LT6650IS5#PBF [Linear]

LT6650 - Micropower, 400mV Reference with Rail-to-Rail Buffer Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C;
LT6650IS5#PBF
型号: LT6650IS5#PBF
厂家: Linear    Linear
描述:

LT6650 - Micropower, 400mV Reference with Rail-to-Rail Buffer Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40°C to 85°C

光电二极管
文件: 总12页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6650  
Micropower, 400mV  
Reference with Rail-to-Rail  
Buffer Amplifier in SOT-23  
U
DESCRIPTIO  
FEATURES  
The LT®6650 is a micropower, low voltage 400mV refer-  
ence. Operating with supplies from 1.4V up to 18V, the  
device draws only 5.6µA typical, making it ideal for low  
voltage systems as well as handheld instruments and  
industrial control systems. With only two resistors the  
internal buffer amplifier can scale the 400mV reference to  
any desired value up to the supply voltage.  
Low Quiescent Current 5.6  
µ
A (typical)  
Wide Supply Range: 1.4V to 18V  
400mV Reference ±1% Maximum Accuracy Over  
Temperature at 5V  
Rail-to-Rail Buffer Amplifier  
0.5% 400mV Maximum Initial Accuracy at 5V  
Shunt Configurable  
Sinks and Sources Current  
The reference is postpackage-trimmed to increase the  
output accuracy. The output can sink and source 200µA  
over temperature. Quiescent power dissipation is 28µW.  
Stability is ensured with any output capacitor of 1µF or  
higher.  
Wide Operational Range –40°C to 125°C  
Externally Adjustable Output Voltage  
Low Profile 1mm 5-lead SOT-23  
(ThinSOT™) Package  
U
TheLT6650isthelowestvoltageseriesreferenceavailable  
in the 5-lead SOT-23 package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIO S  
Battery-Operated Systems  
Handheld Instruments  
Industrial Control Systems  
Data Acquisition Systems  
Negative Voltage References  
U
TYPICAL APPLICATIO  
Battery-Powered 0.4V Reference  
LT6650 Temperature Drift  
402  
V
= 1.4V TO 18V  
IN  
TYPICAL LT6650 PART  
IN  
V
= 5V  
I
Q
6µA  
4
NO LOAD  
401  
400  
399  
398  
LT6650  
IN  
SINK 200µA  
V
= 400mV  
REFERENCE  
R
+
V
OUT  
SOURCE –200µA  
0.4V  
OUT  
FB  
5
1
GND  
2
1µF  
1µF  
–50 –30 –10 10 30 50 70 90 110 130  
TEMPERATURE (°C)  
6650 TA01a  
6650 TA01b  
6650fa  
1
LT6650  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Total Supply Voltage (VIN to GND)........................... 20V  
FB Voltage (Note 2) ....................... 20V to (GND – 0.3V)  
Output Voltage (OUT) .................... 20V to (GND – 0.3V)  
Output Short-Circuit Duration.......................... Indefinite  
FB Input Current ................................................... 10mA  
Operating Temperature Range ............... –40°C to 125°C  
Specified Temperature Range  
LT6650CS5 ............................................. 0°C to 70°C  
LT6650IS5........................................... –40°C to 85°C  
LT6650HS5 (Note 3) ......................... –40°C to 125°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range (Note 4) .... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
FB 1  
GND 2  
DNC* 3  
5 OUT  
4 IN  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
*Do Not Connect  
TJMAX = 150°C, θJA = 230°C/W  
ORDER PART NUMBER  
S5 PART MARKING  
LT6650CS5  
LT6650IS5  
LT6650HS5  
LBDV  
LBDV  
LBDV  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
The temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C.  
V
IN  
= 5V, C = 1µF, FB = OUT, no DC load, C = 1µF, unless  
A
IN  
L
SYMBOL  
V
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 4, 5)  
LT6650  
398  
–0.5  
400  
402  
0.5  
mV  
%
OUT  
LT6650CS5  
LT6650IS5  
LT6650HS5  
397  
–0.75  
400  
400  
400  
403  
0.75  
mV  
%
396  
–1  
404  
1
mV  
%
394  
–1.5  
406  
1.5  
mV  
%
V
Operating Input Voltage  
Line Regulation  
1.4  
18  
V
IN  
V /V  
1.4V V 18V  
OUT  
IN  
IN  
1
6
mV  
150  
900  
ppm/V  
LT6650CS5, LT6650IS5  
LT6650HS5  
7.5  
1130  
mV  
ppm/V  
8.5  
1280  
mV  
ppm/V  
V /I  
OUT OUT  
Load Regulation (Note 6)  
Sourcing from 0µA to –200µA  
–0.04  
500  
–0.2  
2500  
–0.4  
5000  
mV  
ppm/mA  
mV  
ppm/mA  
Sinking from 0µA to 200µA  
0.24  
3000  
1
mV  
ppm/mA  
mV  
12500  
2
20000  
ppm/mA  
6650fa  
2
LT6650  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C.  
V
IN  
= 5V, C = 1µF, FB = OUT, no DC load, C = 1µF, unless  
A
IN  
L
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
Output Voltage Temperature  
Coefficient (Note 10)  
30  
ppm/°C  
C
V  
DO  
Dropout Voltage (Note 7)  
Referred to V = 1.8V, V  
= 1.4V  
IN  
OUT  
(R = 100k, R = 39.2k)  
F
G
V  
= –0.1%, I  
= 0µA  
75  
100  
150  
mV  
mV  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V  
V  
= –0.1%, I  
= –0.1%, I  
= –200µA Sourcing  
165  
250  
350  
mV  
mV  
= 200µA Sinking (Note 11)  
–300  
–150  
0
mV  
mV  
I
I
Short-Circuit Output Current  
Supply Current  
V
V
Shorted to GND  
5
9
mA  
mA  
SC  
IN  
OUT  
OUT  
Shorted to V  
IN  
5.6  
11  
14  
µA  
µA  
V
V
= 18V  
5.9  
12  
15  
µA  
µA  
IN  
I
FB Pin Input Current  
= V  
= 400mV  
FB  
FB  
OUT  
1.2  
0.5  
10  
15  
30  
nA  
nA  
nA  
LT6650CS5, LT6650IS5  
LT6650HS5  
T
Turn-On Time  
C
= 1µF  
LOAD  
ms  
ON  
e
Output Noise (Note 8)  
0.1Hz ƒ 10Hz  
10Hz ƒ 1KHz, I  
20  
23  
µV  
P-P  
RMS  
n
= –200µA Sourcing  
µV  
OUT  
V
Hysteresis (Note 9)  
T = 0°C to 70°C  
0.1  
250  
0.24  
600  
mV  
ppm  
mV  
ppm  
HYS  
T = –40°C to 85°C  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note 2: The FB pin is protected by an ESD diode to the ground. If the FB  
input voltage exceeds –0.3V below ground, the FB input current should be  
limited to less than 10mA. If the FB input voltage is greater than 5V, the FB  
input current is expected to meet specified performance from Typical  
Performance Characteristics but is not tested or QA sampled at this  
voltage.  
Note 3: If the part is operating at temperatures above 85°C, it is  
recommended to enhance the stability margin by using an output  
capacitor greater than 10µF or a series RC combination having a 100µs  
equivalent time constant. See Application section for details.  
Note 7: Dropout Voltage is (V – V ) when V falls to 0.1% below its  
OUT  
IN  
OUT  
nominal value at V = 1.8V.  
IN  
Note 8: Peak-to-Peak noise is measured with a single pole highpass filter  
at 0.1Hz and a 2-pole lowpass filter at 10Hz. The unit is enclosed in a still  
air environment to eliminate thermocouple effects on the leads. The test  
time is 10 seconds.  
Note 9: Hysteresis in the output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 85°C or –40°C before a successive measurement. Hysteresis is  
roughly proportional to the square of the temperature change.  
Note 4: If the part is stored outside of the specified temperature range, the  
output voltage may shift due to hysteresis.  
Note 5: ESD (Electrostatic Discharge) sensitive devices. Extensive use of  
ESD protection devices are used internal to the LT6650; however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 10: Temperature coefficient is measured by dividing the change in  
output voltage by the specified temperature range.  
Note 11: This feature guarantees the shunt mode operation of the device.  
6650fa  
3
LT6650  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Applications, Figure 1)  
Output Voltage Temperature  
Drift  
Output Voltage Temperature  
Drift  
Supply Current vs Input Voltage  
404  
403  
402  
401  
400  
399  
398  
397  
396  
403  
402  
401  
400  
399  
398  
10  
8
TYPICAL PART  
THREE PARTS  
V
IN  
= 5V  
125°C  
6
V
IN  
= 1.4V  
25°C  
4
2
0
–55°C  
V
IN  
= 18V  
V
IN  
= 5V  
–60 –40 –20  
0
20 40 60 80 100 120  
–60 –40 –20  
0
20 40 60 80 100 120  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
6650 G01  
6650 G02  
6650 G03  
Supply Current vs Input Voltage  
Line Regulation  
Line Regulation  
10  
8
404  
403  
402  
401  
400  
399  
398  
404  
403  
402  
401  
400  
399  
398  
125°C  
T
A
= 125°C  
6
25°C  
T
= –55°C  
A
–55°C  
4
2
0
T
= –55°C  
A
T
= 25°C  
A
T
= 125°C  
T
= 25°C  
A
A
12 14  
INPUT VOLTAGE (V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
2
4
6
8
10  
16 18  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
6650 G04  
6550 G05  
6650 G06  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
TYPICAL PART  
= 5V  
TYPICAL PART  
= 5V  
V
= 1.425V - TYP (RF = 100k, RG = 39.2k)  
OUT  
V
V
0.1% V  
OUT  
IN  
IN  
25°C  
125°C  
125°C  
25°C  
–55°C  
–55°C  
25°C  
125°C  
–55°C  
10  
100  
OUTPUT CURRENT (µA)  
1000  
10  
100  
OUTPUT CURRENT (µA)  
1000  
10  
100  
OUTPUT CURRENT (µA)  
1000  
6650 G07  
6650 G08  
6650 G09  
6650fa  
4
LT6650  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Applications, Figure 1)  
Minimum Input-Output Voltage  
Differential (Sinking)  
Output Short-Circuit Current vs  
Input Voltage  
Output Short-Circuit Current vs  
Input Voltage  
0
–100  
–200  
–300  
–400  
–500  
14  
12  
10  
8
14  
12  
10  
8
V
= 1.425V - TYP (RF = 100k, RG = 39.2k)  
OUT  
OUTPUT SHORTED TO GND  
OUTPUT SHORTED TO V  
OUT  
IN  
0.1% V  
25°C  
125°C  
–55°C  
–55°C  
25°C  
125°C  
25°C  
6
6
4
4
–55°C  
125°C  
2
2
10  
100  
1000  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
OUTPUT CURRENT(µA)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
6650 G10  
6650 G11  
6650 G12  
FB Pin Current vs FB Pin Voltage  
FB Pin Current vs FB Pin Voltage  
Gain and Phase vs Frequency  
10  
1
120  
100  
80  
120  
100  
80  
10  
8
V
V  
OUT  
V
V  
OUT  
FB  
FB  
CURRENT IS POSITIVE WHEN  
IT ENTERS THE DEVICE  
CURRENT IS POSITIVE WHEN  
IT ENTERS THE DEVICE  
6
125°C  
4
60  
60  
GAIN  
125°C  
2
PHASE  
40  
40  
0
–2  
–4  
–6  
–8  
–10  
20  
20  
0.1  
0.01  
0
0
T
= 25°C  
–55°C  
25°C  
A
UNITY GAIN  
25°C  
–20  
–40  
–20  
–40  
R
C
= 2k  
= 1µF  
L
L
–55°C  
0.4 0.6  
–0.6 –0.4 –0.2  
0
0.2  
0.8 1.0  
0.01  
0.1  
1
10  
100  
1
3
5
7
9
11 13 15 17 19  
FB PIN VOLTAGE (V)  
FREQUENCY (kHz)  
FB PIN VOLTAGE (V)  
6650 G14  
6650 G15  
6650 G13  
Output Noise 0.1Hz to 10Hz  
Output Voltage Noise Spectrum  
Integrated Noise 10Hz to 1kHz  
100  
20  
V
= 5V  
V
C
= 5V  
IN  
V
C
= 5V  
IN  
= 1µF  
IN  
= 1µF  
L
L
I
= –200µA  
OUT  
15  
10  
5
10  
I
= –200µA  
OUT  
I
= 0µA  
OUT  
I
= –40µA  
OUT  
1
10  
0
0
1
2
3
4
5
6
7
8
9
10  
100  
FREQUENCY (Hz)  
1k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
TIME (s)  
6650 G17  
6650 G18  
6650 G16  
6650fa  
5
LT6650  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Applications, Figure 1)  
Output Impedance vs Frequency  
Output Impedance vs Frequency  
Output Impedance vs Frequency  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
I
= 0µA  
I
= –40µA  
I
= 0µA  
OUT  
OUT  
Z
OUT  
Z
R
= 0Ω  
R
= 0Ω  
C • R = 100µs  
L Z  
C
L
= 1µF  
L
C
= 10µF  
L
C
= 1µF  
L
C
= 10µF  
C
= 1µF  
L
L
C
= 10µF  
C
= 47µF  
L
C
= 47µF  
L
C
= 47µF  
L
1
1
1
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
6650 G19  
6650 G20  
6650 G21  
Power Supply Rejection Ratio vs  
Frequency  
Power Supply Rejection Ratio vs  
Frequency  
Power Supply Rejection Ratio vs  
Frequency  
20  
10  
20  
10  
20  
10  
I
= 0µA  
I
= –40µA  
I
= 0µA  
Z
OUT  
Z
OUT  
= 0  
OUT  
C • R = 100µs  
L
R
= 0  
R
Z
C
= 10µF  
L
0
0
0
C
= 1µF  
L
C
= 10µF  
C = 1µF  
L
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
C
= 47µF  
L
C
= 1µF  
L
C
= 10µF  
L
C
= 47µF  
C = 47µF  
L
L
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
6650 G22  
6650 G23  
6650 G24  
Power Supply Rejection Ratio vs  
Frequency  
Power Supply Rejection Ratio vs  
Frequency  
Power Supply Rejection Ratio vs  
Frequency  
20  
10  
20  
10  
20  
10  
I
= 0µA  
I
= –40µA  
I
= 0µA  
OUT  
OUT  
Z
IN  
OUT  
Z
IN  
R
= 0Ω  
R
= 0Ω  
C
C
• R = 100µs  
L
Z
C
R
= 1µF  
= 1k  
C
R
= 1µF  
= 1k  
= 1µF  
IN  
0
0
0
R
= 1k  
IN  
IN  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
C
= 10µF  
L
C
= 1µF  
C
= 10µF  
C = 10µF  
L
L
L
C
= 1µF  
L
C
= 1µF  
L
C
= 47µF  
L
C
= 47µF  
L
C
= 47µF  
L
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
6650 G25  
6650 G26  
6650 G27  
6650fa  
6
LT6650  
U
U
U
PI FU CTIO S  
FB (Pin 1): Resistor Divider Feedback Pin. Connect a  
resistor divider from OUT to GND and the center tap to FB.  
This pin sets the output potential.  
IN(Pin4):PositiveSupply.Bypassingwitha1µFcapacitor  
is recommended if the output loading changes.  
OUT (Pin 5): Reference Output. The output sources and  
sinks current. It is stable with any load capacitor with a  
total capacitance of 1µF or more. Higher load capacitance  
improves load transient response.  
GND (Pin 2): Ground Connection.  
DNC(Pin3):Donotconnect.Connectedinternallyforpost  
package trim. This pin must be left unconnected.  
W
BLOCK DIAGRA  
IN  
4
LT6650  
V
= 400mV  
R
+
REFERENCE  
5
1
OUT  
FB  
DNC  
3
2
6650 BD  
GND  
U
W U U  
APPLICATIO S I FOR ATIO  
Long Battery Life  
functions. Output impedance can be reduced by DC load-  
ing of the output by 40µA to 200µA, and/or adding an RZ  
totheoutputcapacitorfora100µstimeconstantasshown  
in Figure 1 and the Typical Performance Characteristics  
graphs.  
The LT6650 is a micropower, adjustable reference which  
operates from supply voltages ranging from 1.4V to 18V.  
The series regulated output may be configured with exter-  
nal resistors to any voltage from 400mV to nearly the  
supply potential. Under no-load conditions, the LT6650  
dissipates only 8µW when operating on a 1.4V supply.  
Other operating configurations allow the LT6650 to be  
used as a micropower positive or negative adjustable  
shunt reference from 1.4V to 18V.  
The LT6650 Voltage reference should have an input by-  
pass capacitor of 0.1µF or larger. When the circuit is  
R
IN  
IN  
OUT  
FB  
V
IN  
4
5
1
V
OUT  
C
IN  
C
LT6650  
2
L
Bypass and Load Capacitor  
R
Z
The LT6650 voltage reference requires a 1µF or greater  
output capacitance for proper operation. This capacitance  
may be provided by either a single capacitor connected  
between OUT and GND or formed by the aggregate of  
several capacitors that may be serving other decoupling  
6650 F01  
GND  
Figure 1. LT6650 Input-Output Configuration  
6650fa  
7
LT6650  
U
W U U  
APPLICATIO S I FOR ATIO  
operated from a small battery or other relatively high  
impedance source, a minimum 1µF capacitor is recom-  
mended. PSRR can be significantly enhanced by adding a  
low-pass RC filter on the input, with a time-constant of  
1ms or higher, as shown in Figure 1. The Typical Perfor-  
mance Characteristics graphs show performance as a  
function of several combinations of input and output  
capacitance.  
the same circuit responding to input transients of 0.5V,  
settling in about 0.3ms. Figures 5 through 7 show the  
same circuit responding to various load steps: changes  
between ±100µA in Figure 5; sourcing current step be-  
tween –100µA and –200µA in Figure 6; and sinkingcurrent  
VIN  
3V  
2.5V  
An input RC of 100ms or more is recommended (such as  
5k and 22µF) when output transients must be minimized  
in the face of high supply noise, such as in automotive  
applications. Figure 2 shows an input filter structure that  
effectively eliminates supply transients from affecting the  
output. With this extra input decoupling and the LT6650  
operating normally from a 12V bus, 50V transients induce  
less than <0.5% VOUT perturbations.  
VOUT  
0.4V  
0V  
2ms/DIV  
6650 F04  
Figure 4. Output Response to ±0.5V Input Step  
Figure 3 shows the turn-on response time for the circuit in  
Figure 1. The input voltage steps from 0V to 3V, and the  
output is configured to produce 400mV. Input bypass and  
output load capacitance are 1µF, RIN = 0, RZ = 0, and  
the output settles in approximately 0.5ms. Figure 4 shows  
VOUT  
10mV/DIV  
SINKING  
SOURCING  
IOUT  
100µA  
SINKING  
NOISY  
POWER BUS  
100µA  
SOURCING  
33k  
4.7k  
V
IN  
6650 F05  
1N751  
5V  
1µF  
22µF  
Figure 5. Output Response to Bidirectional Load Step  
(100µA to –100µA)  
6650 F02  
Figure 2. High Noise-Immunity Input Network  
VOUT  
10mV/DIV  
VIN  
3V  
AC  
IOUT  
–100µA  
–200µA  
VOUT  
0.4V  
0V  
0V  
6650 F06  
0.2ms/DIV  
6650 F03  
Figure 6. Output Response to Current-Sourcing Load Step  
Figure 3. LT6650 Turn-On Characteristic  
(–100µA to –200µA)  
6650fa  
8
LT6650  
U
W U U  
APPLICATIO S I FOR ATIO  
stepbetween100µAand200µAinFigure7.Loadstepsettling  
contribution <0.15%). Since the VOUT error distribution  
increases at twice the resistor tolerance, high accuracy  
resistors or resistor networks are recommended. The  
output voltage may be set to any level from 400mV up to  
350mV below the supply voltage with source or sink  
capability.  
occurs in about 0.5ms or less (to ±0.2%).  
Output Adjustment  
If the LT6650 is to be used as a 400mV reference, then the  
outputandfeedbackpinsmaybetiedtogetherwithoutany  
scale-setting components as shown in the front-page  
applicationcircuit.Settingtheoutputtoanyhighervoltage  
is a simple matter of selecting two feedback resistors to  
configurethenon-invertinggainoftheinternaloperational  
amplifier, as shown in Figure 8. A feedback resistor RF is  
connected between the OUT pin and the FB pin, and a gain  
resistor RG is connected from the FB pin to GND. The  
resistor values are related to the output voltage by the  
following relationship:  
Noise Reduction Capacitor  
In applications involving the use of resistive feedback for  
referencescaling, theintrinsicreferencenoiseisamplified  
along with the DC level. To minimize noise amplification,  
the use of a 1nF feedback capacitor is recommended, as  
showninFigure8andothercircuitswithscalingresistors.  
Shunt Reference Operation  
The circuits shown in Figure 9 and Figure 10 form adjust-  
ableshuntreferences.Alongwiththeexternalbiasresistor  
RB, the LT6650 provides positive or negative reference  
operation for outputs between 1.4V and 18V (positive or  
negative). Just like a Zener diode, a supply VS is required,  
somewhat higher in magnitude than the desired reference  
RF = RG • (VOUT – 0.4)/(0.4 – IFB • RG)  
The IFB term represents the FB pin bias current, and can  
generally be neglected when RG is 100k or less. For  
RG 20k, even worst-case IFB can be neglected (error  
V
S
VOUT  
10mV/DIV  
AC  
R
B
V
OUT  
= 0.4V • (1 + R /R )  
F G  
V
OUT  
1nF  
4
5
R
F
IN  
OUT  
1
IOUT  
10µF  
FB  
LT6650  
GND  
2
200µA  
R
G
100µA  
6650 F09  
6650 F07  
Figure 7. Output Response to Current-Sinking Load Step  
(100µA to 200µA)  
Figure 9. Typical Configuration of LT6650 as Adjustable Positive  
Shunt Reference  
1nF  
4
5
V
= 0.4V • (1 + R /R )  
F G  
1k  
OUT  
R
R
F
IN  
OUT  
V
V
OUT  
S
1
1nF  
10µF  
4
5
FB  
LT6650  
R
R
F
IN  
OUT  
GND  
2
1
G
1µF  
1µF  
FB  
LT6650  
V
OUT  
GND  
2
G
V
= –0.4V • (1 + R /R )  
F G  
OUT  
R
B
6650 F08  
–V  
S
6650 F10  
Figure 8. Typical Configuration for Output Voltages  
Greater than 0.4V  
Figure 10. Typical Configuration of LT6650 as Adjustable  
Negative Shunt Reference  
6650fa  
9
LT6650  
U
W U U  
APPLICATIO S I FOR ATIO  
VOUT. RB must be within the following range for proper  
operation (the optimal value depends greatly on the direc-  
tion and magnitude of the load current):  
the parts cycled over the higher temperature extremes  
exhibit a broader hysteresis distribution. The worst hys-  
teresis measurements indicate voltage shifts of less than  
1000ppm (0.1%) from their initial value.  
RB > |VS – VOUT|/(200µA + 0.4/RG)  
RB < |VS – VOUT|/(15µA + 0.4/RG)  
Limits of Operation  
The LT6650 is a robust bipolar technology part. ESD  
clamp diodes are integrated into the design and are  
depictedintheSimplifiedSchematicforreference. Diodes  
are included between the GND pin and the IN, OUT, and FB  
pins to prevent reverse voltage stress on the device.  
Unusual modes of operation that forward-bias any these  
diodes should limit current to 10mA to avoid permanent  
damage to the device. The LT6650 is fabricated using a  
relatively high-voltage process, allowing any pin to inde-  
pendently operate at up to 20V with respect to GND. The  
part does not include any over voltage protection mecha-  
nisms; therefore caution should be exercised to avoid  
inadvertent application of higher voltages in circuits in-  
volving high potentials.  
Hysteresis  
Due to various mechanical stress mechanisms inherent to  
integrated-circuit packaging, internal offsets may not pre-  
cisely recover from variations that occur over tempera-  
ture,andthiseffectisreferredtoashysteresis.Proprietary  
manufacturing steps minimize this hysteresis, though  
some small residual error can occur. Hysteresis measure-  
ments for the LT6650 can be seen in Figures 11 and 12.  
Figure 11 presents the worst-case data taken on parts  
subjected to thermal cycling between 0°C to 70°C, while  
Figure 12 shows data for –40°C to 85°C cycling. Units  
were cycled several times over these temperature ranges  
andthelargestchangesareshown. Aswouldbeexpected,  
6
7
LIGHT COLUMNS 0°C TO 25°C  
DARK COLUMNS 70°C TO 25°C  
LIGHT COLUMNS –40°C TO 25°C  
DARK COLUMNS 85°C TO 25°C  
6
5
5
4
3
2
1
0
4
3
2
1
0
–400  
–200  
0
200  
400  
600  
–1000750 –500 –250  
0
250 500 750 1000  
DISTRIBUTION (ppm)  
DISTRIBUTION (ppm)  
6650 F11  
6650 F12  
Figure 11. Worst-Case 0°C to 70°C Hysteresis  
Figure 12. Worst-Case –40°C to 85°C Hysteresis  
6650fa  
10  
LT6650  
W
W
SI PLIFIED SCHE ATIC  
4
IN  
IN  
IN  
5
OUT  
IN  
2
GND  
FB  
1
6650 SS  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635 Rev B)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6650fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT6650  
U
TYPICAL APPLICATIO  
Adjustable Micropower “Zener” 2-Terminal Reference  
CATHODE  
CATHODE  
4
5
1nF  
R
R
F
IN  
OUT  
1
1.4V V 18V  
Z
Z
10µF  
FB  
LT6650  
GND  
2
=
30µA I 220µA  
V
Z
= 0.4V • (1 + R /R )  
F
G
G
ANODE  
ANODE  
6650 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1790  
Micropower LDO Precision Reference  
Micropower Precision Reference  
0.05% Max Sources/Sinks-Current Available in SOT-23  
0.075% Max 10ppm/ºC Available in SOT-23  
0.04% Max 3ppm/ºC 35µA Supply Current  
LT1460  
LT1461  
Micropower LDO Low TC Precision Reference  
Single/Dual/Quad Micropower Op Amps  
LT1494/LT1495/  
LT1496  
1.5µA, V < 375µV, I < 1000pA  
OS B  
LTC1540  
LTC1798  
LT6700  
Nanopower Comparator with Reference  
Micropower LDO Reference  
300nA, Available in 3mm × 3mm DFN Package  
0.15% Max 6.5µA Supply Current  
Micropower Dual Comparator with Reference  
6.5µA, Choice of Polarities Available in SOT-23  
6650fa  
LT/LT 1005 • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT6650IS5#TR

暂无描述
Linear

LT6650IS5#TRM

LT6650 - Micropower, 400mV Reference with Rail-to-Rail Buffer Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6650IS5#TRMPBF

LT6650 - Micropower, 400mV Reference with Rail-to-Rail Buffer Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6650IS5#TRPBF

LT6650 - Micropower, 400mV Reference with Rail-to-Rail Buffer Amplifier in SOT-23; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6654

SOT-23 Precision Wide Supply High Output Drive Low Noise Reference
Linear
Linear
Linear

LT6654AHLS8-5#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-1.25#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-1.25#TRMPBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-1.25#TRPBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-2.048#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear