OUT  
2.5  
2.9  
OH  
OL  
V
DD  
V
DD  
= 2.7V, ꢀ  
= 2.7V, ꢀ  
= 160μA  
= 1.6mA  
0.05  
0.10  
V
V
OUT  
OUT  
l
l
0.4  
10  
OZ  
Hi-Z Output Leakage D  
V
= 0V to V  
DD  
μA  
pF  
OUT  
OUT  
C
Hi-Z Output Capacitance D  
1
OZ  
OUT  
Output Short-Circuit Source Current  
Output Short-Circuit Sink Current  
V
V
= 0V, V = 3V  
20  
15  
mA  
mA  
SOUꢁCE  
SꢀNK  
OUT  
DD  
= V = 3V  
OUT  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
Supply Current  
2.7  
3.6  
V
DD  
l
Active Mode, f  
= 1.5Msps  
SAMPLE  
4.7  
1.1  
2.0  
2.0  
7.0  
1.5  
15  
mA  
mA  
μA  
DD  
l
Nap Mode  
Sleep Mode (LTC1407)  
Sleep Mode (LTC1407A)  
10  
μA  
PD  
Power Dissipation  
Active Mode with SCK in Fixed State (Hi or Lo)  
12  
mW  
14071fb  
4
LTC1407-1/LTC1407A-1  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
f
Maximum Sampling Frequency per Channel  
(Conversion ꢁate)  
1.5  
MHz  
SAMPLE(MAX)  
l
l
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Minimum Sampling Period (Conversion + Acquisition Period)  
Clock Period  
667  
ns  
THꢁOUGHPUT  
(Note 16)  
19.6  
32  
2
10000  
ns  
SCK  
Conversion Time  
(Note 6)  
34  
SCLK cycles  
CONV  
Minimum Positive or Negative SCLK Pulse Width  
CONV to SCK Setup Time  
(Note 6)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
1
(Notes 6, 10)  
(Note 6)  
3
10000  
2
SCK Before CONV  
0
3
Minimum Positive or Negative CONV Pulse Width  
SCK to Sample Mode  
(Note 6)  
4
4
(Note 6)  
4
5
CONV to Hold Mode  
(Notes 6, 11)  
(Notes 6, 7, 13)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 14)  
1.2  
45  
8
6
32nd SCKto CONVꢀnterval (Affects Acquisition Period)  
Minimum Delay from SCK to Valid Bits 0 Through 11  
SCK to Hi-Z at SDO  
7
8
6
9
Previous SDO Bit ꢁemains Valid After SCK  
2
10  
12  
V
ꢁEF  
Settling Time After Sleep-to-Wake Transition  
2
Note 1: Stresses beyond those listed under Absolute Maximum ꢁatings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum ꢁating condition for extended periods may affect device  
reliability and lifetime.  
Note 10: ꢀf less than 3ns is allowed, the output data will appear one  
clock cycle later. t is best for CONV to rise half a clock before SCK, when  
running the clock at rated speed.  
Note 11: Not the same as aperture delay. Aperture delay (1ns) is the  
difference between the 2.2ns delay through the sample-and-hold and the  
1.2ns CONV to hold mode delay.  
Note 2: All voltage values are with respect to ground GND.  
Note 3: When these pins are taken below GND or above V , they will be  
DD  
clamped by internal diodes. This product can handle input currents greater  
Note 12: The rising edge of SCK is guaranteed to catch the data coming  
out into a storage latch.  
Note 13: The time period for acquiring the input signal is started by the  
32nd rising clock and it is ended by the rising edge of CONV.  
than 100mA below GND or greater than V without latchup.  
DD  
+
Note 4: Offset and range specifications apply for a single-ended CH0  
+
or CH1 input with CH0 or CH1 grounded and using the internal 2.5V  
reference.  
Note 14: The internal reference settles in 2ms after it wakes up from sleep  
Note 5: ꢀntegral linearity is tested with an external 2.55V reference and is  
defined as the deviation of a code from the straight line passing through  
the actual endpoints of a transfer curve. The deviation is measured from  
the center of quantization band.  
Note 6: Guaranteed by design, not subject to test.  
Note 7: ꢁecommended operating conditions.  
mode with one or more cycles at SCK and a 10μF capacitive load.  
Note 15: The full power bandwidth is the frequency where the output code  
swing drops by 3dB with a 2.5V input sine wave.  
P-P  
Note 16: Maximum clock period guarantees analog performance during  
conversion. Output data can be read with an arbitrarily long clock period.  
Note 17: The LTC1407A-1 is measured and specified with 14-bit  
ꢁesolution (1LSB = 152μV) and the LTC1407-1 is measured and specified  
with 12-bit ꢁesolution (1LSB = 610μV).  
Note 18: The sampling capacitor at each input accounts for 4.1pF of the  
input capacitance.  
Note 19: Full-scale sinewaves are fed into the noninverting inputs while  
the inverting inputs are kept at 1.5V DC.  
Note 8: The analog input range is defined for the voltage difference  
+
+
between CH0 and CH0 or CH1 and CH1 . Performance is specified  
+
with CHO = 1.5V DC while driving CHO and with CH1 = 1.5V DC while  
driving CH1 .  
Note 9: The absolute voltage at CH0 , CH0 , CH1 and CH1 must be  
+
+
+
within this range.  
14071fb  
5
LTC1407-1/LTC1407A-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3V, TA = 25°C. Single-ended signals drive  
+CH0/+CH1 with –CH0/–CH1 = 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1407A-1)  
ENOBs and SINAD  
THD, 2nd and 3rd  
vs Input Frequency  
vs Input Sinewave Frequency  
SFDR vs Input Frequency  
–44  
–50  
–56  
–62  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
–68  
–74  
THD  
2ND  
3ꢁD  
–80  
–86  
9.0  
–92  
8.5  
–98  
–104  
8.0  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FꢁEQUENCY (MHz)  
FꢁEQUENCY (MHz)  
FꢁEQUENCY (MHz)  
14071 G02  
14071 G03  
14071 G01  
ENOBs and SINAD  
vs Input Sinewave Frequency  
for Differential Input Signals  
THD, 2nd and 3rd  
vs Input Frequency for  
SNR vs Input Frequency  
Differential Input Signals  
–44  
–50  
–56  
–62  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
74  
71  
68  
65  
62  
59  
56  
53  
50  
–68  
–74  
THD  
3ꢁD  
2ND  
–80  
–86  
9.0  
–92  
8.5  
–98  
8.0  
0.1  
–104  
1
10  
100  
0.1  
1
10 20  
0.1  
1
10  
100  
FꢁEQUENCY (MHz)  
FꢁEQUENCY (MHz)  
FꢁEQUENCY (MHz)  
14071 G05  
14071 G06  
14071 G04  
748kHz Sine Wave 4096 Point  
FFT Plot  
SFDR vs Input Frequency for  
Differential Input Signals  
98kHz Sine Wave 4096 Point  
FFT Plot  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
0
–10  
0
–10  
–20  
–20  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
100 200 300 400 500 600 700  
0.1  
1
10  
100  
0
100 200 300 400 500 600 700  
FꢁEQUENCY (kHz)  
FꢁEQUENCY (MHz)  
FꢁEQUENCY (kHz)  
14071 G07  
14071 G08  
14071 G09  
14071fb  
6
LTC1407-1/LTC1407A-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3V, TA = 25°C. Single-ended signals drive  
+CH0/+CH1 with –CH0/–CH1 = 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1407A-1)  
1403kHz Input Summed with  
1563kHz Input IMD 4096 Point FFT  
Plot for Differential Input Signals  
10.7MHz Sine Wave 4096 Point  
FFT Plot for Differential Input  
Signals  
748kHz Sine Wave 4096 Point FFT  
Plot for Differential Input Signals  
0
–10  
0
–10  
–20  
0
–10  
–20  
–20  
–30  
–40  
–50  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–60  
–70  
–60  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
185k  
371k  
556k  
741k  
0
185k  
371k  
556k  
741k  
0
100 200 300 400 500 600 700  
FꢁEQUENCY (Hz)  
FꢁEQUENCY (Hz)  
FꢁEQUENCY (kHz)  
14071 G11  
14071 G12  
14071 G10  
Integral Linearity End Point Fit for  
CH0 with Internal 2.5V Reference  
for Differential Input Signals  
Differential Linearity for CH0 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH0 with Internal 2.5V Reference  
1.0  
0.8  
4.0  
3.2  
4.0  
3.2  
0.6  
2.4  
2.4  
0.4  
1.6  
1.6  
0.2  
0.8  
0.8  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
0
8192  
12288  
4096  
16384  
0
8192  
12288  
4096  
16384  
0
8192  
12288  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
14071 G13  
14071 G14  
14071 G15  
Integral Linearity End Point Fit for  
CH1 with Internal 2.5V Reference  
for Differential Input Signals  
Differential Linearity for CH1 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH1 with Internal 2.5V Reference  
4.0  
3.2  
1.0  
0.8  
4.0  
3.2  
2.4  
0.6  
2.4  
1.6  
0.4  
1.6  
0.8  
0.2  
0.8  
0
0
0
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.6  
–2.4  
–3.2  
–4.0  
0
8192  
12288  
4096  
16384  
0
8192  
12288  
0
8192  
12288  
4096  
16384  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
14071 G17  
14071 G16  
14071 G18  
14071fb  
7
LTC1407-1/LTC1407A-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3V, TA = 25°C. Single ended signals drive  
+CH0/+CH1 with –CH0/–CH1 = 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1407A-1)  
Differential and Integral Linearity  
vs Conversion Rate  
SINAD vs Conversion Rate  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
8
7
6
5
4
3
MAX ꢀNL  
2
1
MAX DNL  
0
MꢀN DNL  
MꢀN ꢀNL  
–1  
–2  
–3  
–4  
EXTEꢁNAL V  
EXTEꢁNAL V  
ꢀNTEꢁNAL V  
= 3.3V, f ~ fS/3  
ꢀN  
ꢁEF  
ꢁEF  
ꢁEF  
ꢁEF  
= 3.3V, f ~ fS/40  
ꢀN  
= 2.5V, f ~ fS/3  
ꢀN  
= 2.5V, f ~ fS/40  
ꢀN  
ꢀNTEꢁNAL V  
2
2.5  
3
3.5  
4
3
3.25  
3.5 3.75  
2
2.25 2.5 2.75  
4
CONVEꢁSꢀON ꢁATE (Msps)  
CONVEꢁSꢀON ꢁATE (MSPS)  
14071 G20  
14071 G19  
VDD = 3V, TA = 25°C (LTC1407-1/LTC1407A-1)  
Full-Scale Signal Frequency  
Response  
CMRR vs Frequency  
Crosstalk vs Frequency  
0
12  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
6
0
–20  
–40  
–6  
–12  
–18  
–60  
–80  
CH0  
CH1  
CH1 TO CH0  
CH0 TO CH1  
–24  
–30  
–36  
–100  
–120  
1M  
10M  
100M  
1G  
100  
1k  
10k 100k  
1M  
10M 100M  
100  
1k  
10k  
100k  
1M  
10M  
FꢁEQUENCY (Hz)  
FꢁEQUENCY (Hz)  
FꢁEQUENCY (Hz)  
14071 G22  
14071 G21  
14071 G23  
Output Match with Simultaneous  
Input Steps at CH0 and CH1  
from 25Ω  
PSSR vs Frequency  
–25  
16384  
14336  
12288  
10240  
CH0 AND CH1  
ꢁꢀSꢀNG  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
CH0  
CH1  
8192  
6144  
4096  
2048  
0
CH0 AND CH1  
FALLꢀNG  
1
10  
100  
1k  
10k 100k  
1M  
0
5
15  
–5  
20  
25  
10  
FꢁEQUENCY (Hz)  
TꢀME (ns)  
14071 G25  
14071 G24  
14071fb  
8
LTC1407-1/LTC1407A-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3V, TA = 25°C (LTC1407-1/LTC1407A-1)  
Reference Voltage  
vs Load Current  
Reference Voltage vs VDD  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
LOAD CUꢁꢁENT (mA)  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
V
DD  
14071 G27  
14071 G26  
PIN FUNCTIONS  
+
+
CH0 (Pin 1): Noninverting Channel 0. CH0 operates  
the solid ground plane under the part. Keep in mind that  
analog signal currents and digital output signal currents  
flow through these connections.  
fully differentially with respect to CH0 , with a –1.25V to  
1.25V differential swing with respect to CH0 and a 0 to  
V
absolute input range.  
DD  
V
(Pin 7): 3V Positive Supply. This single power pin  
DD  
CH0 (Pin 2): ꢀnverting Channel 0. CH0 operates fully  
supplies 3V to the entire chip. Bypass to GND pin and  
solid analog ground plane with a 10μF ceramic capacitor  
(or 10μF tantalum) in parallel with 0.1μF ceramic. Keep in  
mindthatinternalanalogcurrentsanddigitaloutputsignal  
currents flow through this pin. Care should be taken to  
place the 0.1μF bypass capacitor as close to Pins 6 and 7  
as possible.  
+
differentially with respect to CH0 , with a 1.25V to –1.25V  
+
differential swing with respect to CH0 and a 0 to V  
absolute input range.  
DD  
V
(Pin 3): 2.5V ꢀnternal ꢁeference. Bypass to GND and  
REF  
a solid analog ground plane with a 10μF ceramic capacitor  
(or 10μF tantalum in parallel with 0.1μF ceramic). Can be  
overdriven by an external reference voltage 2.55V and  
SDO (Pin 8): Three-State Serial Data Output. Each pair of  
outputdatawordsrepresentthetwoanaloginputchannels  
at the start of the previous conversion. The output format  
is 2’s complement.  
≤V .  
DD  
+
+
CH1 (Pin 4): Noninverting Channel 1. CH1 operates  
fully differentially with respect to CH1 , with a –1.25V to  
1.25V differential swing with respect to CH1 and a 0 to  
SCK (Pin 9): External Clock ꢀnput. Advances the conver-  
sion process and sequences the output data on the rising  
edge. One or more pulses wake from sleep.  
V
absolute input range.  
DD  
CH1 (Pin 5): ꢀnverting Channel 1. CH1 operates fully  
+
differentially with respect to CH1 , with a 1.25V to –1.25V  
CONV (Pin 10): Convert Start. Holds the two analog input  
signals and starts the conversion on the rising edge. Two  
pulses with SCK in fixed high or fixed low state starts nap  
mode. Four or more pulses with SCK in fixed high or fixed  
low state starts sleep mode.  
+
differential swing with respect to CH1 and a 0 to V  
absolute input range.  
DD  
GND (Pins 6, 11): Ground and Exposed Pad. This single  
ground pin and the Exposed Pad must be tied directly to  
14071fb  
9
LTC1407-1/LTC1407A-1  
BLOCK DIAGRAM  
10μF 3V  
7
V
DD  
LTC1407A-1  
+
CH0  
1
2
+
S & H  
CH0  
THꢁEE-  
STATE  
SEꢁꢀAL  
OUTPUT  
POꢁT  
3Msps  
14-BꢀT ADC  
MUX  
8
SDO  
+
CH1  
4
5
3
+
S & H  
CH1  
10  
9
CONV  
SCK  
TꢀMꢀNG  
LOGꢀC  
V
ꢁEF  
10μF  
GND  
2.5V  
ꢁEFEꢁENCE  
6
EXPOSED PAD  
11  
1407A1 BD  
14071fb  
10  
LTC1407-1/LTC1407A-1  
TIMING DIAGRAMS  
14071fb  
11  
LTC1407-1/LTC1407A-1  
TIMING DIAGRAMS  
Nap Mode Waveforms  
SCK  
t
1
CONV  
NAP  
Sleep Mode Waveforms  
SCK  
t
t
1
1
CONV  
NAP  
SLEEP  
t
12  
V
1407 TD02  
ꢁEF  
NOTE: NAP AND SLEEP AꢁE ꢀNTEꢁNAL SꢀGNALS  
SCK to SDO Delay  
SCK  
SCK  
V
V
ꢀH  
ꢀH  
t
10  
8
t
t
9
V
V
90%  
10%  
OH  
OL  
SDO  
SDO  
14071 TD03  
14071fb  
12  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
DRIVING THE ANALOG INPUT  
the time between conversions. The best choice for an op  
amp to drive the LTC1407-1/LTC1407A-1 depends on the  
application.Generally,applicationsfallintotwocategories:  
AC applications where dynamic specifications are most  
critical and time domain applications where DC accuracy  
and settling time are most critical. The following list is a  
summary of the op amps that are suitable for driving the  
LTC1407-1/LTC1407A-1.  
ThedifferentialanaloginputsoftheLTC1407-1/LTC1407A-1  
are easy to drive. The inputs may be driven differentially or  
asasingle-endedinput(i.e.,theCH0 inputisACgrounded  
at V /2). All four analog inputs of both differential analog  
CC  
+
+
input pairs, CH0 with CH0 and CH1 with CH1 , are  
sampled at the same instant. Any unwanted signal that is  
commontobothinputsofeachinputpairwillbereducedby  
thecommonmoderejectionofthesample-and-holdcircuit.  
Theinputsdrawonlyonesmallcurrentspikewhilecharging  
the sample-and-hold capacitors at the end of conversion.  
During conversion, the analog inputs draw only a small  
leakage current. ꢀf the source impedance of the driving  
circuit is low, then the LTC1407-1/LTC1407A-1 inputs can  
be driven directly. As source impedance increases, so will  
acquisition time. For minimum acquisition time with high  
source impedance, a buffer amplifier must be used. The  
main requirement is that the amplifier driving the analog  
input(s) must settle after the small current spike before  
the next conversion starts (settling time must be 39ns for  
full throughput rate). Also keep in mind, while choosing  
an input amplifier, the amount of noise and harmonic  
distortion added by the amplifier.  
LTC1566-1: Low Noise 2.3MHz Continuous Time Low-  
pass Filter.  
LT®1630: Dual 30MHz ꢁail-to-ꢁail Voltage FB Amplifier.  
2.7V to 15V supplies. Very high A , 500μV offset and  
VOL  
520ns settling to 0.5LSB for a 4V swing. THD and noise  
are 93dB to 40kHz and below 1LSB to 320kHz (A = 1,  
V
2V into 1kꢂ, V = 5V), making the part excellent for  
P-P  
S
AC applications (to 1/3 Nyquist) where rail-to-rail perfor-  
mance is desired. Quad version is available as LT1631.  
LT1632: Dual 45MHz ꢁail-to-ꢁail Voltage FB Amplifier.  
2.7V to 15V supplies. Very high A , 1.5mV offset and  
VOL  
400ns settling to 0.5LSB for a 4V swing. ꢀt is suitable for  
applications with a single 5V supply. THD and noise are  
93dB to 40kHz and below 1LSB to 800kHz (A = 1,  
V
2V into 1kꢂ, V = 5V), making the part excellent for  
P-P  
S
ACapplicationswhererail-to-railperformanceisdesired.  
Quad version is available as LT1633.  
CHOOSING AN INPUT AMPLIFIER  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
output impedance (<100ꢂ) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain  
of 1 and has a unity-gain bandwidth of 50MHz, then the  
output impedance at 50MHz must be less than 100ꢂ. The  
secondrequirementisthattheclosed-loopbandwidthmust  
be greater than 40MHz to ensure adequate small-signal  
settling for full throughput rate. ꢀf slower op amps are  
used, more time for settling can be provided by increasing  
LT1801: 80MHz GBWP, 75dBc at 500kHz, 2mA/ampli-  
fier, 8.5nV/√Hz.  
LT1806/LT1807: 325MHz GBWP, 80dBc distortion at  
5MHz, unity-gain stable, rail-to-rail in and out, 10mA/am-  
plifier, 3.5nV/√Hz  
.
LT1810: 180MHz GBWP, 90dBc distortion at 5MHz,  
unity-gain stable, rail-to-rail in and out, 15mA/amplifier,  
16nV/√Hz.  
LinearView is a trademark of Linear Technology Corporation.  
14071fb  
13  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
LT1818/LT1819: 400MHz, 2500V/μs, 9mA, Single/Dual  
Voltage Mode Operational Amplifier.  
components can add distortion. NPO and silvermica type  
dielectriccapacitorshaveexcellentlinearity.Carbonsurface  
mount resistors can generate distortion from self heating  
and from damage that may occur during soldering. Metal  
film surface mount resistors are much less susceptible to  
both problems. When high amplitude unwanted signals  
are close in frequency to the desired signal frequency a  
multiple pole filter is required.  
LT6200: 165MHz GBWP, 85dBc distortion at 1MHz,  
unity-gain stable, rail-to-rail in and out, 15mA/amplifier,  
0.95nV/√Hz.  
LT6203: 100MHz GBWP, 80dBc distortion at 1MHz,  
unity-gain stable, rail-to-rail in and out, 3mA/amplifier,  
1.9nV/√Hz.  
High external source resistance, combined with 13pF  
of input capacitance, will reduce the rated 50MHz input  
bandwidth and increase acquisition time beyond 39ns.  
LT6600: Amplifier/Filter Differential ꢀn/Out with 10MHz  
Cutoff.  
INPUT FILTERING AND SOURCE IMPEDANCE  
INPUT RANGE  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add  
to the LTC1407-1/LTC1407A-1 noise and distortion. The  
small-signal bandwidth of the sample-and-hold circuit is  
50MHz. Any noise or distortion products that are pres-  
ent at the analog inputs will be summed over this entire  
bandwidth. Noisy input circuitry should be filtered prior  
to the analog inputs to minimize noise. A simple 1-pole  
ꢁC filter is sufficient for many applications. For example,  
The analog inputs of the LTC1407-1/LTC1407A-1 may be  
driven fully differentially with a single supply. Either input  
may swing up to 3V, provided the differential swing is no  
greater than 1.25V. n the valid input range, each input of  
each channel is always up to 1.25V away from the other  
input of each channel. The –1.25V to 1.25V range is also  
ideally suited for AC-coupled signals in single supply  
applications. Figure 2 shows how to AC-couple signals  
in a single supply system without needing a mid-supply  
1.5V DC external reference. The DC common mode level  
is supplied by the previous stage that is already bounded  
by single supply voltage of the system. The common  
+
Figure 1 shows a 47pF capacitor from CHO to ground  
and a 51ꢂ source resistor to limit the net input bandwidth  
to 30MHz. The 47pF capacitor also acts as a charge  
reservoir for the input sample-and-hold and isolates the  
ADC input from sampling-glitch sensitive circuitry. High  
qualitycapacitorsandresistorsshouldbeusedsincethese  
mode range of the inputs extends from ground to the  
+
supply voltage V . ꢀf the difference between the CH0  
DD  
+
and CH0 inputs or the CH1 and CH1 inputs exceeds  
1.25V, the output code will stay fixed at zero and all ones,  
and if this difference goes below –1.25V, the output code  
will stay fixed at one and all zeros.  
51ꢂ*  
1
ANALOG  
ꢀNPUT  
+
CH0  
CH0  
47pF*  
2
V
CM  
1.5V DC  
LTC1407-1/  
LTC1407A-1  
C2  
1μF  
3
V
ꢁEF  
10μF  
LTC1407-1/  
ꢁ2  
11  
LTC1407A-1  
GND  
1.6k  
1
ꢁ3  
+
CHO  
CHO  
V
51Ω*  
51Ω  
ANALOG  
ꢀNPUT  
4
2
+
CH1  
CH1  
V
ꢀN  
4.09V 3  
47pF*  
ꢁ1  
1.6k  
ꢁEF  
C4  
10μF  
C3  
56pF  
C1  
1μF  
+
5
14071 F02  
V
CM  
1.5V DC  
C1, C2: FꢀLM TYPE  
C3: COG TYPE  
C4: CEꢁAMꢀC BYPASS  
14071 F01  
*TꢀGHT TOLEꢁANCE ꢁEQUꢀꢁED TO AVOꢀD  
APEꢁTUꢁE SKEW DEGꢁADATꢀON  
Figure 1. RC Input Filter  
Figure 2. AC Coupling of AC Signals with 1kHz Low Cut  
14071fb  
14  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
INTERNAL REFERENCE  
errors (DNL) are largely independent of the common  
mode voltage. However, the offset error will vary. CMꢁꢁ  
is typically better than 60dB.  
TheLTC1407-1/LTC1407A-1haveanon-chip,temperature  
compensated, bandgap reference that is factory trimmed  
near 2.5V to obtain a precise 1.25V input span. The ref-  
erence amplifier output VꢁEF, (Pin 3) must be bypassed  
with a capacitor to ground. The reference amplifier is  
stable with capacitors of 1μF or greater. For the best noise  
performance, a 10μF ceramic or a 10μF tantalum in paral-  
lel with a 0.1μF ceramic is recommended. The VꢁEF pin  
can be overdriven with an external reference as shown  
in Figure 3. The voltage of the external reference must be  
higher than the 2.5V of the open-drain P-channel output  
of the internal reference. The recommended range for an  
external reference is 2.55V to VDD. An external reference  
at 2.55V will see a DC quiescent load of 0.75mA and as  
much as 3mA during conversion.  
Figure 5 shows the ideal input/output characteristics for  
the LTC1407-1/LTC1407A-1. The code transitions occur  
midway between successive integer LSB values (i.e.,  
0.5LSB, 1.5LSB, 2.5LSB, FS – 1.5LSB). The output code  
is 2’s complement with 1LSB = 2.5V/16384 = 153μV for  
the LTC1407A-1 and 1LSB = 2.5V/4096 = 610μV for the  
LTC1407-1. The LTC1407A-1 has 1LSB ꢁMS of Gaussian  
white noise. Figure 6a shows the LTC1819 converting a  
single-ended input signal to differential input signals for  
optimum THD and SFDꢁ performance as shown in the  
FFT plot (Figure 6b).  
0
–20  
–40  
3
3V ꢁEF  
V
ꢁEF  
LTC1407-1/  
LTC1407A-1  
GND  
10μF  
–60  
11  
CH0  
CH1  
–80  
14071 F02  
–100  
–120  
Figure 3  
100  
1k  
10k 100k  
1M  
10M 100M  
INPUT SPAN VERSUS REFERENCE VOLTAGE  
FꢁEQUENCY (Hz)  
14071 F04  
Thedifferentialinputrangehasaunipolarvoltagespanthat  
equals the difference between the voltage at the reference  
Figure 4. CMRR vs Frequency  
buffer output V (Pin 3) and the voltage at the Exposed  
ꢁEF  
Pad ground. The differential input range of ADC is –1.25V  
to 1.25V when using the internal reference. The internal  
ADC is referenced to these two nodes. This relationship  
also holds true with an external reference.  
011...111  
011...110  
011...101  
DIFFERENTIAL INPUTS  
TheADCwillalwaysconvertthebipolardifferenceofCH0+  
minusCH0orthebipolardifferenceofCH1+ minusCH1,  
independent of the common mode voltage at either set  
of inputs. The common mode rejection holds up at high  
frequencies (see Figure 4). The only requirement is that  
both inputs not go below ground or exceed VDD. ꢀntegral  
nonlinearity errors (ꢀNL) and differential nonlinearity  
100...010  
100...001  
100...000  
–FS  
FS – 1LSB  
ꢀNPUT VOLTAGE (V)  
14071 F05  
Figure 5. LTC1407-1/LTC1407A-1 Transfer Characteristic  
14071fb  
15  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
5V  
0
–10  
–20  
C5  
0.1μF  
–30  
–40  
–50  
C3  
ꢁ1  
1μF  
–60  
–70  
51ꢂ  
U1  
+CH0 Oꢁ  
+CH1  
1/2 LT1819  
V
P-P  
MAX  
ꢀN  
+
C1  
–80  
1.25V  
C6  
0.1μF  
47pF  
–90  
ꢁ5  
1k  
–100  
–110  
–120  
ꢁ4  
499ꢂ  
ꢁ3  
499ꢂ  
1.5V  
CM  
LTC1407A-1  
–5V  
ꢁ6  
1k  
0
185k  
371k  
FꢁEQUENCY (Hz)  
556k  
741k  
C4  
1μF  
ꢁ2  
51ꢂ  
14031 F06b  
U2  
–CH0 Oꢁ  
–CH1  
1/2 LT1819  
+
Figure 6b. LTC1407-1 6MHz Sine Wave 4096 Point FFT Plot  
with the LT1819 Driving the Inputs Differentially  
C2  
47pF  
1407A F06a  
Figure 6a. The LT1819 Driving the LTC1407A-1 Differentially  
Board Layout and Bypassing  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performance from the LTC1407-1/LTC1407A-1, a printed  
circuit board with ground plane is required. Layout for  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. ꢀn  
particular, care should be taken not to run any digital track  
alongside an analog signal track. ꢀf optimum phase match  
between the inputs is desired, the length of the four input  
wires of the two input channels should be kept matched.  
But each pair of input wires to the two input channels  
should be kept separated by a ground trace to avoid high  
frequency crosstalk between channels.  
High quality tantalum and ceramic bypass capacitors  
should be used at the V and V pins as shown in the  
DD  
ꢁEF  
Block Diagram on the first page of this data sheet. For  
optimum performance, a 10μF surface mount tantalum  
capacitorwitha0.1μFceramicisrecommendedfortheV  
DD  
1407-1 F07  
and V pins. Alternatively, 10μF ceramic chip capacitors  
ꢁEF  
Figure 7. Recommended Layout  
such as X5ꢁ or X7ꢁ may be used. The capacitors must be  
located as close to the pins as possible. The traces con-  
necting the pins and the bypass capacitors must be kept  
Care should be taken to place the 0.1μF V bypass ca-  
DD  
pacitor as close to Pins 6 and 7 as possible.  
short and should be made as wide as possible. The V  
DD  
Figure7showstherecommendedsystemgroundconnec-  
tions. All analog circuitry grounds should be terminated  
14071fb  
bypass capacitor returns to GND (Pin 6) and the V by-  
ꢁEF  
passcapacitorreturnstotheExposedPadground(Pin11).  
16  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
at the LTC1407-1/LTC1407A-1 Exposed Pad. The ground  
returnfromtheLTC1407-1/LTC1407A-1Pin6tothepower  
supply should be low impedance for noise-free operation.  
The Exposed Pad of the 10-lead MSE package is also tied  
toPin 6andtheLTC1407-1/LTC1407A-1GND.TheExposed  
Pad should be soldered on the PC board to reduce ground  
connection inductance. Digital circuitry grounds must be  
connected to the digital supply common.  
compatible, if the logic swing does not exceed V . A de-  
DD  
tailed description of the three serial port signals follows:  
Conversion Start Input (CONV)  
The rising edge of CONV starts a conversion, but subse-  
quent rising edges at CONV are ignored by the LTC1407-1/  
LTC1407A-1 until the following 32 SCK rising edges have  
occurred. ThedutycycleofCONVcanbearbitrarilychosen  
to be used as a frame sync signal for the processor serial  
port.AsimpleapproachtogenerateCONVistocreateapulse  
that is one SCK wide to drive the LTC1407-1/LTC1407A-1  
and then buffer this signal to drive the frame sync input  
of the processor serial port. ꢀt is good practice to drive the  
LTC1407-1/LTC1407A-1 CONV input first to avoid digital  
noise interference during the sample-to-hold transition  
triggeredbyCONVatthestartofconversion.tisalsogood  
practice to keep the width of the low portion of the CONV  
signal greater than 15ns to avoid introducing glitches in  
the front end of the ADC just before the sample-and-hold  
goes into hold mode at the rising edge of CONV.  
POWER-DOWN MODES  
Uponpower-up,theLTC1407-1/LTC1407A-1areinitialized  
to the active state and are ready for conversion. The nap  
and sleep mode waveforms show the power-down modes  
fortheLTC1407-1/LTC1407A-1.TheSCKandCONVinputs  
controlthepower-downmodes(seeTimingDiagrams).Two  
risingedgesatCONV, withoutanyinterveningrisingedges  
at SCK, put the LTC1407-1/LTC1407A-1 in nap mode and  
the power drain drops from 14mW to 6mW. The internal  
reference remains powered in nap mode. One or more  
rising edges at SCK wake up the LTC1407-1/LTC1407A-1  
for service very quickly and CONV can start an accurate  
conversion within a clock cycle.  
Minimizing Jitter on the CONV Input  
nhighspeedapplicationswherehighamplitudesinewaves  
above 100kHz are sampled, the CONV signal must have  
as little jitter as possible (10ps or less). The square wave  
output of a common crystal clock module usually meets  
thisrequirementeasily.ThechallengeistogenerateaCONV  
signalfromthiscrystalclockwithoutjittercorruptionfrom  
other digital circuits in the system. A clock divider and  
any gates in the signal path from the crystal clock to the  
CONV input should not share the same integrated circuit  
with other parts of the system. As shown in the interface  
circuit examples, the SCK and CONV inputs should be  
drivenrst, withdigitalbuffersusedtodrivetheserialport  
interface. Also note that the master clock in the DSP may  
already be corrupted with jitter, even if it comes directly  
from the DSP crystal. Another problem with high speed  
processor clocks is that they often use a low cost, low  
speed crystal (i.e., 10MHz) to generate a fast, but jittery,  
phase-locked-loop system clock (i.e., 40MHz). The jitter  
in these PLL-generated high speed clocks can be several  
nanoseconds. Note that if you choose to use the frame  
sync signal generated by the DSP port, this signal will  
have the same jitter of the DSP’s master clock.  
Four rising edges at CONV, without any intervening rising  
edgesatSCK,puttheLTC1407-1/LTC1407A-1insleepmode  
andthepowerdraindropsfrom14mWto1W.Tobringthe  
partoutofsleepmoderequiresoneormorerisingSCKedges  
followed by a nap request. Then one or more rising edges  
at SCK wake up the LTC1407-1/LTC1407A-1 for operation.  
When nap mode is entered after sleep mode, the reference  
that was shut down in sleep mode is reactivated.  
The internal reference (V ) takes 2ms to slew and settle  
ꢁEF  
with a 10μF load. Using sleep mode more frequently com-  
promises the settled accuracy of the internal reference.  
Note that for slower conversion rates, the nap and sleep  
modes can be used for substantial reductions in power  
consumption.  
DIGITAL INTERFACE  
The LTC1407-1/LTC1407A-1 have a 3-wire SPꢀ (serial  
protocol interface) interface. The SCK and CONV inputs  
and SDO output implement this interface. The SCK and  
CONV inputs accept swings from 3V logic and are TTL  
14071fb  
17  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
Serial Clock Input (SCK)  
be valid by the next rising edge of SCK. The 32-bit output  
data stream is compatible with the 16-bit or 32-bit serial  
port of most processors.  
The rising edge of SCK advances the conversion process  
and also updates each bit in the SDO data stream. After  
CONV rises, the third rising edge of SCK sends out two  
sets of 12/14 data bits, with the MSB sent first. A simple  
approach is to generate SCK to drive the LTC1407-1/  
LTC1407A-1 first and then buffer this signal with the  
appropriate number of inverters to drive the serial clock  
input of the processor serial port. Use the falling edge of  
the clock to latch data from the serial data output (SDO)  
into your processor serial port. The 14-bit serial data will  
be received right justified, in two 16-bit words with 32 or  
more clocks per frame sync. ꢀt is good practice to drive  
the LTC1407-1/LTC1407A-1 SCK input first to avoid digi-  
tal noise interference during the internal bit comparison  
decision by the internal high speed comparator. Unlike the  
CONVinput, theSCKinputisnotsensitivetojitterbecause  
the input signal is already sampled and held constant.  
HARDWARE INTERFACE TO TMS320C54x  
The LTC1407-1/LTC1407A-1 are serial output ADCs  
whose interface has been designed for high speed buff-  
ered serial ports in fast digital signal processors (DSPs).  
Figure 8 shows an example of this interface using a  
TMS320C54X.  
The buffered serial port in the TMS320C54x has direct  
access to a 2kB segment of memory. The ADC’s serial  
data can be collected in two alternating 1kB segments,  
in real time, at the full 3Msps conversion rate of the  
LTC1407-1/LTC1407A-1. The DSP assembly code sets  
frame sync mode at the BFSꢁ pin to accept an external  
positive going pulse and the serial clock at the BCLKꢁ  
pin to accept an external positive edge clock. Buffers near  
the LTC1407-1/LTC1407A-1 may be added to drive long  
tracks to the DSP to prevent corruption of the signal to  
LTC1407-1/LTC1407A-1. This configuration is adequate  
to traverse a typical system board, but source resistors  
at the buffer outputs and termination resistors at the DSP,  
may be needed to match the characteristic impedance  
of very long transmission lines. ꢀf you need to terminate  
the SDO transmission line, buffer it first with one or two  
74ACxx gates. The TTL threshold inputs of the DSP port  
respondproperlytothe3VswingusedwiththeLTC1407-1/  
LTC1407A-1.  
Serial Data Output (SDO)  
Upon power-up, the SDO output is automatically reset to  
the high impedance state. The SDO output remains in high  
impedance until a new conversion is started. SDO sends  
out two sets of 12/14 bits in 2’s complement format in the  
output data stream after the third rising edge of SCK after  
the start of conversion with the rising edge of CONV. The  
two 12-/14-bit words are separated by two clock cycles in  
high impedance mode. Please note the delay specification  
from SCK to a valid SDO. SDO is always guaranteed to  
3V  
5V  
7
V
V
CC  
DD  
10  
9
CONV  
LTC1407-1/  
LTC1407A-1  
SCK  
BFSꢁ  
TMS320C54x  
BCLKꢁ  
B13 B12  
8
6
SDO  
GND  
BDꢁ  
CONV  
CLK  
3-WꢀꢁE SEꢁꢀAL  
ꢀNTEꢁFACELꢀNK  
14071 F08  
0V TO 3V LOGꢀC SWꢀNG  
Figure 8. DSP Serial Interface to TMS320C54x  
14071fb  
18  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
; 12-03-03 ******************************************************************  
; Files: 014SIAB.ASM ->  
1407A Sine wave collection with Serial Port interface  
both channels collected in sequence in the same 2k record.  
Buffered mode 2k buffer size.  
;
;
bvectors.asm  
s2k14ini.asm  
; First element at 1024, last element at 1023, two middles at 2047 and 0000  
; bipolar mode  
; Works 16 or 64 clock frames.  
; negative edge BCLKR  
; negative BFSR pulse  
; -0 data shifted  
; ***************************************************************************  
.width  
160  
.length 110  
.title “sineb0 BSP in auto buffer mode”  
.mmregs  
.setsect “.text”,  
0x500,0  
;Set address of executable  
.setsect “vectors”, 0x180,0  
.setsect “buffer”, 0x800,0  
.setsect “result”, 0x1800,0  
.text  
;Set address of incoming 1403 data  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
;.text marks start of code  
start:  
;this label seems necessary  
;Make sure /PWRDWN is low at J1-9  
;to turn off AC01 adc  
tim=#0fh  
prd=#0fh  
tcr = #10h  
tspc = #0h  
pmst = #01a0h  
sp = #0700h  
dp = #0  
; stop timer  
; stop TDM serial port to AC01  
; set up iptr. Processor Mode STatus register  
; init stack pointer.  
; data page  
ar2 = #1800h  
ar3 = #0800h  
ar4 = #0h  
; pointer to computed receive buffer.  
; pointer to Buffered Serial Port receive buffer  
; reset record counter  
call sineinit  
; Double clutch the initialization to insure a proper  
sinepeek:  
call sineinit  
; reset. The external frame sync must occur 2.5 clocks  
; or more after the port comes out of reset.  
wait  
goto wait  
;
———————— Buffered Receive Interrupt Routine —————————  
breceive:  
ifr = #10h  
TC = bitf(@BSPCE,#4000h) ; check which half (bspce(bit14)) of buffer  
; clear interrupt ags  
; if this still the rst half get next half  
if (NTC) goto bufull  
bspce = #(2023h + 08000h); turn on halt for second half (bspce(bit15))  
return_enable  
14071fb  
19  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
;
——————— mask and shift input data ——————————————  
bufull:  
b = *ar3+ << -0  
b = #07FFFh & b  
b = b ^ #2000h  
; load acc b with BSP buffer and shift right -0  
; mask out the TRISTATE bits with #03FFFh  
; invert the MSB for bipolar operation  
;
*ar2+ = data(#0bh)  
; store B to out buffer and advance AR2 pointer  
TC = (@ar2 == #02000h) ; output buffer is 2k starting at 1800h  
if (TC) goto start  
goto bufull  
; restart if out buffer is at 1fffh  
;
————————— dummy bsend return ————————————  
return_enable ;this is also a dummy return to dene bsend  
;in vector table le BVECTORS.ASM  
bsend  
;
——————————— end ISR ——————————————  
.copy “c:\dskplus\1403\s2k14ini.asm”  
;initialize buffered serial port  
.space 16*32  
;clear a chunk at the end to mark the end  
;======================================================================  
;
;
;
VECTORS  
;======================================================================  
.sect “vectors”  
;The vectors start here  
;get BSP vectors  
.copy “c:\dskplus\1403\bvectors.asm”  
.sect “buffer”  
.space 16*0x800  
.sect “result”  
.space 16*0x800  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
.end  
; ***************************************************************************  
; File: BVECTORS.ASM -> Vector Table for the ‘C54x DSKplus  
10.Jul.96  
;
;
BSP vectors and Debugger vectors  
TDM vectors just return  
; ***************************************************************************  
; The vectors in this table can be congured for processing external and  
; internal software interrupts. The DSKplus debugger uses four interrupt  
; vectors. These are RESET, TRAP2, INT2, and HPIINT.  
;
;
*
DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  
*
; All other vector locations are free to use. When programming always be sure  
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and  
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the  
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.  
;
;
;
14071fb  
20  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
.title “Vector Table”  
.mmregs  
reset  
nmi  
goto #80h  
;00; RESET * DO NOT MODIFY IF USING DEBUGGER *  
nop  
nop  
return_enable  
;04; non-maskable external interrupt  
nop  
nop  
nop  
trap2  
int0  
goto #88h  
;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *  
nop  
nop  
.space 52*16  
;0C-3F: vectors for software interrupts 18-30  
;40; external interrupt int0  
return_enable  
nop  
nop  
nop  
int1  
return_enable  
;44; external interrupt int1  
;48; external interrupt int2  
;4C; internal timer interrupt  
;50; BSP receive interrupt  
;54; BSP transmit interrupt  
;58; TDM receive interrupt  
nop  
nop  
nop  
int2  
return_enable  
nop  
nop  
nop  
tint  
return_enable  
nop  
nop  
nop  
brint  
bxint  
trint  
goto breceive  
nop  
nop  
nop  
goto bsend  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
txint  
int3  
return_enable  
;5C; TDM transmit interrupt  
;60; external interrupt int3  
nop  
nop  
return_enable  
nop  
nop  
nop  
hpiint  
dgoto #0e4h  
;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *  
nop  
nop  
14071fb  
21  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
.space 24*16  
;68-7F; reserved area  
**********************************************************************  
*
(C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996  
**********************************************************************  
*
*
*
*
*
*
*
* File: s2k14ini.ASM BSP initialization code for the ‘C54x DSKplus  
*
*
*
for use with 1407 in buffered mode  
BSPC and SPC are the same in the ‘C542  
BSPCE and SPCE seem the same in the ‘C542  
**********************************************************************  
.title “Buffered Serial Port Initialization Routine”  
ON  
.set 1  
OFF  
.set !ON  
.set 1  
YES  
NO  
.set !YES  
.set 2  
BIT_8  
BIT_10  
BIT_12  
BIT_16  
GO  
.set 1  
.set 3  
.set 0  
.set 0x80  
**********************************************************************  
* This is an example of how to initialize the Buffered Serial Port (BSP).  
* The BSP is initialized to require an external CLK and FSX for  
* operation. The data format is 16-bits, burst mode, with autobuffering  
* enabled.  
*
*******************************************************************************************  
*LTC1407 timing from board with 10MHz crystal.  
*
*10MHz, divided from 40MHz, forced to CLKIN by 1407 board.  
*
*Horizontal scale is 25ns/chr or 100ns period at BCLKR  
*
*Timing measured at DSP pins. Jxx pin labels for jumper cable.  
*
*BFSR Pin J1-20 ~~\____/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\____/  
~~~~~~~~~~~*  
*BCLKR Pin J1-14 _/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/  
~\_/~\_/~*  
*BDR  
B12*  
Pin J1-26 _—_—_—<B13-B12-B11-B10-B09-B08-B07-B06-B05-B04-B03-B02-B01-B00>—_—<B13-  
*CLKIN Pin J5-09 ~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/  
~~~~~~~\_______/~~~~~*  
*C542 read  
0
B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B00  
0
0
B13 B12*  
*
*
* negative edge BCLKR  
* negative BFSR pulse  
* no data shifted  
* 1’ cable from counter to CONV at DUT  
14071fb  
22  
LTC1407-1/LTC1407A-1  
APPLICATIONS INFORMATION  
* 2’ cable from counter to CLK at DUT  
*No right shift is needed to right justify the input data in the main program  
*
*the two msbs should also be masked  
*
*******************************************************************************************  
*
Loopback  
Format  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
NO  
;(digital looback mode?)  
;(Data format? 16,12,10,8)  
DLB bit  
FO bit  
BIT_16  
NO  
IntSync  
;(internal Frame syncs generated?) TXM bit  
IntCLK  
BurstMode  
CLKDIV  
NO  
;(internal clks generated?)  
MCM bit  
YES  
3
;(if BurstMode=NO, then Continuous) FSM bit  
;(3=default value, 1/4 CLOCKOUT)  
;(Turn on PCM mode?)  
PCM_Mode  
FS_polarity  
CLK_polarity  
Frame_ignore  
XMTautobuf  
RCVautobuf  
XMThalt  
NO  
YES  
NO  
;(change polarity)YES=^^^\_/^^^, NO=___/^\___  
;(change polarity)for BCLKR YES=_/^, NO=~\_  
;(inverted !YES -ignores frame)  
;(transmit autobuffering)  
!YES  
NO  
YES  
NO  
NO  
;(receive autobuffering)  
;(transmit buff halt if XMT buff is full)  
;(receive buff halt if RCV buff is full)  
;(address of transmit buffer)  
RCVhalt  
XMTbufAddr  
XMTbufSize  
RCVbufAddr  
RCVbufSize  
*
0x800  
0x000  
0x800  
0x800  
;(length of transmit buffer)  
;(address of receive buffer)  
;(length of receive buffer)works up to 800  
* See notes in the ‘C54x CPU and Peripherals Reference Guide on setting up  
* valid buffer start and length values. Page 9-44  
*
*
**********************************************************************  
.eval ((Loopback >> 1)|((Format & 2)<<1)|(BurstMode <<3)|(IntCLK <<4)|(IntSync  
<<5)) ,SPCval  
.eval ((CLKDIV)|(FS_polarity <<5)|(CLK_polarity<<6)|((Format &  
1)<<7)|(Frame_ignore<<8)|(PCM_Mode<<9)), SPCEval  
.eval (SPCEval|(XMTautobuf<<10)|(XMThalt<<12)|(RCVautobuf<<13)|(RCVhalt<<15)),  
SPCEval  
sineinit:  
bspc = #SPCval  
ifr = #10h  
; places buffered serial port in reset  
; clear interrupt ags  
imr = #210h  
intm = 0  
; Enable HPINT,enable BRINT0  
; all unmasked interrupts are enabled.  
; programs BSPCE and ABU  
bspce = #SPCEval  
axr = #XMTbufAddr  
bkx = #XMTbufSize  
arr = #RCVbufAddr  
bkr = #RCVbufSize  
bspc = #(SPCval | GO)  
return  
; initializes transmit buffer start address  
; initializes transmit buffer size  
; initializes receive buffer start address  
; initializes receive buffer size  
; bring buffered serial port out of reset  
;for transmit and receive because GO=0xC0  
14071fb  
23  
LTC1407-1/LTC1407A-1  
PACKAGE DESCRIPTION  
MSE Package  
10-Lead Plastic MSOP  
(ꢁeference LTC DWG # 05-08-1664 ꢁev C)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 p 0.102  
2.794 p 0.102  
(.110 p .004)  
0.889 p 0.127  
(.035 p .005)  
(.081 p .004)  
1
0.29  
ꢁEF  
1.83 p 0.102  
(.072 p .004)  
0.05 ꢁEF  
5.23  
(.206)  
MIN  
2.083 p 0.102 3.20 – 3.45  
(.082 p .004) (.126 – .136)  
DETAꢀL “B”  
COꢁNEꢁ TAꢀL ꢀS PAꢁT OF  
THE LEADFꢁAME FEATUꢁE.  
FOꢁ ꢁEFEꢁENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAꢀL “B”  
10  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.497 p 0.076  
(.0196 p .003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0908 REV C  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
14071fb  
24  
LTC1407-1/LTC1407A-1  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
12/09 Update Pin Configuration  
2
14071fb  
ꢀnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC1407-1/LTC1407A-1  
TYPICAL APPLICATION  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC1608  
16-Bit, 500ksps Parallel ADC  
16-Bit, 250ksps Serial ADC  
5V Supply, 2.5V Span, 90dB SꢀNAD  
5V Configurable Bipolar/Unipolar ꢀnputs  
3V, 15mW, Unipolar ꢀnputs, MSOP Package  
3V, 15mW, Bipolar ꢀnputs, MSOP Package  
3V, 14mW, 2-Channel Unipolar ꢀnput ꢁange  
5V, Selectable Spans, 80dB SꢀNAD  
LTC1609  
LTC1403/LTC1403A  
LTC1403-1/LTC1403A-1  
LTC1407/LTC1407A  
LTC1411  
12-/14-Bit, 2.8Msps Serial ADC  
12-/14-Bit, 2.8Msps Serial ADC  
12-/14-Bit, 3Msps Simultaneous Sampling ADC  
14-Bit, 2.5Msps Parallel ADC  
12-Bit, 10Msps Parallel ADC  
LTC1420  
5V, Selectable Spans, 72dB SꢀNAD  
LTC1405  
12-Bit, 5Msps Parallel ADC  
5V, Selectable Spans, 115mW  
LTC1412  
12-Bit, 3Msps Parallel ADC  
5V Supply, 2.5V Span, 72dB SꢀNAD  
5V or 5V Supply, 4.096V or 2.5V Span  
5V or 3V (L-Version), Micropower, MSOP Package  
LTC1402  
12-Bit, 2.2Msps Serial ADC  
LTC1864/LTC1865  
LTC1864L/LTC1865L  
16-Bit, 250ksps 1-/2-Channel Serial ADCs  
DACs  
LTC1666/LTC1667  
LTC1668  
12-/14-/16-Bit, 50Msps DAC  
87dB SFDꢁ, 20ns Settling Time  
LTC1592  
16-Bit, Serial SoftSpan™ ꢀ  
DAC  
1LSB ꢀNL/DNL, Software Selectable Spans  
OUT  
References  
LT1790-2.5  
LT1461-2.5  
LT1460-2.5  
Micropower Series ꢁeference in SOT-23  
Precision Voltage ꢁeference  
0.05% ꢀnitial Accuracy, 10ppm Drift  
0.04% ꢀnitial Accuracy, 3ppm Drift  
0.10% ꢀnitial Accuracy, 10ppm Drift  
Micropower Series Voltage ꢁeference  
SoftSpan is a trademark of Linear Technology Corporation.  
14071fb  
LT 0110 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1407CMSE-1#TR

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407HMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1407IMSE

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling
Linear

LTC1407IMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1407IMSE#TR

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1407IMSE#TRPBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1407IMSE-1

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
Linear

LTC1408

Channel, 14-Bit, 600ksps Simultaneous Sampling ADC with Shutdown
Linear

LTC1408-12

6 Channel, 12-Bit, 600ksps Simultaneous Sampling ADC with Shutdown
Linear

LTC1408CUH

Channel, 14-Bit, 600ksps Simultaneous Sampling ADC with Shutdown
Linear

LTC1408CUH#PBF

LTC1408 - 6 Channel, 14-Bit, 600ksps Simultaneous Sampling ADC with Shutdown; Package: QFN; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1408CUH-12

6 Channel, 12-Bit, 600ksps Simultaneous Sampling ADC with Shutdown
Linear