LTC1264 [Linear]

High Speed, Quad Universal Filter Building Block; 高速,四路通用滤波器积木
LTC1264
型号: LTC1264
厂家: Linear    Linear
描述:

High Speed, Quad Universal Filter Building Block
高速,四路通用滤波器积木

文件: 总16页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1264  
High Speed, Quad Universal  
Filter Building Block  
U
DESCRIPTIO  
EATURE  
S
F
The LTC®1264 consists of four identical, high speed 2nd  
order switched-capacitor filter building blocks designed  
for center frequencies up to 250kHz. Each building block,  
together with three to five resistors, can provide 2nd order  
functions like lowpass, highpass, bandpass and notch.  
Thecenterfrequencyofeach2ndordersectionistunedvia  
an external clock. The clock-to-center frequency ratio is  
internally set to 20:1, but it can be modified via external  
resistors.  
High Speed, Up to 250kHz Center Frequency  
Four Identical Filters in a 0.3" Wide Package  
Clock-to-Center Frequency Ratio of 20:1  
Double-Sampling, Improved Aliasing  
Operates from ±2.37V to ±8V Power Supplies  
Customized Version with Internal Resistors Available  
Low Noise  
Low Harmonic Distortion  
O U  
The aliasing performance of the LTC1264 is improved by  
double-sampling each 2nd order section. Input signal  
frequencies can reach up to twice the clock frequency  
before any alias products will be detectable.  
PPLICATI  
S
A
Digital Communications  
Spread Spectrum Communications  
Spectral Analysis  
Loran Receivers  
Instrumentation  
For Q 5 and for TA < 85°C, the maximum center  
frequency is 160kHz. For Q 2, the maximum center  
frequency is 250kHz. Up to 8th order filters can be realized  
by cascading all four 2nd order sections.  
A customized monolithic version of the LTC1264 includ-  
ing internal thin film resistors can be obtained.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
Clock-Tunable 8th Order Bandpass Filter, fCENTER = fCLK/20  
50k  
Gain vs Frequency  
50k  
100kHz Bandpass, f–3dB Bandwidth = fCENTER/10  
IN  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
10k  
50k  
10k  
50k  
10  
0
MAXIMUM POWER  
CENTER  
LPB  
LPC  
–10  
–20  
–30  
–40  
–50  
f
SUPPLY  
SB  
SC  
160kHz  
120kHz  
60kHz  
±7.5V  
±5V  
Single 5V  
LTC1264  
AGND  
V
0.1µF  
+
f
V
CLK  
SD  
CLK  
0.1µF  
SA  
LPA  
LPD  
–60  
OUT  
50k  
10k  
BPA  
BPD  
–70  
50k  
10k  
HPA/NA  
INV A  
HPD/ND  
INV D  
–80  
10k  
100k  
1M  
FREQUENCY (Hz)  
1264 TA02  
50k  
50k  
1264 TA01  
1
LTC1264  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
Total Supply Voltage (V+ to V) .............................. 16V  
Input Voltage (Note 2) ........... (V+ + 0.3V) to (V– 0.3V)  
Output Short-Circuit Duration.......................... Indefinite  
Power Dissipation............................................. 400mW  
Burn-In Voltage ...................................................... 16V  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
ORDER PART  
NUMBER  
INV B  
HPB/NB  
BPB  
1
2
INV C  
HPC/NC  
BPC  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
3
LTC1264CN  
LTC1264CS  
LPB  
4
LPC  
SB  
5
SC  
AGND  
6
V
+
V
7
CLK  
SA  
LPA  
8
SD  
9
LPD  
BPA  
10  
11  
12  
BPD  
HPA/NA  
INV A  
HPD/ND  
INV D  
N PACKAGE  
S PACKAGE  
24-LEAD PLASTIC DIP 24-LEAD PLASTIC SOL  
TJMAX = 110°C, θJA = 65°C/W (N)  
T
JMAX = 110°C, θJA = 85°C/W (S)  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
(Internal Op Amps) TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Range  
Voltage Swings  
±2.375  
±8  
V
V
V
V
V = ±2.375V, R = 5k  
±1.5  
±3.7  
S
L
V = ±5V, R = 5k  
±3.2  
±3.1  
S
L
V = ±7.5, R = 5k  
±6  
3
V
mA  
S
L
Output Short-Circuit Current (Source/Sink)  
DC Open-Loop Gain  
GBW Product  
80  
7
10  
dB  
MHz  
V/µs  
Slew Rate  
(Complete Filter) VS = ±5V, fCLK = 1MHz, all sides mode 1, fO = 50kHz, Q = 5, TA = 25°C, unless otherwise noted.  
PARAMETER  
Center Frequency Range, f (Note 1)  
CONDITIONS  
V = ±7.5V, T < 85°C, Q < 2  
MIN  
TYP  
MAX  
UNITS  
0.1 - 250  
0.1 - 200  
0.1 - 100  
kHz  
kHz  
kHz  
O
S
A
V = ±5V, T < 85°C, Q < 2  
S
A
V = ±2.5V, T < 85°C, Q < 2  
S
A
Clock-to-Center Frequency Ratio, f /f  
20:1  
CLK  
O
Center Frequency Error (Note 3)  
V = ±7.5V  
±0.1  
± 0.7  
±0.8  
±0.8  
±1.0  
%
%
%
%
S
V = ±5V  
S
±0.2  
V = ±2.375V  
V ±5V  
S
1.6  
0.4  
%
%
%
%
%
S
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching  
Q Accuracy  
0.8  
1.0  
V = ±5V  
S
2.7  
7.0  
f Temperature Coefficient  
Q Temperature Coefficient  
f
f
< 2MHz  
< 2MHz  
±1  
5
ppm/°C  
ppm/°C  
O
CLK  
CLK  
2
LTC1264  
ELECTRICAL CHARACTERISTICS  
(Complete Filter) VS = ±5V, fCLK = 1MHz, all sides mode 1, fO = 50kHz, Q = 5, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC Offset Voltage (Note 2)  
V
V
V
(DC Offset of Input Inverter)  
(DC Offset of First Integrator)  
(DC Offset of Second Integrator)  
±20  
±45  
±45  
mV  
mV  
mV  
OS1  
OS2  
OS3  
Clock Feedthrough  
V = ±7.5V (f  
is a Square Wave)  
is a Square Wave)  
160  
120  
90  
µV  
µV  
µV  
S
CLK  
RMS  
RMS  
RMS  
V = ±5V (f  
S
CLK  
V = ±2.375V (f  
S
is a Square Wave)  
CLK  
Maximum Clock Frequency  
Power Supply Current  
V = ±7.5V, T = 25°C  
V = ±5V  
S
6
14  
MHz  
mA  
mA  
S
A
9
23  
26  
The  
denotes specifications which apply over the full operating  
Note 3: The center frequency f , error is calculated as:  
O
temperature range.  
Note 1: Please refer to Typical Maximum Q vs Clock Frequency graphs.  
Note 2: Calculations of output DC offsets of one 2nd order section. Also  
f (measured) – f (ideal)  
O
O
• 100  
f (ideal)  
O
see Block Diagram.  
V
V
V
OSLP  
PINS 4, 9, 16, 21  
OSN  
OSBP  
MODE  
PINS 2, 11, 14, 23  
PINS 3, 10, 15, 22  
1
1b  
2
V
V
[(1Q) + 1 ||H ||] – V /Q  
V
V
V
V
– V  
OSN OS2  
OS1  
OS1  
OLP  
OS3  
OS3  
OS3  
OS3  
[(1/Q) + 1 + R2/R1] – V /Q  
(V  
– V )(1 + R5/R6)  
OSN OS2  
OS3  
[V (1 + R2/R1 + R2/R3 + R2/R4) – V (R2/R3)]  
• [R4/(R2 + R4)] + V [R2/(R2 + R4)]  
V
– V  
OSN OS2  
OS1  
OS3  
OS2  
3
V
V
V
[1 + R4/R1 + R4/R2 + R4/R3] – V (R4/R2)  
OS1 OS2  
OS3  
OS2  
OS3  
– V (R4/R3)  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Typical Maximum Q  
vs Clock Frequency  
Typical Maximum Q  
vs Clock Frequency  
Typical Maximum Q  
vs Clock Frequency  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
A
A
A
V
T
= ±7.5V  
V
T
= ±5V  
S
A
V
T
= SINGLE 5V  
85°C  
S
A
S
A
85°C  
85°C  
A. MODES 1, 1b  
B. MODES 3, 3a  
A. MODES 1, 1b  
B. MODES 3, 3a  
A. MODES 1, 1b  
B. MODES 3, 3a  
B
B
B
6
6
4
2
6
4
2
4
2
0
0
0
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
1.0  
2.0  
2.5  
3.0  
3.5  
4.0  
2.0  
1.5  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
1264 G01  
1264 G02  
1264 G03  
3
LTC1264  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Typical Bandpass Gain Error  
vs Clock Frequency  
Typical Bandpass Gain Error  
vs Clock Frequency  
Typical Bandpass Gain Error  
vs Clock Frequency  
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
MODE 1  
Q = 4  
MODE 1  
MODE 1  
Q = 2  
V
= SINGLE 5V  
S
T
= 25°C  
TA = 25°C  
T
= 25°C  
A
A
V
= ±5V  
S
V
= ±5V  
Q = 4  
Q = 2  
S
V
= ±7.5V  
S
V
= ±7.5V  
S
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
1.3 1.4 1,5 1.6  
1.7 1.8  
1.9 2.0  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
1264 G05  
1264 G04  
1264 G06  
Typical Bandpass Gain Error  
vs Clock Frequency  
Ratio (fCLK/fO) vs  
Clock Frequency  
5
4
3
2
1
0
20.5  
20.4  
20.3  
20.2  
20.1  
20.0  
19.9  
19.8  
19.7  
19.6  
BANDPASS OUT  
MODE 1  
V = ±7.5V  
S
MODE 3  
Q = 4  
A
V = ±5V  
S
T
= 25°C  
V
S
= SINGLE 5V  
Q = 10  
Q = 4  
V
= ±7.5V  
S
Q = 2  
19.5  
1
2
3
1
4
2
3
4
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
1264 G15  
1264 G11  
Power Supply Current  
vs Supply Voltage  
Noise vs R2/R4 Ratio  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
600  
500  
400  
300  
200  
100  
0
MODE 3  
= ±7.5V  
V
S
Q = 2  
f
R2  
CLK  
f
=
O
20 R4  
–55°C  
25°C  
125°C  
4
0
0
2
4
6 8 10 12 14 16 18 20 22 24  
0
0.2  
0.4  
0.6  
0.8  
1.0  
+
POWER SUPPLY VOLTAGE (V – V )  
RESISTOR RATIO (R2/R4)  
1264 G12  
1264 G14  
4
LTC1264  
U
U
U
PI FU CTIO S  
V +,V(Pins7,19):PowerSupplyPins.TheV+ (Pin7)and  
the V(Pin 19) should each be bypassed with a 0.1µF  
capacitor to an adequateanalogground. The filter’s power  
supplies should be isolated from other digital or high  
voltage analog supplies. A low noise linear supply is  
recommended. Using a switching power supply will lower  
the signal-to-noise ratio of the filter. The supply during  
power-up should have a slew rate less than 1V/µs. When  
V+ is applied before Vand Vis allowed to go above  
ground, a diode should clamp Vto prevent latch-up.  
Figures 1 and 2 show typical connections for dual and  
single supply operation.  
AGND (Pin 6): Analog Ground Pin. The filter performance  
depends on the quality of the analog signal ground. For  
either dual or single supply operation, an analog ground  
plane surrounding the package is recommended. The  
analog ground plane should be connected to any digital  
ground at a single point. For dual supply operation, Pin 6  
should be connected to the analog ground plane. For  
single supply operation, Pin 6 should be biased at 1/2  
supplyandshouldbebypassedtotheanaloggroundplane  
with at least a 1µF capacitor (Figure 2). For single 5V  
operation and fCLK greater than 1MHz, pin 6 should be  
biased at 2V. This minimizes passband gain and phase  
variations.  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
ANALOG  
GROUND  
PLANE  
ANALOG  
GROUND  
PLANE  
3
–7.5V  
4
*
5k  
+
5
*
*
*
*
V
0.1µF  
+
6
V /2  
+
LTC1264  
7
LTC1264  
+
5k  
V
7.5V  
1µF  
8
0.1µF  
9
10  
11  
12  
10  
11  
12  
DIGITAL  
GROUND  
PLANE  
DIGITAL  
GROUND  
PLANE  
STAR  
SYSTEM  
GROUND  
STAR  
SYSTEM  
GROUND  
200Ω  
200Ω  
CLOCK  
SOURCE  
CLOCK  
SOURCE  
1264 F01  
*
OPTIONAL, 1N4148, 1N5819  
1264 F02  
*
FOR MODE 3, THE S NODE PINS 5, 8,  
17, 20 SHOULD BE TIED TO PIN 6  
Figure 1. Dual Supply Ground Plane Connections  
Figure 2. Single Supply Ground Plane Connections  
5
LTC1264  
U
U
U
PI FU CTIO S  
CLK (Pin 18): Clock Input Pin. Any TTL or CMOS clock  
source with a square wave output and 50% duty cycle  
(±10%) is an adequate clock source for the device. The  
powersupplyfortheclocksourceshouldnotbethefilter’s  
power supply. The analog ground for the filter should be  
connected to clock’s ground at a single point only. Table  
1showstheclock’slowandhighlevelthresholdvaluesfor  
a dual or single supply operation.  
HPB/NB, BPB, LPB, LPA, BPA, HPA, HPD, BPD, LPD,  
LPC, BPC, HPC/NC (Pins 2, 3, 4, 9, 10, 11, 14, 15, 16,  
21, 22, 23): Output Pins. Each 2nd order section of the  
LTC1264 has three outputs which typically source 3mA  
andsink1mA.Drivingcoaxialcablesorresistiveloadsless  
than 20k will degrade the total harmonic distortion perfor-  
mance of any filter design. When evaluating the distortion  
or noise performance of a particular filter design imple-  
mented with an LTC1264, the final output of the filter  
should be buffered with a wideband noninverting high  
slew rate amplifier (Figure 3).  
Table 1. Clock Source High and Low Threshold Levels  
POWER SUPPLY  
HIGH LEVEL  
LOW LEVEL  
Dual Supply = ±7.5V  
Dual Supply = ±5V  
Dual Supply = ±2.5V  
Single Supply = 12V  
Single Supply = 5V  
2.18V  
1.45V  
0.73V  
7.80V  
1.45V  
0.5V  
0.5V  
2.0V  
6.5V  
0.5V  
LT1224  
5k  
+
A pulse generator can be used as a clock source provided  
thehighlevelon-timeisgreaterthan0.2µs.Sinewavesare  
not recommended for clock input frequencies less than  
100kHz, since excessively slow clock rise or fall times  
generate internal clock jitter (maximum clock rise or fall  
time 1µs). The clock signal should be routed from the  
rightsideoftheICpackageandperpendiculartoittoavoid  
couplingtoanyinputoroutputanalogsignalpath. A200Ω  
resistor between clock source and Pin 11 will slow down  
the rise and fall times of the clock to further reduce charge  
coupling (Figures 1 and 2).  
1264 F03  
Figure 3. Wideband Buffer  
INV B, INV A, INV D, INV C (Pins 1, 12, 13, 24): Inverting  
Input Pins. These pins are the high impedance inverting  
inputsofinternalopampsandtheyaresusceptibletostray  
capacitive connections to low impedance signal outputs  
and power supply lines.  
SB, SA, SD, SC (Pins 5, 8, 17, 20): Summing Input Pins.  
The summing pins connections determine the circuit  
topology (mode) of each 2nd order section. Please refer to  
Modes of Operation.  
W
U
ODES OF OPERATIO  
For the definition of filter functions please refer to the  
LTC1060 data sheet.  
Please refer to the Maximum Frequency of Operation  
paragraph under Applications Information for a guide to  
the use of capacitor CC.  
Mode 1  
Mode 1b  
In Mode 1, the ratio of the external clock frequency to the  
center frequency of each 2nd order section is internally  
fixed at 20:1. Figure 4 illustrates Mode 1 providing 2nd  
order notch, lowpass, and bandpass outputs. Mode 1 can  
be used to make high order Butterworth lowpass filters; it  
can also be used to make low Q notches and for cascading  
2nd order bandpass functions tuned at the same center  
frequency. Mode 1 is faster than Mode 3.  
Mode1bisderivedfromMode1.InMode1b(Figure5)two  
additional resistors R5 and R6 are added to alternate the  
amount of voltage fed back from the lowpass output into  
the input of the SA (SB, SC or SD) switched-capacitor  
summer. This allows the filter’s clock-to-center frequency  
ratio to be adjusted beyond 20:1. Mode 1b maintains the  
speed advantages of Mode 1 and should be considered an  
6
LTC1264  
W
U
ODES OF OPERATIO  
optimum mode for high Q designs with fCLK to fCUTOFF (or  
fCENTER) ratios greater than 20:1.  
Mode 3  
In Mode 3, the ratio of the external clock frequency to the  
center frequency of each 2nd order section can be  
adjusted above or below 20:1. Figure 6 illustrates Mode 3,  
the classical state variable configuration, providing high-  
pass, bandpass, and lowpass 2nd order filter functions.  
Mode 3 is slower than Mode 1. Mode 3 can be used to  
make high order all-pole bandpass, lowpass, and high-  
pass filters.  
Please refer to the Maximum Frequency of Operation  
paragraph under Applications Information for a guide to  
the use of capacitor CC.  
C
C
R3  
R2  
Please refer to the Maximum Frequency of Operation  
paragraph under Applications Information for a guide to  
the use of capacitor CC.  
N
S
LP  
BP  
R1  
V
IN  
+
Σ
Mode 2  
1264 F04  
+
1/4 LTC1264  
Mode 2 is a combination of Mode 1 and Mode 3, shown in  
Figure7.WithMode2,theclock-to-centerfrequencyratio,  
fCLK/fO, is always less than 20:1. The advantage of Mode  
2 is that it provides less sensitivity to resistor tolerances  
than does Mode 3. As in Mode 1, Mode 2 has a notch  
output which depends on the clock frequency, and the  
notch frequency is therefore less than the center fre-  
quency, fO.  
f
AGND  
CLK  
20  
f =  
i
; f = f ; f = f  
O
i
n
O
R2  
R3  
R1  
R3  
R2  
Q =  
; H = – ; H  
= –  
OBP  
ON  
R1  
H
= H  
ON  
OLP  
Figure 4. Mode 1, 2nd Order Filter Providing Notch,  
Bandpass and Lowpass Outputs  
Please refer to the Maximum Frequency of Operation  
paragraph under Applications Information for a guide to  
the use of capacitor CC.  
C
C
R6  
N
R5  
C
C
R3  
R2  
R4  
R3  
R2  
S
LP  
BP  
R1  
V
IN  
+
HP  
S
Σ
LP  
BP  
1264 F05  
+
1/4 LTC1264  
R1  
V
+
IN  
NOTE: R5 5k  
+
AGND  
Σ
f
CLK  
20  
R6  
(R6 + R5)  
f =  
i
; f = f  
O
; f = f  
n O  
i
1264 F06  
1/4 LTC1264  
R2  
R3  
R1  
R3  
R6  
Q =  
; H = –  
ON  
; H  
= –  
OBP  
R1  
R2 (R6 + R5)  
f
1
CLK  
20  
R2  
R4  
R2  
R3  
AGND  
f =  
i
; f = f  
O
; Q = 1.005  
i
R2 R6 + R5  
R1  
(
)
R4  
R2  
R3  
H
= –  
OLP  
1 –  
(
)
R6  
(
)
6.42•R4  
R3  
R1  
R2  
1
R3  
R4  
= –  
H
= –  
; H  
OBP  
= –  
;
H
OLP  
OHP  
R1  
R1  
1 –  
(
)
Figure 5. Mode 1b, 2nd Order Filter Providing Notch,  
Bandpass and Lowpass Outputs  
6.42•R4  
Figure 6. Mode 3, 2nd Order Section Providing  
Highpass, Bandpass and Lowpass Outputs  
7
LTC1264  
W
U
ODES OF OPERATIO  
C
C
tors RH and RL to create a notch. This is shown in Figure  
8. Mode 3a is more versatile than Mode 2 because the  
notch frequency can be higher or lower than the center  
frequency of the 2nd order section. The external op amp  
of Figure 8 is not always required. When cascading the  
sections of the LTC1264, the highpass and lowpass  
outputs can be summed directly into the inverting input of  
the next section.  
R4  
R3  
R2  
N
S
LP  
BP  
R1  
V
+
IN  
+
Σ
1264 F07  
Please refer to the Maximum Frequency of Operation  
paragraph under Applications Information for a guide to  
the use of capacitor CC.  
1/4 LTC1264  
AGND  
f
CLK  
20  
R2  
R4  
f =  
; f = f  
O
; f = f  
1 +  
i
i
n
O
Mode 2n  
R3  
R2  
R2  
1
Q = 1.005  
1 +  
(
)
R4  
R3  
6.42•R4  
1 –  
(
)
R2  
R1  
This mode extends the circuit topology of Mode 3a to  
Mode 2 (Figure 9) where the highpass notch and lowpass  
outputs are summed through two external resistors RH  
and RL to create a lowpass output with a notch higher in  
frequency than the notch in Mode 2. This mode, shown in  
Figure 8, is most useful in lowpass elliptic designs. When  
cascading the sections of the LTC1264, the highpass  
notch and lowpass outputs can be summed directly into  
the inverting input of the next section.  
R2  
R1  
1
H
= –  
= –  
(AC GAIN, f > f ); H  
= –  
OHPn  
(DC GAIN, f < f )  
OHP  
n
n
R2  
1 +  
(
)
R4  
R3  
R1  
1
R3  
H
; H = H  
OLP OHPn  
OBP  
1 –  
(
)
6.42•R4  
Figure 7. Mode 2, 2nd Order Filter Providing  
Highpass Notch, Bandpass and Lowpass Outputs  
Mode 3a  
Please refer to the Maximum Frequency of Operation  
paragraph under Applications Information for a guide to  
the use of capacitor CC.  
This is an extension of Mode 3 where the highpass and  
lowpass output are summed through two external resis-  
C
C
f
R2  
R4  
R4  
R3  
CLK  
20  
R
H
f =  
; f = f  
n
f = f  
; O i  
i
i
1
R
L
R2  
R4  
R3  
Q = 1.005  
(
)
R2  
R3  
6.42•R4  
R2  
1 –  
(
)
HP  
S
LP  
R
BP  
R
R
R
G
R2  
R1  
R4  
R1  
G
H
R1  
H
(f = ) =  
; H  
(f = 0) =  
OLPn  
OHPn  
(
)
(
)
(
)
(
)
V
IN  
R
L
R
G
+
Σ
L
+
+
HIGHPASS  
OR LOWPASS  
NOTCH OUTPUT  
1/4 LTC1264  
R
H
AGND  
EXTERNAL OP AMP OR  
INPUT OP AMP OF THE  
LTC1264, SIDES A, B, C, D  
1264 G08  
Figure 8. Mode 3a, 2nd Order Filter Providing a Highpass Notch or Lowpass Notch Output  
8
LTC1264  
W
U
ODES OF OPERATIO  
C
C
f
CLK  
20  
R
H
f =  
; f = f  
n i  
1 +  
i
R4  
R3  
R
L
R2  
R4  
f
O
= f  
i
1 +  
R
R
R
R
1
R2  
R1  
G
G
H
(f = 0)=  
+
OLPn  
R2  
(
)
(
)
R2  
R4  
H
L
HP  
S
1 +  
LP  
R
BP  
(
)
R1  
R3  
R2  
R2  
R4  
1
R3  
6.42•R4  
Q = 1.005  
1 +  
V
IN  
(
)
R
G
+
1 –  
(
)
Σ
L
+
+
LOWPASS  
NOTCH  
OUTPUT  
R
H
AGND  
1/4 LTC1264  
EXTERNAL OP AMP OR  
INPUT OP AMP OF THE  
LTC1264, SIDES A, B, C, D  
1264 G09  
Figure 9. Mode 2n, 2nd Order Filter Providing a Lowpass Notch Output  
W
BLOCK DIAGRA  
HPA/NA  
11  
BPA  
10  
LPA  
9
+
7
V
INV A  
12  
6
+
18 CLK  
+
+
+
+
+
+
+
+
+
+
+
+
Σ
19  
V
AGND  
INV B  
8
SA  
HPB/NB  
2
LPB  
4
BPB  
3
1
Σ
5
SB  
+
LPC  
21  
HPC/NC  
23  
BPC  
22  
INV C  
24  
13  
+
Σ
20  
SC  
LPD  
16  
BPD  
15  
HPD/ND  
14  
INV D  
+
Σ
17  
1264 BD  
SD  
9
LTC1264  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
Operating Limits  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, if bothersome, can be greatly reduced  
by adding a simple RC lowpass network at the final filter  
output. This RC will completely eliminate any switching  
transients.  
The Typical Maximum Q vs Clock Frequency and Band-  
pass Gain Error graphs, under Typical Performance Char-  
acteristics, define an upper limit of operating Q for each  
LTC1264 2nd order section. These graphs indicate the  
power supply, fCLK and Q value conditions under which a  
filter implemented with an LTC1264 will remain stable  
when operated at temperatures of 85°C or less. For a 2nd  
order section, a bandpass gain error of 3dB or less is  
arbitrarily defined as a condition for stability.  
Wideband Noise  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and it is used to  
determine the operating signal-to-noise ratio. Most of its  
frequency contents lie within the filter passband and it  
cannot be reduced with post filtering.  
When the passband gain error begins to exceed 1dB, the  
use of capacitor CC will reduce the gain error (capacitor CC  
is connected from the lowpass node to the inverting node  
of a 2nd order section). Please refer to Figures 4 through  
9. The value of CC can be best determined experimentally,  
and as a guide it should be about 5pF for each 1dB of gain  
error and not to exceed 15pF. When operating LTC1264  
very near the limits defined by the Typical Performance  
Characteristics graphs, passband gain variations of 2dB  
or more should be expected.  
Thetotalwidebandnoise(µVRMS)isnearlyindependentof  
the value of the clock. The clock feedthrough specifica-  
tions are not part of the wideband noise.  
For a specific filter design, the total noise depends on the  
Q of each section and the cascade sequence. Table 3  
shows typical 2nd order section noise (gain = 1) for Q  
values and supplies operating at 25°C. Noise increases by  
20% at the highest operating temperatures.  
Speed Limitations  
To avoid op amp slew rate limiting, the signal amplitude  
should be kept below a specified level as shown in Table 2.  
Table 3. 2nd Order Section Noise (µVRMS) for Modes 1, 1b,  
2 or 3 (R2 = R4)  
Table 2. Maximum VIN vs VS and Clock  
Q
V = ±2.5V  
V = ±5V  
V = ±7.5V  
S
S
S
V
MAXIMUM CLOCK  
MAXIMUM V  
IN  
S
1
2
3
4
5
40µV  
50µV  
60µV  
75µV  
90µV  
50  
60  
75  
90  
110  
60  
75  
95  
115  
135  
RMS  
RMS  
RMS  
RMS  
RMS  
±7.5V  
±5V  
Single 5V  
4MHz to 5MHz  
3MHz to 4MHz  
1MHz to 2MHz  
0.5V  
0.5V  
f
400kHz  
250kHz  
f 160kHz  
RMS IN  
f
RMS IN  
0.35V  
RMS IN  
Clock Feedthrough  
Aliasing  
ClockfeedthroughisdefinedastheRMSvalueoftheclock  
frequency and its harmonics that are present at the filter’s  
output pins. The clock feedthrough is tested with the  
filter’s input grounded and it depends on PC board layout  
and on the value of the power supplies. With proper layout  
techniques, the typical values of clock feedthrough are  
listed under Electrical Characteristics.  
Aliasingisaninherentphenomenonofswitched-capacitor  
filters and it occurs when the frequency of input signals  
approaches the sampling frequency. The input signals  
that produce the strongest aliased components have a  
frequency, fIN, such as (fSAMPLING – fIN) falls into the  
filter’s passband. For the LTC1264 the sampling fre-  
quency is twice fCLK. If the input signal spectrum is not  
band-limited, aliasing may occur.  
Any parasitic switching transients during the rise and fall  
edges of the incoming clock are not part of the clock  
10  
LTC1264  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Table 4. Bandpass Design Specifications (fCENTER is center  
For example, for an LTC1264 bandpass filter with fCENTER  
= 100kHz and fCLK = 2MHz, a 3.9MHz, 10mV input will  
produce a 100kHz, 10mV output. A 1st or 2nd order  
prefilter will reduce aliasing to acceptable levels in most  
cases.  
frequency of passband.)  
PASSBAND  
RIPPLE  
(dB)  
PASSBAND  
WIDTH  
(Hz)  
STOPBAND  
WIDTH  
(Hz)  
ATTENU-  
ATION  
(dB)  
3dB for Butterworth  
0.1 for Chebyshev  
f  
f  
/20  
/20  
5 × Passband –40 to –60  
5 × Passband –40 to –60  
CENTER  
CENTER  
Note: Reducing passband ripple or attenuation will decrease Q values. The  
filter order may also increase.  
A GUIDE TO BANDPASS DESIGN  
Filter design tools like FCAD require design specification  
inputs such as passband ripple, attenuation, passband  
width and stopband width in order to calculate filter  
parameters fO, Q, fn or poles and zeroes. The results of  
these filter approximations most often require Q values  
which make excessive demands on the gain-bandwidth  
products of active filter realizations. The active filter de-  
signer should define a gain response so that the filter’s  
mathematical approximation has practical requirements.  
Table 4 is a guide to practical design specifications for  
realizing bandpass filters with LTC1264 (please also refer  
to the Typical Maximum Q vs Clock Frequency and Band-  
pass Gain Error graphs under Typical Performance Char-  
acteristics).  
Table 5. Calculated Filter Parameters  
STAGE  
f
Q
O
1
2
3
4
38.1201kHz  
41.9726kHz  
35.6418kHz  
44.8911kHz  
4.3346  
4.3346  
10.5221  
10.5221  
Table 6. Calculated Mode 1b Resistors to Nearest 1% Value  
Using Table 5 Filter Parameters and Figure 10 Equations  
STAGE  
R1  
R2  
R3  
R5  
R6  
1
2
3
4
52.3k  
47.5k  
56.2k  
44.2k  
10k  
10k  
10k  
10k  
56.2k  
51.1k  
147k  
118k  
5k  
5k  
5k  
5k  
6.98k  
11.8k  
5.11k  
20.5k  
A Bandpass Design Example  
R2 = 10k  
R5 = 5k  
Filter Type:  
Bandpass  
Butterworth  
3dB  
Filter Response:  
Passband Ripple:  
Attenuation:  
f
CLK  
20  
f =  
i
R3  
OBP  
R1 =  
R6 =  
(FOR BANDPASS)  
60dB  
H
2
Center Frequency:  
Passband Width:  
Stopband Width:  
40kHz (fCENTER  
10kHz  
60kHz  
)
R5•f  
O
f 2 – f  
2
O
(
)
i
2
f
f
CENTER  
Q2  
O
H
=
+ 1  
OBP  
(
)
(
)
f
f
CENTER  
O
Implementing the Bandpass Design  
R2•Q  
R3 =  
R6  
WiththeLTC1264inMode1b,ButterworthandChebyshev  
bandpass designs with fCLK to fCENTER ratios greater than  
20:1 are possible.  
R6 + 5  
(
)
1264 F10  
Figure 10. Equations for Resistors in Mode 1b Operation  
First choose the clock frequency which in Mode 1b must  
be greater than 20 times the bandpass center frequency of  
40kHz. For this example, let’s choose fCLK to be 1MHz.  
Table 6 lists the resistors for for the bandpass design  
example and Figure 11 shows the complete circuit.  
11  
LTC1264  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
R1  
first stage and decreasing the R1 resistor of the last stage  
by the same amount (multiplying the R1 resistor of the  
first stage and dividing the R1 resistor of the last stage by  
2 for narrowband filter, and by 5 for wideband filter is a  
good rule of thumb). This adjustment may, however,  
increase the filter’s passband noise.  
R1  
R2  
R3  
IN  
INV B  
HPB/NB  
BPB  
INV C  
R2  
HPC/NC  
R3  
STAGE 1  
STAGE 2  
BPC  
LPB  
LPC  
R5  
R5  
SB  
SC  
LTC1264  
AGND  
V
R6  
R6  
R6  
R6  
1.0  
+
f
V
CLK  
SD  
CLK  
MODE 1b  
0.5  
V
= ±7.5V  
S
CLK  
CLK CENTER  
SA  
f
f
= 1MHz  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
R5  
R5  
/f  
= 25:1  
LPA  
LPD  
STAGE 4  
BPA  
BPD  
STAGE 3  
R3  
R2  
R3  
R2  
HPA/NA  
INV A  
HPD/ND  
INV D  
OUT  
R1  
R1  
1264 F11  
Figure 11. Mode 1b Bandpass Filter  
30 32 34 36 38 40 42  
46 48 50  
44  
FREQUENCY (kHz)  
1264 F12  
Figures 12 and 13 show the gain response graphs of the  
40kHzButterworthbandpassdesigndescribedabove.The  
passband gain response graph (Figure 12) shows a 40kHz  
gainof0.4dBandatiltedpassbandfrom37kHzto43kHz.  
Theseerrorsareduetothe1%resistorsusedandtheside-  
to-side matching of the LTC1264 fCLK-to-fCENTER ratio  
which typically is 0.4%. To adjust for 0dB gain at 40kHz,  
reduce the value of R1 in the first stage by 5%. To adjust  
foraflatpassband, adjustby±1%thevalueofR6instages  
3 and 4. Adjusting R6 compensates for the side-to-side  
matching errors. Please refer to Figure 5 equations defin-  
ing fO and Q as a function of R6.  
Figure 12. Passband Gain vs Frequency  
40kHz Butterworth Bandpass  
10  
MODE 1b  
0
V
= ±7.5V  
S
CLK  
CLK CENTER  
f
f
= 1MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
/f  
= 25:1  
The sequence of 2nd order stages and the bandpass gain  
HOBP of each stage will determine the gain peaks at the  
filter’s intermediate outputs. A given internal output can  
have several dB more gain than the final filter output. Gain  
peaks occur around the corners of the passband. The gain  
peaks can be reduced by increasing the R1 resistor of the  
10 18 26 34 42 50 58  
74 82 90  
66  
FREQUENCY (kHz)  
1264 F13  
Figure 13. Gain vs Frequency  
40kHz Butterworth Bandpass  
12  
LTC1264  
U
O
TYPICAL APPLICATI S  
Linear Phase Clock-Tunable to 400kHz, Dual 4th Order Lowpass Filter  
Gain vs Frequency  
R1  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
R1  
OUT 1  
IN 1  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
R2  
R3  
R4  
R2  
R3  
R4  
LPB  
LPC  
C
C
SB  
SC  
LTC1264  
0.1µF  
AGND  
–8V  
V
0.1µF  
+
f
8V  
V
CLK  
SD  
CLK  
C
C
SA  
R4  
R3  
R2  
LPA  
LPD  
10k  
100k  
FREQUENCY (Hz)  
1M  
R4  
R3  
BPA  
BPD  
1264 TA04b  
HPA/NA  
INV A  
HPD/ND  
INV D  
R1  
R2  
IN 2  
OUT 2  
R1  
B
2
C
2
A
2
17.8k  
D
2
20k  
LTC1264 SIDE  
f
f
(V = ±8V)  
–3dB S  
CLK  
MODE  
R1  
R2  
R3  
R4  
2MHz  
3MHz  
4MHz  
5MHz  
125kHz  
200kHz  
275kHz  
400kHz  
17.8k 20k  
27.4k 27.4k 27.4k 27.4k  
19.6k 21k  
51.1k 75k  
5pF  
19.6k  
51.1k  
5pF  
21k  
75k  
5pF  
T
50°C  
A
1264 TA04a  
5pF  
C
Clock-Tunable, fCENTER = fCLK/20, 100kHz, 4th Order Bandpass and Notch Filters  
Gain vs Frequency  
R1  
10  
0
R1  
BANDPASS IN  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
R2  
R3  
R2  
R3  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
BANDPASS OUT  
7.5V  
LPB  
LPC  
SB  
SC  
0.1µF  
LTC1264  
AGND  
V
0.1µF  
f
+
CLK  
7.5V  
V
CLK  
SD  
2MHz  
V
CLK  
= ±7.5V  
S
SA  
f
= 2MHz  
LPA  
NOTCH OUT  
LPD  
10k  
100k  
FREQUENCY (Hz)  
1M  
R3  
R2  
R3  
R2  
BPA  
BPD  
1264 TA05b  
HPA/NA  
INV A  
HPD/ND  
INV D  
R1  
C
C
NOTCH IN  
R1  
B
C
A
D
LTC1264 SIDE  
1
1
1
1
MODE  
R1  
R2  
20k  
10k  
20k  
20k  
10k  
20k  
10k  
10k  
20k  
10k  
10k  
20k  
R3  
10pF 10pF  
C
1264 TA05a  
13  
LTC1264  
TYPICAL APPLICATI S  
U
O
100kHz, 8th Order Notch Filter, fCLK/fCENTER = 20:1  
Gain vs Frequency  
R1  
10  
0
C
R1  
IN  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
R2  
R3  
R2  
R3  
LPB  
LPC  
SB  
SC  
0.1µF  
LTC1264  
AGND  
–7.5V  
V
0.1µF  
f
+
CLK  
V
CLK  
= ±7.5V  
7.5V  
V
S
CLK  
SD  
2MHz  
f
= 2MHz  
SA  
10k  
100k  
FREQUENCY (Hz)  
1M  
LPA  
BPA  
OUT  
LPD  
R3  
R2  
R3  
R2  
1264 TA06b  
BPD  
HPA/NA  
INV A  
LTC1264 SIDE  
B
1
C
1
A
1
D
1
HPD/ND  
INV D  
C
MODE  
R1  
36.5k 3.92k 7.5k 9.09k  
R2  
R3  
C
10k  
50k 27.4k  
30pF  
10k  
10k  
50k  
10k  
50k  
30pF  
R1  
R1  
1264 TA06a  
Clock-Tunable, 8th Order Elliptic Lowpass Filter, fCLK/fCUTOFF = 20:1  
Gain vs Frequency  
R
L
0
R
V
CLK  
= ±7.5V  
H
S
–10  
f
= 2MHz  
R1  
IN  
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
R2  
R3  
R4  
R2  
R3  
R4  
LPB  
LPC  
C
SB  
SC  
0.1µF  
LTC1264  
7.5V  
AGND  
V
+
7.5V  
V
CLK  
SD  
0.1µF  
R
L
R
H
C
SA  
f
CLK  
2MHz  
10k  
100k  
FREQUENCY (Hz)  
1M  
R4  
LPA  
BPA  
LPD  
R4  
R3  
R2  
R3  
R2  
1264 TA03b  
BPD  
HPA/NA  
INV A  
HPD/ND  
INV D  
OUT  
B
3a  
27.4k  
C
2n  
A
2n  
D
3
LTC1264 SIDE  
R
R
H
MODE  
R1  
L
23.7k 20k  
20k  
29.4k  
R2  
20k 37.4k 37.4k 19.1k  
28k 100k 100k 48.7k  
137k 100k 130k  
R3  
R4  
1264 TA03a  
POWER SUPPLY  
MAXIMUM f  
CLK  
R
±7.5V  
±5V  
SINGLE 5V  
3.6MHz (C = 10pF)  
2.0MHz (C = 10pF)  
1.6MHz (C = 10pF)  
H
27.4k 31.6k 24.3k  
R
L
3pF  
3pF  
C
14  
LTC1264  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N Package  
24-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.265*  
(32.131)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
14  
11  
13  
12  
0.255 ± 0.015*  
(6.477 ± 0.381)  
3
4
5
6
7
8
9
1
2
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.381)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.325  
–0.015  
+0.635  
8.255  
N24 0695  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
SW Package  
24-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.598 – 0.614*  
(15.190 – 15.600)  
24 23 22 21 20 19 18  
16 15 14 13  
17  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.291 – 0.299**  
(7.391 – 7.595)  
2
3
5
7
8
9
10  
1
4
6
11 12  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S24 (WIDE) 0396  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1264  
U
O
TYPICAL APPLICATI  
8th Order Bandpass Filter, Linear Phase  
R
H
R
L
R1  
LTC1264 SIDE  
B
3a  
97.6k  
C
3
A
3a  
32.4k  
D
3
V
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
IN  
R2  
R3  
R4  
R2  
R3  
R4  
MODE  
R1  
R2  
R3  
R4  
10.7k 12.4k 10.7k 10.0k  
39.2k 39.2k 12.4k 29.4k  
13.3k 10.7k 11.5k 10.0k  
LPB  
LPC  
C
R
53.6  
15.0k  
27.4k  
100.0k  
H
SB  
SC  
0.1µF  
R
L
LTC1264  
7.5V  
0.1µF  
AGND  
V
+
7.5V  
1MHz  
V
f
C
CLK  
SD  
CLK  
1MHz  
1.5MHz  
2.0MHz  
0pF  
5pF  
10pF  
SA  
R4  
R3  
R2  
R4  
R3  
R2  
LPA  
BPA  
LPD  
1264 TA07a  
BPD  
HPA/NA  
INV A  
HPD/ND  
INV D  
V
OUT  
R
H
R1  
R
L
50kHz Bandpass Filter, Linear Phase  
Gain vs Frequency  
Passband Gain and Group Delay  
10  
3
0
124  
114  
104  
94  
V
CLK  
= ±7.5V  
S
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
f
= 1MHz  
GAIN  
–3  
–6  
–9  
84  
DELAY  
–12  
–15  
–18  
–21  
–24  
–27  
74  
64  
54  
44  
34  
24  
10k  
100k  
FREQUENCY (Hz)  
1M  
40 42 44 46 48 50 52  
56 58 60  
54  
FREQUENCY (kHz)  
1264 TA07b  
1264 TA07c  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1068  
Very Low Noise, High Accuracy, Quad Universal Filter Four 2nd Order Filter Sections in 28-Pin SSOP, 56kHz Max Center  
Building Block  
Frequency, 40µV  
Noise per 2nd Order Section, Operation 3.3V to ±5V  
RMS  
LTC1068-25  
LTC1068-50  
LTC1562  
High Speed, High Accuracy, Quad Universal  
Filter Building Block  
Four 2nd Order Filter Sections in 28-Pin SSOP, 200kHz Max Center  
Frequency, Operation 3.3V to ±5V  
Low Power, High Accuracy, Quad Universal  
Filter Building Block  
Four 2nd Order Filter Sections in 28-Pin SSOP, 40kHz Max Center  
Frequency, 3.5mA at Single 5V, Operation 3.3V to ±5V  
Very Low Noise, Low Distortion, Active RC Quad  
Universal Filter  
Four 2nd Order Filter Sections, No Clock Required, 150kHz Max Center  
Frequency, SSOP  
1264fa LT/TP 0198 4K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
16  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

LTC1264-7

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7C

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CJ

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CJ#TR

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, CDIP14, 0.300 INCH, HERMETIC SEALED, CERAMIC, DIP-14, Active Filter
Linear

LTC1264-7CJ#TRPBF

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, CDIP14, 0.300 INCH, LEAD FREE, HERMETIC SEALED, CERAMIC, DIP-14, Active Filter
Linear

LTC1264-7CN

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CN#PBF

LTC1264-7 - Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter; Package: PDIP; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1264-7CN#TR

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, PDIP14, 0.300 INCH, PLASTIC, DIP-14, Active Filter
Linear

LTC1264-7CS

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CSW

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CSW#TR

LTC1264-7 - Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1264-7M

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear