LT8311EFE#TRPBF [Linear]

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LT8311EFE#TRPBF
型号: LT8311EFE#TRPBF
厂家: Linear    Linear
描述:

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总48页 (文件大小:719K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8311  
Synchronous Rectifier  
Controller with Opto-Coupler  
Driver for Forward Converters  
DESCRIPTION  
FEATURES  
The LT®8311 is used on the secondary side of a forward  
converter to provide synchronous MOSFET control and  
output voltage feedback through an opto-coupler. The  
LT8311’s unique preactive mode allows control of the  
secondary-side MOSFETs without requiring a traditional  
pulse transformer for primary- to secondary-side com-  
munication.Inpreactivemode,theoutputinductorcurrent  
operates in discontinuous conduction mode (DCM) at  
light load. If forced continuous mode (FCM) operation is  
desiredatlightload,theLT8311can,alternatively,beused  
in SYNC mode, where a pulse transformer is required to  
send synchronous control signals from the primary-side  
IC to the LT8311.  
n
Wide Input Supply Range: 3.7V to 30V  
n
Preactive Mode:  
n
No Pulse Transformer Required  
n
DCM Operation at Light Load  
n
SYNC Mode:  
n
FCM or DCM Operation at Light Load  
Achieves Highest Efficiency  
n
n
1.5% Feedback Voltage Reference  
10mA Opto-Coupler Driver  
Output Power Good Indicator  
n
n
n
Integrated Soft-Start Function  
APPLICATIONS  
n
Offline and HV Car Battery Isolated Power Supplies  
The LT8311 offers a full featured opto-coupler controller,  
incorporating a 1.5% reference, a transconductance error  
amplifieranda10mAopto-driver. Powergoodmonitoring  
and output soft-start/overshoot control are also included.  
The LT8311 is available in a 16-lead FE package with pins  
removed for high voltage spacing requirements.  
n
48V Isolated Power Supplies  
n
Industrial, Automotive and Military Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
18V to 72V, 12V/8A Active Clamp Isolated Forward Converter  
4:4  
6.8µH  
V
V
OUT  
IN  
18V to  
72V  
12V  
+
4.7µF  
× 3  
68pF  
22µF  
× 2  
20k  
100k  
470µF  
V
IN  
2.2µF  
100V  
UVLO_VSEC  
OVLO  
100nF  
2.2nF  
100k  
2k  
5.9k  
100nF  
FSW  
FG  
AOUT  
OUT  
FB  
2k  
11.3k  
1.82k  
CSW  
LT3753  
10k  
LT8311  
1.78k  
CSP  
CG  
IVSEC  
RT  
SYNC  
V
IN  
V
OUT  
240kHz  
2k  
71.5k  
100k  
1.78k  
1.5k  
ISENSEP  
OC  
31.6k  
CSN  
PGOOD  
INTV  
S
OUT  
6mΩ  
OPTO  
COMP  
SYNC  
SS  
CC  
TAO  
ISENSEN  
4.7µF  
TAS  
TOS  
TBLNK  
GND SS1  
PMODE  
TIMER GND  
15nF  
49.9k  
INTV  
CC  
COMP  
SS2 FB  
2.2µF  
100Ω  
4.7µF  
100k  
100k  
124k  
1µF  
2.94k  
10pF  
1µF  
0.47µF  
34k  
1µF  
8311 TA01  
1k  
2.2nF  
8311f  
1
For more information www.linear.com/LT8311  
LT8311  
TABLE OF CONTENTS  
Features............................................................................................................................ 1  
Applications ....................................................................................................................... 1  
Typical Application ............................................................................................................... 1  
Description......................................................................................................................... 1  
Absolute Maximum Ratings..................................................................................................... 3  
Order Information................................................................................................................. 3  
Pin Configuration ................................................................................................................. 3  
Electrical Characteristics........................................................................................................ 4  
Typical Performance Characteristics .......................................................................................... 7  
Pin Functions.....................................................................................................................11  
Block Diagram....................................................................................................................12  
Operation..........................................................................................................................13  
FUNDAMENTALS OF FORWARD CONVERTER OPERATION IN CCM..................................................................... 13  
LT8311 SYNCHRONOUS CONTROL SCHEMES..................................................................................................... 17  
PREACTIVE MODE SYNCHRONOUS CONTROL.................................................................................................... 17  
SYNC MODE SYNCHRONOUS CONTROL ............................................................................................................. 19  
OPTO-COUPLER CONTROL .................................................................................................................................. 21  
Applications Information .......................................................................................................25  
V BIAS SUPPLY.................................................................................................................................................. 25  
IN  
INTV BIAS SUPPLY............................................................................................................................................ 26  
CC  
LT8311 OPTO CONTROL FUNDAMENTALS........................................................................................................... 27  
LT8311 SYNCHRONOUS CONTROL FUNDAMENTALS.......................................................................................... 31  
PREACTIVE MODE SYNCHRONOUS CONTROL ................................................................................................... 37  
SYNC MODE SYNCHRONOUS CONTROL ............................................................................................................ 38  
Typical Applications.............................................................................................................40  
Package Description ............................................................................................................47  
Typical Application ..............................................................................................................48  
Related Parts.....................................................................................................................48  
8311f  
2
For more information www.linear.com/LT8311  
LT8311  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
CSW, FSW, CSP ....................................... –0.3V to 150V  
SYNC ...........................................................12V to 12V  
IN  
CSW  
FSW  
FG  
1
3
20  
18  
CSP  
CSN  
V , PGOOD................................................ –0.3V to 30V  
INTV , PMODE......................................... –0.3V to 18V  
CC  
FB, SS, COMP ........................................... –0.3V to 2.5V  
TIMER....................................................... –0.3V to 1.5V  
CSN........................................................... –0.3V to 0.4V  
OPTO, TIMER Short-Circuit  
5
6
7
8
9
16  
15  
14  
13  
12  
11  
CG  
21  
GND  
INTV  
SYNC  
SS  
CC  
V
IN  
PMODE  
PGOOD  
TIMER  
FB  
Current Duration .................................... Infinite (Note 5)  
Operating Junction Temperature Range  
OPTO  
COMP 10  
LT8311E (Notes 2, 3) ......................... –40°C to 125°C  
LT8311I (Notes 2, 3) .......................... –40°C to 125°C  
LT8311H (Notes 2, 3)......................... –40°C to 150°C  
LT8311MP (Notes 2, 3) ...................... –55°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10sec)....................300°C  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
θ
= 38°C/W, θ = 10°C/W  
JC  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT8311EFE#PBF  
LT8311IFE#PBF  
LT8311HFE#PBF  
LT8311MPFE#PBF  
TAPE AND REEL  
PART MARKING*  
LT8311FE  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8311EFE#TRPBF  
LT8311IFE#TRPBF  
LT8311HFE#TRPBF  
LT8311MPFE#TRPBF  
20-Lead Plastic TSSOP  
20-Lead Plastic TSSOP  
20-Lead Plastic TSSOP  
20-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
LT8311FE  
LT8311FE  
LT8311FE  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
8311f  
3
For more information www.linear.com/LT8311  
LT8311  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V, VINTVCC = 8V, PMODE = 5V, CCG = CFG = 100pF, unless  
otherwise noted. (Note 2)  
PARAMETER  
Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
IN  
V
IN  
Operating Range  
UVLO  
3.7  
50  
30  
V
V
Rising  
3.6  
100  
3.7  
150  
V
mV  
IN  
Hysteresis  
Quiescent Current  
Not Switching  
4.5  
5.5  
mA  
Error Amplifier  
l
Feedback Reference Voltage  
Feedback Voltage Line Regulation  
Feedback Voltage Load Regulation  
Feedback Pin Bias Current  
Error Amplifier Transconductance  
Error Amplifier Voltage Gain  
Error Amplifier Output Swing High  
Error Amplifier Output Swing Low  
Power Good  
V
= 12V  
1.209  
1.227  
0.015  
0.05  
120  
370  
65  
1.245  
0.1  
V
IN  
3.7V ≤ V ≤ 30V, % of FB Ref Voltage  
%
IN  
1.3V ≤ COMP ≤ 1.8V, % of FB Ref Voltage  
Current Out of FB pin  
1.3V ≤ COMP ≤ 1.8V  
1.3V ≤ COMP ≤ 1.8V  
FB = 1V  
0.1  
%
nA  
200  
µmhos  
dB  
1.9  
2.3  
2.8  
V
FB = 1.5V  
0.75  
1
1.25  
V
Power NOT Good (Outside This Window) % Relative to FB Ref Voltage  
4
10  
7
16  
%
%
µs  
Power Good (Inside This Window)  
Power Good Indicator Wait Time  
% Relative to FB Ref Voltage  
Minimum Time That FB Must Stay within Power Good Window  
Before PGOOD Pin Goes Low  
175  
Power Good Leakage  
PGOOD = 30V  
1
µA  
V
l
Power Good Output Low Voltage  
Soft-Start (SS)  
Current into PGOOD Pin = 1mA  
0.2  
0.3  
SS Wake-Up Slew Current  
Current Exists Upon Part Wake Up, Shuts Off After SS Wake Up  
Offset Voltage Is Satisfied (Note 6)  
1
mA  
mV  
SS Wake-Up Offset Voltage  
V
FB  
– V , Upon Part Wake Up SS Is Slewed Up to an Offset  
16  
SS  
Voltage Below FB by SS Wake-Up Slew Current  
l
SS Charge Current  
SS = 0V, FB = 0.6V (Note 9)  
9
10  
11  
µA  
SS Pull-Down Amplifier Offset Voltage  
V
– V , Pull-Down Amplifier Prevents SS from Rising Beyond  
100  
mV  
SS  
FB  
This Offset Voltage Above FB When the FB Pin Voltage Is Below  
50% of the FB Reference Voltage  
SS Pull-Down Amplifier Maximum  
Sink Current  
SS = 1.5V, FB = 0.6V (Note 7)  
13  
2
mA  
V
SS High Clamp Voltage  
Opto Driver  
1.8  
COMP Buffer Input Offset Voltage  
Opto-Driver Reference Voltage  
Opto-Driver DC Gain  
1.3V ≤ COMP (Note 5)  
(Note 5)  
0.9  
1
V
V
(Note 5)  
–7  
V/V  
8311f  
4
For more information www.linear.com/LT8311  
LT8311  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V, VINTVCC = 8V, PMODE = 5V, CCG = CFG = 100pF, unless  
otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–5  
MAX  
UNITS  
V/V  
V/V  
V/V  
kHz  
V
Inverting DC Gain From COMP Pin to  
OPTO Pin  
(∆V  
(∆V  
(∆V  
/∆V  
/∆V  
/∆V  
), 1.290V ≤ COMP ≤ 1.310V  
), 1.490V ≤ COMP ≤ 1.510V  
), 1.890V ≤ COMP ≤ 1.910V  
OPTO  
OPTO  
OPTO  
COMP  
COMP  
COMP  
–5.9  
–6.2  
400  
0.5  
Opto-Driver –3dB Bandwidth  
Opto-Driver Output Swing Low  
Opto-Driver Output Swing High  
No Load (Note 5)  
FB = 1V, COMP = SS = OPTO = Open  
l
l
l
l
l
0.85  
V
IN  
V
IN  
V
IN  
= 3.7V, FB = 1.5V, COMP = SS = Open, I  
= 10mA  
= 10mA  
V
– 1.7 V – 1.4  
V
OPTO  
IN  
IN  
= 30V, FB = 1.5V, COMP = SS = Open, I  
5.2  
10.5  
6.5  
15  
V
OPTO  
Opto-Driver Output Short-Circuit Current  
Opto-Driver Output Sink Current  
Internal Linear Regulator  
= 30V, FB = 1.5V, COMP = SS = Open, OPTO = 0V (Note 6)  
18  
mA  
µA  
FB = 1V, OPTO = 1.2V (Note 7)  
200  
300  
420  
l
INTV Regulation Voltage  
No Load  
6.5  
7
1.8  
4.6  
4.3  
16.5  
15  
7.5  
3
V
CC  
INTV Load Regulation  
(∆V  
/∆I  
), 0A ≤ I ≤ 20mA  
INTVCC  
mV/mA  
CC  
INTVCC  
INTVCC  
l
l
l
l
l
INTV UVLO Rising  
4.8  
V
V
CC  
INTV UVLO Falling  
4.1  
CC  
INTV OVLO Rising  
17.5  
58  
V
CC  
INTV OVLO Falling  
14  
38  
V
CC  
INTV Current Limit  
INTV > I  
(= 4.6V)  
48  
mA  
mA  
mV  
CC  
CC  
INTVCC_UVLO_RISING  
INTV < I  
(= 4.3V)  
20  
CC  
INTVCC_UVLO_FALLING  
INTV Dropout Voltage  
V
= 6V, I = 10mA, Not Switching  
INTVCC  
400  
CC  
IN  
CG and FG Gate Drivers  
Driver Output Rise Time  
Driver Output Fall Time  
Driver Output High Voltage  
C
C
= C = 3.3nF, INTV = 8V (Note 4)  
25  
25  
ns  
ns  
V
CG  
FG  
CC  
= C = 3.3nF, INTV = 8V (Note 4)  
CG  
FG  
CC  
l
l
V
INTVCC  
– 0.2  
Driver Output Low Voltage  
PMODE Selection  
0.7  
V
l
l
PMODE Trip Voltage  
PMODE Ramp Up  
1
1.2  
30  
1.4  
90  
V
Hysteresis  
mV  
PMODE Input Current  
PMODE = 18V  
60  
µA  
Preactive Mode (Tie PMODE to 0V)  
l
Preactive Mode Operating  
Frequency Range  
100  
1
300  
kHz  
l
l
l
l
l
l
CSW High Trip Voltage  
CSW High Input Current  
CSW Low Trip Voltage  
FSW Trip Voltage  
CSW Ramp Up  
1.2  
250  
–150  
1.2  
1.4  
500  
–50  
1.4  
V
µA  
mV  
V
CSW = 150V (Note 7)  
CSW Ramp Down  
–250  
1
FSW High Input Current  
FSW = 150V (Note 7)  
250  
100  
500  
300  
µA  
ns  
CG Falling Edge to CSW Rising Edge  
Prediction Delay  
CSW = 150kHz (Note 10), FSW = 0V, CSP = –500mV  
5
l
CG Falling Edge Delay to FG Rising Edge CSW = 150kHz (Note 10), FSW = 0V, CSP = –500mV  
10  
50  
80  
ns  
8311f  
5
For more information www.linear.com/LT8311  
LT8311  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V, VINTVCC = 8V, PMODE = 5V, CCG = CFG = 100pF, unless  
otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SYNC Mode (Tie PMODE to INTV  
SYNC High Trip Voltage  
)
CC  
l
l
l
SYNC Ramp Up  
Hysteresis  
0.9  
1.2  
1.5  
–0.9  
100  
V
V
–2.4  
SYNC Low Trip Voltage  
SYNC Minimum Pulse Width  
SYNC Input Current  
SYNC Ramp Down  
Hysteresis  
–1.5  
–1.2  
2.4  
V
V
SYNC = 0V to 2V Pulse  
SYNC = 0V to 6V Pulse (Note 5)  
40  
20  
ns  
ns  
–3.5V < SYNC < 3.5V  
SYNC = 10V (Note 6, 7)  
1
400  
µA  
µA  
l
l
300  
SYNC Propagation Delay To CG/FG  
Outputs  
SYNC Rising Edge (0V to 2V) to CG Rising Edge (Note 8)  
SYNC Rising Edge (0V to 6V) to CG Rising Edge (Notes 5, 8)  
SYNC Falling Edge (0V to 2V) to FG Rising Edge (Note 8)  
SYNC Falling Edge (0V to 6V) to FG Rising Edge (Notes 5, 8),  
100  
75  
100  
150  
ns  
ns  
ns  
l
150  
C
CG  
= C = 3.3nF  
85  
ns  
FG  
l
l
l
TIMER Timeout Frequency  
R
TIMER  
R
TIMER  
R
TIMER  
= 41.2k  
= 71.5k  
= 221k  
425  
255  
80  
505  
300  
100  
585  
345  
120  
kHz  
kHz  
kHz  
l
TIMER Short-Circuit Current  
Current Comparator  
TIMER = 0V  
40  
60  
µA  
l
Current Comparator Trip Threshold  
CSP Ramp Up, R  
CSP Ramp Up, R  
= R  
= R  
= 0Ω  
48  
62  
0
72  
mV  
mV  
ns  
CSP  
CSN  
= 1.62kΩ (Note 5)  
CSP  
CSN  
Current Comparator Blank Time in  
Preactive Mode  
From Rising CG Edge Until Blanking Ends (Note 5)  
250  
Current Comparator Blank Time in  
SYNC Mode  
From Rising CG Edge Until Blanking Ends  
400  
ns  
l
l
l
CSP Current at Low CSP Voltage  
CSP Current at High CSP Voltage  
CSN Current  
CSP = 0V (Note 6)  
CSP = 150V (Note 7)  
CSN = 0V (Note 6)  
30  
38  
200  
0.1  
50  
500  
1
µA  
µA  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
temperature will exceed the maximum operating junction temperature  
when overtemperature is active. Continuous operating above the specified  
maximum operating junction temperature may impair device reliability.  
Note 4: Rise and fall times of are measured between 10% and 90% points  
Note 2: The LT8311 is tested under pulsed load conditions such that  
of a signal edge.  
T ~ T . The LT8311E is guaranteed to meet specifications from 0°C to  
J
A
Note 5: Guaranteed by design and/or correlation to static test.  
Note 6: Current flows out of pin.  
Note 7: Current flows into pin.  
Note 8: Propagation delay is measured between 50% point of the two  
signal edges of interest.  
Note 9: SS charge current refers to current flowing out of SS pin after  
certain conditions satisfied upon LT8311 wake-up (see the flowchart for  
Opto-Control Operation at Start-Up in Figure 9).  
125°C junction temperature. Specifications over the –40°C to 125°C  
operating junction temperature are assured by design, characterization and  
correlation with statistical process controls. The LT8311I is guaranteed  
over the –40°C to 125°C operating junction temperature range. The  
LT8311H is guaranteed over the –40°C to 150°C operating junction  
temperature range, and the LT8311MP is guaranteed over the –55°C to  
150°C operating junction temperature range. High junction temperatures  
degrade operating lifetimes; operating lifetime is derated for junction  
temperatures greater than 125°C.  
Note 10: CSW is a square waveform (duty cycle = 50%) with V  
= 7V  
HIGH  
and V  
= –0.7V.  
Note 3: The LT8311 includes overtemperature protection that is intended  
LOW  
to protect the device during momentary overload conditions. Junction  
8311f  
6
For more information www.linear.com/LT8311  
LT8311  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Delay from CG Turn-Off to CSW  
Rising Edge vs CSW Switching  
Frequency and Junction Temp  
Jitter in CG Turn-Off Delay to CSW  
Rising Edge vs CSW Switching  
Frequency and Junction Temp  
Delay from CG Turn-Off to  
FG Turn-On  
70  
60  
50  
30  
25  
20  
15  
10  
5
200  
175  
150  
125  
100  
75  
PMODE = 0V  
PMODE = 0V  
PMODE = 0V  
INTV = 8V  
INTV = 8V  
INTV = 8V  
CC  
CC  
CC  
100kHz  
100kHz  
150kHz  
300kHz  
150kHz  
50  
40  
30  
300kHz  
25  
0
0
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8311 G01  
8311 G03  
8311 G02  
Preactive Scheme Waveforms  
(Active Clamp Reset, CCM)  
Preactive Scheme Waveforms  
(Active Clamp Reset, Light DCM)  
Preactive Scheme Waveforms  
(Active Clamp Reset, Deep DCM)  
I
L
5A/DIV  
I
I
L
L
5A/DIV  
5A/DIV  
CSW  
5A/DIV  
CSW  
5A/DIV  
CSW  
5A/DIV  
CG  
10V/DIV  
CG  
10V/DIV  
CG  
10V/DIV  
FG  
10V/DIV  
FG  
10V/DIV  
FG  
10V/DIV  
8311 G04  
8311 G05  
8311 G06  
2µs/DIV  
2µs/DIV  
2µs/DIV  
Maximum CSW Duty Cycle Derating  
Curve vs CSW Switching Frequency  
and Junction Temperature  
Feedback Reference Voltage  
vs VIN  
Feedback Reference Voltage  
90  
85  
80  
75  
70  
65  
60  
55  
50  
PMODE = 0V  
100kHz, 200kHz  
300kHz  
1.2360  
1.2325  
1.2290  
1.2255  
1.2220  
1.2185  
1.2150  
1.2360  
1.2325  
1.2290  
1.2255  
1.2220  
1.2185  
1.2150  
400kHz  
3
6
9
12 15 18 21 24 27 30  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
IN  
8311 G09  
8311 G07  
8311 G08  
8311f  
7
For more information www.linear.com/LT8311  
LT8311  
TA = 25°C, unless otherwise noted.  
Power Good Window  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN Quiescent Current,  
No Switching  
Feedback Input Bias Current  
150  
133  
115  
16  
5.5  
5.0  
4.5  
PGOOD = 100kΩ to 12V  
12  
8
98  
80  
4
0
4.0  
3.5  
–75 –50 –25  
0
25 50 75 100 125 150  
1.00  
1.10  
1.20  
1.30  
1.40  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
FB VOLTAGE (V)  
TEMPERATURE (°C)  
8311 G10  
8311 G12  
8311 G11  
SS Pull-Down Amplifier  
Offset Voltage  
SS Charge Current  
Opto-Driver Output Swing Low  
1000  
750  
11.0  
10.5  
10.0  
150  
125  
100  
500  
250  
0
9.5  
9.0  
75  
50  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8311 G15  
8311 G13  
8311 G14  
Opto-Driver Output Swing High  
vs Line Voltage  
Opto-Driver Output Swing High  
7.0  
6.5  
6.0  
7
6
5
4
3
2
5.5  
5.0  
3
6
9
12 15 18 21 24 27 30  
(V)  
–75 –50 –25  
0
25 50 75 100 125 150  
V
TEMPERATURE (°C)  
IN  
8311 G17  
8311 G16  
8311f  
8
For more information www.linear.com/LT8311  
LT8311  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Opto-Driver Short-Circuit Current  
Opto-Driver Sink Current  
INTVCC Regulation Voltage  
20  
15  
10  
5
8
7
6
5
4
3
400  
350  
300  
250  
200  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8311 G20  
8311 G18  
8311 G19  
INTVCC Current Limit and  
Short-Circuit Current  
INTVCC OVLO  
INTVCC UVLO  
4.8  
4.6  
4.4  
4.2  
4.0  
16.5  
16.0  
15.5  
15.0  
14.5  
60  
50  
40  
30  
20  
10  
+
UVLO  
INTV CURRENT LIMIT  
CC  
+
OVLO  
UVLO  
OVLO  
INTV SHORT-CIRCUIT CURRENT  
CC  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8311 G21  
8311 G22  
8311 G23  
CG/FG Rise/Fall Time  
vs INTVCC Voltage  
CSW/FSW Maximum Input  
Current  
CG/FG Rise/Fall Time  
30  
25  
20  
25.0  
22.5  
20.0  
260  
250  
240  
INTV ≈ 7V (NOT OVERDRIVEN)  
CC  
V
= V  
= 150V  
FSW  
FG FALL TIME  
FG RISE TIME  
CG FALL TIME  
CG RISE TIME  
CSW  
15  
10  
17.5  
15.0  
230  
220  
FG FALL TIME  
FG RISE TIME  
CG FALL TIME  
CG RISE TIME  
–75 –50 –25  
0
25 50 75 100 125 150  
6
8
10  
12  
14  
16  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
INTV (V)  
TEMPERATURE (°C)  
CC  
8311 G24  
8311 G25  
8311 G26  
8311f  
9
For more information www.linear.com/LT8311  
LT8311  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Prop Delay from SYNC Input to  
CG/FG Outputs  
SYNC High/Low Trip Voltage  
CSP Maximum Input Current  
200  
190  
180  
2.0  
1.5  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
CG Rise/FG Fall, SYNC = 2ꢀ  
V
= 150V  
CSP  
CG Rise/FG Fall, SYNC = 6ꢀ  
CG Rise/FG Fall, SYNC = 10ꢀ  
FG Rise/CG Fall, SYNC = 2ꢀ  
FG Rise/CG Fall, SYNC = 6ꢀ  
FG Rise/CG Fall, SYNC = 10ꢀ  
SYNC HIGH  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
170  
160  
SYNC LOW  
80  
70  
60  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8311 G28  
8311 G27  
8311 G29  
CSP Trip Voltage vs Series CSP  
Resistor (RCSP  
TIMER Frequency  
)
600  
500  
400  
300  
200  
100  
0
80  
60  
40  
20  
R
TIMER  
R
TIMER  
R
TIMER  
= 41.2kΩ  
= 71.5kΩ  
= 221kΩ  
0
–20  
–75 –50 –25  
0
25 50 75 100 125 150  
0.1  
0.4  
0.7  
1.0  
1.3  
(kΩ)  
1.6  
1.9  
TEMPERATURE (°C)  
R
CSP  
8311 G30  
8311 G31  
8311f  
10  
For more information www.linear.com/LT8311  
LT8311  
PIN FUNCTIONS  
CSW (Pin 1): Catch MOSFET Drain Sense Pin. Connect  
this pin to the external N-channel catch MOSFET’s drain  
through a 2k resistor (typical) in preactive mode. Mini-  
mize parasitic capacitance on the pin. Connect to GND in  
SYNC mode.  
cycle. If the sum of the on times of the catch and forward  
MOSFET, per cycle (including the dead time), exceeds the  
timeout period programmed by the TIMER resistor, then  
all synchronous conduction will be shut down. Synchro-  
nous conduction resumes when the timeout period is  
reset again. See the Applications Information section for  
more details on programming the TIMER resistor. Keep  
the ground return trace of this pin short, and away from  
paths with switching noise.  
FSW (Pin 3): Forward MOSFET Drain Sense Pin. Con-  
nect this pin to the external N-channel forward MOSFET’s  
drain through 2k resistor (typical) in preactive mode.  
Minimize parasitic capacitance on the pin. Connect to  
GND in SYNC mode.  
PGOOD (Pin 13): Output Power Good Pin. The open-drain  
output will be pulled to ground when the FB pin voltage  
stays within 7% of the internal 1.227V reference for a  
period of 175µs. The internal PGOOD comparator has a  
hysteresisof 3%.Therefore,whenFBexistsoutside 10%  
of the 1.227V reference, the PGOOD pin will be pulled high  
by an external pull-up resistor or current source.  
FG (Pin 5): Forward MOSFET Gate Driver Pin. This pin  
drivesthegateoftheexternalN-channelforwardMOSFET.  
Minimize trace length between this pin and the forward  
MOSFET gate.  
INTV (Pin 6): Internal Linear Regulator’s Output Pin.  
CC  
INTV powers the gate drivers on the LT8311. The volt-  
CC  
SS (Pin 14): Soft-Start Pin. A capacitor from the SS pin to  
GND will be charged up by SS’s internally trimmed 10µA  
current source. Since FB tracks the lower of the SS pin  
voltage and the internal reference of 1.227V, the charge  
rate of the SS pin can be used to set the slew rate at which  
the FB pin charges up to its regulation voltage of 1.227V.  
The SS pin typically charges up to 2V. When using the  
LT8311 as part of voltage feedback loop, place a ceramic  
capacitor of at least 1nF on this pin to GND. For details on  
SS start-up and overshoot control functions, please refer  
to the Applications Information section.  
age on this pin is internally regulated to 7V. Alternatively,  
the pin can be overdriven externally. A minimum of 4.7µF  
(ceramic capacitor) must be placed from this pin to GND.  
V
(Pin 7): Input Supply Pin. This pin must be locally  
IN  
bypassed.  
PMODE (Pin 8): Preactive Mode Select Pin. Tying PMODE  
to GND enables preactive mode. Tying PMODE to INTV  
CC  
enables SYNC mode.  
OPTO(Pin9):OptoDriverOutputPin. Tie thispin, through  
a series resistor, to the input of the opto-coupler. This  
pin can source up to 10mA, sink 300μA typically, and is  
short-circuit protected.  
SYNC (Pin 15): Synchronization Pin. The SYNC pin, used  
only in SYNC mode, serves as an edge-sensitive input to  
receive timing information for synchronous switching. It  
is typically driven with PWM synchronization signals from  
the primary-side IC through a pulse transformer. A nega-  
tive voltage slew on the SYNC pin (–1.2V threshold) turns  
on the forward MOSFET and turns off the catch MOSFET.  
Equivalently,apositivevoltageslew(1.2Vthreshold)turns  
on the catch MOSFET and turns off the forward MOSFET.  
Tie the SYNC pin to GND in preactive mode.  
COMP (Pin 10): Error Amplifier Output Pin. Tie an ex-  
ternal compensation network to this pin when using the  
LT8311’s transconductance error amplifier as part of a  
voltage feedback loop.  
FB (Pin 11): Feedback Pin. This is the inverting input of  
the LT8311’s internal error amplifier. The FB pin voltage  
tracks the lower of the internal 1.227V reference and the  
SS pin voltage. 75nA (bias current) typically flows out of  
the pin. Tie this pin to a resistor divider network from the  
output to set the desired output voltage.  
CG(Pin16):CatchMOSFETGateDriverPin.Thispindrives  
thegateoftheexternalN-channelcatchMOSFET.Minimize  
trace length between this pin and the catch MOSFET gate.  
TIMER (Pin 12): Switching Period Timeout Pin. A resistor  
from this pin to ground sets an upper limit on the sum  
of the forward and catch MOSFET on times (including  
dead time between the two MOSFETs on period), every  
CSN, CSP (Pin 18, Pin 20): Current Sense Differential  
Inputs. CSP and CSN are the positive and negative inputs,  
respectively, of the LT8311’s internal current sense com-  
parator. The pins are typically connected across the catch  
8311f  
11  
For more information www.linear.com/LT8311  
LT8311  
PIN FUNCTIONS  
MOSFET to perform V current sensing. Alternatively, if  
voltage offsets created by the input bias current (100nA)  
ofthecurrentcomparator. Inpreactivemode, theCSPand  
CSN pins must be configured to trip at zero or positive  
values of source to drain current in the catch MOSFET  
(current in catch MOSFET cannot be allowed to flow from  
drain to source in preactive mode).  
DS  
a more precise current sensing mechanism is desired, the  
pinsmaybeconnectedacrossasenseresistoratthecatch  
MOSFET’s source. The current comparator trips at 62mV  
typical. The CSP pin sources 38µA current, allowing trip  
voltages less than 62mV to be set by placing a resistor in  
series with the CSP pin. It is recommended to place an  
identical resistor in series with the CSN pin to match any  
GND (Exposed Pad Pin 21): Ground. Exposed pad must  
be soldered directly to local ground plane.  
BLOCK DIAGRAM  
PRIMARY  
SIDE  
IN(SYS)  
SECONDARY  
SIDE  
L
OUT  
V
V
C
OUT  
OUT  
R
CSW  
C
VIN  
N
N
S
P
C
RST  
1
7
CSW  
V
IN  
PRIMARY  
IC  
M1  
R
FSW  
+
FSW  
7V  
3
INTV  
CC  
FG  
M
FG  
5
INTV  
CC  
6
SYNCHRONOUS  
CONTROLLER  
38µA  
UVLO + 1.227  
REFERENCE  
UVLO/  
OVLO  
R
CSP  
C
CSP  
INTVCC  
20  
+
TIMER  
62mV  
SWITCHING TIMEOUT  
OSCILLATOR  
12  
15  
+
INTV  
CC  
R
TIMER  
+
CG  
M
CG  
16  
1.2V  
1.2V  
20k  
5.7V  
5.7V  
SYNC  
+
R
CSN  
CSN  
18  
8
C
PL  
+
1.2V  
SYNCHRONOUS  
MODE SELECT  
PMODE  
R
FB1  
FB  
300k  
11  
+
+
A1  
1.227V  
100mV  
+
0.9V  
V
IN  
SS  
DOWNAMP  
+
+
+
600mV  
+
R
PGOOD  
10µA  
PGOOD  
S1  
13  
21  
V
IN  
2k  
R
FB2  
R
+
+
1.31V  
1.14V  
D
OPTO  
1V  
9
A2  
20k  
V
UVLO  
IN  
GND  
1.227V  
140k  
+
TO PRIMARY-  
SIDE CIRCUITS  
COMP  
10  
SS  
14  
R
E
8311 BD  
C
SS  
R
C
C
F
C
C
8311f  
12  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
TheLT8311controlsthesynchronousMOSFETsandopto-  
Region 1 (Figure 2)  
coupler on the secondary side of a forward converter.  
When OUT goes high, M1 turns on. CG should already be  
SynchronouscontroloflowR  
MOSFETscantypically  
DS(ON)  
at 0V before OUT goes high, to ensure that M does not  
CG  
leadtolowerpowerdissipationinforwardconverters. The  
lower power dissipation can improve converter efficiency,  
resultinginlongtermcostsavingsbyloweringinputpower  
requirements to support a certain level of output power.  
Improved efficiency can also reduce the size of heat sinks  
required to dissipate the heat generated in the rectifiers;  
consequentlyincreasingtheoperatingambienttemperature  
rangewhichmaybeusefulinmanyindustrialapplications.  
cross conduct with M1. The LT8311’s preactive mode,  
which will be explained later, is an innovative scheme to  
turn off M before M1 turns on. FG must be high during  
CG  
this period to keep the forward MOSFET, M on, thereby  
FG  
conducting the output inductor current, I  
, (via the  
LOUT  
transformer’s secondary winding) through a low imped-  
ance path. During this phase, magnetizing current, I  
,
LMAG  
builds up in the transformer’s magnetic core, and flows  
from V to GND through M1. Output inductor current,  
The LT8311 also offers opto-coupler control for accurate  
outputvoltageregulationoverlineandload. TheLT8311’s  
opto-couplercontrolcircuitrycomeswithahostofstart-up  
and steady-state functions to ensure robust transient re-  
sponseduringpower-onandoutputshort-circuitrecovery.  
IN  
I
, ramps up at a rate of (V  
– V )/ L  
.
LOUT  
CSW  
OUT  
OUT  
Region 2 (Figure 2)  
When OUT goes low, and turns off M1, the transformer  
becomes high impedance, and stops conducting I  
.
LOUT  
FUNDAMENTALS OF FORWARD CONVERTER  
OPERATION IN CCM  
Since current in the output inductor cannot go to zero  
instantaneously, it pulls the drain of the catch MOSFET,  
CSW, towards ground. Ultimately CSW gets clamped at a  
The timing diagram of a forward converter operating in  
continuous conduction mode (CCM) is shown in Figure 2.  
Thetimingdiagramisbrokenintosixregionsofoperation.  
Please refer to Figures 1 and 2 for the following explana-  
tion of each region of operation.  
diode voltage below ground by M ’s body diode which  
CG  
nowsourcestheoutputinductorcurrent(similartoacatch  
diode in a traditional buck converter). CSW collapsing  
equivalently causes the transformer’s secondary winding  
voltage to become smaller. Through transformer action,  
ACTIVE CLAMP RESET (RED)  
RESONANT RESET (BLUE)  
L
OUT  
CSW  
V
V
IN  
OUT  
LOAD  
I
LOUT  
R
C
OUT  
N
N
S
P
L
I
MAG  
LMAG  
M
CG  
CG  
+
V
CL  
C
CL  
PRIMARY  
IC  
SECONDARY  
IC  
V
DRAIN_M2  
C
AOUT  
SWP  
RST  
FSW  
C
M2  
AOUT  
D2  
M1  
M
FG  
OUT  
FG  
8311 F01  
Figure 1. Forward Converter with Active Clamp Reset (in Red) or Resonant Reset (in Blue)  
8311f  
13  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
AOUT  
ACTIVE CLAMP  
PMOS CONTROL  
SIGNAL  
0V  
0V  
0.7 (CLAMPED BY D2)  
M2 OFF  
0.7 (CLAMPED BY D2)  
M2 OFF  
V
M2  
M2 ON  
M2 ON  
ACTIVE CLAMP  
PMOS GATE  
GATE  
(M2 SOURCE = 0V)  
OUT  
M1 ON  
0.7V  
M1 OFF  
M1 ON  
M1 OFF  
PRIMARY NMOS  
SWITCH GATE  
(M1 SOURCE = 0V)  
0V  
(DtPER  
LMAGCRST  
)
V
IN 1+  
2
PRIMARY-SIDE  
WAVEFORMS  
V
1D  
IN  
V  
IN  
PRIMARY NMOS  
SWITCH DRAIN  
tRES = π  
SWP  
LMAG CRST  
0V  
0A  
di  
V
IN  
=
di  
1  
VIN D  
=
dt LMAG  
TRANSFORMER  
MAGNETIZING  
INDUCTANCE  
CURRENT  
dt LMAG 1D  
I
LMAG  
CSW  
VIN D• tPER  
NS  
NP  
LMAG  
V  
IN  
CATCH FET DRAIN  
0V  
0V  
0V  
0V  
0.7V  
CG  
M
CG  
OFF  
M
ON  
M
CG  
OFF  
M ON  
CG  
CATCH FET GATE  
CG  
VOUT tPER  
2 LMAG CRST  
SECONDARY-SIDE  
WAVEFORMS  
VOUT  
1D  
FORWARD FET  
FSW  
FG  
DRAIN  
0V  
0V  
0V  
0V  
0.7V  
M
ON  
M
OFF  
M
FG  
ON  
M
FG  
OFF  
0V  
FORWARD FET  
GATE  
FG  
FG  
0V  
di VCSW VOUT  
di –VOUT  
=
VOUT  
=
dt  
LOUT  
dt LOUT  
RLOAD  
OUTPUT INDUCTOR  
CURRENT  
I
LOUT  
VOUT (1D)tPER  
LOUT  
D • t  
PER  
REGIONS OF  
OPERATION  
t
PER  
1
2
3
4
5
6
TIME  
8311 F02  
Figure 2. Active Clamp Forward Converter Timing Diagram in CCM. Resonant Reset Waveforms in Blue  
8311f  
14  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
the primary winding voltage gets smaller too, effectively  
capacitor. Inresonantreset, I  
flowsintoC assoon  
LMAG RST  
moving SWP towards V . Since M is still on, and M ’s  
as M turns off, causing SWP’s voltage to rise up quasi-  
IN  
FG  
CG  
FG  
body diode is on, the secondary winding voltage gets  
sinusoidally, withatimeconstantsetbyL  
andC . In  
MAG  
RST  
clamped at about a diode voltage. Through transformer  
activeclampreset,whenM turnsoff,I  
intiallyslews  
FG  
LMAG  
action, SWP gets clamped to approximately V . I  
up SWP’s voltage quickly. As shown in Figure 2, I  
does not flow into the active clamp capacitor as soon as  
IN LMAG  
LMAG  
flows in the secondary windings, as shown in Figure 3,  
flowing from the drain to source of M , to ground. M ’s  
M
FG  
turns off. The voltage across C (= V = V /(1-D))  
FG  
.
CG  
CL  
CL  
IN  
body diode sources I  
and I  
initiallyreversebiasesM2’sbodydiode. OnlywhenSWP’s  
LOUT  
LMAG  
voltagegetshighenoughtoforwardbiasM2’sbodydiode,  
Region 3 (Figure 2)  
does I  
begin to flow into C . The voltage where this  
CL  
LMAG  
happens is when SWP = V + 0.7V. At this point, SWP’s  
voltage rises up at a rate determined by the time constant  
When FG goes low, it allows transformer reset action to  
begin. I no longer has a low impedance path through  
FG  
CL  
LMAG  
of L  
and the active clamp capacitor, which is typically  
M
on the secondary side. As a result, it “jumps back” to  
MAG  
the primary side, flowing into the primary-side resonant  
much larger than the resonant reset capacitor.  
I
LMAG  
L
OUT  
V
IN  
I
LOUT  
M
CG  
I
N
LMAG  
N
S
P
L
MAG  
CG OFF  
M
FG  
FG ON  
M1 OFF  
8311 F03  
Figure 3. With FG On, ILMAG Is Conducted Through MFG to Ground  
on the Secondary Side When M1 Turns Off  
t
PROPORTIONAL  
V
1D  
RISE  
IN  
VCL  
=
TO L  
AND C  
MAG  
CL  
V
CL  
V
CL  
+ 0.7V  
SWP  
V
IN  
0.7V  
0V  
V
DRAIN_M2  
M
FG  
TURNS OFF  
V
– V  
CL  
IN  
TIME  
M2 BODY  
DIODE OFF  
M2 BODY  
DIODE ON  
M2 ON  
8311 F04  
Figure 4. Detail of Region 3 from the Timing Diagram in Figure 2. When MFG Turns Off  
in Active Clamp Reset, ILMAG Initially Slews Up SWP’s Voltage from VIN to VCL + 0.7V,  
at Which Point M2’s Body Diode Turns On and Allows ILMAG to Flow into CCL  
8311f  
15  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
The ultimate goal of both reset mechanisms is to raise  
causes the primary winding to have a similar voltage  
(scaled by turns ratio), resulting in SWP’s voltage  
the SWP node to a voltage higher than V , imposing  
IN  
appropriate volt seconds on L  
, and allowing the  
getting clamped to V . M continues conducting  
MAG  
IN CG  
magnetizing current to reset. Resetting the magnetic core  
every cycle prevents magnetic flux buildup within the  
core, and thereby prevents transformer saturation. FSW  
tracks the SWP node during transformer reset. CG going  
I
– I  
.
LOUT  
LMAG  
Region 5 (Figure 2)  
Active Clamp Reset Case: AOUT goes high, turning off  
high, allows I  
to switch over from being conducted  
LOUT  
M2. I  
, being negative, causes the voltage on SWP  
LMAG  
by M ’s body diode to M itself.  
CG  
CG  
(M1’s drain) to get pulled towards V , resulting in the  
IN  
transformer’s primary windingvoltage becomingsmaller.  
Region 4 (Figure 2)  
Bytransformeraction, thesecondarywindingvoltagealso  
1. ActiveClampResetCase(redwaveform):AOUTgoing  
becomes smaller. With M on (holding CSW at 0V), and  
CG  
low causes the gate of M2 to be driven below ground  
the transformer secondary winding voltage becoming  
by the decoupling capacitor, C  
. This causes M2,  
smaller, FSW collapses towards 0V.  
AOUT  
the active clamp PMOS, to turn on. M2 must be turned  
on before I becomes negative, to allow I to  
Region 6 (Figure 2)  
LMAG  
LMAG  
sustain conduction through the active clamp capacitor  
Eventually, in similar fashion to the resonant reset case,  
and get fully reset. Active clamp reset completes by the  
FSWisclampedtoadiodevoltagebelowGNDbyM sbody  
FG  
end of region 4, and I  
is reset to a negative value.  
LMAG  
diode, which now conducts I  
through the secondary  
LMAG  
windings, towards the output inductor. With M ’s body  
2. ResonantResetCase(bluewaveform):Resonantreset  
FG  
diode on, and M on, the secondary winding voltage gets  
ultimately completes when SWP’s quasi-sinusoidal  
CG  
clamped to about a diode voltage. Through transformer  
action, SWP gets clamped to approximately V . CG goes  
waveform returns to V , by which point I  
is reset  
IN  
LMAG  
toanegativevalue. FSWiseventuallyclampedbyM s  
IN  
FG  
low, turning off M before M1 can turn on. I  
– I  
body diode, and conducts I , through the second-  
LMAG  
CG  
LOUT LMAG  
is conducted through M ’s body diode. FG goes high,  
ary windings, towards the output inductor (similar to  
Figure 3, but with I direction reversed on primary  
CG  
turningonM .Eventually,whenM1turnson,I  
willbe  
FG  
LOUT  
LMAG  
conducted through the transformer’s secondary winding,  
and will flow from the source to drain of M .  
and secondary sides). With a diode voltage imposed  
across the secondary windings, transformer action  
FG  
8311f  
16  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
LT8311 SYNCHRONOUS CONTROL SCHEMES  
zero current in M , which should correspond to nearly  
zero current in the output inductor. Reactive turn-off  
will typically be the dominant turn-off mechanism for  
CG  
The LT8311 offers two modes of synchronous control:  
1. Preactive Mode: No pulse transformer needed; DCM  
operation at light load. Enabled by tying the PMODE pin  
M
in DCM.  
CG  
The LT8311’s seamless transition between predictive  
and reactive portions of preactive mode allows the catch  
MOSFET to be turned off at the correct time to avoid cross  
conduction or avalanching.  
to 0V. Use a Schottky diode across M (Figure 20).  
CG  
2. SYNC Mode: Pulse Transformer needed; FCM or DCM  
operation at light load. Enabled by tying the PMODE  
pin to INTV .  
CC  
M
FG  
Turn-On/Off in Preactive Mode  
PREACTIVE MODE SYNCHRONOUS CONTROL  
In preactive mode, M is turned on after M ’s turn-off  
FG  
CG  
edgeisdetected,andthevoltageonthedrainoftheforward  
MOSFET, FSW, is detected to be below 1.2V. Waiting for  
FSW to fall below 1.2V ensures that transformer reset is  
M
Turn-On/Off Timings in Preactive Mode  
CG  
"Preactive"isshort for "predictive"+ "reactive". Inpreactive  
mode, the LT8311 controls the secondary synchronous  
MOSFETs without any communication from the primary-  
close to completion. M is turned off when the voltage  
FG  
on CSW is detected to be below –150mV.  
side IC. In preactive mode, the catch MOSFET, M , is  
CG  
Since preactive mode requires each MOSFET to be turned  
ononlyaftertheotherMOSFET’sturn-offedgeisdetected,  
the system requires a start point where one of the two  
MOSFETs begins switching. Preactive mode’s start point  
turned on (CG rising edge in Figure 5) when the voltage  
on its drain, CSW, is detected to be below –150mV, and  
the forward MOSFET, M , is detected to be off. M is  
FG  
CG  
turned off when the first of two events after M ’s turn-  
CG  
happens by turning on M first to commence switching.  
CG  
on occurs:  
Predictive M Turn-Off (Figure 5): In predictive turn-  
Preactive Mode Shutdown and Start-Up  
CG  
off, the LT8311 predicts when M1 will turn on in the  
Preactivemodeisdesignedwithmanyfeaturestofacilitate  
smooth start-up of synchronous control and shut down of  
the scheme when necessary. Prior to starting switching  
activity, the LT8311 evaluates conditions on the forward  
converter’s secondary side to determine if switching can  
commence. Theevaluationperiodendswhenfourspecific  
conditions, are satisfied for a period of three continuous  
CSW switching cycles (rising edge to rising edge). If  
any of the conditions are violated, the evaluation period  
is reset, and switching activity is kept shut off. During  
this evaluation period, the secondary side current will  
next cycle, and turns off M 100ns prior to this event.  
CG  
Predictive turn-off of M prevents cross conduction  
CG  
between M and M1. M1’s turn-on timings are pre-  
CG  
dicted by phase locking to the rising edge of present  
and past CSW cycles. Predictive turn-off relies on the  
periodicity of M1’s turn-on edge, an inherent aspect of  
fixed-frequency operation. Furthermore, the predictive  
turn-off is designed to be independent of the duty cycle  
of the system, which allows M to be correctly turned  
CG  
off, even during load/line transients. Predictive turn-off  
will typically be the dominant turn-off mechanism for  
flow through the body diodes of M and M . The four  
CG  
FG  
M
in CCM.  
CG  
conditions are:  
Reactive M Turn-Off (Figure 6): Reactive turn-off  
CG  
1. V must be greater than its UVLO voltage  
forces the forward converter to operate in DCM at light  
IN  
load. In reactive turn-off, the LT8311 turns off M  
CG  
2. INTV must be within its UVLO/OVLO limits  
CC  
when the current in M (I  
) trips the LT8311’s  
CG MCG  
3. The TIMER pin should not have timed out. This feature  
exists to ensure that the LT8311 ceases switching in  
the event that the primary side stops switching.  
8311f  
internal current comparator. The inputs to this current  
comparator are the CSP and CSN pins. Typically, the  
CSP and CSN pins will be configured to trip at almost  
17  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
I
LOUT  
CSW  
FSW  
V
IN  
V
OUT  
L
OUT  
C
OUT  
N
N
LT8311  
CSW  
P
S
RESET  
FSW  
CSP  
MECHANISM  
PRIMARY-SIDE IC  
CONTROLS TIMING  
OF OUT SIGNAL  
LT8311 USES CSW/FSW INFORMATION  
TO DETERMINE FG/CG CONTROL  
TIMINGS DURING THE PREDICTIVE  
PORTION OF PREACTIVE MODE  
M
CG  
M1  
M
FG  
PRIMARY IC  
CG  
OUT  
I
MCG  
CSN  
FG  
M1  
TURN-ON  
EDGE  
M1  
TURN-ON  
EDGE  
OUT  
0V  
0V  
0V  
CSW  
CG  
WAVEFORMS  
IN CCM  
M
M
CG  
TURN-OFF  
EDGE  
CG  
TURN-OFF  
EDGE  
75ns PREDICTIVE DELAY  
TIME  
8311 F05  
Figure 5. During the Predictive Portion of Preactive Mode, the LT8311 Phase Locks  
into the CSW Rising Edge and Turns Off MCG 75ns Prior to This Edge  
M1  
TURN-ON  
EDGE  
M1  
TURN-ON  
EDGE  
OUT  
0V  
0V  
0V  
PRIMARY-SIDE IC  
CONTROLS TIMING  
OF OUT SIGNAL  
LT8311 USES I  
INFORMATION  
MCG  
TO DETERMINE FG/CG CONTROL  
TIMINGS DURING THE REACTIVE  
PORTION OF PREACTIVE MODE  
CSW  
WAVEFORMS  
IN DCM  
I
LOUT  
0A  
0A  
I
MCG  
WHEN CSP-CSN  
TRIPS INTERNAL  
CURRENT COMPARATOR  
TURNS OFF  
M
CG  
CG  
TIME  
8311 F06  
Figure 6. During the Reactive Portion of Preactive Mode, the LT8311 Turns Off MCG When the Current in MCG, IMCG  
,
Trips the LT8311’s Internal Current Comparator. The Inputs to the Comparator Are CSP and CSN and the Current Sense  
Trip Voltage Is Programmed by Choosing Appropriate CSP/CSN Series Resistors  
8311f  
18  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
4. The CSP and CSN pins must not trip the internal  
current comparator within a 150ns period of time  
called "current sample window." This function helps  
the LT8311 detect very light load conditions, dur-  
ing which time it will keep synchronous conduc-  
tion shut off, thereby improving system efficiency.  
SYNC MODE SYNCHRONOUS CONTROL  
SYNC mode allows the LT8311 to operate in forced con-  
tinuous mode (FCM) at light loads. In SYNC mode, a pulse  
transformer (see T2 in Figure 7) is required to allow the  
LT8311 to receive synchronization control signals from  
the primary-side IC. These control signals are interpreted  
digitally (high or low) by the LT8311 to turn on/off the  
catch and forward MOSFETs.  
How the current sample window works:  
Thecurrentsamplewindowexistsregardlessofwhether  
M
is turned on or not, in any given cycle. When CSW  
CG  
FCM operation allows the forward converter to avoid  
operation in discontinuous conduction mode (DCM) at  
light loads, by letting the inductor current go negative.  
Hence, even at zero load, the inductor current remains  
continuous and the converter runs at a fixed frequency.  
is detected to fall below –150mV, the LT8311 starts a  
blanktimeof200ns.Uponcompletionofthisblanktime,  
theLT8311startsa150nscurrentsamplewindow.Ifthe  
CSP/CSNpininputscausetheinternalcurrentcompara-  
tor to trip during this 150ns window, the LT8311 will  
interpret this as a condition of very light load, at which  
point it will stop synchronous conduction and start the  
evaluation period again. Please see "Configuring CSP/  
CSN Inputs of Current Sense Comparator in Preactive  
Mode” in the Applications Information section.  
M
CG  
Turn-On/Off Timings in SYNC Mode  
InSYNCmode, M turnsonwhenthesignalontheSYNC  
CG  
pin is higher than 1.2V. M turns off when the signal on  
CG  
the SYNC pin is lower than –1.2V.  
When all four conditions are valid for three continuous  
CSW cycles, the evaluation period ends and the LT8311  
gets ready to start switching. Switching commences with  
M
Turn-On/Off Timings in SYNC Mode  
FG  
In SYNC mode, M turns on when the signal on the SYNC  
FG  
pin is lower than –1.2V. M turns off when the signal on  
FG  
the LT8311 turning on M for its minimum on-time. If  
CG  
the SYNC pin is higher than 1.2V.  
any of the four conditions listed are violated at any point  
during switching activity, the LT8311 will shut down  
all synchronous conduction and restart the evaluation  
period.  
TheR  
andC  
timeconstantmustbeappropriately  
SYNC  
SYNC  
chosen to generate a sufficient pulse width at a particular  
overdrive voltage (see "Picking Pulse Transformer and  
High Pass Filter" in the Applications Information section).  
Duringpreactivemodestart-up,theLT8311internallysoft-  
Typical values for C  
respectively.  
and R  
are 220pF and 560Ω,  
SYNC  
SYNC  
starts the on-time of M , allowing the forward converter  
CG  
to gradually transition from full cycles of nonsynchronous  
M
conduction (secondary-side current flowing through  
CG  
body diode of M ) to full cycles of synchronous M  
CG  
CG  
conduction.  
8311f  
19  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
SYNC Mode Shutdown  
4. The CSP and CSN pins have tripped the LT8311’s in-  
ternal current comparator during M ’s on-time. The  
CG  
In SYNC mode, the LT8311 will shut off both secondary-  
current in M , I  
, is sensed after a 400ns blank  
CG MCG  
side MOSFETs, M and M , if any of the following  
CG  
FG  
time has expired. This blank time starts at the turn-on  
conditions are true:  
edge of M . See the Applications Information section  
CG  
1. V is less than its UVLO voltage  
IN  
for details on configuring the CSP and CSN pins in  
SYNC mode.  
2. INTV outside its UVLO/OVLO limits  
CC  
3. The TIMER pin has timed out (see the Applications  
Information section for details on programming the  
TIMER pin resistor).  
L
OUT  
T1  
V
IN  
V
OUT  
C
OUT  
M
CG  
N
N
S
P
I
MCG  
RESET  
M
M1  
FG  
PRIMARY-SIDE IC  
CONTROLS TIMING  
OF OUT AND  
LT8311 CONTROLS FG AND CG  
TIMING BASED ON SYNC INPUT  
SIGNAL IN SYNC MODE  
FG CSN CG CSP  
LT8311  
S
SIGNALS  
OUT  
OUT  
PRIMARY IC  
S
T2  
SYNC  
OUT  
C
SYNC  
R
SYNC  
M1  
TURN-ON  
EDGE  
M1  
TURN-ON  
EDGE  
OUT  
0V  
0V  
0V  
S
OUT  
0V  
0V  
0V  
0V  
0V  
1.2V  
SYNC  
–1.2V  
M
CG  
M
CG  
TURN-ON  
EDGE  
TURN-ON  
EDGE  
CG  
FG  
0V  
0V  
M
M
FG  
FG  
0V  
TURN-ON  
EDGE  
0V  
0V  
TURN-ON  
EDGE  
0V  
TIME  
8311 F07  
Figure 7. In SYNC Mode, the Primary Side IC Sends SOUT Signals Through a Pulse Transformer to the LT8311’s SYNC Pin.  
SYNC < 1.2V Turns on MFG and Turns Off MCG. SYNC > 1.2V Turns On MCG and Turns Off MFG  
8311f  
20  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
OPTO-COUPLER CONTROL  
ence, the FB pin (and by extension the output voltage) is  
forced to soft-start at the slew rate set by the capacitor,  
SS  
The LT8311 offers opto-coupler control to allow output  
voltagefeedbackfromthesecondarytotheprimarysideina  
forwardconverter.Usedinconjunctionwithaprimary-side  
IC, the entire system offers fixed frequency peak current  
mode control that has excellent line/load regulation and  
quick transient response.  
C , connected to the SS pin.  
NOTE: To ensure that the soft-start time of the converter  
is controlled by the LT8311’s SS capacitor, C , it is  
SS  
important to program the primary IC’s soft-start faster,  
to get out of the way. If this is not done, the converter’s  
soft-start time will be dominated by the primary IC’s soft  
start, and the LT8311 will simply adjust its SS pin voltage  
and slew rate to match the slower soft start time set by  
the primary-side IC.  
A basic understanding of the LT8311’s opto-coupler  
control scheme can be obtained by referring to Figure 8.  
The LT8311 senses the output voltage through a resistor  
divider (R  
and R ) connected to its FB pin. The FB  
FB1  
FB2  
pin voltage is compared to the lower of two inputs:  
• An internal voltage reference of 1.227V  
• Soft-start (SS) pin  
WhentheSSpinvoltagegetshigherthanthe1.227Vrefer-  
ence, the FB pin starts to track the 1.227V reference. The  
output, therefore, regulates at a voltage set by the R  
/
FB1  
R
divider network, and the FB pin’s regulation voltage  
FB2  
of 1.227V. The SS pin capacitor continues to get charged  
up by the 10µA current source until it reaches its internal  
clamp voltage of 2V.  
At start-up, the SS pin capacitor, C , is charged up by the  
SS  
LT8311’s internally trimmed 10µA current source. Since  
FB tracks the lower of the SS pin and the 1.227V refer-  
L
OUT  
V
IN  
V
OUT  
M
C
OUT  
CG  
R
LOAD  
N
N
S
P
CG  
M
FG  
LT8311 OPTO CONTROL  
FG  
M1  
10µA  
+
SS  
FB  
14  
11  
A4  
1.227V  
C
SS  
GAIN  
C
PL  
+
+
OPTO  
1V  
0.9V  
R
20k  
A2  
9
SNS  
R
FB1  
+
+
V
C
IS ALSO  
REFERRED TO  
AS COMP IN SOME  
PRIMARY-SIDE ICs  
A1  
1.227V  
140k  
R
D
2k  
R
FB2  
COMP  
10  
+
V
V
REF  
C
A3  
R1  
8311 F08  
R2  
R
R
E
C
C
F
C
C
Figure 8. The LT8311 Provides Voltage Feedback, as Part of a Peak Current Mode Control System, in a Forward Converter  
8311f  
21  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
V
> 3.7V  
IN  
OPTO-DRIVER DEACTIVATION  
1. ERROR AMP DISABLED: COMP PIN VOLTAGE CHARGED UP TO COMP HI CLAMP = 2.2V; t  
2. SS PULL-DOWN AMPLIFIER DISABLED  
1.1 • 10kΩ • C  
C
RISE  
3. SS PULL-UP AMPLIFIER ACTIVATED. THIS AMPLIFIER ONLY HAS SOURCING CAPABILITY (1mA SLEW CURRENT), AND  
WILL DRIVE SS PIN VOLTAGE CLOSE TO FB PIN VOLTAGE (V – V 16mV)  
FB  
SS  
4. SS 10µA CHARGE CURRENT ACTIVATED  
5. OPTO-DRIVER DISABLED: OPTO PIN VOLTAGE HELD AT 0V  
YES  
COMP < 2.2V  
NO  
OPTO-DRIVER ACTIVATION  
1. ERROR AMP ENABLED: ERROR AMP CAN NOW DRIVE COMP BASED ON COMPARING FB VOLTAGE WITH SS VOLTAGE  
OR 1.227V REFERENCE  
2. OPTO-DRIVER ENABLED: OPTO-DRIVER CAN NOW DRIVE OPTO PIN AS A FUNCTION OF COMP PIN VOLTAGE  
NO  
SS > FB – 16mV  
YES  
SS PULL-DOWN AMPLIFIER ENABLED  
1. SS PULL-UP AMPLIFIER DISABLED  
2. SS PULL-DOWN AMPLIFIER ENABLED: THIS AMPLIFIER ONLY ACTIVATED WHEN FB PIN VOLTAGE IS LESS THAN 50%  
OF FB REFERENCE VOLTAGE. THIS AMPLIFIER ONLY HAS SINKING CAPABILITY (12mA SLEW CURRENT) AND WILL  
DRIVE SS PIN VOLTAGE TO BE NO HIGHER THAN 90mV ABOVE FB  
8311 F09  
Figure 9. Flowchart for LT8311 Opto Control Operation at Start-Up  
With SS charged up to 2V, the transconductance error  
amplifier, A1, sinks or sources current from its output,  
COMP,ifthereisanyvoltagedifferencebetweentheFBpin  
voltage and the 1.227V reference. The COMP pin, offset  
by 0.9V, serves as the input to the opto-driver, A2. If an  
increase in output load current causes the FB pin voltage  
to be lower than 1.227V, A1 drives the COMP pin high.  
COMP going high forces A2 to drive OPTO low, sourcing  
Since an opto-coupler’s output current is directly propor-  
tional to its input current, this decreased input current for  
theopto-couplerwillcauseitsoutputcurrent,andtherefore  
its emitter voltage at R , to decrease as well. The drop  
E
in R voltage causes A3, through its inverting action, to  
E
drive its output, V , higher. An increase in the V voltage  
C
C
causes the comparator, A4, to command a higher sense  
voltage across the R  
resistor, commanding M1 to run  
SNS  
less current through R into the opto-coupler.  
at a higher peak current. Since the current through M1 is  
D
8311f  
22  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
directly proportional to the output inductor current (M1  
its V UVLO voltage, so that upon getting power, it can  
IN  
Current • N /N = I  
), an increase in M1’s peak current  
tolerate up to a 100mV drop on its V pin before losing  
P
S
LOUT  
IN  
translates into an increase in the output inductor’s peak  
current. In essence, the feedback loop is commanding  
the output inductor peak current to meet the demands  
of the increased load current, with the ultimate goal of  
helping the output voltage recover from a load step and  
stay regulated.  
power again. Even more importantly, the LT8311 has an  
opto-control start-up system that keeps the LT8311’s  
“opto-control brains” turned off until all relevant node  
voltages within the voltage loop are prebiased to a state  
where they will not cause switching activity to cease when  
the loop is eventually enabled.  
As shown in Figure 9 and the scope shot in Figure 10,  
the LT8311’s opto-control operation at start-up involves  
slewing the SS pin voltage close to the FB pin voltage,  
slewing the COMP pin voltage to its high clamp voltage,  
and keeping the OPTO pin voltage held low. During this  
phase, the inductor current (and by extension, the output  
voltage)iscontrolledbythesoft-startfunctionprovidedby  
theprimary-sideIC.Uponcompletionofthestatemachine,  
theLT8311allowsthefeedbacklooptobefunctionalagain,  
and the FB pin voltage tracks the LT8311’s SS pin voltage  
until FB finally gets to its regulation target of 1.227V.  
Opto-Control Operation at Start-Up  
For applications connecting the LT8311’s V pin directly  
IN  
to the converter output, the LT8311 includes intelligent  
circuitry to ensure no interruption in the switching of  
the primary-side MOSFET upon the LT8311’s turn-on.  
The LT8311 turns on when its V pin (and therefore the  
IN  
converter output voltage when V is directly connected to  
IN  
theoutput)exceeds3.7V.Withoutintelligentcircuitry,this  
V
level will cause the FB pin voltage of the LT8311 to  
OUT  
be greater than the voltage on the LT8311’s SS pin (which  
is typically at 0V upon turn-on of the IC), causing ampli-  
fier A1 to drive the COMP pin low. This drives the OPTO  
pin high, which causes full current into the opto-coupler  
and terminates switching of the primary-side MOSFET.  
Termination of the primary-side MOSFET’s switching can  
lead to the converter’s output voltage dropping, which  
could cause the LT8311 to lose power and shut off. The  
LT8311’s intelligent circuitry prevents this situation using  
two unique features. It has a built-in 100mV hysteresis on  
Power Good  
The LT8311 offers output power good monitoring to  
assist with system level design. The LT8311’s PGOOD  
pin is pulled low internally when the FB pin voltage stays  
within a 7% window of the 1.227V reference for a period  
of175µs.Waitingfor175µstoelapsepreventsthePGOOD  
pinfromindicatingfalsepositivesduringtransientevents.  
COMP  
1V/DIV  
PGOOD  
5V/DIV  
FB  
200mV/DIV  
FB  
500mV/DIV  
SS  
200mV/DIV  
OPTO  
500mV/DIV  
8311 F10  
8311 F11  
5ms/DIV  
2ms/DIV  
Figure 10. Opto Control Operation at Start-Up  
Figure 11. Power Good Activates (PGOOD = Low) When the  
LT8311s FB Pin Voltage Is Within 7% of Its Regulated Target  
(1.227V). The PGOOD Pin Is Pulled Up Externally to a 12V  
Housekeeping Supply Through a 100k External Resistor  
8311f  
23  
For more information www.linear.com/LT8311  
LT8311  
OPERATION  
The PGOOD comparator has 3% hysteresis. Therefore,  
when the FB pin voltage is driven away from its regulated  
value of 1.227V by 10%, the PGOOD pin’s internal pull-  
down shuts off immediately. As a result, the pin is pulled  
high by an external resistor or external current source  
connected to a supply voltage. The PGOOD pin’s output  
can be fed to a microcontroller that make decisions based  
on the state of the output voltage.  
necessary (up to its maximum sink capability of 13mA), to  
ensure that the SS pin voltage gets no higher than 100mV  
abovetheFBpinvoltage.Duringoutputshort-circuitevents,  
when the FB pin voltage is pulled to ground, the SS pull-  
down amplifier gets activated and pulls the SS pin voltage  
to 100mV above the FB pin voltage. Eventually, when the  
short-circuitconditionisover,theFBpinvoltagegradually  
rises up with the SS pin at a slew rate set by C and the  
SS  
10µA charge current. This allows the output to recover  
Output Overshoot Control Helps with Short-Circuit  
Recovery  
gradually from the short-circuit condition. Note that when  
theLT8311hasitsV pinpowereddirectlyfromtheoutput  
IN  
of the forward converter, it will lose all its brains during a  
short-circuit event. Under this scenario, output overshoot  
control will not be in effect until the LT8311 gets brains  
again, until which point, the output inductor current and  
the output voltage will be controlled by the primary-side  
IC’s soft-start function.  
TheLT8311providesoutputovershootcontrolbyactivating  
itssoft-startpull-downamplifier(SS  
intheBlock  
DOWNAMP  
Diagram) any time the FB pin voltage is less than 50%  
of the FB reference voltage (1.227V). This is particularly  
helpful with output voltage recovery after the removal of  
a short-circuit condition or after a heavy load transient.  
The SS pull-down amplifier will sink whatever current is  
PGOOD  
10V/DIV  
PGOOD  
10V/DIV  
SS  
SS  
500mV/DIV  
500mV/DIV  
FB  
FB  
500mV/DIV  
500mV/DIV  
8311 F12a  
8311 F12b  
1ms/DIV  
2ms/DIV  
(a) Output Overshoot Control with CSS = 1nF. LT8311 VIN  
Powered from a 12V Housekeeping Supply, Which Also  
Pulls Up on the PGOOD Pin Through a 100k External  
Resistor  
(b) Output Overshoot Control with CSS = 33nF. LT8311 VIN  
Powered from a 12V Housekeeping Supply, Which Also Pulls  
Up on the PGOOD Pin Through a 100k External Resistor  
Figure 12. Output Overshoot Control at Start-Up  
8311f  
24  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
V BIAS SUPPLY  
IN  
With the previous criteria in mind, there are three meth-  
ods (1-3), listed below, for powering up the LT8311. For  
preactive mode, use method 1, 2 or 3. For SYNC mode  
FCM, use method 1 or 3; for DCM, use method 1, 2 or 3.  
The LT8311’s V pin can be powered in various ways.  
IN  
Place at least a 2.2µF ceramic bypass capacitor close to  
the pin.  
1. Power from the LT3752’s housekeeping supply (see  
Figure 21 in the Typical Application section). Being  
a flyback converter rather than a LDO, the LT3752’s  
housekeeping supply is an efficient supply source. It  
can be connected through an external winding to the  
PickinganappropriatebiassupplytopoweruptheLT8311  
requires consideration of the following criteria:  
1. The V pin, in certain configurations, may be the only  
IN  
supply to the LT8311’s INTV pin, which provides  
CC  
gate drive to the catch and forward MOSFETs. In such  
LT8311’s V and INTV pins, and can be set high  
IN  
CC  
situations, V ’s bias supply must be high enough to  
IN  
enough to provide adequate gate drive for the catch  
and forward MOSFETs, but low enough to minimize  
efficiencyandthermallosses.Thehousekeepingsupply  
comes up as soon as the LT3752 receives input power,  
so power is delivered to the LT8311 without delay.  
provideadequategate-drivevoltage(typically5Vto7V)  
for both synchronous MOSFETs.  
2. V ’s bias supply must be able to source:  
IN  
a. LT8311’s V current (4.5mA typical)  
IN  
2. Power directly from V . At output voltages lower  
OUT  
b. INTV gate-drive current when using V to sup-  
CC  
IN  
than 10V, careful consideration must be given to the  
output voltage start-up time, ensuring that the LT8311  
can turn on and provide synchronous/opto control well  
before the output voltage approaches regulation. It is  
alsoimportanttoensure,attheseloweroutputvoltages,  
that sufficient gate drive voltage can be provided to the  
ply the INTV pin (typically 10mA to 30mA)  
CC  
c. Opto-driver source current (typically 1mA to 5mA)  
3. V start-up and short-circuit conditions:  
IN  
a. V must come up in reasonable time to allow the  
IN  
LT8311 to begin synchronous and opto-coupler  
control. While synchronous control is shut off, the  
secondary-side current will flow through the body  
diodes of the secondary synchronous MOSFETs.  
While opto-control is off, the forward converter  
will operate open-loop, using a volt-second clamp  
external MOSFETs. At higher V  
voltages, efficiency  
OUT  
and thermal considerations related to the IC’s internal  
power dissipation can become important criteria. In  
addition, at higher V  
voltages, it is important to  
OUT  
ensure that voltage transients on the V pin do not  
IN  
exceed the pin’s abs max rating of 30V.  
to control V  
if operating with LT3752, LT3752-1  
OUT  
3. Use a buck circuit from an auxiliary transformer wind-  
ing, as shown in Figure 13. This circuit has the benefit  
of being highly efficient, and is fairly simple to design.  
It is particularly useful for low output voltage applica-  
tions (3.3V or 5V) that do not have an external house-  
keeping supply, and where powering directly from the  
output voltage is inadequate. In this configuration, the  
buck circuit’s output voltage derives its energy from  
secondary-sideswitchingpulsesthatalsosourceenergy  
or LT3753 on the primary side.  
b. V may be shorted to GND during transient events.  
IN  
For instance, V powered from the output voltage,  
IN  
will be driven to 0V during an output short-circuit.  
The forward converter must be able to ride through  
the momentary loss of power to the LT8311, which  
is often easily accomplished by appropriately  
configuring soft-start control on the primary-side  
ICs. Refer to the LT3752/LT8310 data sheets for  
details on configuring soft-start control on the  
primary-side IC.  
to the forward converter’s main output voltage, V  
.
OUT  
Careful consideration must be given to ensure that the  
buck output voltage comes up well in time, and turns  
ontheLT8311toprovidesynchronousandoptocontrol  
before the forward converter’s actual output voltage  
gets close to regulation. If there is a need to speed up  
8311f  
25  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
the time taken by the buck converter output voltage to  
gettoitstarget, relativetotheforwardconverter’smain  
outputvoltage,oftenasimpletechniqueistoslowdown  
the main output voltage start-up time by increasing the  
soft-start capacitor on the primary-side IC.  
40mA. Ensure that the total gate charge (Q ) current  
g
required by both secondary MOSFETs, M and M ,  
CG  
FG  
is less than 40mA:  
I
= f • (Q  
+ Q ) < 40mA  
g_MFG  
MOSFET_TOTAL  
SW  
g_MCG  
where f  
g_MCG  
is the converter’s switching frequency,  
SW  
Q
isthegatecharge(Q )ratingofM andQ  
g CG g_MFG  
INTV BIAS SUPPLY  
CC  
is the gate charge (Q ) rating of M .  
g
FG  
The INTV pin powers the catch and forward MOSFET  
CC  
This configuration, utilizing the LT8311’s internal LDO,  
willsufficeformostapplications,limitedonlybythermal  
considerations related to the LDO’s power dissipation.  
Keeping the power dissipation to a minimum will help  
lowertheoperatingjunctiontemperatureoftheLT8311,  
potentially allowing the system to operate over a wider  
ambient temperature range:  
gate drivers of the LT8311. Two configurations exist for  
biasing up the INTV pin, as shown in Figure 14:  
CC  
1. In the first configuration, the LT8311’s on-chip LDO  
regulates the INTV pin voltage from the V supply.  
CC  
IN  
When the V pin voltage is low, the internal LDO will  
IN  
operate in drop-out, driving the INTV pin to about  
CC  
400mV below the V pin voltage. When the V pin  
IN  
IN  
LDOPowerDissipation=(V INTV )•I  
IN  
CC MOSFET_TOTAL  
voltage is high, the internal LDO will regulate INTV ’s  
CC  
LT8311 Operating Junction Temperature ≈  
voltage to 7V. Ensure that V ’s supply voltage does not  
IN  
θ
OPTO  
• (V • 4.5mA + LDO Power Dissipation + V •  
JA  
IN  
) + T  
IN  
exceed V ’s abs max voltage of 30V. If INTV drops  
IN  
CC  
I
A
belowitsUVLOvoltage(4.6Vrisingand4.3Vfalling),all  
synchronous switching will be stopped. The maximum  
where θ is LT8311’s junction-to-ambient thermal  
JA  
guaranteed current that the INTV LDO can source is  
resistance and is typically 38°C/W; I  
is the current  
CC  
OPTO  
NAUX  
NS  
LT8311  
VAUX = VOUT  
V
< 30V  
V
IN  
IN  
BUCK AUXILLIARY SUPPLY  
LT8311  
IN  
V
AUX  
V
LDO  
INTV  
INTV  
CC  
N
AUX  
REGULATED to 7V  
4.7µF  
CC  
V
IN  
V
OUT  
M
CG  
N
N
P
S
LT8311  
V
V
IN  
< 16V  
IN  
M1  
M
FG  
LDO  
INTV  
8311 F13  
CC  
4.7µF  
8311 F14  
Figure 13. Buck Circuit Generates VAUX Supply, Which  
Powers LT8311’s VIN and INTVCC Pins  
Figure 14. VIN and INTVCC Pin Configurations  
8311f  
26  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
sourced into the opto-coupler by the LT8311’s OPTO  
Place the capacitor close to the INTV pin, ensuring that  
CC  
pin; 4.5mA is the typical V current of the LT8311;  
the ground terminal of the capacitor has the shortest pos-  
IN  
T is the ambient temperature.  
A
sible return path to the LT8311’s ground (exposed pad).  
2. In the second configuration, the V pin’s bias supply  
IN  
LT8311 OPTO CONTROL FUNDAMENTALS  
Setting Output Voltage  
drives the INTV pin through a direct connection,  
CC  
bypassing the internal LDO. This configuration re-  
duces power dissipation inside the IC by not having to  
incur any power loss within the INTV LDO. Use this  
Figure 15 shows how to program the forward converter’s  
output voltage with a resistor divider feedback network.  
CC  
optional configuration for V voltages that are below  
IN  
16V,allowingsufficientmarginforINTV tostaybelow  
Connect the top of R  
FB2  
to V , the tap point of R  
/
CC  
FB1  
OUT  
FB1  
its OVLO(+) voltage of 16.5V. Ensure that V , during  
R
to the FB pin, and the bottom of R to ground. The  
IN  
FB2  
transients, does not exceed INTV ’s abs max voltage  
ground return of R must be kept as close as possible to  
CC  
FB2  
of 18V.  
thegroundoftheLT8311, andmustbekeptawayfromthe  
forward converter’s power path. The power path contains  
switching currents, and possibly large value currents (de-  
pending upon the load) which may introduce unintended  
noise, or I • R drops into the FB resistor divider path. The  
FB pin regulates to 1.227V and has a typical input pin  
bias current of 120nA flowing out of the pin. The output  
voltage is set by the formula:  
Whenanexternalsupplyorauxiliarywindingisavailable,  
use this configuration (tying V and INTV together)  
IN  
CC  
to deliver power to the IC. This configuration is most  
applicablewhenusingtheLT3752asaprimary-sideIC.  
The LT3752’s housekeeping supply can be connected  
to the LT8311’s V and INTV through an auxiliary  
IN  
CC  
winding, as shown in Figure 21 in the Typical Applica-  
RFB1  
tions section.  
VOUT = 1.227 • 1+  
120nA RFB1  
R
FB2   
INTV should be bypassed with a minimum of 4.7µF  
CC  
ceramic capacitor to ground for all three configurations.  
V
OUT  
LT8311  
R
FB1  
FB2  
120nA  
FB  
R
GND  
8311 F15  
Figure 15. Setting Output Voltage of Forward Converter  
8311f  
27  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
I
L
OUT  
OUT  
V
V
OUT  
IN  
M
CG  
R
LOAD  
N
N
C
C
OUT2  
P
S
OUT1  
CG  
I
R
PRIMARY  
M
ESR  
FG  
LT3752 OR LT8310  
COMP_PRIMARY  
FG  
LT8311  
V
M1  
OUT  
(GATE)  
V
– 1.7V < V  
< 6V  
CC(OPTO)  
IN(LT8311)  
+
ISENSEP  
(SENSE)  
V
CC(OPTO)  
CURR_GAIN =  
7.5V/V, 5V/V  
g
= 350umhos  
= 4.5MΩ  
mEA  
M
F
C
PL  
V
ISENSEP  
+
R
OUTEA  
+
OPTO  
1V  
0.9V  
R
20k  
SNS  
R
FB1  
+
1.227V  
COMP/V VOLTAGE TO COMMAND 0  
SNS  
C
I
R
CURRENT 1.25V, 0.7V  
F
FB  
140k  
2k  
COMP/V VOLTAGE TO COMMAND MAX  
C
R
FB2  
R
CURRENT 2V, 1.2V  
SNS  
C
OPTO  
R
D
MAX OPTO SOURCE  
CURRENT = 10mA  
MAX COMP SRC CURRENT = 20µA  
MAX COMP SINK CURRENT = 30µA  
COMP  
8311 F16  
TRUE VOLTAGE AMP  
TRANSCONDUCTANCE AMP  
I
OPTO_OUT  
V
= 1.25V, 1.60V  
REF  
+
R
C
C
F
FB  
(FBX)  
V
REF  
C
R
= 1/g  
C
IN(OPTO)  
m(OPTO)  
R1  
V
X
MAX COMP/V SRC CURRENT ~ 11mA, 13µA  
C
R
E
MAX COMP/V SINK CURRENT11mA,12.5µA  
C
COMP  
(V )  
C
R2  
R1 = R2 / GAIN  
1 < GAIN (TYPICAL) < 2  
R2 (TYPICAL) 33k, 150k  
Figure 16. Forward Converter Voltage Feedback Loop with LT8311 on Secondary Side and LT3752 (or) LT8310 on Primary Side  
Picking Loop Compensation Components  
the transient performance will suffer. The value choice  
for C is somewhat the inverse of the R choice: if too  
C
C
Figure 16 shows a typical loop associated with a forward  
converter, using the LT8311 on the secondary side, and  
theLT3752orLT8310astheprimary-sideICs. Parametric  
valuesspecifictotheLT3752areshowninred,whilethose  
specifictotheLT8310areshowninblue.Theforwardcon-  
verter loop shown is a peak current mode control system.  
small a C value is used, the loop may be unstable and  
C
if too large a C value is used, the transient performance  
C
may suffer. A small capacitor, C , is often connected in  
F
parallel with the RC compensation network to attenuate  
the COMP pin voltage ripple induced from the output  
voltage ripple (through the internal error amplifier). The  
The optimum values for loop compensation depend on  
the IC used on the primary side and the LT8311, as well  
as the operating conditions of the converter (input voltage  
range, output voltage, load current, etc.). To compensate  
the voltage feedback loop around the LT8311, a series  
resistor/capacitor network is usually connected from the  
LT8311's COMP pin to GND. For most applications, the  
C capacitor usually ranges in value from 10pF to 100pF.  
F
For certain applications, a phase-lead zero capacitor C  
PL  
(in parallel with R resistor), or a pole-zero pair (C  
FB1  
OPTO  
and R ) on the OPTO pin may help improve the transient  
D
performance of the loop. A practical approach to design  
the compensation network is to start with one of the  
circuits in this data sheet that is similar to your applica-  
tion, and tune the compensation network to optimize the  
performance. Stability should then be checked across all  
operatingconditions,includingloadcurrent,inputvoltage  
range and temperature.  
capacitor C should be in the range of 4.7nF to 47nF, and  
C
the resistor R should be in the range of 2k to 20k. If the  
C
R value is too large, the part will be more susceptible to  
C
high frequency noise and jitter. If the R value is too small,  
C
8311f  
28  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
Picking the Opto-Coupler  
where I  
is the output current of the opto-coupler  
OPTO_OUT  
and I is the opto-coupler’s input LED current  
F
The voltage feedback loop, explained earlier, uses an  
opto-coupler to convey output voltage information from  
the secondary side to the primary side (see Figure 17).  
An opto-coupler is used because of its wide prevalence,  
relatively low cost, and its ability to convey DC signal  
information over an isolation boundary with potential  
differences of up to 5000V.  
Opto-couplers have historically been disliked, and jus-  
tifiably so, for having CTRs that degrade with operating  
lifetime, at higher operating temperatures, and at higher  
input currents (I ). Much of this CTR degradation comes  
F
from a reduction in the quantum efficiency of the input  
LED, which is a function of the LED’s operating current  
(I ), operating temperature and operating lifetime.  
F
The input of an opto-coupler typically consists of an  
infrared light-emitting diode (LED), while the output  
is typically a phototransistor. Current flowing into the  
Fortunately, LED technology has matured over the last  
coupleofdecades,andhasallowedimprovementsinopto-  
coupler performance, a discussion of which is beyond the  
scopeofthisdatasheet.AvagoTechnologieshaspublished  
documentation showing 3-sigma CTR degradation of no  
more than 10% over 30 field years of operation for their  
opto-couplers manufactured with AlGaAs type LEDs run-  
opto-coupler’s input LED, called I , causes photons to  
F
be emitted. These photons cross the opto-coupler’s  
isolation barrier and get collected in the base of the output  
phototransistor. This photo current, which essentially  
forms the phototransistor’s base current, is gained up  
by the phototransistor’s ß (current gain) before flowing  
ning 5mA of input current (I ) at 100% duty cycle, and at  
85°C ambient temperature.  
F
out of the opto-coupler, and is called I . The key  
OPTO_OUT  
parameter of interest in an opto-coupler is the current  
transfer ratio (CTR). CTR is typically expressed in units  
of %, and is calculated as follows:  
Please refer to the application/design notes from opto-  
coupler vendors such as Avago Technologies, CEL and  
Vishay, to procure further information on opto-couplers.  
Atypicallyrecommendedopto-coupleristhePS2801from  
California Eastern Laboratories (CEL).  
IOPTO_OUT  
CTR(%) =  
IF  
ISOLATION  
BOUNDARY  
PRIMARY  
SIDE  
SECONDARY  
SIDE  
V
CC  
R
D
OPTO  
OPTO-  
COUPLER  
I
F
LT8311  
PRIMARY SIDE  
OF VOLTAGE  
FEEDBACK LOOP  
8311 F17  
I
OPTO_OUT  
R
E
Figure 17. Typical Opto-Coupler Configuration in a Voltage Feedback Loop  
8311f  
29  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
Opto-Coupler Design Guidance  
The following guidelines help calculate initial values for  
the input and output resistors of the opto-coupler (R and  
D
An opto-coupler’s CTR degradation affects a forward  
converter’s voltage feedback loop in two ways:  
R , respectively) for a generic application. The final values  
E
for R and R should be determined after bread-boarding  
D
E
1. Large Signal Effect: A drop in CTR means that to sus-  
tain the same output current from the opto-coupler,  
theinputcurrentoftheopto-couplerwillhavetoincrease.  
The input current of the opto-coupler is sourced by the  
LT8311’s OPTO pin. The opto-feedback loop should  
be designed such that, at the lowest CTR possible, the  
LT8311’s OPTO pin is not current limited. The maxi-  
mum current that the LT8311’s internal opto-driver can  
source out of the OPTO pin is 10mA. Design the system  
so that, nominally, the OPTO pin is sourcing 2mA to  
3mA maximum current into the opto-coupler’s input.  
a system. Use Figure 16 as a reference when reading the  
following guidelines:  
Step 1: Pick resistors, R1 and R2, that set the inverting  
gain of the primary-side IC’s error amplifier. A typical  
starting value for R1 would be 22k on the LT3752, and  
100k on the LT8310. A typical starting value for R2 would  
be 33k on the LT3752, and 150k on the LT8310.  
Step 2: Calculate the maximum voltage required at the  
emitteroftheopto-coupler'soutputtransistor(V  
)to  
X_MAX  
drive the primary-side IC’s COMP or V pin to the voltage  
C
2. Small Signal Effect: A reduction in CTR by 2x will  
cause the DC gain and crossover frequency of the for-  
ward converter’s voltage feedback loop to drop by 2x,  
assuming all other parameters are constant. Likewise,  
an increase in CTR by 2x, assuming no change in other  
parameters, will cause the DC gain and the crossover  
frequency of the voltage feedback loop to increase  
by 2x. The voltage feedback loop must be designed  
needed to command zero inductor current (referred to as  
V
in the following equation):  
C_LOW  
R1  
R2  
R1  
R2  
VX _MAX = VREF 1+  
VC_LOW •  
V
is approximately 0.7V for the LT8310, and 1.25V  
C_LOW  
for the LT3752. V  
for the LT3752.  
is 1.6V for the LT8310 and 1.25V  
REF  
ensuring that at CTR  
(maximum CTR of the opto-  
(MAX)  
coupler), the crossover frequency of the feedback loop  
stays well within the Nyquist frequency of the system  
(= switching frequency/2). A good rule of thumb is to  
design the voltage feedback loop’s crossover at about  
1/10 of the switching frequency for an opto-coupler at  
the nominal value of CTR.  
Step 3: Pick a maximum opto-coupler output current  
(I ) in the range of 1mA to 10mA. A typical  
OPTO_OUT_HIGH  
choice for I  
might be 2.5mA. Now calculate  
OPTO_OUT_HIGH  
R to be:  
E
VXMAX  
RE =  
IOPTO_OUT _HIGH  
As explained earlier, improvements in opto-coupler  
technology have allowed CTR changes over the operating  
lifetimeofanopto-couplertobecomesignificantlysmaller  
andwellcontrolled.However,themorechallengingdesign  
aspect of an opto-coupler is the absolute variation in its  
CTR over a large sample size and operating temperature  
range. It is this spread in CTR that must be accounted for  
when designing an opto-coupler based voltage feedback  
loop. Picking an opto-coupler whose CTR variation is no  
more than 2x its nominal value, is typically a good starting  
point (see Table 1 for a list of opto-couplers with small  
CTR spreads at room temperature).  
Step 4: Estimate the maximum input current (I  
)
F_HIGH  
needed to be sourced into opto-coupler by the  
LT8311’s OPTO pin, at the opto-coupler’s minimum CTR  
(CTR ):  
MIN  
IOPTO_OUT _HIGH  
IF _HIGH  
=
CTRMIN  
Ensure that I  
is well within the 10mA limit that the  
F_HIGH  
LT8311’s OPTO pin can source.  
Step 5: Estimate the R value needed for the OPTO pin  
D
to source the I  
current at the maximum OPTO pin  
F_HIGH  
8311f  
30  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
voltage (V  
). The opto-coupler’s input LED has  
LT8311 SYNCHRONOUS CONTROL FUNDAMENTALS  
Catch and Forward MOSFET Selection  
OPTO(MAX)  
a turn-on voltage of 1.2V:  
VOPTO(MAX) 1.2V 0.5V  
RD =  
Whenselectingthesecondary-sidesynchronousMOSFETs,  
it is important to choose the following parameters care-  
fully to ensure robust operation of the system: maximum  
drain-source voltage, maximum drain-source current and  
maximum gate-source voltage. Furthermore, to maximize  
systemefficiency,itisimportanttolowerpowerdissipation  
IF _HIGH  
The extra 0.5V in the equation is margin to account for the  
OPTO pin's linear range. The maximum OPTO pin voltage  
is 6V (minimum guaranteed), when the LT8311’s V pin  
IN  
OPTO_MAX  
is at 8V or higher. At lower V pin voltages, V  
IN  
is V – 1.7V.  
intheMOSFETsbyminimizingtheiron-resistance(R  
)
IN  
DS(ON)  
and gate charge (Q ). Please use the following guidelines  
g
The previous equations show how R and R ought to  
D
E
to choose appropriate catch and forward MOSFETs for a  
specific application:  
be calculated for large signal characteristics of an opto-  
coupler-based voltage feedback loop. The final values  
chosen for R and R may need to be tweaked from the  
D
E
1. Maximum V Rating  
DS  
valuescalculatedheretoachieveasatisfactorycompromise  
between the large and small signal characteristics of the  
voltage feedback loop.  
ThemaximumvoltageseenonthedrainofthecatchMOS-  
FET is a function of the maximum input voltage (V  
)
IN(MAX)  
of the system, and the transformer turns ratio (N /N ).  
S
P
Picking Soft-Start Capacitor (C ) for Output Soft-Start  
SS  
NS  
NP  
Catch MOSFET VDS(MAX) = VIN(MAX)  
• Margin  
The Operation section explained how the LT8311’s SS  
pin helps with output soft-start at start-up, with output  
overshoot control during short-circuit recovery, and to  
prebias the voltage feedback loop during start-up of the  
LT8311’s opto-control scheme. The soft-start capacitor,  
where Margin is a number from 1 to 3 (typically 1.5 to 2),  
allowing a certain safety margin in the catch MOSFET’s  
V
equation. Thiswillaccountforvoltagespikesas-  
DS(MAX)  
sociated with the leakage inductance of the transformer’s  
secondary winding. Using a snubber on the drain of the  
catch MOSFET will minimize leakage inductance spikes  
and allow Margin to approach the lower end of its range.  
C , is charged by the LT8311’s internally trimmed 10µA  
SS  
current source at start-up. Since the FB pin voltage tracks  
theSSpinvoltagewhenthevoltageonSSisbelow1.227V,  
setting the SS pin’s slew rate will set the FB pin’s slew  
rate, setting the time taken by the output to come up to  
its regulation voltage. It is important to recognize that the  
tracking between the SS pin’s slew rate and the FB’s pin  
slew rate is only valid as long as the LT8311’s soft-start of  
outputvoltageisslowerthantheprimary-sideIC’ssoft-start  
of output voltage, as explained in the Operation section.  
By observing this criteria, the following equation applies:  
The maximum voltage seen on the drain of the forward  
MOSFET is a function of the reset mechanism used on  
the primary side of the forward converter to reset the  
transformer’s magnetic flux.  
When using active clamp reset:  
VOUT  
Forward MOSFET VDS(MAX)  
VOUT  
VOUT V  
10µA  
CSS  
1−  
FB  
NS  
NP  
=
=
VIN(MIN)  
t  
t  
where C is the capacitor from the LT8311’s SS pin to  
whereV  
and V  
istheminimuminputvoltageofthesystem,  
SS  
IN(MIN)  
GND, V  
is the output voltage of the forward converter,  
is the forward converter’s output voltage. Note  
OUT  
OUT  
and V is the LT8311’s FB pin voltage.  
that this equation for the forward MOSFET’s V  
FB  
DS(MAX)  
assumes that the primary side’s active clamp capacitor  
In steady state, the SS pin voltage is clamped to a maxi-  
mum of 2V by an internal clamp.  
(C ) is large enough to be treated as a voltage source.  
CL  
8311f  
31  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
In reality, the drain voltage of the forward MOSFET will  
where V  
and V  
are the maximum and mini-  
IN(MAX)  
IN(MIN)  
havesomebowingoverandabovethevoltagecalculated  
mum input voltages of the forward converter.  
here, associated with the energy shuttled between L  
MAG  
The catch MOSFET’s maximum continuous drain current,  
and C during the reset process. For most applications,  
CL  
I
, can be calculated as:  
CAT_RMS  
this bowing can be accounted for by adding a 20% safety  
margin on the forward MOSFET’s V  
equation.  
DS(MAX)  
2   
IRIPP(PP)  
2
When using resonant reset:  
ICAT _RMS  
=
1D  
• I  
+
(
)
MIN  
LOAD(MAX)  
12  
VOUT  
fSW • 2 • LMAG CRST  
Forward MOSFET VDS(MAX)  
where D  
converter, I  
of the forward converter, and I  
peak ripple current in the output inductor. I  
calculated as follows:  
is the minimum duty cycle of the forward  
LOAD(MAX)  
MIN  
is the maximum output load current  
wheref istheforward converter’sswitchingfrequency,  
is the peak-to-  
SW  
RIPP(P-P)  
L
MAG  
is the magnetizing inductance of the transformer’s  
is  
RIPP(P-P)  
primary winding, and C  
used on the primary side.  
is the resonant reset capacitor  
RST  
1DAVG  
fSW LOUT  
IRIPP(PP) = VOUT  
where D  
Unlike the catch MOSFET, the V  
equation of the  
DS(MAX)  
forward MOSFET typically does not need to account for  
leakageinductancevoltagespikes.Thisisbecausetheturn-  
on and turn-off events of the forward MOSFET, typically,  
do not involve the forward MOSFET’s drain having to dis-  
sipatelargeamountsofstoredleakageinductanceenergy.  
is the average duty cycle of the forward con-  
AVG  
verter, f is the converter’s switching frequency, and  
SW  
L
is the output inductance value.  
OUT  
TheforwardMOSFET’smaximumcontinuous-draincurrent  
(I ) is:  
FWD_RMS  
2. Maximum I Rating  
DS  
Most power MOSFET data sheets have a rating for  
continuous-drain current, and pulse-drain current.  
Continuous-drain current is the RMS drain current of the  
catch and forward MOSFET, which is a function of the  
inductor current, and the duty cycle at which the forward  
converter is operating. Pulse-drain current is the  
instantaneousmaximumdraincurrentseenbytheMOSFETs,  
and is typically the peak of the inductor current waveform.  
2   
IRIPP(PP)  
2
IFWD_RMS  
=
DMAX • I  
+
LOAD(MAX)  
12  
Both, the forward and catch MOSFET should have a peak  
pulse current rating that is higher than the highest pos-  
sible peak of the inductor current. This highest possible  
peak occurs at the maximum load current, and is equal to:  
Prior to calculating the maximum continuous-drain cur-  
rent, it is useful to calculate the minimum, maximum and  
average duty cycles of the forward converter:  
IRIPP(PP)  
ILOAD(MAX)  
+
2
VOUT  
3. Maximum V Rating  
GS  
DMIN  
=
NS  
N
P   
As explained earlier in the INTV Bias Supply section,  
VIN(MAX)  
CC  
INTV is regulated internally to 7V by the LT8311. By  
CC  
extension, the catch and forward MOSFET gates can be  
VOUT  
DMAX  
=
drivenashighas7VwhenusingtheLT8311’sinternalLDO  
NS  
N
VIN(MIN)  
to regulate INTV . For applications using the LT8311’s  
CC  
P   
internal LDO, picking a maximum V greater than 10V  
GS  
DMAX + DMIN  
should suffice.  
DAVG  
=
2
8311f  
32  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
Alternatively, the INTV pin can be overdriven externally  
The forward MOSFET’s turn-on and turn-off timings,  
regardless of preactive or SYNC mode, are ZVS (zero  
voltage switching) and ZCS (zero current switching)  
events, respectively. The forward MOSFET turns on  
after transformer reset is complete. Transformer reset  
completionismarkedbythetransformer’smagnetizing  
current flowing through the forward MOSFET’s body  
diode,whichallowstheforwardMOSFETtoturnonwith  
a small drain-to-source voltage across it. Similarly, the  
forward MOSFET typically turns off after the primary-  
side MOSFET has turned off. When the primary-side  
MOSFET turns off, the only current flowing through  
the forward MOSFET is the transformer magnetizing  
current, which for all intents and purposes, can be as-  
sumed to be zero. Consequently, the forward MOSFET  
has insignificant switching losses.  
CC  
up to 16V. For such applications, picking MOSFETs with  
a maximum V of 20V should suffice.  
GS  
4. Calculating MOSFET Losses Due to R  
DS(ON)  
The conduction/ohmic loss associated with the catch and  
forward MOSFET is a function of the MOSFET’s RMS cur-  
rent and its on-resistance. For the vast majority of forward  
converterapplications,whichtypicallyhavehighmaximum  
load currents on the output (5A or higher), minimizing  
losses associated with the MOSFET’s R  
will be far  
DS(ON)  
more critical than minimizing losses associated with the  
MOSFET’s gate charge.  
2
Catch MOSFET Ohmic Loss = (I  
) • R  
CAT_RMS  
CAT  
where R  
is the on-resistance (R ) of the catch  
DS(ON)  
CAT  
MOSFET.  
B. Q Based Converter Power Loss:  
g
2
Forward MOSFET Ohmic Loss = (I  
) • R  
FWD_RMS  
FWD  
As explained earlier in the INTV Bias Supply section,  
CC  
thereisapowerlossincurredinturningon/offthecatch  
where R  
is the on-resistance (R ) of the forward  
DS(ON)  
FWD  
MOSFET.  
and forward MOSFETs, associated with supplying gate  
charge (Q ) to the gates of these MOSFETs. This charge  
g
5. Calculating Q Based Loss  
is supplied either by the supply voltage connected to  
g
the LT8311’s V pin, when using the internal LDO to  
IN  
There are two aspects to the gate charge (Q ) based loss  
g
regulate INTV , or by the supply voltage connected  
CC  
associated with the secondary synchronous MOSFETs:  
to the LT8311’s INTV pin, when driving the INTV  
CC  
CC  
A. Q Based MOSFET Switching Loss:  
pin externally. In either case, the total loss associated  
g
with supplying the gate charge is:  
The catch MOSFET’s turn-on and turn-off timings,  
regardless of preactive or SYNC mode, are ZVS (zero  
voltage switching) events. The catch MOSFET turns on  
after the inductor current is already flowing through its  
body diode. Similarly, when the catch MOSFET turns  
off, theinductorcurrentsubsequentlyflowsthroughits  
body diode. As a result, the voltage across the drain-  
source terminals of the catch MOSFET is small during  
switchingevents, resultinginthecatchMOSFEThaving  
insignificant switching loss.  
Power Loss = V  
• (Q  
+ Q ) • f  
gFWD SW  
SUPP  
gCAT  
where V  
is the supply voltage connected to the  
SUPP  
LT8311’s V pin when INTV is internally regulated.  
IN  
CC  
Alternatively V  
is the supply voltage connected  
SUPP  
to the LT8311’s INTV pin when INTV is externally  
CC  
CC  
driven. Q  
and Q  
is the gate charge (Q ) of the  
gCAT  
gFWD g  
catch and forward MOSFETs, respectively. f is the  
SW  
forward converter’s switching frequency.  
8311f  
33  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
Setting R  
in Preactive Mode  
–150mV, the LT8311 resets its internal timeout signal.  
The gate of the catch MOSFET, CG turns on (after some  
propagation delay) when CSW is detected to fall below  
–150mV. Upon CG going high, the catch MOSFET turns  
on and pulls its drain voltage (CSW) close to its source  
voltage, which is tied to GND. CG turns off predictively  
in CCM before an anticipated CSW rising edge. If a CSW  
rising edge (rising from below –150mV to above 1.2V)  
does not come along in time to reset the timeout signal,  
TIMER  
In preactive mode, the TIMER pin resistor, R  
, pro-  
TIMER  
grams the maximum period that can elapse between two  
CSW rising edges before a timeout period is triggered.  
Timeout allows the LT8311 to stop all synchronous activ-  
ity in the event that the primary-side IC stops switching.  
Since CSW rising edges represent primary-side switching  
activity, timeout of CSW rising edges is interpreted as  
stoppageofswitching—atwhichpointtheLT8311ceases  
all secondary-side synchronous switching, and starts its  
evaluation period. Refer to the Operation section for de-  
tails on the evaluation period. Secondary-side switching  
resumes when all conditions within the evaluation period  
are satisfied. Timeout also ensures that switching activity  
within preactive mode occurs at a frequency that is within  
preactive mode’s operating frequency range.  
the signal eventually charges up to voltage V  
REF_TIMEOUT  
and triggers an internal timeout condition. Consequently,  
the LT8311 shuts down all synchronous conduction and  
startstheevaluationperiod.Theevaluationperiodendsonly  
when the four conditions listed in the Operation section,  
including the timely reset of the internal timeout signal,  
aresatisfiedforthreeconsecutiveCSWrisingedges.Upon  
completion of the evaluation period, the LT8311 restarts  
synchronous control.  
As shown in Figure 18, every time the CSW pin voltage  
is detected to rise past 1.2V from a voltage level below  
V
REF_TIMEOUT  
LT8311 INTERNAL  
TIMEOUT SIGNAL  
TIMEOUT  
CSW  
(PREACTIVE MODE)  
1.2V  
–150mV  
TIMEOUT RESETS ONLY WHEN  
CSW RISES PAST 1.2V, PRECEDED BY  
FALLING BELOW –150mV  
CG PREDICTIVE  
TURN-OFF  
CG  
EVALUATION PERIOD  
0V  
TIME  
CG TURNS ON WHEN CSW < –150mV  
8311 F18  
Figure 18. If Timeout Is Triggered in Preactive Mode, LT8311 Shuts Down All Synchronous Conduction and  
Starts the Evaluation Period (Note: CSW's ringing waveform is caused by the inductor current getting to 0A.)  
8311f  
34  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
The TIMER resistor is typically picked to set a timeout  
period that is 20% higher than the forward converter’s  
nominal switching period.  
Setting R  
in SYNC Mode  
TIMER  
In SYNC mode, the functionality of the timeout period is  
similar to preactive mode, except that the resetting of the  
LT8311’s internal timeout signal happens every time the  
SYNC pin voltage falls below –1.2V. The goal of the time-  
out function in SYNC mode is primarily to limit the catch  
MOSFETon-timeintheeventthatthecatchMOSFETstays  
ontoolongandconductsanunsafelevelofreverse-output  
inductor current (current flows from the output capacitor  
back towards the drain of the catch MOSFET). Refer to  
the section, "Configuring CSP/CSN Inputs of the Current  
Sense Comparators in SYNC Mode,” for further informa-  
tion on what constitutes an unsafe level of reverse-output  
inductor current.  
1.20  
Timeout =  
fSW  
where f is converter switching frequency in Hz.  
SW  
Once a timeout period is calculated, the TIMER pin resis-  
tor, R , can be calculated as follows:  
TIMER  
R
(kΩ) ~ 22.1E6 • Timeout  
TIMER  
where Timeout has units of seconds.  
The relationship between R  
and timeout is not per-  
values(nearest1%)for  
TIMER  
fectlylinear. Table1showsR  
TIMER  
In SYNC mode, set the timeout period to be 20% longer  
than the longest switching period of the primary-side IC.  
Typically, the longest switching period of the primary-  
side IC corresponds to the smallest frequency foldback  
arangeoftypicalforwardconverterswitchingfrequencies:  
Table 1. RTIMER 1% Resistor Values for Different Forward  
Converter Switching Frequencies  
SWITCHING  
FREQUENCY (kHz)  
TIMEOUT (µs) = 1.2/f  
R
TIMER  
(kΩ)  
frequency (f  
):  
SW  
SW_SMALLEST  
100  
150  
200  
250  
300  
400  
500  
12  
8
267  
1.2  
Timeout =  
178  
133  
107  
88.7  
66.5  
53.6  
fSW _SMALLEST  
6
Once a timeout period is calculated, the TIMER pin resis-  
tor, R , can be calculated as follows:  
4.8  
4
TIMER  
3
R
(kΩ) ~ 22.1E6 • Timeout  
TIMER  
2.4  
where Timeout has units of seconds, and f  
is in units of Hz.  
SW_SMALLEST  
Setting the timeout period at 1.2 • Switching Period will  
keep synchronous conduction shut off through frequency  
foldback in preactive mode, until the switching frequency  
approaches 80% of its final value. For 100kHz switching  
applications, this means that the LT8311 is ready for  
synchronous conduction in preactive mode, at 80kHz.  
Although80kHzisoutsidetheLT8311’sdatasheetspecifi-  
cations for preactive mode operating frequency range, the  
IC is designed to operate down to 80kHz to ride through  
such a frequency foldback event. Timeout may also shut  
off synchronous conduction during CSW pulse-skipping  
events at light output load currents.  
Configuring CSP/CSN Inputs of Current Sense  
Comparator in Preactive Mode  
The differential input current sense comparator in the  
LT8311 is used to provide the IC with information about  
the current in the catch MOSFET. Connect the CSP and  
CSNpins, throughseriesresistors, tothedrainandsource  
of the catch MOSFET (M ), to allow the LT8311 to sense  
CG  
the drain-source voltage of M , and make inferences  
CG  
about its current. Alternatively, CSP and CSN can be tied,  
through series resistors, across a sense resistor which  
is placed from the source of M to ground. As explained  
CG  
earlier in the Operation section, the CSP and CSN pins  
should be configured, in preactive mode, to trip at zero  
currentinthecatchMOSFET.Sincethecurrentcomparator  
internally trips at 66mV, and the CSP pin sources 40µA,  
8311f  
35  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
placing 1%, 1.65k resistors in series with CSP and CSN  
should allow the LT8311 to trip with approximately zero  
volts across the catch MOSFET. Note that the current  
comparator has a propagation delay of 100ns nominally,  
so the time taken from the current comparator getting  
tripped to the catch MOSFET turning off is about 100ns.  
During this 100ns, the current in the output inductor can  
reverse and flow from the drain-to-source of the catch  
Step 1: Determine the worst-case negative inductor  
current value during regular FCM operation, which will  
likelyhappenatthesmallestfrequencyfoldbackfrequency,  
highest V , and at 0A load. An easy way to determine this  
IN  
is to run the forward converter with the LT8311 working  
in SYNC mode and keeping the CSP/CSN pins shorted  
to GND. Observing the inductor current waveform on an  
oscilloscope at start-up, with V at its maximum value,  
IN  
MOSFET. IfnegativecurrentflowinM isnotdesired, the  
and the load at 0A, can quickly give the user an idea of the  
CG  
CSP pin series resistor can be chosen to trip at a positive  
worst-case negative inductor current value (I  
)
CATCH_FET  
value of source-to-drain catch MOSFET current. The fol-  
during regular start-up operation. This will set a lower  
bound on the CSP/CSN trip point (V minimum):  
lowing equation allows calculation of the resistor (R  
)
CSP  
TRIP  
to be placed in series with the CSP pin for a desired value  
of catch MOSFET trip current (I ):  
V
Minimum = |I  
| • R  
TRIP  
CATCH_FET DS(ON)  
TRIP  
where R  
and I  
is the on-resistance of the catch MOSFET,  
is the worst-case magnitude of negative  
DS(ON)  
CATCH_FET  
66mV ITRIP • RSNS  
RCSP  
=
40µA  
inductor current (current flowing from drain to source of  
catch MOSFET) during FCM operation at startup.  
where R  
is the R  
of the catch MOSFET when the  
DS(ON)  
SNS  
CSPandCSNpinsareconnecteddirectlyacrossthedrain-  
Step 2: Pick a trip point (V  
from the value calculated in Step 1. Typical margin might  
be 20%, thereby setting a trip point of:  
) that allows some margin  
TRIP  
sourceterminalsofthecatchMOSFET. Alternatively, R  
SNS  
is the sense resistor in the source of the catch MOSFET  
if the CSP/CSN pins are connected directly across the  
sense resistor. Once the resistor in series with the CSP  
V
= 1.2 • V  
Minimum  
TRIP  
TRIP  
pin (R ) is decided, place an identical resistor in series  
Step 3: Determine the selected catch MOSFET’s single  
CSP  
with the CSN pin.  
pulse avalanche energy rating (E in mJ) from the MOS-  
AS  
FET’s data sheet and its drain-source break down voltage  
Configuring CSP/CSN Inputs of the Current Sense  
Comparator in SYNC Mode  
(V  
in V).  
BR(DSS)  
Step 4: Make sure that the chosen CSP/CSN trip voltage  
does not allow so much negative current in the catch  
MOSFET, such that when the catch MOSFET turns off, its  
avalanche energy rating (based on the following equation)  
is violated:  
The LT8311 is typically operated in SYNC mode when the  
forward converter needs to be operated in FCM (forced  
continuous mode). In SYNC mode, the LT8311 receives  
synchronous control signals on its SYNC pin, through a  
pulse transformer, from the primary-side IC’s S  
pin.  
OUT  
VTRIP (in Volts) < RDS(ON)  
Connecting the LT8311’s CSP/CSN pins across the catch  
MOSFET’s drain and source, in SYNC mode, is done to  
protect the catch MOSFET from conducting too large a  
reverse inductor current at light load.  
(1.3 • VBR(DSS) VOUT  
)
2 E  
AS  
(1.3 • VBR(DSS) • LOUT   
)
The following guidelines offered (Steps 1 to 5) may be  
used to determine an appropriate catch MOSFET reverse  
where,  
(Joules) = Catch MOSFET’s single-pulse avalanche  
current trip point (V  
):  
TRIP  
E
AS  
energy rating.  
V
(V) = Catch MOSFET’s drain-source break down  
BR(DSS)  
voltage rating.  
8311f  
36  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
R
(Ω) = Catch MOSFET’s on-resistance rating from  
4. Tie the PMODE and SYNC pins to 0V.  
5. Configure R to set a timeout period that is 20%  
DS(ON)  
the MOSFET’s data sheet.  
TIMER  
V
(V) = Forward converter’s output voltage in steady-  
higher than the steady-state switching period of the  
OUT  
state.  
forward converter.  
L
(H) = Output inductor.  
6. Connect the CSW and FSW pins, through 2k ceramic  
resistors, to the drains of the catch and forward MOS-  
FET,respectively.Keeptheconnectionasshortinlength  
as possible.  
OUT  
If the V  
voltage is too large, causing the catch MOS-  
TRIP  
FET’s avalanche energy rating to be violated, then go  
back to Steps 1 and 2, or pick a different MOSFET, until  
the avalanche energy experienced by the MOSFET in the  
application is within its data sheet specified SOA.  
7. Connect the CSP and CSN pins, each through a 1.65k  
resistor, directly across the drain-source terminals of  
the catch MOSFET for V sensing. A small 10pF filter  
DS  
Step 5: Upon selecting the appropriate trip point, the  
capacitor may be required across the CSP and CSN  
seriesresistors,R andR ,maybedeterminedbased  
CSP  
CSN  
pins to filter out external noise that couples in.  
on the following equation:  
8. Connect CG and FG to the gates of the catch and for-  
ward MOSFET, respectively, with connections that are  
as short as possible.  
66mV VTRIP  
RCSP = RCSN  
Connect R  
=
40µA  
between the CSP pin and the catch MOS-  
Once synchronous control is up and running:  
CSP  
FET’s drain, and R  
between the CSN pin and the catch  
CSN  
9. Ensure that the voltage at the CSW and FSW pins does  
not exceed the abs max rating of 150V. If the CSW  
or FSW pin voltage exceeds 150V, you may need to  
use a RC snubber on the drain of the catch and/or the  
forward MOSFET.  
MOSFET’s source.  
PREACTIVE MODE SYNCHRONOUS CONTROL  
Preactive Mode General Guidelines  
10.If the catch MOSFET current trip point is causing the  
inductor current to reverse (flowing from output back  
to the drain of the catch MOSFET) at light loads, re-  
configure the CSP/CSN trip point to trip at a slightly  
positive value of source-to-drain current in the catch  
MOSFET. This typically involves increasing the CSP  
and CSN series resistors to a value greater than 1.65k.  
The following guidelines are meant to summarize the  
connections and operating conditions typically needed  
to set up the LT8311’s synchronous control in preactive  
mode. While these guidelines are meant to serve as a  
starting point, they are not a substitute for bench evalua-  
tion. Ultimately, each application that uses the LT8311’s  
preactive mode scheme must be evaluated for its specific  
requirements, and the IC must be configured accordingly.  
11.If the catch MOSFET’s current trip point does not  
seem consistent, and the catch MOSFET’s turn-off  
edge seems to show jitter at the trip current, the filter  
capacitor across the CSP and CSN pins may need to  
be adjusted.  
1. BiasupV andINTV asperdatasheetrecommenda-  
IN  
CC  
tions.  
2. Place a minimum of 2.2µF ceramic capacitor from the  
V pin to GND.  
IN  
Note that typically, the FB pin will be connected through a  
resistor divider network to the output voltage, when using  
the LT8311 as part of a voltage feedback loop.  
3. Place a minimum of 4.7µF ceramic capacitor from the  
INTV pin to GND.  
CC  
8311f  
37  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
SYNC MODE SYNCHRONOUS CONTROL  
constraint, the equation below sets a limit on the  
minimum R  
• C  
product required:  
50ns  
SYNC  
SYNC  
Picking the Pulse Transformer and High Pass Filter  
RSYNC • CSYNC  
In SYNC Mode, the LT8311 determines the turn-on/off  
timings of the catch and forward MOSFETs based on  
voltage signals on its SYNC pin. Figure 7 in the Operation  
section shows a typical circuit used to communicate syn-  
2V  
1• n  
V
MAX  
where V  
is the maximum S  
voltage, as shown  
OUT  
MAX  
in Figure 19.  
chronous control signals from the primary-side IC’s S  
OUT  
pin to the LT8311’s SYNC pin. This circuit utilizes a pulse  
transformer (T2 in Figure 7) to provide isolation between  
the primary and secondary sides, and a high pass filter  
2. R  
must be small enough to ensure that the  
SYNC  
SYNC signal is sufficiently damped. An underdamped  
SYNC signal can cause ringing large enough to cause  
false triggering of the SYNC detection comparators,  
which may lead to improper secondary-synchronous  
control. The equation used to calculate R  
optimal damping is given by:  
(R  
and C  
). C  
blocks DC signals from being  
SYNC  
SYNC  
SYNC  
applieddirectlytoT2.EliminatingtheDCcomponentofthe  
signal,throughthehighpassfilter(R andC ),  
S
OUT  
SYNC  
SYNC  
for  
SYNC  
allows the SYNC pin signal to go positive or negative at  
the rising and falling edges of S , as shown in Figure  
OUT  
1
2 ζ  
Lm  
CSYNC  
19. Positive and negative signals of equal magnitudes and  
duration allow equal positive and negative volt-seconds  
to be maintained on transformer T2, preventing any net  
magnetizing current build-up.  
RSYNC  
where ζ is the damping factor and should typically be  
chosentobeabout1.L isthemagnetizinginductance  
m
Appropriate values of R  
and C  
must be chosen  
SYNC  
of the pulse transformer’s primary winding.  
SYNC  
to satisfy all of the following criteria:  
Choosing L to be larger allows the damping factor  
m
1. The R • C time constant must be large  
to increase, so it would be wise to choose a pulse  
transformer with a larger primary winding inductance  
to increase the damping of the SYNC signal.  
SYNC  
SYNC  
enough to allow a sufficiently long pulse width to be  
generated on the SYNC pin with sufficient overdrive  
voltage. This is shown in Figure 19 where t1 must be  
at least 50ns at a SYNC voltage of 2V (or greater  
over drive) to trip the SYNC comparators. Using this  
Smaller R  
values also reduce the sensitivity of  
SYNC  
the highpass filter to stray signals (parasitic magnetic  
fields) that may couple in.  
V
MAX  
S
OUT  
0V  
V
MAX  
2V  
SYNC  
t1  
0V  
–2V  
t1  
–V  
MAX  
TIME  
8311 F19  
Figure 19. Positive and Negative SYNC Edges Are Generated on the Rising and Falling Edges of SOUT, Respectively.  
The LT8311 Requires Pulse Width Time, t1, to Be at Least 50ns (Typical) with the SYNC Pin Voltage at 2V (or Greater  
Overdrive) to Trigger the Internal SYNC Detect Comparators.  
8311f  
38  
For more information www.linear.com/LT8311  
LT8311  
APPLICATIONS INFORMATION  
3. R  
must be large enough to limit the amount of  
capabilityisabout100mAandLT8310’smaximumcurrent  
capability is about 300mA). It is recommended to design  
SYNC  
source/sink current required each time a positive or  
negative SYNC pin voltage signal is generated. The  
for an I  
that is lower than the maximum recommended  
MAX  
S
OUT  
pin’s gate drivers offer limited source current  
source current specified, to allow for design margin over  
process and temperature.  
capability; R  
must be large enough to ensure  
SYNC  
that this constraint in current-drive is not violated.  
For instance, the LT3752’s S drivers are rated for  
If the R  
calculation in Step 4 yields an unreasonable  
SYNC  
OUT  
resistancevalue, gobacktosteps1to3, andchangeeither  
a maximum current of about 100mA. This results in:  
VMAX  
L , V  
m
, or C  
. Recalculate R  
SYNC  
in Step 4 until all  
MAX  
SYNC  
criteria are satisfied.  
RSYNC  
100mA  
gate driver high voltage, which is  
OUT  
Design Example  
V
is the S  
MAX  
typically about 8V to 12V for the LT3752.  
In a LT3752-LT8311 forward converter design, pulse  
transformer PE-68386NL is chosen for communication  
of LT3752 S signals, through a highpass filter, to the  
LT8311’s SYNC pin.  
The following steps can be used as guidelines to calculate  
R
and C  
values:  
OUT  
SYNC  
SYNC  
Step 1: Choose Pulse Transformer. A typically recom-  
mendedchoiceisthePE-68386NLfromPulseElectronics.  
Step 1: This transformer has a magnetizing inductance  
of L = 785µH.  
m
Step 2: Determine the primary-side IC’s maximum S  
OUT  
Step 2: LT3752’s V = 12V.  
MAX  
signalmagnitude,V  
(seeFigure19).Thissetsthemaxi-  
MAX  
mum magnitude of the signal on the LT8311’s SYNC pin.  
Step 3: Choose C  
= 220pF  
SYNC  
Step 3: Guess a capacitance value for C . A good  
SYNC  
Step 4: Designing for I  
= 70mA, L = 785µH, C  
m SYNC  
MAX  
starting value might be between 220pF and 1nF.  
= 220pF, V  
= 12V, results in the following calculation  
MAX  
for R :  
Step 4: Pick R  
based on constraint shown in the  
SYNC  
SYNC  
following equation:  
944Ω ≥ R  
≥ Max {127Ω, 171Ω}  
SYNC  
Conclusion  
1
2
Lm  
SYNC   
RSYNC MAX  
C
Inthisexample, R  
=560ΩischosenalongwithC  
SYNC  
SYNC  
= 220pF as the highpass filter to be used along with pulse  
50ns  
1 • IN(2V / VMAX  
VMAX  
,
transformer, PE-68386NL to communicate the LT3752’s  
C
)
I
S
signals to the LT8311’s SYNC pin.  
MAX  
SYNC  
OUT  
whereI  
isthemaximumcurrentsource/sinkcapability  
MAX  
of the primary-side IC’s S  
pin (LT3752’s maximum  
OUT  
8311f  
39  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATIONS  
18V to 72V, 12V/8A Active Clamp Isolated Forward Converter  
L1  
6.8µH  
4:4  
T1  
V
V
IN  
OUT  
18V to  
72V  
12V/8A  
C1  
4.7µF  
× 3  
C18  
R24  
20k  
+
68pF  
D2  
R1  
C20  
470µF  
V
C19  
22µF  
× 2  
100k  
IN  
C17  
2.2nF  
C10  
2.2µF  
100V  
C11  
UVLO_VSEC  
OVLO  
100nF  
C9  
R16, 2k  
R2  
5.9k  
R25  
M2  
100nF  
FSW  
FG  
100k  
M3  
D3  
AOUT  
OUT  
FB  
R17, 2k  
R3  
1.82k  
R26  
11.3k  
R14  
10k  
D1  
CSW  
LT3753  
LT8311  
R18, 1.78k  
M1  
CSP  
CG  
M4  
IVSEC  
RT  
SYNC  
V
IN  
V
OUT  
240kHz  
R5  
31.6k  
R4  
71.5k  
R13, 2k  
R23  
100k  
R19, 1.78k  
R20, 1.5k  
ISENSEP  
OC  
CSN  
PGOOD  
INTV  
R12  
6mΩ  
S
OUT  
OPTO  
COMP  
SYNC  
SS  
CC  
TAO  
ISENSEN  
C15  
4.7µF  
TAS  
TOS  
TBLNK  
GND SS1  
PMODE  
TIMER GND  
INTV  
CC  
COMP  
SS2 FB  
C12  
15nF  
C6  
4.7µF  
R11  
100Ω  
C5  
10pF  
C16  
2.2µF  
R6  
49.9k  
R22  
R8  
100k  
154k  
R21  
2.94k  
C7  
1µF  
R7  
34k  
PS2801-1  
C3  
0.47µF  
C14  
1µF  
R9  
100k  
C4  
1µF  
8311 TA02  
1k  
T1: CHAMPS B45R2-0404.04  
T2: CEL PS2801  
2.2nF  
L1: CHAMPS PQR2050-08  
M1: INFINEON BSC077N12NS3  
M2: IR IRF6217PBF  
M3: FAIRCHILD SEMI. FDMS86101DC  
M4: INFINEON BSC077N12NS3  
D2: CENTRAL SEMI. CMMR1U-02  
D3: DIODES INC. SBRIU150  
Efficiency and Power Loss at VIN = 48V  
96  
14  
V
IN  
= 48V  
94  
12  
EFFICIENCY  
92  
10  
90  
88  
86  
84  
8
6
4
2
POWER LOSS  
82  
0
5
7
9
1
3
LOAD CURRENT (A)  
8311 TA02b  
8311f  
40  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATIONS  
18V to 72V, 12V/12.5A, 150W Active Clamp Isolated Forward Converter  
V
V
OUT  
IN  
18V TO  
72V  
12V  
T1  
L1  
12.5A  
T2  
INTV  
V
AUX  
4:4  
CC  
6.8µH  
+
C14  
470µF  
16V  
R38  
20k  
D2  
D3  
C1  
4.7µF  
100V  
×3  
C9  
2.2µF  
C10  
2.2µF  
D4  
C8  
C13  
15nF  
ZVN4525E6  
M5  
C24  
2.2nF  
250V  
BSC077N12NS3  
C7  
100nF  
22µF  
16V  
×2  
FDMS86101  
Si2325DS  
D1  
M4  
M2  
M3  
R17  
R18  
0.15Ω  
R16  
10k  
499Ω  
R21  
100Ω  
R22  
100Ω  
BSC077N12NS3  
M1  
HOUT HI  
AOUT  
V
SENSE  
OUT  
OC  
IN  
V
V
IN  
AUX  
C11  
2.2µF  
R1  
C28  
68pF  
SYNC  
R30  
R27  
100k  
I
SENSEP  
100k  
GND  
R14  
2k  
100k  
R15  
0.006Ω  
UVLO_V  
SEC  
LT8311  
FB  
PGOOD  
R2  
5.9k  
R31  
T3  
SYNC  
I
SENSEN  
SOUT  
11.3k  
LT3752  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
1.82k  
INTV  
CC  
V
INTV  
AUX  
CC  
R28  
3.16k  
C17  
220nF  
R20  
499k  
R11  
10k  
R25  
100Ω  
C5  
4.7µF  
C16  
1µF  
R29  
13.7k  
C12  
4.7µF  
C18  
68pF  
PS2801-1  
2.2nF  
C19  
4.7nF  
HFB  
R12  
1.1k  
R5  
22.6k  
R4  
R7  
R9  
31.6k  
R8  
C3  
R10  
2.8k  
C4  
8311 TA03a  
34k  
22nF  
C2  
0.33µF  
R24  
100k  
R6  
7.32k  
R23  
100k  
R26  
1k  
22nF  
49.9k  
71.5k  
T1: CHAMPS G45R2_0404.04D  
T2: BH ELECTRONICS L00-3250  
T3: PULSE PE-68386NL  
L1: CHAMPS G45AH2-0404-D4  
D1, D2, D3: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
94  
92  
90  
88  
86  
24V  
48V  
72V  
IN  
IN  
IN  
0
3
6
9
12  
15  
LOAD CURRENT (A)  
8311 TA03b  
8311f  
41  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATIONS  
18V to 72V, 12V/12.5A, 150W No-Opto, Active Clamp Isolated Forward Converter  
V
OUT  
V
IN  
18V TO 72V  
12V  
T1  
L1  
12.5A  
T2  
C1  
INTV  
V
AUX  
4:4  
CC  
6.8µH  
+
C14  
470µF  
16V  
4.7µF  
100V  
×3  
R38  
20k  
D2  
D3  
C9  
2.2µF  
C10  
2.2µF  
D4  
C8  
C13  
22µF  
16V  
×2  
15nF  
C24  
2.2nF  
250V  
BSC077N12NS3  
C7  
100nF  
FDMS86101  
Si2325DS  
D1  
M5 ZVN4525E6  
M4  
M2  
M3  
R17  
R18  
0.15Ω  
R16  
10k  
499Ω  
R21  
100Ω  
R22  
100Ω  
BSC077N12NS3  
M1  
HOUT HI  
AOUT  
V
SENSE  
OUT  
OC  
IN  
V
V
IN  
AUX  
C11  
2.2µF  
R1  
SYNC  
I
SENSEP  
100k  
GND  
R14  
2k  
R15  
UVLO_V  
SEC  
LT8311  
FB  
0.006Ω  
PGOOD  
R2  
5.9k  
T3  
SYNC  
I
SENSEN  
SOUT  
LT3752  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
1.82k  
V
AUX  
INTV  
CC  
INTV  
CC  
R11  
10k  
C12  
4.7µF  
R20  
499k  
C5  
4.7µF  
HFB  
R12  
1.1k  
R5  
22.6k  
R4  
R7  
R9  
31.6k  
R8  
C3  
R10  
2.8k  
C4  
2.2nF  
34k  
22nF  
C2  
0.33µF  
8311 TA04a  
R6  
7.32k  
22nF  
49.9k  
60.4k  
T1: CHAMPS G45R2_0404.04D  
T2: BH ELECTRONICS L00-3250  
T3: PULSE PE-68386NL  
L1: CHAMPS G45AH2-0404-D4  
D1, D2, D3: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
VOUT vs Load Current (No-Opto)  
Efficiency vs Load Current  
14.0  
96  
94  
92  
90  
88  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
V
V
V
V
V
= 70V  
= 60V  
= 48V  
= 36V  
= 20V  
IN  
IN  
IN  
IN  
IN  
24V  
48V  
72V  
IN  
IN  
IN  
86  
0
0
2
4
6
8
10  
12  
3
6
9
12  
15  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8311 TA04b  
8311 TA04c  
8311f  
42  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATIONS  
150V to 400V, 12V/16.7A, 200W Active Clamp Isolated Forward Converter  
T1  
V
V
OUT  
IN  
31:5  
150V TO  
400V  
12V  
L1  
16.7A  
T2  
R38  
10k  
R19  
INTV  
CC  
V
AUX  
INTV  
C10  
CC  
R35  
R16 4.2Ω  
D4  
15µH  
+
C14  
330µF  
16V  
C15  
10nF  
630V  
402Ω  
D3  
FDMS86200  
×3  
C1  
2.2µF  
630V  
374k  
D2  
C9  
10µF  
4.7µF  
C8  
47nF  
630V  
R36  
374k  
ACPL-W346  
M4  
D5  
V
D1  
C13  
33µF  
16V  
×4  
CC  
RJK0653DPB  
×2  
C24  
10nF  
250V  
M5  
BSP300  
V
OUT  
M2  
R38  
ANODE  
CATHODE  
C21  
0.22µF  
C20  
10µF  
0.002Ω  
M3  
R17  
R18  
0.15Ω  
V
EE  
499Ω  
IPD60R1K4C6  
R21  
100Ω  
R22  
100Ω  
C27  
120pF  
R34  
IPD65R25OC6  
M1  
499k  
HOUT  
HI  
SENSE  
AOUT  
V
OUT  
OC  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
C28  
68pF  
R30  
R1  
499k  
SYNC  
R27  
100k  
I
SENSEP  
100k  
GND  
R14  
2k  
R15  
0.022Ω  
FB  
UVLO_V  
SEC  
LT8311  
PGOOD  
SYNC  
R2  
5.76k  
R31  
11.3k  
T3  
I
SENSEN  
SOUT  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
2.94k  
INTV  
CC  
V
INTV  
CC  
AUX  
C12  
R28  
3.16k  
C17  
1µF  
R20  
432k  
C18  
100pF  
R29  
R11  
10k  
R25  
100Ω  
5.11k  
C5  
4.7µF  
PS2801-1  
4.7µF  
C19  
22nF  
HFB  
R12  
806Ω  
C16  
1µF  
C3  
R5  
40.2k  
R4  
R7  
100k  
R6  
R9  
78.7k  
R8  
R10  
22k  
8311 TA05a  
0.22µF  
C2  
R24  
22k  
R23  
22k  
R26  
1.2k  
95.3k  
13k  
124k  
0.47µF  
C4  
3.3nF  
2.2nF  
T1: CHAMPS LT80R2-12AC-3124005  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
IN  
IN  
IN  
IN  
0
2.5  
5
7.5  
10 12.5 15 17.5  
LOAD CURRENT (A)  
8311 TA05b  
8311f  
43  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATIONS  
150V to 400V, 12V/16.7A, 200W No-Opto, Active Clamp Isolated Forward Converter  
T1  
V
V
IN  
OUT  
31:5  
150V TO  
400V  
12V  
L1  
16.7A  
T2  
R38  
10k  
R19  
INTV  
CC  
V
AUX  
R16 4.2Ω  
CC  
R35  
15µH  
D4  
+
C14  
330µF  
16V  
C15  
10nF  
630V  
402Ω  
FDMS86200  
×3  
C1  
2.2µF  
630V  
D3  
INTV  
374k  
D2  
C10  
4.7µF  
C9  
10µF  
C8  
47nF  
630V  
D5  
ACPL-W346  
R36  
374k  
M4  
V
D1  
C13  
33µF  
16V  
×4  
CC  
RJK0653DPB  
×2  
M5  
BSP300  
C24  
10nF  
250V  
V
M2  
OUT  
R38  
0.002Ω  
ANODE  
CATHODE  
C21  
0.22µF  
C20  
10µF  
M3  
R17  
R18  
0.15Ω  
V
EE  
499Ω  
IPD60R1K4C6  
R21  
100Ω  
R22  
100Ω  
C27  
120pF  
R34  
IPD65R25OC6  
M1  
499k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
OC  
SENSEP  
R1  
499k  
SYNC  
I
GND  
R14  
2k  
R15  
UVLO_V  
OVLO  
SEC  
LT8311  
FB  
0.022Ω  
PGOOD  
SYNC  
R2  
5.76k  
T3  
I
SENSEN  
SOUT  
LT3752-1  
C6 220pF  
R13  
560Ω  
R3  
2.94k  
V
AUX  
INTV  
CC  
INTV  
CC  
GND  
R11  
10k  
C12  
4.7µF  
R20  
432k  
HFB  
C5  
4.7µF  
R12  
806Ω  
C3  
R5  
40.2k  
R4  
R7  
100k  
R6  
R9  
78.7k  
R8  
R10  
22k  
C4  
8311 TA06a  
2.2nF  
0.22µF  
C2  
0.47µF  
95.3k  
13k  
107k  
3.3nF  
T1: CHAMPS LT80R2-12AC-3124005  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
VOUT vs Load Current (No-Opto)  
Efficiency vs Load Current  
14.0  
96  
95  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
V
V
V
V
= 150V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 250V  
= 350V  
= 400V  
0
2
4
6
8
10 12 14 16 18  
0
2.5  
5
7.5  
10 12.5 15 17.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8311 TA06b  
8311 TA06c  
8311f  
44  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATIONS  
150V to 400V, 12V/16.7A, 200W, Active Clamp Isolated Forward Converter  
(Using Gate Drive Transformer for High Side Active Clamp)  
T1  
V
V
OUT  
IN  
31:5  
150V TO  
400V  
12V  
L1  
D3  
16.7A  
R19  
T2  
C15  
10nF  
630V  
INTV  
D5  
V
AUX  
C10  
4.7µF  
R35  
CC  
R38  
10k  
15µH  
+
C14  
330µF  
16V  
402Ω  
D4  
FDMS86200  
×3  
374k  
D2  
C1  
2.2µF  
630V  
C8  
47nF  
630V  
C9  
10µF  
R36  
374k  
C22  
220nF  
M4  
C23 3.3nF  
T4  
C13  
33µF  
16V  
×4  
M2  
RJK0653DPB  
×2  
M5  
BSP300  
C24  
10nF  
250V  
D1  
R38  
R16  
10k  
C20  
0.002Ω  
C21  
470pF  
M3  
10µF  
R17  
R18  
0.15Ω  
R37  
100Ω  
499Ω  
R21  
100Ω  
R22  
100Ω  
IPD60R1K4C6  
C27  
120pF  
R34  
IPD65R25OC6  
M1  
499k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
OC  
SENSEP  
R1  
499k  
SYNC  
R30  
100k  
R27  
100k  
C28  
68pF  
I
GND  
R14  
2k  
R15  
0.022Ω  
UVLO_V  
SEC  
LT8311  
FB  
PGOOD  
SYNC  
R2  
5.76k  
T3  
R31  
I
SENSEN  
SOUT  
11.3k  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
2.94k  
INTV  
CC  
INTV  
CC  
V
AUX  
R28  
3.16k  
C17  
1µF  
R20  
432k  
C18  
100pF  
R29  
R25  
100Ω  
R11  
10k  
C12  
5.11k  
C5  
4.7µF  
4.7µF  
PS2801-1  
2.2nF  
C19  
22nF  
HFB  
R12  
806k  
C16  
1µF  
C3  
R5  
40.2k  
R4  
R7  
100k  
R6  
R9  
R10  
8311 TA07  
0.22µF  
78.7k  
R8  
22k  
R24  
22k  
C2  
0.47µF  
R23  
22k  
R26  
1.2k  
95.3k  
13k  
124k  
C4  
3.3nF  
T1: CHAMPS LT80R2-12AC-3124005  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
T4: ICE GT05-111-100  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
V
V
V
V
= 150V  
= 250V  
= 350V  
= 400V  
IN  
IN  
IN  
IN  
0
2.5  
5
7.5  
10 12.5 15 17.5  
LOAD CURRENT (A)  
8311 TA07b  
8311f  
45  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATIONS  
75V to 150V, 24V/14A 340W Active Clamp Isolated Forward Converter  
(Using Gate Drive Transformer for High Side Active Clamp)  
T1  
V
V
24V  
14A  
IN  
OUT  
10:6  
75V TO  
150V  
L1  
D3  
R19  
T2  
C15  
4.7nF  
250V  
INTV  
D5  
V
AUX  
C10  
4.7µF  
R35  
CC  
R38  
10k  
15µF  
+
C14  
470µF  
25V  
1k  
D4  
102k  
D2  
C1  
2.2µF  
250V  
1PB072N15N3G  
C8  
15nF  
250V  
M2  
IRFL214  
C9  
10µF  
R36  
102k  
C22  
220nF  
M4  
C23 3.3nF  
T4  
C13  
BSC047N08NS3  
×2  
M5  
BSP300  
C24  
10nF  
250V  
22µF  
25V  
×4  
D1  
R38  
R16  
10k  
C20  
0.003Ω  
C21  
470pF  
M3  
10µF  
R17  
R18  
0.15Ω  
R37  
100Ω  
499Ω  
R21  
100Ω  
R22  
100Ω  
C27  
120pF  
R34  
IPB200N25N3  
M1  
698k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
AUX  
V
IN  
C11  
2.2µF  
OC  
SENSEP  
R1  
6.98k  
C28  
68pF  
SYNC  
R30  
100k  
R27  
100k  
I
GND  
R14  
2k  
R15  
0.0075Ω  
UVLO_V  
LT8311  
SEC  
FB  
PGOOD  
SYNC  
R2  
6.04k  
T3  
R31  
I
SENSEN  
SOUT  
5.36k  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
560Ω  
R3  
5.76k  
INTV  
CC  
V
INTV  
CC  
AUX  
C17  
R28  
3.16k  
C18  
100pF  
R29  
0.33µF  
R25  
100Ω  
C12  
4.7µF  
5.11k  
R11  
10k  
C5  
4.7µF  
R20  
365k  
PS2801-1  
2.2nF  
C19  
22nF  
HFB  
R12  
806Ω  
C16  
1µF  
C3  
R5  
53k  
R4  
93.1k  
R7  
80.1k  
R6  
R9  
R10  
8311 TA08a  
0.22µF  
C2  
52.3k  
R8  
22k  
R24  
22k  
R23  
22k  
R26  
1.2k  
10k  
82.5k  
0.47µF  
C4  
3.3nF  
T1: CHAMPS LT80R2-12AC-1006  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
T4: ICE GT05-111-100  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
Efficiency vs Load Current  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
V
V
V
V
= 75V  
IN  
IN  
IN  
IN  
= 100V  
= 125V  
= 150V  
0
2.5  
5
7.5  
10  
12.5  
15  
LOAD CURRENT (A)  
8311 TA08b  
8311f  
46  
For more information www.linear.com/LT8311  
LT8311  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
Variation: FE20(16)  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1924 Rev Ø)  
Exposed Pad Variation CB  
6.40 – 6.60*  
3.86  
(.152)  
(.252 – .260)  
3.86  
(.152)  
20  
18  
16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
3
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20(16) (CB) TSSOP REV 0 0512  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
8311f  
47  
For more information www.linear.com/LT8311  
LT8311  
TYPICAL APPLICATION  
75V to 150V, 24V/14A 340W No-Opto, Active Clamp Isolated Forward Converter  
T1  
L1, 15µH  
D4  
V
V
24V  
14A  
IN  
OUT  
10:6  
75V TO  
150V  
D3  
C15  
4.7nF  
250V  
R19  
1k  
C8  
R38  
10k  
T2  
INTV  
D5  
V
AUX  
C10  
4.7µF  
CC  
R35  
R36  
+
C14  
470µF  
25V  
D2  
1PB072N15N3G  
C1  
2.2µF  
250V  
C9  
10µF  
C24  
10nF  
250V  
15nF  
M4  
C22  
220nF  
C23 3.3nF  
T4  
250V  
M2  
IRFL214  
BSC047N08NS3  
×2  
C13  
M5  
BSP300  
R38  
0.003Ω  
22µF  
25V  
×4  
D1  
R16  
10k  
C20  
C21  
470pF  
M3  
10µF  
R17  
R18  
0.15Ω  
R37  
100Ω  
499Ω  
R21  
R22  
100Ω  
C27  
120pF  
100Ω  
R34  
1PB200N25N3  
M1  
698k  
HOUT HI  
AOUT  
V
SENSE  
OUT  
IN  
V
V
AUX  
IN  
C11  
OC  
SENSEP  
R1  
6.98k  
SYNC  
I
2.2µF  
GND  
R14  
2k  
R15  
UVLO_V  
SEC  
LT8311  
FB  
0.0075Ω  
PGOOD  
SYNC  
R2  
6.04k  
T3  
I
SENSEN  
SOUT  
LT3752-1  
C6 220pF  
OVLO  
GND  
R13  
R3  
5.76k  
560Ω  
8311 TA08a  
INTV  
INTV  
C5  
CC  
CC  
C12  
4.7µF  
R11  
10k  
R20  
432k  
2.2nF  
HFB  
R12  
806Ω  
4.7µF  
R5  
53k  
R4  
93.1k  
R7  
80.1k  
R6  
R9  
C3  
0.1µF  
C2  
R10  
22k  
C4  
3.3nF  
52.3k  
R8  
75k  
10k  
0.47µF  
VOUT vs Load Current (No-Opto)  
Efficiency vs Load Current  
T1: CHAMPS LT80R2-12AC-1006  
T2: WÜRTH 750817020  
T3: PULSE PE-68386NL  
28  
27  
26  
25  
24  
23  
22  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
T4: ICE GT05-111-100  
L1: COILCRAFT AGP2923-153  
D1: CENTRAL SEMI CMR1U-10  
D2, D3, D5: BAS516  
D4: CENTRAL SEMI CMMR1U-02  
V
V
V
V
= 75V  
V
V
V
V
= 75V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 100V  
= 125V  
= 150V  
= 100V  
= 125V  
= 150V  
21  
20  
0
2
4
6
8
10 12 14 16  
0
2.5  
5
7.5  
10  
12.5  
15  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8311 TA08b  
8311 TA08c  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT3752/LT3752-1  
Active Clamp Synchronous Forward Controllers with  
Internal Housekeeping Controller  
Ideal for Medium Power 24V, 48V and Up to 400V Input Applications  
LT3753  
100V Input, Active Clamp Synchronous Forward  
Controller  
Ideal for Medium Power 24V and 48V Input Applications  
LTC3765/LTC3766  
Isolated Synchronous No-Opto Forward Controller  
Chip Set  
Direct Flux Limit, Multiphase Capable Ideal for Medium Power 24V and  
48V Input Applications  
LTC3722-1/  
LTC3722-2  
Synchronous Phase Modulated Full Bridge Controllers Ideal for High Power 24V and 48V Input Applications  
LT3748  
Isolated Flyback Controller  
5V ≤ V ≤ 100V, No-Opto Required MSOP-16 (12)  
IN  
LT8300  
100V Micropower Isolated Flyback Converter  
100V Isolated Flyback Converters  
Monolithic No-Opto with Integrated 260mA Switch, TSOT-23  
LT3511/LT3512  
Monolithic No-Opto with Integrated 240mA/420mA Switch, MSOP-16(12)  
8311f  
LT 0314 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
48  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT8311  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LT8311HFE#PBF

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8311HFE#TRPBF

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8311IFE#PBF

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8311IFE#TRPBF

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8311MPFE#PBF

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT8311MPFE#TRPBF

LT8311 - Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters; Package: TSSOP; Pins: 20; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT8312

Boost Controller with Power Factor Correction
Linear

LT8312EMS#PBF

暂无描述
Linear

LT8312EMS#TRPBF

LT8312 - Boost Controller with Power Factor Correction; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8312HMS#PBF

LT8312 - Boost Controller with Power Factor Correction; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8312HMS#TRPBF

LT8312 - Boost Controller with Power Factor Correction; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8312IMS#PBF

暂无描述
Linear