LTC1264-7 [Linear]

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter; 线性相位,群延迟扳平,第8阶低通滤波器
LTC1264-7
型号: LTC1264-7
厂家: Linear    Linear
描述:

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
线性相位,群延迟扳平,第8阶低通滤波器

文件: 总12页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1264-7  
Linear Phase, Group Delay  
Equalized, 8th Order  
Lowpass Filter  
U
DESCRIPTIO  
EATURE  
S
F
Steeper Roll-Off Than Bessel Filters  
High Speed: fC 200kHz  
Phase Equalized Filter in a 14-Pin Package  
Phase and Group Delay Response Fully Tested  
Transient Response Exhibits 5% Overshoot and  
No Ringing  
The LTC1264-7 is a clock-tunable monolithic 8th order  
lowpass filter with linear passband phase and flat group  
delay. The amplitude response approximates a maximally  
flat passband and exhibits steeper roll-off than an equiva-  
lent 8th order Bessel filter. For instance, at twice the cutoff  
frequency the filter attains 28dB attenuation (vs 12dB for  
Bessel), while at three times the cutoff frequency the filter  
attains 55dB attenuation (vs 30dB for Bessel). The cutoff  
frequencyoftheLTC1264-7istunedviaanexternalTTLor  
CMOS clock.  
65dB THD or Better Throughout a 100kHz Passband  
No External Components Needed  
O U  
PPLICATI  
S
A
The clock-to-cutoff frequency ratio of the LTC1264-7 can  
be set to 25:1 (pin 10 to V+) or 50:1 (pin 10 to V).  
Data Communication Filters  
Time Delay Networks  
Phase Matched Filters  
When the filter operates at clock-to-cutoff frequency ratio  
of 25:1, the input is double-sampled to lower the risk of  
aliasing.  
The LTC1264-7 is optimized for speed. Depending on the  
operating conditions, cutoff frequencies between 200kHz  
and250kHzcanbeobtained.(PleaserefertothePassband  
vs Clock Frequency graphs.)  
The LTC1264-7 is pin-compatible with the LTC1064-X  
series.  
U
O
TYPICAL APPLICATI  
4-Level PAM Eye Diagram  
200kHz Linear Phase Lowpass Filter  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IN  
–8V  
LTC1264-7  
f
= 5MHz  
8V  
CLK  
8V  
V
OUT  
8
1264-7 TA01  
NOTE: THE POWER SUPPLIES SHOULD BE BYPASSED BY A  
0.1µF CAPACITOR CLOSE TO THE PACKAGE AND ANY PRINTED  
CIRCUIT BOARD ASSEMBLY SHOULD MAINTAIN A DISTANCE  
OF AT LEAST 0.2 INCHES BETWEEN ANY OUTPUT OR INPUT  
1264-7 TA02  
500ns/DIV  
PIN AND THE f  
LINE.  
fCLK = 5MHz  
CLK  
f
C = 200kHz  
1
LTC1264-7  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) .......................... 16.5V  
Power Dissipation............................................. 400mW  
Burn-In Voltage ................................................... 16.5V  
Voltage at Any Input ..... (V– 0.3V) VIN (V+ + 0.3V)  
Storage Temperature Range ............... – 65°C to 150°C  
Operating Temperature Range  
LTC1264-7C ...................................... – 40°C to 85°C  
LTC1264-7M ................................... – 55°C to 125°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
NC  
1
2
3
4
5
6
7
8
16 OUT (C)  
1
2
3
4
5
6
7
OUT (C)  
NC  
14  
13  
12  
11  
10  
9
NC  
V
15 NC  
IN  
V
IN  
GND  
14  
V
V
GND  
+
LTC1264-7CN  
LTC1264-7CJ  
LTC1264-7MJ  
LTC1264-7CS  
+
V
13 NC  
12  
f
V
CLK  
NC  
NC  
f
CLK  
25/50  
NC  
11 25/50  
10 NC  
V
LP (A)  
OUT  
LP (A)  
NC  
8
R
(A)  
IN  
R
(A)  
9
V
OUT  
IN  
J PACKAGE  
N PACKAGE  
14-LEAD CERAMIC DIP 14-LEAD PLASTIC DIP  
S PACKAGE  
16-LEAD PLASTIC SOL  
TJMAX = 150°C, θJA = 65°C/W (J )  
TJMAX = 110°C, θJA = 65°C/W (N )  
TJMAX = 110°C, θJA = 85°C/W  
ELECTRICAL CHARACTERISTICS  
VS = ±7.5V, RL = 10k, TA = 25°C, fCUTOFF = 100kHz or 50kHz, fCLK = 2.5MHz, TTL or CMOS level (maximum clock rise or fall  
time 1µs) and all gain measurements are referenced to passband gain, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Passband Gain  
0.1Hz f 0.25 f  
CUTOFF  
f
= 25kHz, (f / f ) = 25:1  
0.50  
0.10  
0.50  
dB  
TEST  
CLK  
C
Gain at 0.50 f  
Gain at 0.75 f  
(Note 3)  
f
f
f
= 50kHz, (f / f ) = 25:1  
0.50  
0.65  
1.5  
0.20  
0.30  
0.1  
dB  
dB  
dB  
CUTOFF  
TEST  
TEST  
CLK  
C
= 25kHz, (f / f ) = 50:1  
0.15  
–1.0  
CLK  
C
= 75kHz, (f / f ) = 25:1  
CUTOFF  
TEST  
CLK  
C
Gain at f  
f
f
= 100kHz, (f / f ) = 25:1  
– 3.7  
– 4.5  
– 3.0  
– 3.0  
–1.9  
– 2.3  
dB  
dB  
CUTOFF  
TEST  
TEST  
CLK  
C
= 50kHz, (f / f ) = 50:1  
CLK  
C
Gain at 2.0 f  
f
f
= 200kHz, (f / f ) = 25:1  
34  
34  
28  
30  
20  
27  
dB  
dB  
CUTOFF  
TEST  
TEST  
CLK  
C
= 100kHz, (f / f ) = 50:1  
CLK  
C
Gain with f  
Gain with f  
= 20kHz  
= 400kHz, V = ±2.375V  
f
f
f
= 200Hz, (f / f ) = 50:1  
0.7  
0.2  
3.5  
0.3  
0.15  
2.70  
0.1  
0.5  
1.4  
dB  
dB  
dB  
CLK  
CLK  
TEST  
CLK  
C
= 8kHz, (f / f ) = 25:1  
S
TEST  
TEST  
CLK  
C
= 16kHz, (f / f ) = 25:1  
CLK  
C
Gain with f  
= 4MHz  
f
= 160kHz, V = 1V  
TEST IN RMS  
CLK  
(f /f ) = 25:1, T = 0°C to 70°C  
0.00±1.0  
dB  
dB  
CLK  
C
A
(f /f ) = 25:1  
3.0  
CLK  
C
Phase Factor (F )  
Phase = 180° F (f/f )  
(Note 1)  
(f / f ) = 25:1, f f  
407 ± 2  
388 ± 2  
Deg  
Deg  
Deg  
Deg  
CLK  
C
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
(f / f ) = 50:1, f f  
C
CLK C  
(f / f ) = 25:1, f f  
392  
374  
423  
414  
CLK  
C
(f / f ) = 50:1, f f  
CLK  
C
Phase Nonlinearity  
(Note 1)  
(f / f ) = 25:1, f f  
±1.0  
±1.0  
%
%
%
%
CLK  
C
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
(f / f ) = 50:1, f f  
CLK  
C
(f / f ) = 25:1, f f  
±2.0  
±2.0  
CLK  
C
(f / f ) = 50:1, f f  
CLK  
C
2
LTC1264-7  
ELECTRICAL CHARACTERISTICS  
VS = ±7.5V, RL = 10k, TA = 25°C, fCUTOFF = 100kHz or 50kHz, fCLK = 2.5MHz, TTL or CMOS level (maximum clock rise or fall  
time 1µs) and all gain measurements are referenced to passband gain, unless otherwise specified.  
PARAMETER  
Group Delay (t )  
CONDITIONS  
(f / f ) = 25:1, f f  
MIN  
TYP  
11.3  
21.6  
MAX  
UNITS  
µs  
µs  
µs  
µs  
d
CLK  
C
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
t = (F/360)(1/f );  
(f / f ) = 50:1, f f  
d
C
CLK C  
(Note 2, 3)  
(f / f ) = 25:1, f f  
10.9  
20.8  
11.7  
22.9  
CLK  
C
(f / f ) = 50:1, f f  
CLK  
C
Group Delay Ripple  
(Note 2)  
(f / f ) = 25:1, f f  
±1.0  
±1.0  
%
%
%
%
CLK  
C
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
(f / f ) = 50:1, f f  
CLK  
C
(f / f ) = 25:1, f f  
±2.0  
±2.0  
CLK  
C
(f / f ) = 50:1, f f  
CLK  
C
Input Frequency Range  
(Table 9, 10)  
(f / f ) = 25:1  
<f  
CLK  
<f /2  
CLK  
kHz  
kHz  
CLK  
C
(f / f ) = 50:1  
CLK  
C
Maximum f  
V = Single 5V (GND = 2V)  
2
3
5
MHz  
MHz  
MHz  
CLK  
S
V = ±5V  
S
V = ±7.5V  
S
Clock Feedthrough  
Wideband Noise  
25:1, ±7.5V, f = f  
120  
µV  
CLK  
RMS  
V = Single 5V  
140 ± 5%  
160 ± 5%  
175 ± 5%  
µV  
µV  
µV  
S
RMS  
RMS  
RMS  
kΩ  
(1Hz f < f  
)
CLK  
V = ±5V  
S
V = ±7.5V  
S
Input Impedance  
30  
50  
75  
Output DC Voltage Swing  
(Note 4)  
V = ±2.375V  
±1.0  
±2.3  
±3.8  
V
V
V
S
V = ±5V  
±2.0  
±3.0  
S
V = ±7.5V  
S
Output DC Offset  
25:1, V = ±5V  
±100  
±100  
±220  
±220  
mV  
mV  
S
(f  
CLK  
= 1MHz)  
50:1, V = ±5V  
S
Output DC Offset TempCo  
25:1, V = ±5V  
±200  
±200  
µV/°C  
µV/°C  
S
50:1, V = ±5V  
S
Power Supply Current  
V = ±2.375V  
11  
14  
17  
22  
22  
23  
26  
28  
32  
mA  
mA  
mA  
mA  
mA  
mA  
S
(f  
CLK  
= 1MHz)  
V = ±5V  
S
V = ±7.5V  
S
Power Supply Range  
The denotes specifications which apply over the full operating temperature range.  
Note 1: Input frequencies, f, are linearly phase shifted through the filter as long as f f ;  
±2.375  
±8  
V
180  
C
f
= 2.5MHz  
CLK  
CLK  
f = cutoff frequency.  
C
(f /f ) = 25:1  
C
90  
Figure 1 curve (A) shows the typical phase response of an LTC1264-7 operating at  
f
= 2.5MHz, f = 100kHz. An endpoint straight line, curve (B), depicts the ideal linear  
CLK  
C
0
phase response of the filter. It is described by: phase shift = 180° F (f/f ); f f .  
C
C
F is arbitrarily called the “phase factor” expressed in degrees. The phase factor together  
with the specified deviation from the ideal straight line allows the calculation of the phase  
at a given frequency. Note, the maximum phase nonlinearity, Figure 1, occurs at the vicinity  
B
–90  
A
–180  
–270  
–360  
of f = 0.25 f and = 0.75 f . Example: The phase shift at 70kHz of the LTC1264-7 shown in  
C
C
Figure 1 is: phase shift = 180° – 407° (70kHz/100kHz) ± nonlinearity  
= –  
104.9° ± 1% or –104.9° ± 1.05°.  
Note 2: Group delay and group delay deviation are calculated from the measured phase  
factor and phase deviation specifications.  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
Note 3: The filter cutoff frequency is abbreviated as f  
or f .  
C
CUTOFF  
LTC1264-7 F01  
Note 4: The AC swing is typically 9V , 5.6V , 1.8V with ±7.5V, ±5V, ±2.5V supply  
P-P  
P-P  
P-P  
respectively. For more information refer to the THD + Noise vs Input graphs.  
Figure 1. Phase Response in the Passband (Note 1)  
3
LTC1264-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Phase Factor vs fCLK  
(Typical Unit)  
Phase Factor vs fCLK  
(Typical Unit)  
Gain vs Frequency  
10  
0
460  
450  
450  
440  
V
= ±7.5V  
S
V
= ±7.5V  
V = ±7.5V  
S
S
f
= 1MHz  
CLK  
(f /f ) = 25:1  
(f /f ) = 50:1  
CLK C  
CLK  
C
T
= 25°C  
A
70°C  
70°C  
0°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
430  
420  
410  
400  
390  
380  
370  
440  
25°C  
25°C  
430  
420  
410  
400  
50:1  
25:1  
0°C  
–90  
–100  
390  
1
10  
100  
1000  
0
5
0
5
1
2
3
4
1
2
3
4
f
(MHz)  
f
(MHz)  
CLK  
FREQUENCY (kHz)  
CLK  
1264-7 G01  
1264-7 G02  
1264-7 G03  
Phase Factor vs fCLK (Min and  
Max Representative Units)  
Phase Factor vs fCLK (Min and  
Max Representative Units)  
425  
450  
445  
440  
V
= ±5V  
V
= ±7.5V  
S
S
(f /f ) = 25:1  
(f /f ) = 25:1  
CLK  
C
CLK  
C
420  
415  
410  
405  
400  
395  
T
= 25°C  
T
= 25°C  
A
A
435  
430  
425  
420  
415  
410  
405  
400  
395  
0
1.0  
1.5  
(MHz)  
2.0  
2.5  
3.0  
0.5  
0
3
4
5
1
2
f
f
(MHz)  
CLK  
CLK  
1264-7 G05  
1264-7 G04  
Passband Gain and Phase  
Passband Gain and Phase  
3
2
3
180  
135  
90  
180  
135  
90  
2
1
1
45  
45  
0
0
GAIN  
GAIN  
0
0
–1  
–2  
–1  
–2  
–45  
–45  
–90  
–90  
–3  
–4  
–5  
–6  
–7  
–3  
–4  
–5  
–6  
–7  
PHASE  
PHASE  
–135  
–135  
V
= ±7.5V  
V
= ±7.5V  
S
S
–180  
–225  
–270  
–180  
–225  
–270  
f
f
= 2.5MHz  
f
f
= 2.5MHz  
CLK  
C
CLK  
= 100kHz  
= 50kHz  
C
(f /f ) = 25:1  
(f /f ) = 50:1  
CLK C  
CLK  
C
10 20 30 40 50 60 70 80 90 100 110  
5
10 15 20 25 30 35 40 45 50 55  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1264-7 G06  
1264-7 G07  
4
LTC1264-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Passband Gain vs fCLK  
Passband Gain vs fCLK  
Passband Gain vs fCLK at 85°C  
5
4
5
4
5
4
V
= ±7.5V  
V
= ±7.5V  
V = ±7.5V  
S
A. f  
B. f  
C. f  
D. f  
E. f  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
= 5MHz  
A. f  
B. f  
C. f  
D. f  
E. f  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
= 5MHz  
A. f  
B. f  
= 4MHz  
= 5MHz  
S
S
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
(f /f ) = 25:1  
(f /f ) = 50:1  
(f /f ) = 25:1  
CLK C  
CLK  
A
C
CLK  
A
C
T
= 25°C  
T
= 25°C  
3
2
3
2
3
2
CLK  
CLK  
1
1
1
0
0
0
A
B
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
C
D
E
A
A
B
C
B
D E  
100  
10  
100  
1000  
10  
1000  
10  
100  
FREQUENCY (kHz)  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1264-7 G08  
1264-7 G09  
1264-7 G10  
Gain vs Frequency  
Passband Gain vs fCLK at 85°C  
Gain vs Frequency  
10  
0
10  
0
5
4
V
= ±5V  
A. f  
B. f  
C. f  
= 1MHz  
= 2MHz  
= 3MHz  
S
CLK  
CLK  
CLK  
(f /f ) = 25:1  
CLK  
C
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
V
f
= ±7.5V  
= 5MHz  
V
f
= ±5V  
A
B
C
S
CLK  
S
= 3MHz  
CLK  
(f /f ) = 25:1  
(f /f ) = 25:1  
CLK  
C
CLK  
C
T
= 25°C  
T
= 25°C  
A
A
10  
100  
1000  
10  
100  
1000  
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1264-7 G12  
1264-7 G13  
1264-7 G11  
Maximum Passband vs  
Temperature  
Gain vs fCLK  
Passband Gain vs fCLK  
2
1
10  
0
5
4
A. f  
B. f  
C. f  
D. f  
= 0.5MHz  
= 1.0MHz  
= 1.5MHz  
= 2.0MHz  
V
= SINGLE 5V  
CLK  
CLK  
CLK  
CLK  
S
(f /f ) = 25:1  
CLK  
C
AGND = 2V  
= 25°C  
A
B
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
90  
3
T
A
A
B
C
0
2
1
–1  
A. f  
B. f  
C. f  
= 0.5MHz  
= 1MHz  
= 2MHz  
0
CLK  
CLK  
CLK  
A. T = 70°C  
A
–2 B. T = –40°C  
A
–1  
–2  
–3  
–4  
–5  
–3  
V
= SINGLE 5V  
V
f
= SINGLE 5V  
= 2MHz  
S
C
D
S
CLK  
A
B
(f /f ) = 25:1  
CLK  
C
–4  
–5  
AGND = 2V  
= 25°C  
(f /f ) = 25:1  
CLK  
C
T
AGND = 2V  
A
1
10  
FREQUENCY (kHz)  
100  
10  
100  
200  
10  
100  
200  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1264-7 G16  
1264-7 G14  
1264-7 G15  
5
LTC1264-7  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Maximum Passband vs  
Temperature  
Gain vs fCLK  
Passband Gain vs fCLK  
10  
0
1.0  
0.5  
5
4
A. f  
B. f  
C. f  
= 0.5MHz  
= 1MHz  
= 2MHz  
CLK  
CLK  
CLK  
A. f  
B. f  
C. f  
D. f  
= 0.5MHz  
= 1.0MHz  
= 1.5MHz  
= 2.0MHz  
V
= SINGLE 5V  
C
CLK  
CLK  
CLK  
CLK  
S
A
B
(f /f ) = 50:1  
CLK  
AGND = 2V  
= 25°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
3
2
0
T
A
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
A
B
C
1
A. T = 70°C  
A
0
B. T = –40°C  
A
–1  
–2  
–3  
–4  
–5  
V =SINGLE 5V  
S
V
f
= SINGLE 5V  
= 2MHz  
S
CLK  
(f /f ) = 50:1  
CLK  
C
B
A
C
D
AGND = 2V  
(f /f ) = 50:1  
CLK  
C
T
= 25°C  
AGND = 2V  
A
10  
100  
200  
5
10  
100  
1
10  
FREQUENCY (kHz)  
50  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1264-7 G17  
1264-7 G18  
1264-7 G19  
Delay vs fCLK  
Delay vs fCLK  
THD vs Frequency  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
30  
25  
60  
50  
V
V
f
= ±5V  
= 1V  
V
= ±7.5V  
V
= ±7.5V  
S
IN  
S
S
A
A
(f /f ) = 25:1  
CLK  
(f /f ) = 50:1  
CLK  
RMS  
C
C
= 1MHz  
T
= 25°C  
T
A
= 25°C  
CLK  
A
(f /f ) = 25:1  
CLK  
C
(5 REPRESENTA-  
TIVE UNITS)  
A. f  
B. f  
C. f  
D. f  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
20  
15  
40  
30  
CLK  
CLK  
CLK  
CLK  
A. f  
B. f  
C. f  
D. f  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
CLK  
CLK  
CLK  
CLK  
B
B
C
D
C
D
10  
5
20  
10  
0
0
20 40 60 80 100 120 140 160 180 200 220  
INPUT FREQUENCY (kHz)  
1
10  
FREQUENCY (kHz)  
50  
10 20 30 40 50 60 70 80 90 100 110  
INPUT FREQUENCY (kHz)  
1264-7 G22  
1264-7 G20  
1264-7 G21  
THD vs Frequency  
THD vs Frequency  
THD + Noise vs Input  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40  
–45  
A
B
f
= 1kHz  
IN  
A. V = ±5V  
S
B. V = ±7.5V  
S
V
V
f
= ±7.5V  
= 1V  
V
V
f
= SINGLE 5V  
S
IN  
S
f
= 1MHz  
= 0.5V  
CLK  
RMS  
IN  
RMS  
= 500kHz  
(f /f ) = 25:1  
= 2.5MHz  
CLK C  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
CLK  
CLK  
(f /f ) = 25:1  
CLK  
C
(f /f ) = 25:1  
CLK C  
(5 REPRESENTA-  
TIVE UNITS)  
AGND = 2V  
(5 REPRESENTA-  
TIVE UNITS)  
1
10  
FREQUENCY (kHz)  
100  
1
10  
20  
0.1  
1
5
FREQUENCY (kHz)  
INPUT AMPLITUDE (V  
)
RMS  
1264-7 G23  
1264-7 G24  
1264-7 G25  
6
LTC1264-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Current vs Power  
Supply Voltage  
THD + Noise vs Input  
Phase Matching vs Frequency  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
5
4
3
2
1
0
A
B
A. PIN 3 AT 2.5V  
B. PIN 3 AT 2V  
PHASE DIFFERENCE BETWEEN  
ANY TWO UNITS (SAMPLE OF  
50 REPRESENTATIVE UNITS)  
f
= 1MHz  
CLK  
V
CLK  
±5V  
S
f
2.5MHz  
(f /f ) = 25:1 OR 50:1  
CLK  
C
T
= 0°C TO 70°C  
A
–55°C  
25°C  
125°C  
V
= SINGLE 5V  
S
f
f
= 500kHz  
CLK  
IN  
4
= 1kHz  
0
6
8
10 12 14 16 18 20 22 24  
50m  
0.1  
INPUT AMPLITUDE (V  
1
0 2  
4
0
0.2  
0.4  
0.6  
0.8  
1.0  
)
TOTAL POWER SUPPLY VOLTAGE (V)  
RMS  
FREQUENCY (f  
/FREQUENCY)  
CUTOFF  
1264-7 G26  
1264-7 G28  
1264-7 G27  
Table 1. Passband Gain and Phase  
VS = ±7.5V, (fCLK/fC) = 25:1, TA = 25°C  
Table 2. Passband Gain and Phase  
VS = ±7.5V, (fCLK/fC) = 50:1, TA = 25°C  
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
f
f
f
f
= 1MHz (Typical Unit)  
f
f
f
f
f
= 1MHz (Typical Unit)  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
0.000  
10.000  
20.000  
30.000  
40.000  
0.064  
0.064  
180.00  
81.14  
–19.18  
–120.63  
221.78  
0.000  
5.000  
10.000  
15.000  
20.000  
– 0.048  
– 0.048  
– 0.351  
– 1.253  
– 3.348  
180.00  
84.51  
10.87  
105.53  
199.61  
0.058  
– 0.639  
– 2.741  
= 2MHz (Typical Unit)  
= 2MHz (Typical Unit)  
0.000  
20.000  
40.000  
60.000  
80.000  
– 0.006  
– 0.006  
– 0.164  
– 0.958  
– 3.003  
180.00  
79.42  
22.13  
–124.09  
225.01  
0.000  
10.000  
20.000  
30.000  
40.000  
– 0.008  
– 0.008  
– 0.237  
– 1.105  
– 3.238  
180.00  
83.39  
13.09  
108.91  
204.09  
= 3MHz (Typical Unit)  
= 3MHz (Typical Unit)  
0.000  
15.000  
30.000  
45.000  
60.000  
0.044  
0.044  
– 0.065  
– 0.863  
– 3.022  
180.00  
81.04  
18.64  
118.48  
217.67  
0.000  
30.000  
60.000  
90.000  
120.000  
– 0.067  
– 0.067  
– 0.287  
– 0.944  
– 2.545  
180.00  
77.49  
25.54  
128.51  
230.19  
= 4MHz (Typical Unit)  
= 4MHz (Typical Unit)  
0.000  
20.000  
40.000  
60.000  
80.000  
0.071  
0.071  
0.039  
– 0.664  
– 2.755  
180.00  
78.04  
25.06  
128.54  
231.42  
0.000  
40.000  
80.000  
120.000  
160.000  
– 0.031  
– 0.031  
– 0.078  
– 0.332  
– 1.275  
180.00  
75.23  
30.06  
135.27  
239.76  
= 5MHz (Typical Unit)  
= 5MHz (Typical Unit)  
0.000  
25.000  
50.000  
75.000  
100.000  
0.089  
0.089  
180.00  
74.36  
32.41  
139.33  
246.01  
0.000  
50.000  
100.000  
150.000  
200.000  
0.073  
0.073  
0.365  
0.686  
0.521  
180.00  
71.77  
37.11  
146.19  
255.85  
0.141  
– 1.437  
– 2.421  
7
LTC1264-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Table 3. Passband Gain and Phase  
VS = ±5V, (fCLK/fC) = 25:1, TA = 25°C  
Table 4. Passband Gain and Phase  
VS = ±5V, (fCLK/fC) = 50:1, TA = 25°C  
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
FREQUENCY (kHz) GAIN (dB)  
PHASE (DEG)  
f
f
f
= 1MHz (Typical Unit)  
f
f
f
= 1MHz (Typical Unit)  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
0.000  
10.000  
20.000  
30.000  
40.000  
0.081  
0.081  
180.00  
80.94  
19.54  
121.10  
222.28  
0.000  
5.000  
10.000  
15.000  
20.000  
0.032  
0.032  
– 0.249  
– 1.135  
– 3.225  
180.00  
84.60  
10.65  
105.20  
199.22  
0.071  
– 0.631  
– 2.732  
= 2MHz (Typical Unit)  
= 2MHz (Typical Unit)  
0.000  
20.000  
40.000  
60.000  
80.000  
– 0.016  
– 0.016  
– 0.211  
– 0.968  
– 2.864  
180.00  
78.78  
23.21  
125.42  
226.47  
0.000  
10.000  
20.000  
30.000  
40.000  
0.101  
0.101  
– 0.043  
– 0.864  
– 3.021  
180.00  
82.47  
15.45  
113.28  
210.54  
= 3MHz (Typical Unit)  
= 3MHz (Typical Unit)  
0.000  
30.000  
60.000  
90.000  
120.000  
– 0.006  
– 0.006  
– 0.044  
– 0.369  
– 1.507  
180.00  
76.07  
28.54  
133.27  
237.35  
0.000  
15.000  
30.000  
45.000  
60.000  
0.125  
0.125  
180.00  
77.88  
25.31  
128.74  
231.29  
0.043  
– 0.753  
– 2.987  
Table 6. Passband Gain and Phase  
VS = Single 5V, (fCLK/fC) = 50:1, TA = 25°C  
Table 5. Passband Gain and Phase  
VS = Single 5V, (fCLK/fC) = 25:1, TA = 25°C  
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
f
f
f
= 0.5MHz (Typical Unit)  
f
= 0.5MHz (Typical Unit)  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
0.000  
2.500  
5.000  
7.500  
10.000  
0.075  
0.075  
– 0.217  
– 1.108  
– 3.198  
180.00  
84.79  
10.40  
105.10  
199.26  
0.000  
5.000  
10.000  
15.000  
20.000  
0.161  
0.161  
180.00  
81.47  
18.52  
119.79  
220.82  
0.166  
– 0.515  
– 2.598  
= 1MHz (Typical Unit)  
f
= 1MHz (Typical Unit)  
0.000  
5.000  
10.000  
15.000  
20.000  
0.114  
0.114  
– 0.122  
– 0.988  
– 3.111  
180.00  
83.96  
11.88  
107.02  
201.63  
0.000  
10.000  
20.000  
30.000  
40.000  
0.125  
0.125  
0.043  
– 0.706  
– 2.781  
180.00  
80.23  
20.75  
122.53  
223.59  
= 1.5MHz (Typical Unit)  
f
f
= 1.5MHz (Typical Unit)  
0.000  
7.500  
15.000  
22.500  
30.000  
0.174  
0.174  
0.066  
– 0.744  
– 2.949  
180.00  
81.36  
17.84  
117.12  
215.79  
0.000  
15.000  
30.000  
45.000  
60.000  
0.061  
0.061  
– 0.096  
– 0.741  
– 2.432  
180.00  
78.49  
23.82  
126.47  
228.12  
= 2MHz (Typical Unit)  
= 2MHz (Typical Unit)  
0.000  
10.000  
20.000  
30.000  
40.000  
0.232  
0.232  
180.00  
75.98  
29.26  
134.63  
239.09  
0.000  
20.000  
40.000  
60.000  
80.000  
0.151  
0.151  
180.00  
75.03  
31.15  
137.86  
244.58  
0.219  
0.321  
– 0.599  
– 3.031  
0.203  
– 0.838  
8
LTC1264-7  
U
U
U
PI FU CTIO S  
age is recommended. The analog ground plane should be  
connected to any digital ground at a single point. For dual  
supply operation, pin 3 should be connected to the analog  
ground plane. For single supply operation pin 3 should be  
biased at 1/2 supply and should be bypassed to the analog  
ground plane with at least a 1µF capacitor (Figure 3). For  
single 5V operation at the highest fCLK of 2MHz, pin 3  
should be biased at 2V. This minimizes passband gain and  
phase variations.  
Power Supply Pins (4, 12)  
The V+ (pin 4) and the V (pin 12) should each be  
bypassed with a 0.1µF capacitor to an adequate analog  
ground. The filter’s power supplies should be isolated  
from other digital or high voltage analog supplies. A low  
noise linear supply is recommended. Using a switching  
power supply will lower the signal-to-noise ratio of the  
filter. The supply during power-up should have a slew rate  
less than 1V/µs. When V+ is applied before Vand Vis  
allowed to go above ground, a signal diode should clamp  
Vto prevent latch-up. Figures 2 and 3 show typical  
connections for dual and single supply operation.  
Ratio Input Pin (10)  
The DC level at this pin determines the ratio of the clock  
frequency to the cutoff frequency of the filter. Pin 10 at V+  
gives a 25:1 ratio and pin 10 at Vgives a 50:1 ratio. For  
single supply operation the ratio is 25:1 when pin 10 is at  
V+ and 50:1 when pin 10 is at ground. When pin 10 is not  
tied to ground, it should be bypassed to analog ground  
with a 0.1µF capacitor. If the DC level at pin 10 is switched  
mechanically or electrically at slew rates greater than  
1V/µs while the device is operating, a 10k resistor should  
be connected between pin 10 and the DC source.  
Clock Input Pin (11)  
Any TTL or CMOS clock source with a square-wave output  
and 50% duty cycle (±10%) is an adequate clock source  
for the device. The power supply for the clock source  
should not be the filter’s power supply. The analog ground  
for the filter should be connected to clock’s ground at a  
single point only. Table 7 shows the clock’s low and high  
levelthresholdvaluesforadualorsinglesupplyoperation.  
A pulse generator can be used as a clock source provided  
thehighlevelONtimeisgreaterthan0.1µs.Sinewavesare  
not recommended for clock input frequencies less than  
100kHz, since excessively slow clock rise or fall times  
generate internal clock jitter (maximum clock rise or fall  
time 1µs). The clock signal should be routed from the  
rightsideoftheICpackageandperpendiculartoittoavoid  
couplingtoanyinputoroutputanalogsignalpath. A200Ω  
resistor between clock source and pin 11 will slow down  
the rise and fall times of the clock to further reduce charge  
coupling (Figures 2 and 3).  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
0.1µF  
IN  
200Ω  
+
LTC1264-7  
CLOCK SOURCE  
+
V
0.1µF  
+
GND  
DIGITAL SUPPLY  
8
V
1264-7 F02  
OUT  
Figure 2. Dual Supply Operation for an fCLK CUTOFF  
/f  
= 25:1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Table 7. Clock Source High and Low Threshold Levels  
V
IN  
POWER SUPPLY  
HIGH LEVEL  
LOW LEVEL  
Dual Supply = ±7.5V  
Dual Supply = ±5V  
Dual Supply = ±2.5V  
Single Supply = 12V  
Single Supply = 5V  
2.18V  
1.45V  
0.73V  
7.80V  
1.45V  
0.5V  
0.5V  
2.0V  
6.5V  
200Ω  
+
V
LTC1264-7  
CLOCK SOURCE  
+
0.1µF  
V
+
GND  
DIGITAL SUPPLY  
10k  
10k  
0.5V  
8
+
Analog Ground Pins (3, 5)  
1µF  
V
OUT  
The filter performance depends on the quality of the  
analog signal ground. For either dual or single supply  
operation, an analog ground plane surrounding the pack-  
1264-7 F03  
Figure 3. Single Supply Operation for an fCLK/fCUTOFF = 25:1  
9
LTC1264-7  
U
U
U
PI FU CTIO S  
distortion an output buffer is required. A noninverting  
buffer, Figure 4, can be used provided that its input  
common-mode range is well within the filter’s output  
swing. Pin 6 is an intermediate filter output providing an  
unspecified 6th order lowpass filter. Pin 6 should not be  
loaded.  
Filter Input Pin (2)  
Theinputpinisconnectedinternallythrougha50kresistor  
tied to the inverting input of an op amp.  
Filter Output Pins (9, 6)  
Pin 9 is the specified output of the filter; it can typically  
source 3mA and sink 1mA. Driving coaxial cables or  
resistive loads less than 20k will degrade the total har-  
monic distortion of the filter. When evaluating the device’s  
External Connection Pins (7, 14)  
Pins 7 and 14 should be connected together. In a printed  
circuit board the connection should be done under the IC  
package through a short trace surrounded by the analog  
ground plane.  
LT1220  
NC Pin (1, 5, 8, 13)  
1k  
+
Pins 1, 5, 8 and 13 are not connected to any internal circuit  
point on the device and should be preferably tied to analog  
ground.  
1264-7 F04  
Figure 4. Buffer for Filter Output  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Clock Feedthrough  
clock feedthrough, if bothersome, can be greatly reduced  
by adding a simple R/C lowpass network at the output of  
the filter pin (9). This R/C will completely eliminate any  
switching transients.  
ClockfeedthroughisdefinedastheRMSvalueoftheclock  
frequency and its harmonics that are present at the filter’s  
output pin (9). The clock feedthrough is tested with the  
input pin (2) grounded and it depends on PC board layout  
and on the value of the power supplies. With proper layout  
techniques the values of the clock feedthrough are shown  
in Table 8.  
Wideband Noise  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and it is used to  
determine the operating signal-to-noise ratio. Most of its  
frequency contents lie within the filter passband and it  
cannot be reduced with post filtering. For instance, the  
Table 8. Clock Feedthrough  
V
25:1  
50:1  
S
LTC1264-7 wideband noise at ±5V supply is 160µVRMS  
,
Single 5V  
±5V  
±7.5V  
100µV  
100µV  
120µV  
100µV  
400µV  
RMS  
RMS  
RMS  
RMS  
RMS  
145µVRMS of which have frequency contents from DC up  
to the filter’s cutoff frequency. The total wideband noise  
(µVRMS) is nearly independent of the value of the clock.  
The clock feedthrough specifications are not part of the  
wideband noise.  
1000µV  
RMS  
Note: The clock feedthrough at 25:1 is imbedded in the wideband  
noise of the filter. Clock waveform is a square wave.  
Any parasitic switching transients during the rise and fall  
edges of the incoming clock are not part of the clock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
Speed Limitations  
To avoid op amp slew rate limiting at maximum clock  
frequencies, the signal amplitude should be kept below a  
specified level as shown in Table 9.  
10  
LTC1264-7  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Table 9. Maximum VIN vs VS and Clock  
Aliasing  
POWER SUPPLY  
±7.5V  
MAXIMUM f  
MAXIMUM V  
CLK  
IN  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs when input frequencies close to the  
sampling frequency are applied. For the LTC1264-7 case  
at 50:1, an input signal whose frequency is in the range of  
5.0MHz  
4.5MHz  
4.0MHz  
3.5MHz  
3.0MHz  
3.0MHz  
2.0MHz  
1.6V  
2.0V  
2.5V  
1.6V  
(f 160kHz)  
RMS IN  
(f 160kHz)  
RMS IN  
(f 160kHz)  
RMS IN  
(f 500kHz)  
RMS IN  
±5V  
1.6V  
0.7V  
(f 100kHz)  
RMS IN  
(f 500kHz)  
RMS IN  
f
CLK ±10%, will be aliased back into the filter’s passband.  
If, for instance, an LTC1264-7 operating with a 100kHz  
clock and 2kHz cutoff frequency receives a 95kHz 10mV  
input signal, a 5kHz 56µVRMS alias signal will appear at its  
output. When the LTC1264-7 operates with a clock-to-  
cutoff frequency of 25:1, aliasing occurs at twice the clock  
frequency. Table 10 shows details.  
Single 5V  
0.5V  
(f 400kHz)  
RMS IN  
Transient Response  
Table 10. Aliasing (fCLK = 100kHz )  
INPUT FREQUENCY  
(V = 1V  
OUTPUT LEVEL  
OUTPUT FREQUENCY  
(Aliased Frequency  
,
RMS  
(Relative to Input,  
IN  
f
= f  
± f  
)
0dB = 1V  
(dB)  
)
f
= ABS [f  
± f ])  
CLK IN  
IN  
CLK  
(kHz)  
OUT  
RMS  
OUT  
(kHz)  
25:1, f  
= 4kHz  
CUTOFF  
175 (or 225)  
180 (or 220)  
185 (or 215)  
190 (or 210)  
–76  
– 69  
– 62  
– 43  
25  
20  
15  
10  
10µs/DIV  
195 (or 205)  
– 7  
5
INPUT = 10kHz ± 3V  
f
CLK = 2.5MHz  
50:1, f  
= 2kHz  
CUTOFF  
RATIO = 25:1  
75 (or 125)  
80 (or 120)  
85 (or 115)  
90 (or 110)  
95 (or 105)  
99 (or 101)  
–96  
– 90  
– 82  
– 72  
– 45  
0
25  
20  
15  
10  
5
Figure 5.  
1
t
s
OUTPUT  
INPUT  
90%  
50%  
10%  
Table 11. Transient Response of LTC Lowpass Filters  
DELAY  
TIME*  
(SEC)  
RISE  
SETTLING OVER-  
TIME** TIME*** SHOOT  
t
d
LOWPASS FILTER  
(SEC)  
(SEC)  
(%)  
0.5  
0
LTC1064-3 Bessel  
LTC1164-5 Bessel  
LTC1164-6 Bessel  
0.50/f  
0.43/f  
0.43/f  
0.34/f  
0.34/f  
0.34/f  
0.80/f  
0.85/f  
1.15/f  
C
C
C
C
C
C
C
C
C
1
t
r
LTC1264-7 Linear Phase  
LTC1164-7 Linear Phase  
LTC1064-7 Linear Phase  
1.15/f  
1.20/f  
1.20/f  
0.36/f  
0.39/f  
0.39/f  
2.05/f  
2.20/f  
2.20/f  
5
5
5
C
C
C
C
C
C
C
C
C
0.36  
CUTOFF  
RISE TIME (t ) =  
±5%  
r
f
LTC1164-5 Butterworth  
0.80/f  
0.48/f  
2.40/f  
11  
C
C
C
2
SETTLING TIME (t ) =  
s
(TO 1% of OUTPUT)  
±5%  
f
LTC1164-6 Elliptic  
LTC1064-4 Elliptic  
LTC1064-1 Elliptic  
0.85/f  
0.90/f  
0.85/f  
0.54/f  
0.54/f  
0.54/f  
4.30/f  
4.50/f  
6.50/f  
18  
20  
20  
CUTOFF  
C
C
C
C
C
C
C
C
1.15  
CUTOFF  
TIME DELAY (t ) = GROUP DELAY ≈  
(TO 50% OF OUTPUT)  
d
1164-7 F06  
f
C
* To 50% ±5%, ** 10% to 90% ±5%, *** To 1% ±0.5%  
Figure 6.  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1264-7  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
J Package  
14-Lead Ceramic DIP  
0.785  
0.200  
(5.080)  
MAX  
(19.939)  
MAX  
0.005  
(0.127)  
MIN  
0.290 – 0.320  
(7.366 – 8.128)  
14  
13  
12  
11  
10  
9
8
0.015 – 0.060  
(0.381 – 1.524)  
0.220 – 0.310  
0.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
0.008 – 0.018  
0° – 15°  
(0.203 – 0.460)  
2
3
4
5
6
1
7
0.098  
(2.489)  
MAX  
0.385 ± 0.025  
0.038 – 0.068  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.125  
(3.175)  
MIN  
(9.779 ± 0.635)  
(0.965 – 1.727)  
0.014 – 0.026  
J14 0392  
(0.360 – 0.660)  
N Package  
14-Lead Plastic DIP  
0.770  
0.065  
(19.558)  
MAX  
(1.651)  
TYP  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.015  
(0.380)  
MIN  
14  
13  
12  
11  
10  
9
8
7
0.130 ± 0.005  
(3.302 ± 0.127)  
0.260 ± 0.010  
(6.604 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
1
2
3
5
6
4
0.325  
–0.015  
0.075 ± 0.015  
(1.905 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.125  
(3.175)  
MIN  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
S Package  
16-Lead Plastic SOL  
0.398 – 0.413  
(10.109 – 10.490)  
0.291 – 0.299  
(7.391 – 7.595)  
15 14  
12  
10  
11  
9
16  
13  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.005  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
(0.127)  
RAD MIN  
0° – 8° TYP  
0.394 – 0.419  
(10.007 – 10.643)  
SEE NOTE  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
SEE NOTE  
0.014 – 0.019  
0.016 – 0.050  
(0.406 – 1.270)  
(0.356 – 0.482)  
TYP  
NOTE:  
PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
2
3
5
7
8
1
4
6
SOL16 0392  
LT/GP 1292 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

LTC1264-7C

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CJ

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CJ#TR

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, CDIP14, 0.300 INCH, HERMETIC SEALED, CERAMIC, DIP-14, Active Filter
Linear

LTC1264-7CJ#TRPBF

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, CDIP14, 0.300 INCH, LEAD FREE, HERMETIC SEALED, CERAMIC, DIP-14, Active Filter
Linear

LTC1264-7CN

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CN#PBF

LTC1264-7 - Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter; Package: PDIP; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1264-7CN#TR

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, PDIP14, 0.300 INCH, PLASTIC, DIP-14, Active Filter
Linear

LTC1264-7CS

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CSW

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7CSW#TR

LTC1264-7 - Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1264-7M

Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter
Linear

LTC1264-7M/883

Analog Filter
ETC