LTC1407ACMSE#PBF [Linear]

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0°C to 70°C;
LTC1407ACMSE#PBF
型号: LTC1407ACMSE#PBF
厂家: Linear    Linear
描述:

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总24页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1407/LTC1407A  
Serial 12-Bit/14-Bit, 3Msps  
Simultaneous Sampling  
ADCs with Shutdown  
FEATURES  
DESCRIPTION  
The LTC®1407/LTC1407A are 12-bit/14-bit, 3Msps ADCs  
with two 1.5Msps simultaneously sampled differential  
inputs. The devices draw only 4.7mA from a single 3V  
supply and come in a tiny 10-lead MS package. A Sleep  
shutdown feature lowers power consumption to 10μW.  
The combination of speed, low power and tiny package  
makes the LTC1407/LTC1407A suitable for high speed,  
portable applications.  
n
3Msps Sampling ADC with Two Simultaneous  
Differential Inputs  
n
1.5Msps Throughput per Channel  
n
Low Power Dissipation: 14mW (Typ)  
3V Single Supply Operation  
2.5V Internal Bandgap Reference with External  
Overdrive  
3-Wire Serial Interface  
Sleep (10μW) Shutdown Mode  
Nap (3mW) Shutdown Mode  
80dB Common Mode Rejection at 100kHz  
0V to 2.5V Unipolar Input Range  
Tiny 10-Lead MS Package  
n
n
n
n
The LTC1407/LTC1407A contain two separate differential  
inputs that are sampled simultaneously on the rising edge  
of the CONV signal. These two sampled inputs are then  
converted at a rate of 1.5Msps per channel.  
n
n
n
n
The80dBcommonmoderejectionallowsuserstoeliminate  
ground loops and common mode noise by measuring  
signals differentially from the source.  
APPLICATIONS  
n
Telecommunications  
Thedevicesconvert0Vto2.5Vunipolarinputsdifferentially.  
n
+
+
Data Acquisition Systems  
The absolute voltage swing for CH0 , CH0 , CH1 and  
n
Uninterrupted Power Supplies  
CH1 extends from ground to the supply voltage.  
n
Multiphase Motor Control  
Theserialinterfacesendsoutthetwoconversionresultsin32  
clocks for compatibility with standard serial interfaces.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6084440, 6522187.  
n
I and Q Demodulation  
n
Industrial Control  
BLOCK DIAGRAM  
10μF 3V  
THD, 2nd and 3rd  
vs Input Frequency  
7
V
DD  
–44  
–50  
LTC1407A  
+
CH0  
CH0  
1
2
+
THD  
S AND H  
–56  
–62  
2nd  
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
3Msps  
14-BIT ADC  
–68  
MUX  
8
SDO  
3rd  
–74  
–80  
+
CH1  
4
5
3
+
S AND H  
–86  
CH1  
–92  
10  
9
CONV  
SCK  
TIMING  
LOGIC  
–98  
V
REF  
–104  
10μF  
0.1  
1
10  
100  
GND  
2.5V  
REFERENCE  
6
FREQUENCY (MHz)  
1407 G02  
EXPOSED PAD  
11  
1407A BD  
1407fb  
1
LTC1407/LTC1407A  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VIEW  
+
Supply Voltage (V ) .................................................4V  
DD  
CH0  
CH0  
1
2
3
4
5
10 CONV  
Analog Input Voltage (Note 3) ..... –0.3V to (V + 0.3V)  
DD  
9
8
7
6
SCK  
SDO  
DD  
GND  
V
11  
REF  
Digital Input Voltage .................... –0.3V to (V + 0.3V)  
DD  
+
CH1  
CH1  
V
Digital Output Voltage ................. –0.3V to (V + 0.3V)  
DD  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
Power Dissipation...............................................100mW  
Operation Temperature Range  
T
= 150°C, θ = 40°C/W  
JA  
JMAX  
EXPOSED PAD (PIN #) IS GND, MUST BE SOLDERED TO PCB  
LTC1407C/LTC1407AC............................. 0°C to 70°C  
LTC1407I/LTC1407AI ...........................40°C to 85°C  
LTC1407H/LTC1407AH.......................40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1407CMSE#PBF  
LTC1407IMSE#PBF  
LTC1407HMSE#PBF  
LTC1407ACMSE#PBF  
LTC1407AIMSE#PBF  
LTC1407AHMSE#PBF  
TAPE AND REEL  
PART MARKING*  
LTBDQ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC1407CMSE#TRPBF  
LTC1407IMSE#TRPBF  
LTC1407HMSE#TRPBF  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
0°C to 70°C  
LTBDR  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTBDR  
LTC1407ACMSE#TRPBF LTAFE  
LTC1407AIMSE#TRPBF LTAFF  
LTC1407AHMSE#TRPBF LTAFF  
–40°C to 85°C  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
CONVERTER CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
LTC1407  
LTC1407A  
LTC1407H  
LTC1407AH  
PARAMETER  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Offset Error  
12  
–2  
14  
–4  
12  
–2  
14  
–4  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
(Notes 5, 17)  
(Notes 4, 17)  
0.25  
1
2
0.5  
2
4
0.25  
1
2
0.5  
2
4
–10  
–5  
10 –20  
–10  
30 –60  
–10  
20 –20  
10 –5  
20 –30  
–10  
40 –80  
–10  
30  
10  
Offset Match from CH0 to CH1 (Note 17)  
0.5  
5
5
1
0.5  
5
5
1
l
Gain Error  
(Notes 4, 17)  
–30  
–5  
10 60 –40  
10 80  
Gain Match from CH0 to CH1  
Gain Tempco  
(Note 17)  
1
5
2
10  
–5  
1
5
2
10  
Internal Reference (Note 4)  
External Reference  
15  
1
15  
1
15  
1
15  
1
ppm/°C  
ppm/°C  
1407fb  
2
LTC1407/LTC1407A  
ANALOG INPUT  
The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Analog Differential Input Range (Notes 3, 9)  
2.7V ≤ V ≤ 3.3V  
0 to 2.5  
V
V
IN  
DD  
V
Analog Common Mode + Differential  
Input Range (Note 10)  
0 to V  
CM  
DD  
l
l
I
Analog Input Leakage Current  
1
μA  
pF  
ns  
ns  
ps  
ps  
IN  
C
Analog Input Capacitance  
13  
IN  
t
t
t
t
Sample-and-Hold Acquisition Time  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Sample-and-Hold Aperture Skew from CH0 to CH1  
Analog Input Common Mode Rejection Ratio  
(Note 6)  
39  
ACQ  
AP  
1
0.3  
JITTER  
SK  
200  
CMRR  
f
IN  
f
IN  
= 1MHz, V = 0V to 3V  
–60  
–15  
dB  
dB  
IN  
= 100MHz, V = 0V to 3V  
IN  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
LTC1407/LTC1407H LTC1407A/LTC1407AH  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP MAX MIN  
TYP MAX  
UNITS  
SINAD  
Signal-to-Noise Plus  
Distortion Ratio  
100kHz Input Signal  
70.5  
73.5  
73.5  
73.5  
76.3  
76.3  
dB  
dB  
dB  
dB  
dB  
l
l
750kHz Input Signal  
68  
67  
70.5  
70.5  
72.0  
72.0  
70  
69  
750kHz Input Signal (H Grade)  
100kHz Input Signal, External V = 3.3V, V 3.3V  
REF  
REF  
DD  
DD  
750kHz Input Signal, External V = 3.3V, V 3.3V  
THD  
Total Harmonic  
Distortion  
100kHz First 5 Harmonics  
750kHz First 5 Harmonics  
750kHz First 5 Harmonics (H Grade)  
–87  
–83  
–82  
–90  
–86  
–85  
dB  
dB  
dB  
l
l
–77  
–76  
–80  
–79  
SFDR  
IMD  
Spurious Free  
100kHz Input Signal  
750kHz Input Signal  
87  
83  
90  
86  
dB  
dB  
Dynamic Range  
+
Intermodulation  
Distortion  
1.25V to 2.5V 1.40MHz into CH0 , 0V to 1.25V,  
–82  
–82  
dB  
+
1.56MHz into CH0 . Also Applicable to CH1 and CH1  
Code-to-Code  
Transition Noise  
V
REF  
= 2.5V (Note 17)  
0.25  
1
LSB  
RMS  
Full Power Bandwidth  
V
= 2.5V , SDO = 11585LSB (–3dBFS) (Note 15)  
50  
5
50  
5
MHz  
MHz  
IN  
P-P  
P-P  
Full Linear Bandwidth S/(N + D) ≥ 68dB  
T = 25°C. VDD = 3V.  
INTERNAL REFERENCE CHARACTERISTICS  
A
PARAMETER  
CONDITIONS  
I = 0  
OUT  
MIN  
TYP  
2.5  
15  
MAX  
UNITS  
V
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
Setting Time  
REF  
REF  
REF  
REF  
REF  
ppm/°C  
μV/V  
Ω
V
= 2.7V to 3.6V, V = 2.5V  
600  
0.2  
2
DD  
REF  
Load Current = 0.5mA  
ms  
1407fb  
3
LTC1407/LTC1407A  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 3.3V  
= 2.7V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.6  
10  
I
= 0V to V  
μA  
pF  
V
IN  
DD  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
5
IN  
l
V
DD  
= 3V, I = 200μA  
OUT  
2.5  
2.9  
OH  
OL  
V
DD  
V
DD  
= 2.7V, I  
= 2.7V, I  
= 160μA  
= 1.6mA  
0.05  
0.10  
V
V
OUT  
OUT  
l
l
0.4  
10  
I
OZ  
Hi-Z Output Leakage D  
V
= 0V to V  
DD  
μA  
pF  
OUT  
OUT  
C
Hi-Z Output Capacitance D  
1
OZ  
OUT  
I
Output Short-Circuit Source Current  
Output Short-Circuit Sink Current  
V
V
= 0V, V = 3V  
20  
15  
mA  
mA  
SOURCE  
SINK  
OUT  
DD  
I
= V = 3V  
OUT  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
Supply Current  
2.7  
3.6  
V
DD  
l
l
l
l
I
Active Mode, f  
= 1.5Msps  
4.7  
5.2  
1.1  
1.2  
2.0  
2.0  
7.0  
8.0  
1.5  
1.8  
15  
mA  
mA  
mA  
mA  
μA  
DD  
SAMPLE  
Active Mode (LTC1407H/LTC1407AH)  
Nap Mode  
Nap Mode (LTC1407H/LTC1407AH)  
Sleep Mode (LTC1407/LTC1407H)  
Sleep Mode (LTC1407A/LTC1407AH)  
10  
μA  
PD  
Active Mode with SCK in Fixed State (Hi or Lo)  
12  
mW  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
f
Maximum Sampling Frequency per Channel  
(Conversion Rate)  
1.5  
MHz  
SAMPLE(MAX)  
l
l
t
t
t
t
t
t
t
t
t
Minimum Sampling Period (Conversion + Acquisiton Period)  
Clock Period  
667  
ns  
THROUGHPUT  
(Note 16)  
(Note 6)  
19.6  
32  
2
10000  
ns  
SCK  
Conversion Time  
34  
SCLK cycles  
CONV  
Minimum Positive or Negative SCLK Pulse Width  
CONV to SCK Setup Time  
(Note 6)  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
(Notes 6, 10)  
(Note 6)  
3
10000  
SCK Before CONV  
0
Minimum Positive or Negative CONV Pulse Width  
SCK to Sample Mode  
(Note 6)  
4
(Note 6)  
4
CONV to Hold Mode  
(Notes 6, 11)  
1.2  
1407fb  
4
LTC1407/LTC1407A  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
(Notes 6, 7, 13)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 14)  
MIN  
45  
8
TYP  
MAX  
UNITS  
ns  
t
32nd SCKto CONVInterval (Affects Acquisition Period)  
Minimum Delay from SCK to Valid Bits 0 Through 11  
SCK to Hi-Z at SDO  
7
t
t
t
t
ns  
8
6
ns  
9
Previous SDO Bit Remains Valid After SCK  
2
ns  
10  
12  
V
REF  
Settling Time After Sleep-to-Wake Transition  
2
ms  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 10: If less than 3ns is allowed, the output data will appear one  
clock cycle later. It is best for CONV to rise half a clock before SCK, when  
running the clock at rated speed.  
Note 11: Not the same as aperture delay. Aperture delay (1ns) is the  
difference between the 2.2ns delay through the sample-and-hold and the  
1.2ns CONV to Hold mode delay.  
Note 2: All voltage values are with respect to ground GND.  
Note 3: When these pins are taken below GND or above V , they will be  
DD  
clamped by internal diodes. This product can handle input currents greater  
Note 12: The rising edge of SCK is guaranteed to catch the data coming  
out into a storage latch.  
Note 13: The time period for acquiring the input signal is started by the  
32nd rising clock and it is ended by the rising edge of CONV.  
than 100mA below GND or greater than V without latchup.  
DD  
+
+
Note 4: Offset and range specifications apply for a single-ended CH0 or CH1  
input with CH0 or CH1 grounded and using the internal 2.5V reference.  
Note 5: Integral linearity is tested with an external 2.55V reference and is  
defined as the deviation of a code from the straight line passing through  
the actual endpoints of a transfer curve. The deviation is measured from  
the center of quantization band.  
Note 14: The internal reference settles in 2ms after it wakes up from Sleep  
mode with one or more cycles at SCK and a 10μF capacitive load.  
Note 15: The full power bandwidth is the frequency where the output code  
swing drops by 3dB with a 2.5V input sine wave.  
P-P  
Note 6: Guaranteed by design, not subject to test.  
Note 7: Recommended operating conditions.  
Note 16: Maximum clock period guarantees analog performance during  
conversion. Output data can be read with an arbitrarily long clock period.  
Note 8: The analog input range is defined for the voltage difference  
Note 17: The LTC1407A is measured and specified with 14-bit resolution  
(1LSB = 152μV) and the LTC1407 is measured and specified with 12-bit  
resolution (1LSB = 610μV).  
+
+
between CH0 and CH0 or CH1 and CH1 .  
+
+
Note 9: The absolute voltage at CH0 , CH0 , CH1 and CH1 must be  
within this range.  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
DD = 3V, TA = 25°C (LTC1407A)  
ENOBs and SINAD  
THD, 2nd and 3rd  
vs Input Frequency  
vs Input Sinewave Frequency  
SFDR vs Input Frequency  
–44  
–50  
–56  
–62  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
THD  
2nd  
–68  
–74  
3rd  
–80  
–86  
9.0  
–92  
8.5  
–98  
–104  
8.0  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1407 G02  
1407 G19  
1407 G01  
1407fb  
5
LTC1407/LTC1407A  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3V, TA = 25°C (LTC1407A)  
98kHz Sine Wave 4096 Point  
FFT Plot  
748kHz Sine Wave 4096 Point  
FFT Plot  
SNR vs Input Frequency  
74  
71  
68  
65  
62  
59  
56  
53  
50  
0
–10  
–20  
0
–10  
1.5Msps  
1.5Msps  
–20  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
100 200 300 400 500 600 700  
FREQUENCY (kHz)  
0.1  
1
10  
100  
0
100 200 300 400 500 600 700  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
1407 G03  
1407 G05  
1407 G04  
1403kHz Input Summed with  
1563kHz Input IMD 4096 Point  
FFT Plot  
Differential Linearity for CH0 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH0 with Internal 2.5V Reference  
1.0  
0.8  
2.0  
1.6  
0
1.5Msps  
–10  
–20  
0.6  
1.2  
–30  
0.4  
0.8  
–40  
0.2  
0.4  
–50  
0
0
–60  
–70  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
8192  
OUTPUT CODE  
12288  
4096  
16384  
0
8192  
12288  
0
100 200 300 400 500 600 700  
FREQUENCY (kHz)  
4096  
16384  
OUTPUT CODE  
1407 G15  
1407 G16  
1407 G06  
Differential Linearity for CH1 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH1 with Internal 2.5V Reference  
1.0  
0.8  
2.0  
1.6  
0.6  
1.2  
0.4  
0.8  
0.2  
0.4  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
0
8192  
12288  
0
8192  
12288  
4096  
16384  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
1407 G17  
1407 G18  
1407fb  
6
LTC1407/LTC1407A  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 3V, TA = 25°C (LTC1407/LTC1407A)  
Full-Scale Signal Frequency  
Response  
CMRR vs Frequency  
Crosstalk vs Frequency  
12  
6
–20  
0
–30  
–40  
–50  
–60  
–20  
–40  
0
–6  
–12  
–18  
–60  
–80  
CH0  
CH1  
CH1 TO CH0  
–70  
–24  
–30  
–36  
CH0 TO CH1  
–100  
–120  
–80  
–90  
1M  
10M  
100M  
1G  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k 100k  
1M  
10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1407 G09  
1407 G07  
1407 G08  
Simultaneous Input Steps at CH0  
and CH1 from 25Ω  
PSSR vs Frequency  
–25  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
0.6  
0.2  
–0.2  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
CH0  
CH1  
–0.6  
1
10  
100  
1k  
10k 100k  
1M  
0
5
10  
15  
30  
20  
25  
FREQUENCY (Hz)  
TIME (ns)  
1407 G11  
1407 G10  
Reference Voltage  
vs Load Current  
Reference Voltage vs VDD  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
LOAD CURRENT (mA)  
V
DD  
1407 G12  
1407 G13  
1407fb  
7
LTC1407/LTC1407A  
PIN FUNCTIONS  
+
+
CH0 (Pin 1): Noninverting Channel 0. CH0 operates  
V
(Pin 7): 3V Positive Supply. This single power pin  
DD  
fully differentially with respect to CH0 with a 0V to 2.5V  
differential swing and a 0 to V absolute input range.  
supplies 3V to the entire chip. Bypass to GND pin and  
solid analog ground plane with a 10μF ceramic capacitor  
(or 10μF tantalum) in parallel with 0.1μF ceramic. Keep in  
mindthatinternalanalogcurrentsanddigitaloutputsignal  
currents flow through this pin. Care should be taken to  
place the 0.1μF bypass capacitor as close to Pins 6 and 7  
as possible.  
DD  
CH0 (Pin 2): Inverting Channel 0. CH0 operates fully  
+
differentially with respect to CH0 with a –2.5V to 0V dif-  
ferential swing and a 0 to V absolute input range.  
DD  
V
(Pin 3): 2.5V Internal Reference. Bypass to GND and  
REF  
a solid analog ground plane with a 10μF ceramic capacitor  
(or 10μF tantalum in parallel with 0.1μF ceramic). Can be  
overdriven by an external reference voltage 2.55V and  
SDO (Pin 8): Three-State Serial Data Output. Each pair of  
outputdatawordsrepresentthetwoanaloginputchannels  
at the start of the previous conversion.  
≤V .  
DD  
SCK (Pin 9): External Clock Input. Advances the conver-  
sion process and sequences the output data on the rising  
edge. One or more pulses wake from sleep.  
+
+
CH1 (Pin 4): Noninverting Channel 1. CH1 operates  
fully differentially with respect to CH1 with a 0V to 2.5V  
differential swing and a 0 to V absolute input range.  
DD  
CONV (Pin 10): Convert Start. Holds the two analog input  
signals and starts the conversion on the rising edge. Two  
pulses with SCK in fixed high or fixed low state starts Nap  
mode. Four or more pulses with SCK in fixed high or fixed  
low state starts Sleep mode.  
CH1 (Pin 5): Inverting Channel 1. CH1 operates fully  
+
differentially with respect to CH1 with a –2.5V to 0V dif-  
ferential swing and a 0 to V absolute input range.  
DD  
GND (Pins 6, 11): Ground and Exposed Pad. This single  
ground pin and the Exposed Pad must be tied directly to  
the solid ground plane under the part. Keep in mind that  
analog signal currents and digital output signal currents  
flow through these connections.  
BLOCK DIAGRAM  
10μF 3V  
7
V
DD  
LTC1407A  
+
CH0  
1
2
+
S AND H  
CH0  
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
3Msps  
14-BIT ADC  
MUX  
8
SDO  
+
CH1  
4
5
3
+
S AND H  
CH1  
10  
9
CONV  
SCK  
TIMING  
LOGIC  
V
REF  
10μF  
GND  
2.5V  
REFERENCE  
6
EXPOSED PAD  
11  
1407A BD  
1407fb  
8
LTC1407/LTC1407A  
TIMING DIAGRAMS  
1407fb  
9
LTC1407/LTC1407A  
TIMING DIAGRAMS  
Nap Mode Waveforms  
SCK  
t
1
CONV  
NAP  
Sleeep Mode Waveforms  
SCK  
t
t
1
1
CONV  
NAP  
SLEEP  
t
12  
V
1407 TD02  
REF  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS  
SCK to SDO Delay  
SCK  
SCK  
V
V
IH  
IH  
t
10  
8
t
t
9
V
V
90%  
10%  
OH  
OL  
SDO  
SDO  
1407 TD03  
1407fb  
10  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
DRIVING THE ANALOG INPUT  
increasingthetimebetweenconversions.Thebestchoice  
for an op amp to drive the LTC1407/LTC1407A depends  
on the application. Generally, applications fall into two  
categories:ACapplicationswheredynamicspecifications  
are most critical and time domain applications where DC  
accuracyandsettlingtimearemostcritical. Thefollowing  
list is a summary of the op amps that are suitable for driv-  
ing the LTC1407/LTC1407A. (More detailed information  
is available in the Linear Technology Databooks and on  
the LinearView™ CD-ROM.)  
ThedifferentialanaloginputsoftheLTC1407/LTC1407Aare  
easy to drive. The inputs may be driven differentially or as  
a single-ended input (i.e., the CH0 input is grounded). All  
four analog inputs of both differential analog input pairs,  
+
+
CH0 with CH0 and CH1 with CH1 , are sampled at the  
same instant. Any unwanted signal that is common to  
both inputs of each input pair will be reduced by the com-  
mon mode rejection of the sample-and-hold circuit. The  
inputs draw only one small current spike while charging  
the sample-and-hold capacitors at the end of conversion.  
During conversion, the analog inputs draw only a small  
leakage current. If the source impedance of the driving  
circuit is low, then the LTC1407/LTC1407A inputs can be  
driven directly. As source impedance increases, so will  
acquisition time. For minimum acquisition time with high  
source impedance, a buffer amplifier must be used. The  
main requirement is that the amplifier driving the analog  
input(s) must settle after the small current spike before  
the next conversion starts (settling time must be 39ns for  
full throughput rate). Also keep in mind, while choosing  
an input amplifier, the amount of noise and harmonic  
distortion added by the amplifier.  
LTC1566-1: Low Noise 2.3MHz Continuous Time Low-  
pass Filter.  
LT®1630: Dual 30MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to 15V supplies. Very high A , 500μV offset and  
VOL  
520ns settling to 0.5LSB for a 4V swing. THD and noise  
are 93dB to 40kHz and below 1LSB to 320kHz (A = 1,  
V
2V into 1kꢀ, V = 5V), making the part excellent for  
P-P  
S
AC applications (to 1/3 Nyquist) where rail-to-rail perfor-  
mance is desired. Quad version is available as LT1631.  
LT1632: Dual 45MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to 15V supplies. Very high A , 1.5mV offset and  
VOL  
400ns settling to 0.5LSB for a 4V swing. It is suitable for  
applications with a single 5V supply. THD and noise are  
93dB to 40kHz and below 1LSB to 800kHz (A = 1,  
V
CHOOSING AN INPUT AMPLIFIER  
2V into 1kꢀ, V = 5V), making the part excellent for  
P-P  
S
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
outputimpedance(<100ꢀ)attheclosed-loopbandwidth  
frequency. For example, if an amplifier is used in a gain  
of 1 and has a unity-gain bandwidth of 50MHz, then the  
output impedance at 50MHz must be less than 100ꢀ.  
The second requirement is that the closed-loop band-  
width must be greater than 40MHz to ensure adequate  
small-signal settling for full throughput rate. If slower op  
amps are used, more time for settling can be provided by  
ACapplicationswhererail-to-railperformanceisdesired.  
Quad version is available as LT1633.  
LT1801: 80MHz GBWP, 75dBc at 500kHz, 2mA/ampli-  
fier, 8.5nV/√Hz.  
LT1806/LT1807: 325MHz GBWP, 80dBc distortion at  
5MHz, unity-gain stable, rail-to-rail in and out, 10mA/am-  
plifier, 3.5nV/√Hz  
.
LT1810: 180MHz GBWP, 90dBc distortion at 5MHz,  
unity-gain stable, rail-to-rail in and out, 15mA/amplifier,  
16nV/√Hz.  
LinearView is a trademark of Linear Technology Corporation.  
1407fb  
11  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
LT1818/LT1819: 400MHz, 2500V/μs, 9mA, Single/Dual  
inputs to minimize noise. A simple 1-pole RC filter is  
sufficient for many applications. For example, Figure 1  
Voltage Mode Operational Amplifier.  
+
shows a 47pF capacitor from CHO to ground and a 51ꢀ  
LT6200: 165MHz GBWP, 85dBc distortion at 1MHz,  
unity-gain stable, rail-to-rail in and out, 15mA/amplifier,  
0.95nV/√Hz.  
source resistor to limit the net input bandwidth to 30MHz.  
The 47pF capacitor also acts as a charge reservoir for the  
input sample-and-hold and isolates the ADC input from  
sampling-glitchsensitivecircuitry.Highqualitycapacitors  
and resistors should be used since these components  
can add distortion. NPO and silvermica type dielectric  
capacitors have excellent linearity. Carbon surface mount  
resistors can generate distortion from self heating and  
from damage that may occur during soldering. Metal  
film surface mount resistors are much less susceptible  
to both problems. When high amplitude unwanted signals  
are close in frequency to the desired signal frequency a  
multiple pole filter is required.  
LT6203: 100MHz GBWP, 80dBc distortion at 1MHz,  
unity-gain stable, rail-to-rail in and out, 3mA/amplifier,  
1.9nV/√Hz.  
LT6600: Amplifier/Filter Differential In/Out with 10MHz  
Cutoff.  
INPUT FILTERING AND SOURCE IMPEDANCE  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1407/LTC1407A noise and distortion. The small-  
signalbandwidthofthesample-and-holdcircuitis50MHz.  
Any noise or distortion products that are present at the  
analog inputs will be summed over this entire bandwidth.  
Noisy input circuitry should be filtered prior to the analog  
High external source resistance, combined with 13pF  
of input capacitance, will reduce the rated 50MHz input  
bandwidth and increase acquisition time beyond 39ns.  
51ꢀ*  
1
ANALOG  
INPUT  
+
CH0  
47pF*  
2
CH0  
LTC1407/  
LTC1407A  
3
V
REF  
10μF  
11  
GND  
51ꢀ*  
ANALOG  
INPUT  
4
+
CH1  
CH1  
47pF*  
5
1407 F01  
*TIGHT TOLERANCE REQUIRED TO AVOID  
APERTURE SKEW DEGRADATION  
Figure 1. RC Input Filter  
1407fb  
12  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
INPUT RANGE  
overdrivenwithanexternalreferenceasshowninFigure 2.  
The voltage of the external reference must be higher than  
the2.5Voftheopen-drainP-channeloutputoftheinternal  
reference. The recommended range for an external refer-  
ence is 2.55V to VDD. An external reference at 2.55V will  
see a DC quiescent load of 0.75mA and as much as 3mA  
during conversion.  
TheanaloginputsoftheLTC1407/LTC1407Amaybedriven  
fully differentially with a single supply. Either input may  
swingupto3V,providedthedifferentialswingisnogreater  
than 2.5V. In the valid input range, the noninverting input  
of each channel should always be more positive than the  
inverting input of each channel. The 0V to 2.5V range is  
also ideally suited for single-ended input use with single  
supply applications. The common mode range of the  
INPUT SPAN VERSUS REFERENCE VOLTAGE  
inputs extend from ground to the supply voltage V . If  
DD  
Thedifferentialinputrangehasaunipolarvoltagespanthat  
equals the difference between the voltage at the reference  
+
the difference between the CH0 and CH0 inputs or the  
+
CH1 and CH1 inputs exceeds 2.5V, the output code will  
stay fixed at all ones, and if this difference goes below 0V,  
the ouput code will stay fixed at all zeros.  
buffer output V (Pin 3) and the voltage at the Exposed  
REF  
Pad ground. The differential input range of ADC is 0V to  
2.5V when using the internal reference. The internal ADC  
is referenced to these two nodes. This relationship also  
holds true with an external reference.  
INTERNAL REFERENCE  
The LTC1407/LTC1407A have an on-chip, temperature  
compensated, bandgap reference that is factory trimmed  
near 2.5V to obtain a precise 2.5V input span. The refer-  
enceamplifieroutputVREF, (Pin3)mustbebypassedwith  
a capacitor to ground. The reference amplifier is stable  
with capacitors of 1μF or greater. For the best noise per-  
formance, a 10μF ceramic or a 10μF tantalum in parallel  
witha0.1μFceramicisrecommended.TheVREF pincanbe  
DIFFERENTIAL INPUTS  
The ADC will always convert the unipolar difference of  
+
+
CH0 minus CH0 or the unipolar difference of CH1 mi-  
nus CH1 , independent of the common mode voltage at  
either set of inputs. The common mode rejection holds up  
at high frequencies (see Figure 3.) The only requirement  
is that both inputs not go below ground or exceed V .  
DD  
0
3
3V REF  
V
–20  
–40  
REF  
LTC1407/  
LTC1407A  
GND  
10μF  
11  
1407 F02  
–60  
CH0  
CH1  
Figure 2  
–80  
–100  
–120  
100  
1k  
10k 100k  
1M  
10M 100M  
FREQUENCY (Hz)  
1407 G08  
Figure 3. CMRR vs Frequency  
1407fb  
13  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
Integralnonlinearityerrors(INL)anddifferentialnonlinear-  
ity errors (DNL) are largely independent of the common  
mode voltage. However, the offset error will vary. CMRR  
is typically better than 60dB.  
High quality tantalum and ceramic bypass capacitors  
should be used at the V and V pins as shown in the  
DD  
REF  
Block Diagram on the first page of this data sheet. For  
optimum performance, a 10μF surface mount tantalum  
capacitorwitha0.1μFceramicisrecommendedfortheV  
DD  
Figure 4 shows the ideal input/output characteristics for  
the LTC1407/LTC1407A. The code transitions occur mid-  
way between successive integer LSB values (i.e., 0.5LSB,  
1.5LSB, 2.5LSB, FS – 1.5LSB). The output code is natural  
binary with 1LSB = 2.5V/16384 = 153μV for the LTC1407A  
and 1LSB = 2.5V/4096 = 610μV for the LTC1407. The  
LTC1407A has 1LSB RMS of Gaussian white noise.  
and V pins. Alternatively, 10μF ceramic chip capacitors  
REF  
such as X5R or X7R may be used. The capacitors must  
be located as close to the pins as possible. The traces  
connecting the pins and the bypass capacitors must be  
kept short and should be made as wide as possible. The  
V
V
bypass capacitor returns to GND (Pin 6) and the  
bypass capacitor returns to the Exposed Pad ground  
DD  
REF  
(Pin 11). Care should be taken to place the 0.1μF V  
DD  
Board Layout and Bypassing  
bypass capacitor as close to Pins 6 and 7 as possible.  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performancefromtheLTC1407/LTC1407A,aprintedcircuit  
boardwithgroundplaneisrequired. Layoutfortheprinted  
circuit board should ensure that digital and analog signal  
lines are separated as much as possible. In particular, care  
should be taken not to run any digital track alongside an  
analog signal track. If optimum phase match between  
the inputs is desired, the length of the four input wires of  
the two input channels should be kept matched. But each  
pair of input wires to the two input channels should be  
kept separated by a ground trace to avoid high frequency  
crosstalk between channels.  
Figure5showstherecommendedsystemgroundconnec-  
tions. All analog circuitry grounds should be terminated at  
the LTC1407/LTC1407A Exposed Pad. The ground return  
from the LTC1407/LTC1407A Pin 6 to the power supply  
should be low impedance for noise-free operation. The  
Exposed Pad of the 10-lead MSE package is also tied to  
Pin 6 and the LTC1407/LTC1407A GND. The Exposed Pad  
should be soldered on the PC board to reduce ground  
connection inductance. Digital circuitry grounds must be  
connected to the digital supply common.  
111...111  
111...110  
111...101  
000...010  
000...001  
000...000  
0
FS – 1LSB  
INPUT VOLTAGE (V)  
1407 F04  
Figure 4. LTC1407/LTC1407A Transfer Characteristic  
1407fb  
14  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
Figure 5. Recommended Layout  
POWER-DOWN MODES  
Four rising edges at CONV, without any intervening rising  
edges at SCK, put the LTC1407/LTC1407A in Sleep mode  
and the power drain drops from 14mW to 10μW. To bring  
thepartoutofSleepmoderequiresoneormorerisingSCK  
edges followed by a Nap request. Then one or more rising  
edgesatSCKwakeuptheLTC1407/LTC1407Aforoperation.  
WhenNapmodeisenteredafterSleepmode,thereference  
that was shut down in Sleep mode is reactivated.  
Upon power-up, the LTC1407/LTC1407A are initialized to  
the active state and are ready for conversion. The Nap and  
Sleep mode waveforms show the power-down modes for  
theLTC1407/LTC1407A.TheSCKandCONVinputscontrol  
the power-down modes (see Timing Diagrams). Two ris-  
ing edges at CONV, without any intervening rising edges  
at SCK, put the LTC1407/LTC1407A in Nap mode and the  
power drain drops from 14mW to 6mW. The internal refer-  
ence remains powered in Nap mode. One or more rising  
edges at SCK wake up the LTC1407/LTC1407A for service  
very quickly and CONV can start an accurate conversion  
within a clock cycle.  
The internal reference (V ) takes 2ms to slew and settle  
REF  
with a 10μF load. Using Sleep mode more frequently com-  
promises the settled accuracy of the internal reference.  
Note that for slower conversion rates, the Nap and Sleep  
modes can be used for substantial reductions in power  
consumption.  
1407fb  
15  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
DIGITAL INTERFACE  
from the DSP crystal. Another problem with high speed  
processor clocks is that they often use a low cost, low  
speed crystal (i.e., 10MHz) to generate a fast, but jittery,  
phase-locked-loop system clock (i.e., 40MHz). The jitter  
in these PLL-generated high speed clocks can be several  
nanoseconds. Note that if you choose to use the frame  
sync signal generated by the DSP port, this signal will  
have the same jitter of the DSP’s master clock.  
TheLTC1407/LTC1407Ahavea3-wireSPI(SerialProtocol  
Interface) interface. The SCK and CONV inputs and SDO  
outputimplementthisinterface.TheSCKandCONVinputs  
accept swings from 3V logic and are TTL compatible, if the  
logic swing does not exceed V . A detailed description  
of the three serial port signals follows:  
DD  
Conversion Start Input (CONV)  
Serial Clock Input (SCK)  
The rising edge of CONV starts a conversion, but subse-  
quent rising edges at CONV are ignored by the LTC1407/  
LTC1407A until the following 32 SCK rising edges have  
occurred.ThedutycycleofCONVcanbearbitrarilychosen  
to be used as a frame sync signal for the processor serial  
port. A simple approach to generate CONV is to create a  
pulsethatisoneSCKwidetodrivetheLTC1407/LTC1407A  
and then buffer this signal to drive the frame sync input  
of the processor serial port. It is good practice to drive  
the LTC1407/LTC1407A CONV input first to avoid digital  
noise interference during the sample-to-hold transition  
triggeredbyCONVatthestartofconversion.Itisalsogood  
practice to keep the width of the low portion of the CONV  
signal greater than 15ns to avoid introducing glitches in  
the front end of the ADC just before the sample-and-hold  
goes into Hold mode at the rising edge of CONV.  
The rising edge of SCK advances the conversion process  
and also udpates each bit in the SDO data stream. After  
CONV rises, the third rising edge of SCK sends out two  
sets of 12/14 data bits, with the MSB sent first. A simple  
approachistogenerateSCKtodrivetheLTC1407/LTC1407A  
firstandthenbufferthissignalwiththeappropriatenumber  
of inverters to drive the serial clock input of the processor  
serial port. Use the falling edge of the clock to latch data  
fromtheSerialDataOutput(SDO)intoyourprocessorserial  
port. The 14-bit Serial Data will be received right justified,  
in two 16-bit words with 32 or more clocks per frame  
sync. It is good practice to drive the LTC1407/LTC1407A  
SCK input first to avoid digital noise interference during  
the internal bit comparison decision by the internal high  
speed comparator. Unlike the CONV input, the SCK input  
is not sensitive to jitter because the input signal is already  
sampled and held constant.  
Minimizing Jitter on the CONV Input  
Inhighspeedapplicationswherehighamplitudesinewaves  
above 100kHz are sampled, the CONV signal must have  
as little jitter as possible (10ps or less). The square wave  
output of a common crystal clock module usually meets  
thisrequirementeasily.ThechallengeistogenerateaCONV  
signalfromthiscrystalclockwithoutjittercorruptionfrom  
other digital circuits in the system. A clock divider and  
any gates in the signal path from the crystal clock to the  
CONV input should not share the same integrated circuit  
with other parts of the system. As shown in the interface  
circuit examples, the SCK and CONV inputs should be  
drivenrst, withdigitalbuffersusedtodrivetheserialport  
interface. Also note that the master clock in the DSP may  
already be corrupted with jitter, even if it comes directly  
Serial Data Output (SDO)  
Upon power-up, the SDO output is automatically reset to  
the high impedance state. The SDO output remains in high  
impedance until a new conversion is started. SDO sends  
out two sets of 12/14 bits in the output data stream after  
the third rising edge of SCK after the start of conversion  
with the rising edge of CONV. The two 12-/14-bit words  
are separated by two clock cycles in high impedance  
mode. Please note the delay specification from SCK to a  
valid SDO. SDO is always guaranteed to be valid by the  
next rising edge of SCK. The 32-bit output data stream is  
compatible with the 16-bit or 32-bit serial port of most  
processors.  
1407fb  
16  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
HARDWARE INTERFACE TO TMS320C54x  
and the serial clock at the BCLKR pin to accept an external  
positive edge clock. Buffers near the LTC1407/LTC1407A  
may be added to drive long tracks to the DSP to prevent  
corruption of the signal to LTC1407/LTC1407A. This con-  
figuration is adequate to traverse a typical system board,  
but source resistors at the buffer outputs and termination  
resistors at the DSP, may be needed to match the char-  
acteristic impedance of very long transmission lines. If  
you need to terminate the SDO transmission line, buffer  
it first with one or two 74ACxx gates. The TTL threshold  
inputs of the DSP port respond properly to the 3V swing  
used with the LTC1407/LTC1407A.  
TheLTC1407/LTC1407AareserialoutputADCswhoseinter-  
facehasbeendesignedforhighspeedbufferedserialports  
in fast digital signal processors (DSPs). Figure 6 shows  
an example of this interface using a TMS320C54X.  
The buffered serial port in the TMS320C54x has direct  
access to a 2kB segment of memory. The ADC’s serial data  
can be collected in two alternating 1kB segments, in real  
time, at the full 3Msps conversion rate of the LTC1407/  
LTC1407A. TheDSPassemblycodesetsframesyncmode  
at the BFSR pin to accept an external positive going pulse  
3V  
5V  
7
V
V
CC  
DD  
10  
9
CONV  
LTC1407/  
LTC1407A  
SCK  
BFSR  
TMS320C54x  
BCLKR  
B13 B12  
8
6
SDO  
GND  
BDR  
CONV  
CLK  
3-WIRE SERIAL  
INTERFACELINK  
1407 F06  
0V TO 3V LOGIC SWING  
Figure 6. DSP Serial Interface to TMS320C54x  
1407fb  
17  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
; 08-21-03 ******************************************************************  
; Files: 1407ASIAB.ASM -> 1407A Sine wave collection with Serial Port interface  
;
;
;
both channels collected in sequence in the same 2k record  
bvectors.asm  
s2k14ini.asm  
buffered mode.  
2k buffer size.  
; unipolar mode  
; Works 16 or 64 clock frames.  
; negative edge BCLKR  
; negative BFSR pulse  
; -0 data shifted  
; 1’ cable from counter to CONV at DUT  
; 2’ cable from counter to CLK at DUT  
; ***************************************************************************  
.width  
160  
.length 110  
.title “sineb0 BSP in auto buffer mode”  
.mmregs  
.setsect “.text”,  
0x500,0  
;Set address of executable  
.setsect “vectors”, 0x180,0  
.setsect “buffer”, 0x800,0  
.setsect “result”, 0x1800,0  
.text  
;Set address of incoming 1407A data  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
;.text marks start of code  
start:  
;this label seems necessary  
;Make sure /PWRDWN is low at J1-9  
;to turn off AC01 adc  
tim=#0fh  
prd=#0fh  
tcr = #10h  
tspc = #0h  
pmst = #01a0h  
sp = #0700h  
dp = #0  
; stop timer  
; stop TDM serial port to AC01  
; set up iptr. Processor Mode STatus register  
; init stack pointer.  
; data page  
ar2 = #1800h  
ar3 = #0800h  
ar4 = #0h  
; pointer to computed receive buffer.  
; pointer to Buffered Serial Port receive buffer  
; reset record counter  
call sineinit  
; Double clutch the initialization to insure a proper  
sinepeek:  
call sineinit  
; reset. The external frame sync must occur 2.5 clocks  
; or more after the port comes out of reset.  
wait  
;
goto  
wait  
————————Buffered Receive Interrupt Routine -————————-  
breceive:  
ifr = #10h  
TC = bitf(@BSPCE,#4000h) ; check which half (bspce(bit14)) of buffer  
if (NTC) goto bufull ; if this still the rst half get next half  
; clear interrupt ags  
bspce = #(2023h + 08000h); turn on halt for second half (bspce(bit15))  
return_enable  
1407fb  
18  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
;
———————mask and shift input data ——————————————  
bufull:  
b = *ar3+ << -0  
b = #07FFFh & b  
; load acc b with BSP buffer and shift right -0  
; mask out the TRISTATE bits with #03FFFh  
;
*ar2+ = data(#0bh)  
; store B to out buffer and advance AR2 pointer  
TC = (@ar2 == #02000h) ; output buffer is 2k starting at 1800h  
if (TC) goto start  
goto bufull  
; restart if out buffer is at 1fffh  
;
—————————dummy bsend return————————————  
return_enable ;this is also a dummy return to dene bsend  
;in vector table le BVECTORS.ASM  
bsend  
;
——————————— end ISR ——————————————  
.copy “c:\dskplus\1407A\s2k14ini.asm”  
;initialize buffered serial port  
.space 16*32  
;clear a chunk at the end to mark the end  
;======================================================================  
;
;
;
VECTORS  
;======================================================================  
.sect “vectors” ;The vectors start here  
.copy “c:\dskplus\1407A\bvectors.asm” ;get BSP vectors  
.sect “buffer”  
.space 16*0x800  
.sect “result”  
.space 16*0x800  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
.end  
; ***************************************************************************  
; File: BVECTORS.ASM -> Vector Table for the ‘C54x DSKplus 10.Jul.96  
;
;
BSP vectors and Debugger vectors  
TDM vectors just return  
; ***************************************************************************  
; The vectors in this table can be congured for processing external and  
; internal software interrupts. The DSKplus debugger uses four interrupt  
; vectors. These are RESET, TRAP2, INT2, and HPIINT.  
;
;
*
DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  
*
; All other vector locations are free to use. When programming always be sure  
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and  
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the  
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.  
;
;
;
1407fb  
19  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
.title “Vector Table”  
.mmregs  
reset  
nmi  
goto #80h  
nop  
nop  
;00; RESET * DO NOT MODIFY IF USING DEBUGGER *  
;04; non-maskable external interrupt  
return_enable  
nop  
nop  
nop  
trap2  
int0  
goto #88h  
nop  
nop  
.space 52*16  
;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *  
;0C-3F: vectors for software interrupts 18-30  
;40; external interrupt int0  
return_enable  
nop  
nop  
nop  
int1  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
goto breceive  
nop  
nop  
nop  
;44; external interrupt int1  
;48; external interrupt int2  
;4C; internal timer interrupt  
;50; BSP receive interrupt  
;54; BSP transmit interrupt  
;58; TDM receive interrupt  
int2  
tint  
brint  
bxint  
trint  
goto bsend  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
txint  
int3  
return_enable  
nop  
nop  
;5C; TDM transmit interrupt  
;60; external interrupt int3  
return_enable  
nop  
nop  
nop  
hpiint  
dgoto #0e4h  
;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *  
nop  
nop  
1407fb  
20  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
.space 24*16  
;68-7F; reserved area  
**********************************************************************  
(C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996  
**********************************************************************  
*
*
*
*
* File: BSPI1407A.ASM BSP initialization code for the ‘C54x DSKplus  
*
*
*
*
*
*
*
for use with 1407A in standard mode  
BSPC and SPC seem interchangeable in the ‘C542  
BSPCE and SPCE seem interchangeable in the ‘C542  
**********************************************************************  
.title “Buffered Serial Port Initialization Routine”  
ON  
.set 1  
OFF  
YES  
.set !ON  
.set 1  
NO  
.set !YES  
.set 2  
.set 1  
.set 3  
.set 0  
BIT_8  
BIT_10  
BIT_12  
BIT_16  
GO  
.set 0x80  
**********************************************************************  
* This is an example of how to initialize the Buffered Serial Port (BSP).  
* The BSP is initialized to require an external CLK and FSX for  
* operation. The data format is 16-bits, burst mode, with autobuffering  
* enabled. Set the variables listed below to congure the BSP for  
* your application.  
*
*******************************************************************************************  
*LTC1407A timing with 40MHz crystal.  
*
*10MHz, divided from 40MHz, forced to CLKIN by 1407A board.  
*
*Horizontal scale is 6.25ns/chr or 25ns period at BCLKR  
*
*BFSR Pin J1-20 ~~\____/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\____/  
~~~~~~~~~~~*  
*BCLKR Pin J1-14 _/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/  
~\_/~\_/~*  
*BDR  
B12*  
Pin J1-26 _—_—_—<B13-B12-B11-B10-B09-B08-B07-B06-B05-B04-B03-B02-B01-B00>—_—<B13–  
*CLKIN Pin J5-09 ~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/  
~~~~~~~\_______/~~~~~*  
*C542 read  
0
B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B00  
0
0
B13 B12*  
*
*
* negative edge BCLKR  
* negative BFSR pulse  
* no data shifted  
* 1’ cable from counter to CONV at DUT  
1407fb  
21  
LTC1407/LTC1407A  
APPLICATIONS INFORMATION  
* 2’ cable from counter to CLK at DUT  
*No right shift is needed to right justify the input data in the main program  
*
*the two msbs should also be masked  
*
*******************************************************************************************  
*
Loopback  
Format  
IntSync  
IntCLK  
BurstMode  
CLKDIV  
PCM_Mode  
FS_polarity  
CLK_polarity  
Frame_ignore  
XMTautobuf  
RCVautobuf  
XMThalt  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
NO  
BIT_16  
NO  
NO  
YES  
3
NO  
YES  
NO  
!YES  
NO  
NO  
NO  
NO  
0x600  
0x800  
0x200  
0x040  
;(digital looback mode?)  
;(Data format? 16,12,10,8)  
;(internal Frame syncs generated?) TXM bit  
;(internal clks generated?) MCM bit  
;(if BurstMode=NO, then Continuous) FSM bit  
;(3=default value, 1/4 CLOCKOUT)  
;(Turn on PCM mode?)  
;(change polarity)YES=~~~\_/~~~, NO=___/~\___  
;(change polarity)for BCLKR YES=_/~, NO=~\_  
;(inverted !YES -ignores frame)  
;(transmit autobuffering)  
DLB bit  
FO bit  
;(receive autobuffering)  
;(transmit buff halt if XMT buff is full)  
;(receive buff halt if RCV buff is full)  
;(address of transmit buffer)  
;(address of receive buffer)  
;(length of transmit buffer)  
RCVhalt  
XMTbufAddr  
RCVbufAddr  
XMTbufSize  
RCVbufSize  
*
;(length of receive buffer)  
* See notes in the ‘C54x CPU and Peripherals Reference Guide on setting up  
* valid buffer start and length values.  
*
*
**********************************************************************  
.eval ((Loopback >> 1)|((Format & 2)<<1)|(BurstMode <<3)|(IntCLK <<4)|(IntSync  
<<5)) ,SPCval  
.eval ((CLKDIV)|(FS_polarity <<5)|(CLK_polarity<<6)|((Format &  
1)<<7)|(Frame_ignore<<8)|(PCM_Mode<<9)), SPCEval  
.eval (SPCEval|(XMTautobuf<<10)|(XMThalt<<12)|(RCVautobuf<<13)|(RCVhalt<<15)),  
SPCEval  
bspi1407A:  
bspc = #SPCval  
; places buffered serial port in reset  
; programs BSPCE and ABU  
; initializes transmit buffer start address  
; initializes transmit buffer size  
; initializes receive buffer start address  
; initializes receive buffer size  
bspce = #SPCEval  
axr = #XMTbufAddr  
bkx = #XMTbufSize  
arr = #RCVbufAddr  
bkr = #RCVbufSize  
bspc = #(SPCval | GO)  
return  
; bring buffered serial port out of reset  
; for transmit and receive because GO=0xC0  
1407fb  
22  
LTC1407/LTC1407A  
PACKAGE DESCRIPTION  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev C)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 p 0.102  
(.081 p .004)  
1.83 p 0.102  
(.072 p .004)  
2.794 p 0.102  
(.110 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
0.29  
REF  
0.05 REF  
5.23  
(.206)  
MIN  
2.083 p 0.102 3.20 – 3.45  
(.082 p .004) (.126 – .136)  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAIL “B”  
10  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.497 p 0.076  
(.0196 p .003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0908 REV C  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1407fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC1407/LTC1407A  
TYPICAL APPLICATION  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC1608  
16-Bit, 500ksps Parallel ADC  
16-Bit, 250ksps Serial ADC  
12-/14-Bit, 2.8Msps Serial ADC  
14-Bit, 2.5Msps Parallel ADC  
12-Bit, 10Msps Parallel ADC  
12-Bit, 5Msps Parallel ADC  
12-Bit, 3Msps Parallel ADC  
12-Bit, 2.2Msps Serial ADC  
16-Bit, 250ksps 1-/2-Channel Serial ADCs  
5V Supply, 2.5V Span, 90dB SINAD  
5V Configurable Bipolar/Unipolar Inputs  
3V, 15mW, MSOP Package  
LTC1609  
LTC1403/LTC1403A  
LTC1411  
5V, Selectable Spans, 80dB SINAD  
5V, Selectable Spans, 72dB SINAD  
5V, Selectable Spans, 115mW  
LTC1420  
LTC1405  
LTC1412  
5V Supply, 2.5V Span, 72dB SINAD  
5V or 5V Supply, 4.096V or 2.5V Span  
5V or 3V (L-Version), Micropower, MSOP Package  
LTC1402  
LTC1864/LTC1865  
LTC1864L/LTC1865L  
DACs  
LTC1666/LTC1667  
LTC1668  
12-/14-/16-Bit, 50Msps DAC  
87dB SFDR, 20ns Settling Time  
LTC1592  
16-Bit, Serial SoftSpan™ I  
DAC  
1LSB INL/DNL, Software Selectable Spans  
OUT  
References  
LT1790-2.5  
LT1461-2.5  
LT1460-2.5  
Micropower Series Reference in SOT-23  
Precision Voltage Reference  
0.05% Initial Accuracy, 10ppm Drift  
0.04% Initial Accuracy, 3ppm Drift  
0.10% Initial Accuracy, 10ppm Drift  
Micropower Series Voltage Reference  
SoftSpan is a trademark of Linear Technology Corporation.  
1407fb  
LT 0109 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1407ACMSE#TR

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407ACMSE#TRPBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407ACMSE-1

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
Linear

LTC1407ACMSE-1#PBF

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407ACMSE-1#TR

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407ACMSE-1#TRPBF

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407AHMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1407AHMSE#TRPBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1407AIMSE

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling
Linear

LTC1407AIMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC1407AIMSE-1

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
Linear