LT8312IMS#PBF [Linear]

暂无描述;
LT8312IMS#PBF
型号: LT8312IMS#PBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总14页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8312  
Boost Controller with  
Power Factor Correction  
FeaTures  
DescripTion  
The LT®8312 is a power factor correction (PFC) boost  
controller. A LT8312-based design can achieve a power  
factorofgreaterthan0.99byactivelymodulatingtheinput  
current,allowingcompliancewithmostHarmonicCurrent  
Emission requirements.  
n
PFC Boost with Minimum Number of External Com-  
ponents  
V and V  
IN  
n
Limited Only by External Components  
OUT  
n
n
n
n
n
Active Power Factor Correction  
Low Harmonic Distortion  
Overvoltage Protection  
Energy Star Compliant (<0.5W No-Load Operation)  
16-Lead MSOP Package  
The LT8312 is well suited for a wide variety of off-line  
applications. The input range can be scaled up or down,  
depending mainly on the choice of external components.  
Efficiencies higher than 95% can be achieved with output  
power levels up to 250W.  
applicaTions  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Industrial  
Aviation  
n
Typical applicaTion  
Universal Input 200W PFC Boost Converter  
B1  
GBU404  
D4  
CMR5H-06  
V
400V  
0.5A  
OUT  
4:1  
D2  
20Ω  
560µF  
×2  
90V  
TO 265V  
AC  
0.1µF  
499k 100k  
10µF  
4.7pF  
2k  
Efficiency  
499k 100k  
D3  
99  
98  
97  
96  
95  
94  
93  
92  
91  
1M  
1M  
V
DCM  
FB  
IN  
115VAC  
1M  
V
IN_SENSE  
EN/UVLO  
9.53k  
95.3k  
LT8312  
230VAC 50Hz  
20Ω  
GATE  
V
SENSE  
REF  
INTV  
CC  
100k  
221k  
4.7µF  
0.01Ω  
GND  
2.2µF  
OVP  
V
C
0
40 60 80 100 120 140 160  
20  
POWER (W)  
8312 G01  
8312 TA01a  
8312fa  
1
For more information www.linear.com/LT8312  
LT8312  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
EN/UVLO...................................................................30V  
IN  
TOP VIEW  
V ............................................................................42V  
V
16  
1
2
3
4
5
6
7
8
GND  
GND  
GND  
IN_SENSE  
15 SENSE  
14 GATE  
INTV ......................................................................18V  
CC  
FB ...............................................................................3V  
V
13 INTV  
CC  
REF  
OVP  
12 EN/UVLO  
V ...............................................................................5V  
V
C
11  
V
IN  
C
GND  
GND  
10 DCM  
V
................................................................1mA  
9
FB  
IN(SENSE)  
OVP.............................................................................4V  
SENSE......................................................................0.4V  
DCM....................................................................... 3mA  
Operating Temperature Range (Note 2)....–40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
θ
= 125°C/W  
JA  
orDer inForMaTion  
(http://www.linear.com/product/LT8312#orderinfo)  
LEAD FREE FINISH  
LT8312EMS#PBF  
LT8312IMS#PBF  
LT8312HMS#PBF  
LT8312MPMS#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
LT8312EMS#TRPBF  
LT8312IMS#TRPBF  
LT8312HMS#TRPBF  
LT8312MPMS#TRPBF  
8312  
8312  
8312  
8312  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
8312fa  
2
For more information www.linear.com/LT8312  
LT8312  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
MAX  
38  
UNITS  
Input Voltage Range  
Quiescent Current  
V
V
= 0.2V  
45  
60  
70  
70  
µA  
µA  
EN/UVLO  
Not Switching  
V
IN  
V
IN  
V
IN  
Quiescent Current, INTV Overdriven  
V
INTVCC  
= 11V  
60  
40  
8
µA  
V
CC  
Shunt Regulator Voltage  
I = 1mA  
Shunt Regulator Current Limit  
mA  
INTV Quiescent Current  
V
V
= 0.2V  
= 1.5V, Not Switching  
12.5  
1.8  
15.5  
2.2  
17.5  
2.7  
µA  
mA  
CC  
EN/UVLO  
EN/UVLO  
l
EN/UVLO Pin Threshold  
EN/UVLO Pin Voltage Rising  
EN/UVLO = 1V  
1.21  
8
1.25  
10  
1.29  
12  
V
EN/UVLO Pin Hysteresis Current  
μA  
l
l
V
Voltage  
0µA Load  
200µA Load  
1.97  
1.95  
2.0  
1.98  
2.03  
2.03  
V
V
REF  
SENSE Current Limit Threshold  
Minimum SENSE Current Limit  
SENSE Input Bias Current  
Current Sense Blanking Time  
FB Voltage  
96  
102  
3
107  
mV  
mV  
µA  
Current Out of Pin  
15  
90  
130  
1.25  
0.01  
100  
180  
170  
0.1  
80  
170  
1.28  
0.03  
600  
ns  
l
1.22  
V
FB Voltage Line Regulation  
FB Pin Bias Current  
10V < V < 35V  
%/V  
nA  
IN  
(Note 3), FB = 1.25V, OVP = 1.35V  
FB Error Amplifier Voltage Gain  
FB Error Amplifier Transconductance  
FB Low Detection Voltage  
DCM Current Turn-On Threshold  
Maximum Oscillator Frequency  
Linear Regulator  
ΔV /ΔV  
V/V  
µmhos  
V
VC  
FB  
ΔI = 5µA  
Current Out of Pin  
µA  
400  
kHz  
INTV Regulation Voltage  
9.8  
10  
10.4  
900  
V
CC  
Dropout (V -INTV  
)
I
= –10mA, V = 10V  
500  
mV  
IN  
CC  
INTVCC  
IN  
Current Limit  
INTV < 9.5V  
12  
80  
25  
120  
mA  
mA  
CC  
INTV > 9.5V  
CC  
Gate Driver  
t GATE Driver Output Rise Time  
C = 3300pF  
18  
18  
ns  
ns  
V
r
L
t GATE Driver Output Fall Time  
f
C = 3300pF  
L
GATE Output Low (V  
)
OL  
0.01  
GATE Output High (V  
)
OH  
INTV  
V
CC  
50mV  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT8312E is guaranteed to meet specified performance from  
0°C to 125°C junction temperature. Specification over the –40°C and  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT8312I is guaranteed to meet specified performance from –40°C to  
125°C operating junction temperature range. The LT8312H is guaranteed  
to meet performance specifications over the –40°C to 150°C operating  
junction temperature range. The LT8312MP is guaranteed to meet  
performance specifications over the –55°C to 150°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes. Operating lifetime is derated for junction temperatures greater  
than 125°C.  
Note 3: Current flows out of the FB pin.  
8312fa  
3
For more information www.linear.com/LT8312  
LT8312  
Typical perForMance characTerisTics  
EN/UVLO Threshold  
vs Temperature  
Input Voltage Hysteresis Current  
vs Temperature  
VIN IQ vs Temperature  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
12  
11.5  
11  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 24V  
IN  
V
IN  
= 12V  
RISING  
FALLING  
10.5  
10  
–50  
0
25 50 75 100 125 150  
–50  
0
25 50 75 100 125 150  
–50  
–25  
0
25 50 75 100 125 150  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8312 G01  
8312 G02  
8312 G03  
SENSE Pin Threshold Current  
vs Temperature  
VREF vs Temperature  
VREF vs VIN  
2.100  
2.075  
2.050  
2.025  
2.000  
1.975  
1.950  
1.925  
1.900  
2.05  
2.04  
2.03  
2.02  
2.01  
2
120  
100  
80  
60  
40  
20  
0
MAX I  
LIM  
V
IN  
= 24V WITH NO LOAD  
NO LOAD  
1.99  
1.98  
1.97  
1.96  
1.95  
200µA LOAD  
V
= 24V WITH 200µA LOAD  
IN  
–50  
0
25 50 75 100 125 150  
10  
20  
25  
(V)  
30  
35  
40  
–50  
–25  
0
25 50 75 100 125 150  
–25  
15  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
IN  
8312 G04  
8312 G05  
8312 G06  
INTVCC vs Temperature  
INTVCC vs VIN  
VIN Shunt Voltage vs Temperature  
10.5  
10.25  
10  
42  
41.5  
41  
10.2  
10  
I
= 1mA  
NO LOAD  
10mA LOAD  
25mA LOAD  
SHUNT  
9.8  
9.6  
9.4  
9.2  
9
40.5  
40  
9.75  
9.5  
39.5  
39  
–50  
0
25 50 75 100  
150  
125  
–50 –25  
0
25 50 75 100 125 150  
–25  
5
15  
20  
V
25  
(V)  
30  
35  
40  
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8312 G07  
8312 G09  
IN  
8312 G08  
8312fa  
4
For more information www.linear.com/LT8312  
LT8312  
Typical perForMance characTerisTics  
Maximum VIN Shunt Current  
vs Temperature  
THD vs Output Power  
Power Factor vs Output Power  
60  
50  
40  
30  
20  
10  
0
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
10  
9
115VAC  
230VAC 50Hz  
8
230VAC 50Hz  
7
6
115VAC  
5
0
20 40 60 80 100 120 140 160  
0
20 40 60 80 100 120 140 160  
–50  
0
25 50 75 100 125 150  
–25  
POWER (W)  
POWER (W)  
TEMPERATURE (°C)  
8312 G11  
8312 G12  
8312 G10  
pin FuncTions  
GND (Pins 1, 2, 3, 7, 8): Ground.  
EN/UVLO(Pin12):Enable/UndervoltageLockout.Aresis-  
tor divider connected to V is tied to this pin to program  
IN  
V
(Pin 4): Voltage Reference Output Pin, Typically  
REF  
the minimum input voltage at which the LT8312 will turn  
on. When below 1.25V, the part will draw 60μA with most  
of the internal circuitry disabled and a 10μA hysteresis  
current will be pulled out of the EN/UVLO pin. When above  
1.25V, the part will be enabled and begin to switch and  
the 10μA hysteresis current is turned off.  
2V. This pin drives a resistor divider for the OVP pin. Can  
supply up to 200μA.  
OVP (Pin 5): Overvoltage Protection. This pin accepts a  
DC voltage to compare to the voltage output information.  
When FB pin voltage is above the OVP, the part stops  
switching. This protects devices connected to the output.  
INTV (Pin 13): Regulated Supply for Internal Loads  
CC  
V (Pin 6): Compensation Pin for Internal Error Amplifier.  
and GATE Driver. Supplied from V and regulates to 10V  
C
IN  
Connect a series RC from this pin to ground to compen-  
sate the switching regulator. A 100pF capacitor in parallel  
helps eliminate noise.  
(typical). INTV must be bypassed with a 4.7μF capacitor  
CC  
placed close to the pin.  
GATE(Pin14):N-ChannelFETGateDriverOutput.Switches  
FB (Pin 9): Voltage Loop Feedback Pin. FB is used to  
regulate the output voltage.  
betweenINTV andGND.DriventoGNDduringshutdown  
CC  
state and stays high during low voltage states.  
DCM(Pin10):DiscontinuousConductionModeDetection  
Pin. Connect a capacitor and resistor in series with this  
pin to the auxiliary winding.  
SENSE (Pin 15): The Current Sense Input for the Control  
Loop. Kelvinconnectthispintothepositiveterminalofthe  
switch current sense resistor, R , in the source of the  
SENSE  
NFET. The negative terminal of the current sense resistor  
should be connected to the GND plane close to the IC.  
V (Pin 11): Input Voltage. This pin supplies current to  
IN  
the internal start-up circuitry and to the INTV LDO. This  
CC  
pinmustbelocallybypassedwithacapacitor. A42Vshunt  
regulator is internally connected to this pin.  
V
(Pin 16): Line Voltage Sense Pin. The pin is  
IN(SENSE)  
used for sensing the AC line voltage to perform power  
factor correction. Connect a resistor in series with the  
line voltage to this pin.  
8312fa  
5
For more information www.linear.com/LT8312  
LT8312  
block DiagraM  
D2  
R2  
V
IN  
C3  
C2  
R13  
R14  
R1  
L2  
C1  
L1  
D1  
R5  
V
10  
DCM  
12  
EN/UVLO  
START-UP  
INTERNAL REG  
16  
11  
OUT  
V
C6  
R3  
R4  
V
IN  
IN(SENSE)  
R8  
V
REF  
4
5
OVP  
1.22V  
R9  
A7  
M2  
+
INTV  
CC  
+
ONE  
SHOT  
13  
A2  
Q1  
C5  
R10  
R11  
CURRENT  
COMPARATOR  
V
+
600MV  
A1  
A3  
+
R
S
S
GATE  
Q
DRIVER  
14  
15  
M1  
MASTER  
LATCH  
+
SENSE  
FB  
9
6
R6  
A6  
A4  
A8  
GND  
1, 2, 3, 7, 8  
MULTIPLIER  
1.22V  
VC  
OSCILLATOR  
C4  
8312 BD  
8312fa  
6
For more information www.linear.com/LT8312  
LT8312  
operaTion  
The LT8312 is a power factor correction boost controller  
IC. It provides high power factor and low harmonic distor-  
tion in applications with current mode control and critical  
conduction mode.  
a rate proportional to the difference between the output  
voltage and the input voltage. When the current decreases  
to zero, the output diode turns off and the voltage on the  
drain of the MOSFET starts to oscillate from the parasitic  
capacitance and the inductor. The auxiliary winding has  
the same voltage across it as the main inductor and rings  
too. The capacitor connected to the DCM pin, C1, trips the  
comparator A2, which serves as a dv/dt detector, when  
the ringing occurs. The dv/dt detector waits for the ringing  
waveform to reach its minimum value and then the switch  
turns back on. This switching behavior is similar to zero  
volt switching and minimizes the amount of energy lost  
whentheswitchisturnedbackonandimprovesefficiency  
as much as 5%. Since this part operates on the edge of  
continuous conduction mode and discontinuous conduc-  
tionmode,theoperatingmodeiscalledcriticalconduction  
mode (or boundary conduction mode).  
Active power factor correction is becoming a require-  
ment for offline power supplies. A power factor of one is  
achieved if the current drawn is proportional to the input  
voltage. TheLT8312modulatesthepeakcurrentlimitwith  
a scaled version of the input voltage. This technique can  
provide power factors of 0.97 or greater.  
The Block Diagram shows an overall view of the system.  
The external components are in a boost topology configu-  
ration. The auxiliary winding supplies power to the part in  
steady-state operation. The V pin supplies power to an  
internal LDO that generates 10V at the INTV pin. The  
controlcircuitryconsistsofanerroramplifier,amultiplier,  
a current comparator, and a master latch, which will be  
explained in the following sections. A comparator is used  
to detect discontinuous conduction mode (DCM) with a  
cap connected to the auxiliary winding. The part features  
a 1.9A gate driver.  
IN  
CC  
The output voltage is regulated with a resistor divider  
connected to the FB pin. The output of the error amplifier  
is the VC pin. This node needs a capacitor to compensate  
the control loop.  
The LT8312 is designed for off-line applications. The  
EN/UVLO and a resistor divider are configured for a  
micropower hysteretic start-up. In the Block Diagram, R2  
is used to stand off the high voltage supply voltage. The  
Power Factor Correction  
When the V  
pin is connected to the supply volt-  
IN(SENSE)  
age with a resistor, the current limit is proportional to the  
supply voltage. If the LT8312 is configured with a fast  
control loop, the VC pin would adjust to the changes of the  
internal LDO starts to supply current to the INTV pin  
CC  
when V is above 2.5V. The V and INTV capacitor  
IN  
IN  
CC  
V
. The only way for the multiplier to function is  
IN(SENSE)  
are charged by the current from R2. When V exceeds  
IN  
to set the control loop to be an order of magnitude slower  
than the fundamental frequency of the V signal.  
the turn-on threshold and INTV is in regulation at 10V,  
CC  
IN(SENSE)  
the part begins to switch. The V hysteresis is set by the  
IN  
In an offline application, the fundamental frequency of  
the supply voltage is 120Hz so the control loop unity gain  
frequency needs to be set less than approximately 12Hz.  
EN/UVLO resistor divider. The auxiliary winding provides  
power to V when its voltage is higher than the V volt-  
IN  
IN  
age. A voltage shunt is provided for fault protection and  
can sink 8mA of current when V is over 40V.  
IN  
Start-Up  
During a typical cycle, the gate driver turns the external  
MOSFET on and a current flows through the inductor.  
This current increases at a rate proportional to the input  
voltage.Thecontrolloopdeterminesthemaximumcurrent  
and the current comparator turns the switch off when the  
current level is reached. When the switch turns off, the  
inductor current begins to flow through the diode con-  
nected to the output capacitor. This current decreases at  
The LT8312 uses a hysteretic start-up to operate from  
high offline voltages. A resistor connected to the supply  
voltage protects the part from high voltages. This resistor  
is connected to the V pin on the part and bypassed with  
IN  
a capacitor. When the resistor charges the V pin to a  
IN  
turn-on voltage set with the EN/UVLO resistor divider and  
the INTV pin is at its regulation point, the part begins to  
CC  
switch. The resistor cannot provide power for the part in  
8312fa  
7
For more information www.linear.com/LT8312  
LT8312  
operaTion  
steadystate, butreliesonthecapacitortostartupthepart,  
Programming Output Voltage  
then the auxiliary winding begins to provide power to the  
The output voltage is set using a resistor divider from the  
output capacitor to the FB pin. From the Block Diagram  
the resistors R3 and R4 form a resistor divider from the  
output capacitor. The output voltage equation is:  
V pin along with the resistor. An internal voltage clamp  
IN  
is attached to the V pin to prevent the resistor current  
IN  
from allowing V to go above the absolute maximum  
IN  
voltage of the pin. The internal clamp is set at 40V and is  
R3+R4  
capable of 8mA (typical) of current at room temperature.  
VOUT = VBG •  
R5  
Setting the V Turn-On and Turn-Off Voltages  
IN  
The V voltage is equal to FB Voltage in Electrical Speci-  
BG  
A large voltage difference between the V turn-on voltage  
IN  
fication Table.  
and the V turn-off voltage is preferred to allow time for  
IN  
the auxiliary winding to power the part. The EN/UVLO  
sets these two voltages. The pin has a 10μA current sink  
when the pins voltage is below 1.25V and 0μA when  
Setting V  
Resistor  
IN(SENSE)  
TheV  
resistorsetsthecurrentfeedingtheinternal  
IN(SENSE)  
multiplierthatmodulatesthecurrentlimitforpowerfactor  
correction.Atthemaximumlinevoltage,V ,thecurrent  
above 1.25V. The V pin connects to a resistor divider  
IN  
MAX  
as shown in Figure 1.  
is set to 360µA. Under this condition, the resistor value is  
equal to (V /360µA).  
The UVLO threshold for V rising is:  
IN  
MAX  
R1+R2  
R2  
VIN(UVLO,RISING) =1.25V •  
+10µA R1  
Critical Conduction Mode Operation  
Criticalconductionmodeisavariablefrequencyswitching  
scheme that always returns the inductor current to zero  
with every cycle. The DCM pin uses a fast current input  
comparatorincombinationwithasmallcapacitortodetect  
dv/dt on the auxiliary winding. To eliminate false tripping,  
a blanking time of 200ns is applied after the switch turns  
off. The detector looks for 80μA of current through the  
DCM pin due to falling voltage on the auxiliary winding  
when the output diode turns off. This is not the optimal  
timetoturntheswitchonbecausetheswitchvoltageisstill  
The UVLO Threshold for V Falling is :  
IN  
R1+R2  
R2  
VIN(UVLO,FALLING) =1.25V •  
V
IN  
R1  
R2  
EN/UVLO  
LT8312  
GND  
close to V  
and would waste all the energy stored in the  
OUT  
8312 F01  
parasitic capacitance on the switch node. Discontinuous  
ringingbeginswhentheoutputdiodecurrentreacheszero  
Figure 1. Undervoltage Lockout (UVLO)  
8312fa  
8
For more information www.linear.com/LT8312  
LT8312  
operaTion  
and the energy in the parasitic capacitance on the switch  
node transfers to the input capacitor. This is a second-  
order network composed of the parasitic capacitance on  
the switch node and the main inductor. The minimum  
voltage of the switch node during this discontinuous  
Loop Compensation  
The feedback loop is a traditional g error amplifier. The  
m
loop crossover frequency is set much lower than twice  
the line frequency for PFC to work properly. In a typical  
application, the compensation capacitor is 1µF.  
ring is 2V -V . The LT8312 turns the switch back on  
IN OUT  
at this time, during the discontinuous switch waveform,  
by sensing when the slope of the switch waveform goes  
from negative to positive using the dv/dt detector. This  
switching technique may increase efficiency by 5%.  
MOSFET and Diode Selection  
With a strong 1.9A gate driver, the LT8312 can effectively  
drive most high voltage MOSFETs. A low Q MOSFET is  
G
recommendedtomaximizeefficiency.Inmostapplications,  
At low current limits, the frequency of critical conduc-  
tion mode can become very high. The LT8312 features a  
maximum frequency clamp of 400kHz. The part operates  
in discontinuous conduction mode when the natural criti-  
cal conduction mode frequency is higher than 400kHz.  
the R  
should be chosen to limit the temperature rise  
DS(ON)  
of the MOSFET. The drain of the MOSFET is stressed to  
V
OUT  
during the time the MOSFET is off and the diode is  
conducting current.  
The diode is stressed to V  
when the switch is on. The  
OUT  
average current through the diode is equal to the load  
Sense Resistor Selection  
current.  
The resistor, R  
, between the source of the external  
SENSE  
N-channelMOSFETandGNDshouldbeselectedtoprovide  
anadequateswitchcurrenttodrivetheapplicationwithout  
exceeding the current limit threshold.  
Discontinuous Mode Detection  
The discontinuous mode detector uses AC-coupling to  
detect the ringing on the auxiliary winding. A 22pF ca-  
pacitor with a 30k resistor in series is recommended in  
most designs.  
Minimum Current Limit  
The LT8312 features a minimum current limit of approxi-  
mately 3% of the peak current limit. This helps improve  
the harmonic distortion during the input supplies off-line  
crossover period.  
Power Factor Correction/Harmonic Content  
The LT8312 attains high power factor and low harmonic  
content by making the peak current of the main power  
switchproportionaltothelinevoltagebyusingandinternal  
multiplier. A power factor of >0.97 is easily attainable for  
most applications by following the design equations in  
this data sheet. With proper design, LT8312 applications  
can easily meet most harmonic standards.  
Universal Input  
The LT8312 operates over the universal input voltage  
range of 90V AC to 265V AC.  
8312fa  
9
For more information www.linear.com/LT8312  
LT8312  
Typical applicaTions  
8312fa  
10  
For more information www.linear.com/LT8312  
LT8312  
Typical applicaTions  
8312fa  
11  
For more information www.linear.com/LT8312  
LT8312  
package DescripTion  
Please refer to http://www.linear.com/product/LT8312#packaging for the most recent package drawings.  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
8312fa  
12  
For more information www.linear.com/LT8312  
LT8312  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
2/16  
Modified schematics.  
1, 14  
Changed minimum current limit for INTV  
Changed OVP pin description.  
.
3
6
CC  
8312fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
13  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT8312  
Typical applicaTion  
Universal Input 200W PFC Boost Converter  
D4  
V
400V  
0.5A  
OUT  
4:1  
D2  
20Ω  
560µF  
×2  
90V  
TO 265V  
AC  
0.1µF  
499k 100k  
10µF  
4.7pF  
2k  
499k 100k  
D3  
1M  
1M  
V
DCM  
FB  
IN  
1M  
V
IN_SENSE  
EN/UVLO  
9.53k  
95.3k  
LT8312  
20Ω  
GATE  
V
SENSE  
REF  
INTV  
CC  
100k  
221k  
4.7µF  
0.01Ω  
GND  
2.2µF  
OVP  
V
C
8312 TA04  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
and V Limited Only By External Components  
OUT  
LT3798  
Off-Line Isolated No Opto Flyback Controller with Active PFC  
V
IN  
LT3752/  
LT3752-1  
Active Clamp Synchronous Forward Controllers with Internal Input Voltage Range: LT3752: 6.5V to 100V, LT3752-1: Limited Only By  
Housekeeping Controller  
Eternal Components  
LT3753  
LT8311  
Active Clamp Synchronous Forward Controller  
Input Voltage Range: 8.5V to 100V  
Synchronous Rectifier Controller with Opto-Coupler Driver  
for Forward Converters  
Optimized for Use with Primary-Side LT3752/LT3752-1, LT3753 and  
LT8310 Controllers  
LT3748  
100V Isolated Flyback Controller  
5V ≤ V ≤ 100V, No Opto Flyback, MSOP-16 with High Voltage Spacing  
IN  
LTC®3765/  
LTC3766  
Synchronous No Opto Forward Controller Chip Set with  
Active Clamp Reset  
Direct Flux Limit, Supports Self Starting Secondary Forward Control  
LTC3723-1/  
LTC3723-2  
Synchronous Push-Pull and Full-Bridge Controllers  
High Efficiency with On-Chip MOSFET Drivers, Adjustable Synchronous  
Rectification Timing  
LTC3722/  
LTC3722-2  
Synchronous Full Bridge Controllers  
Adaptive or Manual Delay Control for Zero Voltage Switching, Adjustable  
Synchronous Rectification Timing  
8312fa  
LT 0216 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
14  
LINEAR TECHNOLOGY CORPORATION 2015  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT8312  

相关型号:

LT8312MPMS#PBF

LT8312 - Boost Controller with Power Factor Correction; Package: MSOP; Pins: 16; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT8312_15

Boost Controller with Power Factor Correction
Linear

LT832

Optoelectronic
ETC

LT8330

Low IQ Boost/SEPIC/Inverting Converter with 5A, 40V Switch
ADI

LT8331

Low IQ Boost/SEPIC/Inverting Converter with 5A, 40V Switch
ADI

LT8333

Low IQ Boost/SEPIC/Inverting Converter with 5A, 40V Switch
ADI

LT8334

Low IQ Boost/SEPIC/Inverting Converter with 5A, 40V Switch
ADI

LT8336

40V, 1.2A Micropower Synchronous Boost Converter with PassThru
ADI

LT8337

28V, 5A Low IQ Synchronous Step-Up Silent Switcher with PassThru
ADI

LT8337-1

28V, 5A Low IQ Synchronous Step-Up Silent Switcher with PassThru
ADI

LT8338

40V, 1.2A Micropower Synchronous Boost Converter with PassThru
ADI

LT834

Optoelectronic
ETC