LT6654AHLS8-4.096#PBF [Linear]

暂无描述;
LT6654AHLS8-4.096#PBF
型号: LT6654AHLS8-4.096#PBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总22页 (文件大小:987K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6654  
Precision Wide  
Supply High Output Drive  
Low Noise Reference  
DescripTion  
FeaTures  
The LT®6654 is a family of small precision voltage ref-  
erences that offers high accuracy, low noise, low drift,  
low dropout and low power. The LT6654 operates from  
voltages up to 36V and is fully specified from –55°C to  
125°C. A buffered output ensures 1ꢀmA of output drive  
with low output impedance and precise load regulation.  
These features, in combination, make the LT6654 ideal  
for portable equipment, industrial sensing and control,  
and automotive applications.  
n
Low Drift:  
n
A-Grade: 10ppm/°C Max  
n
B-Grade: 20ppm/°C Max  
n
High Accuracy:  
n
A-Grade: 0ꢀ0ꢁ5 Max  
B-Grade: 0ꢀ105 Max  
n
n
n
n
n
n
n
n
n
n
n
Low Noise: 1ꢀ6ppm (0ꢀ1Hz to 10Hz)  
P-P  
Wide Supply Range to 36V  
Low Thermal Hysteresis: LS8 1ꢁppm (–40°C to 12ꢁ°C)  
Long Term Drift: (LS8) 1ꢁppm/√kHr  
Line Regulation (Up to 36V): ꢁppm/V Max  
Low Dropout Voltage: 1ꢀꢀmV Max  
The LT6654 was designed with advanced manufactur-  
ing techniques and curvature compensation to provide  
1ꢀppm/°C temperature drift and ꢀ.ꢀ5% initial accuracy.  
Low thermal hysteresis ensures high accuracy and  
Sinks and Sources 1ꢀmA  
Load Regulation at 1ꢀmA: 8ppm/mA Max  
Fully Specified from –55°C to 125°C  
Available Output Voltage Options: 1.25V, 2.ꢀ48V,  
2.5V, 3V, 3.3V, 4.ꢀ96V, 5V  
1.6ppm  
noise minimizes measurement uncertainty.  
P-P  
Since the LT6654 can also sink current, it can operate  
as a low power negative voltage reference with the same  
precision as a positive reference.  
n
Low Profile (1mm) ThinSOT™ Package and 5mm ×  
5mm Surface Mount Hermetic Package  
The LT6654 references are offered in 6-lead SOT-23  
package and an 8-lead LS8 package. The LS8 is a 5mm  
× 5mm surface mount hermetic package that provides  
outstanding stability.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Analog Devices, Inc. All other trademarks are the property of their  
respective owners.  
applicaTions  
n
Automotive Control and Monitoring  
n
High Temperature Industrial  
n
High Resolution Data Acquisition Systems  
Instrumentation and Process Control  
Precision Regulators  
Medical Equipment  
n
n
n
Typical applicaTion  
Output Voltage Temperature Drift  
0.10  
3 TYPICAL PARTS  
LT6654-2.5  
Basic Connection  
0.05  
(V  
+ 0.5V) < V < 36V  
IN  
LT6654  
GND  
V
OUT  
IN  
OUT  
OUT  
C
C
IN  
0.1µF  
L
0.00  
–0.05  
–0.10  
1µF  
6654 TA01a  
–60 –40 –20  
0
20 40  
TEMPERATURE (°C)  
6654 TA01b  
6654fh  
1
For more information www.linear.com/LT6654  
LT6654  
absoluTe MaxiMuM raTings  
(Note 1)  
Input Voltage V to GND ........................... –ꢀ.3V to 38V  
Operating Temperature Range ............... –55°C to 125°C  
Storage Temperature Range (Note 2)..... –65°C to 15ꢀ°C  
Lead Temperature (Soldering, 1ꢀ sec.)  
IN  
Output Voltage V  
........................ –ꢀ.3V to V + ꢀ.3V  
OUT  
IN  
Output Short-Circuit Duration ......................... Indefinite  
Specified Temperature Range  
(Note 9).................................................................3ꢀꢀ°C  
I-Grade.................................................–4ꢀ°C to 85°C  
H-Grade ............................................. –4ꢀ°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
pin conFiguraTion  
TOP VIEW  
V
IN  
TOP VIEW  
8
DNC  
NC  
1
2
3
7
6
5
DNC  
GND* 1  
GND 2  
DNC 3  
6 V  
OUT  
5 DNC  
4 V  
V
OUT  
V
OUT  
IN  
GND  
4
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
GND*  
LS8 PACKAGE  
8-PIN LEADLESS CHIP CARRIER (5mm × 5mm)  
T
= 15ꢀ°C, θ = 192°C/W  
JA  
DNC: CONNECTED INTERNALLY  
DO NOT CONNECT EXTERNAL  
JMAX  
T
= 15ꢀ°C, θ = 125°C/W  
JA  
DNC: CONNECTED INTERNALLY  
DO NOT CONNECT EXTERNAL  
JMAX  
CIRCUITRY TO THESE PINS  
*CONNECT PIN TO DEVICE GND (PIN 2)  
CIRCUITRY TO THESE PINS  
*CONNECT PIN TO DEVICE GND (PIN 3)  
orDer inForMaTion http://wwwꢀlinearcom/product/LT66ꢁ4#orderinfo  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–4ꢀ°C to 85°C  
LT6654AIS6-1.25#TRMPBF  
LT6654BIS6-1.25#TRMPBF  
LT6654AHS6-1.25#TRMPBF  
LT6654BHS6-1.25#TRMPBF  
LT6654AMPS6-1.25#TRMPBF  
LT6654BMPS6-1.25#TRMPBF  
LT6654AIS6-2.ꢀ48#TRMPBF  
LT6654BIS6-2.ꢀ48#TRMPBF  
LT6654AHS6-2.ꢀ48#TRMPBF  
LT6654BHS6-2.ꢀ48#TRMPBF  
LT6654AIS6-1.25#TRPBF  
LT6654BIS6-1.25#TRPBF  
LT6654AHS6-1.25#TRPBF  
LT6654BHS6-1.25#TRPBF  
LT6654AMPS6-1.25#TRPBF  
LT6654BMPS6-1.25#TRPBF  
LT6654AIS6-2.ꢀ48#TRPBF  
LT6654BIS6-2.ꢀ48#TRPBF  
LT6654AHS6-2.ꢀ48#TRPBF  
LT6654BHS6-2.ꢀ48#TRPBF  
LTFVD  
LTFVD  
LTFVD  
LTFVD  
LTFVD  
LTFVD  
LTFVF  
LTFVF  
LTFVF  
LTFVF  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–4ꢀ°C to 85°C  
LT6654AMPS6-2.ꢀ48#TRMPBF LT6654AMPS6-2.ꢀ48#TRPBF LTFVF  
LT6654BMPS6-2.ꢀ48#TRMPBF LT6654BMPS6-2.ꢀ48#TRPBF LTFVF  
LT6654AIS6-2.5#TRMPBF  
LT6654BIS6-2.5#TRMPBF  
LT6654AIS6-2.5#TRPBF  
LT6654BIS6-2.5#TRPBF  
LTFJY  
LTFJY  
–4ꢀ°C to 85°C  
6654fh  
2
For more information www.linear.com/LT6654  
LT6654  
orDer inForMaTion http://wwwꢀlinearcom/product/LT66ꢁ4#orderinfo  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–4ꢀ°C to 85°C  
LT6654AHS6-2.5#TRMPBF  
LT6654BHS6-2.5#TRMPBF  
LT6654AMPS6-2.5#TRMPBF  
LT6654BMPS6-2.5#TRMPBF  
LT6654AIS6-3#TRMPBF  
LT6654AHS6-2.5#TRPBF  
LT6654BHS6-2.5#TRPBF  
LT6654AMPS6-2.5#TRPBF  
LT6654BMPS6-2.5#TRPBF  
LT6654AIS6-3#TRPBF  
LTFJY  
LTFJY  
LTFJY  
LTFJY  
LTFVG  
LTFVG  
LTFVG  
LTFVG  
LTFVG  
LTFVG  
LTFVH  
LTFVH  
LTFVH  
LTFVH  
LTFVH  
LTFVH  
LTFVJ  
LTFVJ  
LTFVJ  
LTFVJ  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
LT6654BIS6-3#TRMPBF  
LT6654BIS6-3#TRPBF  
–4ꢀ°C to 85°C  
LT6654AHS6-3#TRMPBF  
LT6654BHS6-3#TRMPBF  
LT6654AMPS6-3#TRMPBF  
LT6654BMPS6-3#TRMPBF  
LT6654AIS6-3.3#TRMPBF  
LT6654BIS6-3.3#TRMPBF  
LT6654AHS6-3.3#TRMPBF  
LT6654BHS6-3.3#TRMPBF  
LT6654AMPS6-3.3#TRMPBF  
LT6654BMPS6-3.3#TRMPBF  
LT6654AIS6-4.ꢀ96#TRMPBF  
LT6654BIS6-4.ꢀ96#TRMPBF  
LT6654AHS6-4.ꢀ96#TRMPBF  
LT6654BHS6-4.ꢀ96#TRMPBF  
LT6654AHS6-3#TRPBF  
LT6654BHS6-3#TRPBF  
LT6654AMPS6-3#TRPBF  
LT6654BMPS6-3#TRPBF  
LT6654AIS6-3.3#TRPBF  
LT6654BIS6-3.3#TRPBF  
LT6654AHS6-3.3#TRPBF  
LT6654BHS6-3.3#TRPBF  
LT6654AMPS6-3.3#TRPBF  
LT6654BMPS6-3.3#TRPBF  
LT6654AIS6-4.ꢀ96#TRPBF  
LT6654BIS6-4.ꢀ96#TRPBF  
LT6654AHS6-4.ꢀ96#TRPBF  
LT6654BHS6-4.ꢀ96#TRPBF  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–4ꢀ°C to 85°C  
LT6654AMPS6-4.ꢀ96#TRMPBF LT6654AMPS6-4.ꢀ96#TRPBF LTFVJ  
LT6654BMPS6-4.ꢀ96#TRMPBF LT6654BMPS6-4.ꢀ96#TRPBF LTFVJ  
LT6654AIS6-5#TRMPBF  
LT6654BIS6-5#TRMPBF  
LT6654AHS6-5#TRMPBF  
LT6654BHS6-5#TRMPBF  
LT6654AMPS6-5#TRMPBF  
LT6654BMPS6-5#TRMPBF  
LT6654AIS6-5#TRPBF  
LT6654BIS6-5#TRPBF  
LT6654AHS6-5#TRPBF  
LT6654BHS6-5#TRPBF  
LT6654AMPS6-5#TRPBF  
LT6654BMPS6-5#TRPBF  
PART MARKING*  
542ꢀ48  
LTFVK  
LTFVK  
LTFVK  
LTFVK  
LTFVK  
LTFVK  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
SPECIFIED TEMPERATURE RANGE  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
LEAD FREE FINISH  
PACKAGE DESCRIPTION  
LT6654AHLS8-2.ꢀ48#PBF  
LT6654BHLS8-2.ꢀ48#PBF  
LT6654AHLS8-2.5#PBF  
LT6654BHLS8-2.5#PBF  
LT6654AHLS8-4.ꢀ96#PBF  
LT6654BHLS8-4.ꢀ96#PBF  
LT6654AHLS8-5#PBF  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
8-Lead Ceramic LCC (5mm × 5mm)  
542ꢀ48  
665425  
665425  
544ꢀ96  
544ꢀ96  
66545  
LT6654BHLS8-5#PBF  
66545  
TRM = 5ꢀꢀ pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 5ꢀꢀ unit reels through  
designated sales channels with #TRMPBF suffix.  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
6654fh  
3
For more information www.linear.com/LT6654  
LT6654  
available opTions  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
TEMPERATURE COEFFICIENT  
ORDER PART NUMBER**  
SPECIFIED TEMPERATURE RANGE  
1.25V  
ꢀ.ꢀ5%  
ꢀ.1%  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
LT6654AIS6-1.25  
LT6654BIS6-1.25  
LT6654AHS6-1.25  
LT6654BHS6-1.25  
LT6654AMPS6-1.25  
LT6654BMPS6-1.25  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.1%  
2.ꢀ48V  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.1%  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
LT6654AIS6-2.ꢀ48  
LT6654BIS6-2.ꢀ48  
LT6654AHS6-2.ꢀ48  
LT6654AHLS8-2.ꢀ48  
LT6654BHS6-2.ꢀ48  
LT6654BHLS8-2.ꢀ48  
LT6654AMPS6-2.ꢀ48  
LT6654BMPS6-2.ꢀ48  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
2.5V  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.1%  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
LT6654AIS6-2.5  
LT6654BIS6-2.5  
LT6654AHS6-2.5  
LT6654AHLS8-2.5  
LT6654BHS6-2.5  
LT6654BHLS8-2.5  
LT6654AMPS6-2.5  
LT6654BMPS6-2.5  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
3V  
ꢀ.ꢀ5%  
ꢀ.1%  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
LT6654AIS6-3  
LT6654BIS6-3  
LT6654AHS6-3  
LT6654BHS6-3  
LT6654AMPS6-3  
LT6654BMPS6-3  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.1%  
3.3V  
ꢀ.ꢀ5%  
ꢀ.1%  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
LT6654AIS6-3.3  
LT6654BIS6-3.3  
LT6654AHS6-3.3  
LT6654BHS6-3.3  
LT6654AMPS6-3.3  
LT6654BMPS6-3.3  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.1%  
4.ꢀ96V  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.1%  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
LT6654AIS6-4.ꢀ96  
LT6654BIS6-4.ꢀ96  
LT6654AHS6-4.ꢀ96  
LT6654AHLS8-4.ꢀ96  
LT6654BHS6-4.ꢀ96  
LT6654BHLS8-4.ꢀ96  
LT6654AMPS6-4.ꢀ96  
LT6654BMPS6-4.ꢀ96  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
5V  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.ꢀ5%  
ꢀ.1%  
ꢀ.1%  
ꢀ.ꢀ5%  
ꢀ.1%  
1ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
2ꢀppm/°C  
1ꢀppm/°C  
2ꢀppm/°C  
LT6654AIS6-5  
LT6654BIS6-5  
–4ꢀ°C to 85°C  
–4ꢀ°C to 85°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–4ꢀ°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
LT6654AHS6-5  
LT6654AHLS8-5  
LT6654BHS6-5  
LT6654BHLS8-5  
LT6654AMPS6-5  
LT6654BMPS6-5  
** See the Order Information section for complete part number listing.  
6654fh  
4
For more information www.linear.com/LT6654  
LT6654  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2ꢁ°C, CL = 1µF and VIN = VOUT + 0ꢀꢁV, unless otherwise notedꢀ  
For LT66ꢁ4-1ꢀ2ꢁ, VIN = 2ꢀ4V, unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Accuracy  
LT6654A  
–ꢀ.ꢀ5  
–ꢀ.1ꢀ  
–ꢀ.175  
–ꢀ.35  
–ꢀ.215  
–ꢀ.43  
–ꢀ.23  
–ꢀ.46  
ꢀ.ꢀ5  
ꢀ.1ꢀ  
ꢀ.175  
ꢀ.35  
ꢀ.215  
ꢀ.43  
ꢀ.23  
ꢀ.46  
%
%
%
%
%
%
%
%
LT6654B  
l
l
l
l
l
l
LT6654AI  
LT6654BI  
LT6654AH  
LT6654BH  
LT6654AMP  
LT6654BMP  
l
l
Output Voltage Temperature Coefficient (Note 3)  
Line Regulation  
LT6654A  
LT6654B  
3
1ꢀ  
2ꢀ  
ppm/°C  
ppm/°C  
1ꢀ  
V
OUT  
+ ꢀ.5V ≤ V ≤ 36V  
IN  
LT6654-2.ꢀ48, LT6654-2.5, LT6654-3,  
LT6654-3.3, LT6654-4.ꢀ96, LT6654-5  
1.2  
1.2  
5
1ꢀ  
ppm/V  
ppm/V  
l
l
2.4V ≤ V ≤ 36V  
5
1ꢀ  
ppm/V  
ppm/V  
IN  
LT6654-1.25  
Load Regulation (Note 4)  
Load Regulation (Note 4)  
I
= 1ꢀmA  
OUT(SOURCE)  
LT6654-2.ꢀ48, LT6654-2.5, LT6654-3,  
LT6654-3.3, LT6654-4.ꢀ96, LT6654-5  
LT6654-1.25  
3
6
8
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
l
l
l
15  
15  
2ꢀ  
3ꢀ  
45  
LT6654LS8  
1ꢀ  
I
= 1ꢀmA  
OUT(SINK)  
LT6654-2.ꢀ48, LT6654-2.5, LT6654-3,  
LT6654-3.3, LT6654-4.ꢀ96, LT6654-5  
LT6654-1.25  
9
2ꢀ  
3ꢀ  
25  
3ꢀ  
6ꢀ  
9ꢀ  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
ppm/mA  
l
l
l
15  
3ꢀ  
LT6654LS8  
Dropout Voltage (Note 5)  
Minimum Input Voltage  
V
– V , ∆V  
OUT  
= ꢀ.1%  
IN  
OUT  
OUT  
I
= ꢀmA  
55  
1ꢀꢀ  
12ꢀ  
mV  
mV  
l
LT6654-2.ꢀ48, LT6654-2.5, LT6654-3,  
LT6654-3.3, LT6654-4.ꢀ96, LT6654-5  
l
l
I
I
= 1ꢀmA  
45ꢀ  
5ꢀ  
mV  
mV  
OUT(SOURCE)  
OUT(SINK)  
= –1ꢀmA  
LT6654-1.25, ∆V  
= ꢀ.1%, I  
= ꢀmA  
1.5  
1.6  
1.8  
2.4  
V
V
V
OUT  
OUT  
OUT  
l
l
LT6654-1.25, ∆V  
No Load  
= ꢀ.1%, I  
= 1ꢀmA  
OUT  
Supply Current  
35ꢀ  
µA  
µA  
l
6ꢀꢀ  
Output Short-Circuit Current  
Output Voltage Noise (Note 6)  
Short V  
Short V  
to GND  
4ꢀ  
3ꢀ  
mA  
mA  
OUT  
OUT  
to V  
IN  
ꢀ.1Hz ≤ f ≤ 1ꢀHz  
LT6654-1.25  
LT6654-2.ꢀ48  
LT6654-2.5  
ꢀ.8  
1.ꢀ  
1.5  
1.6  
1.7  
2.ꢀ  
2.2  
2.ꢀ  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
RMS  
LT6654-3  
LT6654-3.3  
LT6654-4.ꢀ96  
LT6654-5  
1ꢀHz ≤ f ≤ 1kHz  
ppm  
Turn-On Time  
ꢀ.1% Settling, C  
= 1µF  
15ꢀ  
µs  
LOAD  
6654fh  
5
For more information www.linear.com/LT6654  
LT6654  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2ꢁ°C, CL = 1µF and VIN = VOUT + 0ꢀꢁV, unless otherwise notedꢀ  
For LT66ꢁ4-1ꢀ2ꢁ, VIN = 2ꢀ4V, unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Long-Term Drift of Output Voltage (Note 7)  
LT6654S6  
LT6654LS8  
6ꢀ  
15  
ppm/√kHr  
ppm/√kHr  
Hysteresis (Note 8)  
S6  
∆T = ꢀ°C to 7ꢀ°C  
15  
3ꢀ  
4ꢀ  
5ꢀ  
ppm  
ppm  
ppm  
ppm  
∆T = –4ꢀ°C to 85°C  
∆T = –4ꢀ°C to 125°C  
∆T = –55°C to 125°C  
LS8  
∆T = ꢀ°C to 7ꢀ°C  
3
ppm  
ppm  
ppm  
ppm  
∆T = –4ꢀ°C to 85°C  
∆T = –4ꢀ°C to 125°C  
∆T = –55°C to 125°C  
11  
15  
2ꢀ  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: If the parts are stored outside of the specified temperature range,  
the output may shift due to hysteresis.  
Note 7: Long-term stability typically has a logarithmic characteristic  
and therefore, changes after 1ꢀꢀꢀ hours tend to be much smaller than  
before that time. Total drift in the second thousand hours is normally less  
than one third that of the first thousand hours with a continuing trend  
toward reduced drift with time. Long-term stability will also be affected by  
differential stresses between the IC and the board material created during  
board assembly.  
Note 3: Temperature coefficient is measured by dividing the maximum  
Note 8: Hysteresis in output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or  
lower temperature. Output voltage is always measured at 25°C, but  
the IC is cycled to the hot or cold temperature limit before successive  
measurements. Hysteresis measures the maximum output change for the  
averages of three hot or cold temperature cycles. For instruments that  
are stored at well controlled temperatures (within 2ꢀ or 3ꢀ degrees of  
operational temperature), it is usually not a dominant error source. Typical  
hysteresis is the worst-case of 25°C to cold to 25°C or 25°C to hot to  
25°C, preconditioned by one thermal cycle.  
change in output voltage by the specified temperature range.  
Note 4: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note ꢁ: Excludes load regulation errors.  
Note 6: Peak-to-peak noise is measured with a 1-pole highpass filter at  
ꢀ.1Hz and 2-pole lowpass filter at 1ꢀHz. The unit is enclosed in a still-air  
environment to eliminate thermocouple effects on the leads. The test  
time is 1ꢀ seconds. RMS noise is measured on a spectrum analyzer in  
a shielded environment where the intrinsic noise of the instrument is  
removed to determine the actual noise of the device.  
Note 9: The stated temperature is typical for soldering of the leads during  
manual rework. For detailed IR reflow recommendations, refer to the  
Applications Information section.  
6654fh  
6
For more information www.linear.com/LT6654  
LT6654  
The characteristic curves are similar across the  
Typical perForMance characTerisTics  
LT66ꢁ4 familyꢀ Curves from the LT66ꢁ4-1ꢀ2ꢁ, LT66ꢁ4-2ꢀꢁ and the LT66ꢁ4-ꢁ represent the full range of typical performance of all  
voltage optionsꢀ Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
1ꢀ2ꢁV Output Voltage  
Temperature Drift  
1ꢀ2ꢁV Output Impedance  
vs Frequency  
1ꢀ2ꢁV Turn-On Characteristics  
1.2520  
1.2515  
1.2510  
1.2505  
1.2500  
1.2495  
1.2490  
1.2485  
100  
10  
THREE TYPICAL PARTS  
V
IN  
1V/DIV  
C
= 1µF  
L
GND  
1
V
OUT  
0.5V/DIV  
C = 10µF  
L
0.1  
GND  
0.01  
6654 G02  
–60 –40 –20  
0
20 40 60 80 100 120 140  
0.1  
1
10  
FREQUENCY (kHz)  
100  
20µs/DIV  
C
= 1µF  
LOAD  
TEMPERATURE (°C)  
6654 G01  
6654 G03  
1ꢀ2ꢁV Load Regulation (Sourcing)  
1ꢀ2ꢁV Load Regulation (Sinking)  
1ꢀ2ꢁV Output Noise 0ꢀ1Hz to 10Hz  
30  
20  
200  
180  
160  
140  
120  
100  
80  
125°C  
–55°C  
–40°C  
10  
0
–10  
–20  
–30  
–40  
–50  
25°C  
25°C  
125°C  
60  
40  
–40°C  
–55°C  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
0.1  
1
0.1  
1
TIME (1s/DIV)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
6654 G06  
6654 G04  
6654 G05  
1ꢀ2ꢁV Minimum Input Voltage  
(Sourcing)  
1ꢀ2ꢁV Minimum Input Voltage  
(Sinking)  
1ꢀ2V Output Voltage Noise  
Spectrum  
10  
10  
400  
350  
300  
250  
200  
25°C  
125°C  
25°C  
–55°C  
125°C  
–40°C  
1
1
–55°C  
150  
100  
50  
–40°C  
I
= 0µA  
O
I
= 5mA  
O
0.1  
0.1  
0
1
1.2 1.4 1.6 1.8  
MINIMUM INPUT VOLTAGE (V)  
2
2.2  
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7  
MINIMUM INPUT VOLTAGE (V)  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
6654 G07  
6654 G08  
6654 G09  
6654fh  
7
For more information www.linear.com/LT6654  
LT6654  
The characteristic curves are similar across the  
Typical perForMance characTerisTics  
LT66ꢁ4 familyꢀ Curves from the LT66ꢁ4-1ꢀ2ꢁ, LT66ꢁ4-2ꢀꢁ and the LT66ꢁ4-ꢁ represent the full range of typical performance of all  
voltage optionsꢀ Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
2ꢀꢁV Output Voltage  
Temperature Drift  
2ꢀꢁV Supply Current  
vs Input Voltage  
2ꢀꢁV Line Regulation  
2.502  
2.501  
2.500  
2.499  
2.498  
600  
500  
400  
300  
200  
100  
0
2.5050  
2.5040  
2.5030  
2.5020  
2.5010  
2.5000  
2.4990  
2.4980  
2.4970  
2.4960  
2.4950  
THREE TYPICAL PARTS  
–40°C  
–55°C  
25°C  
125°C  
25°C  
125°C  
–55°C  
–40°C  
–60  
–20  
20  
60  
100  
140  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
6654 G10  
6654 G11  
6654 G12  
2ꢀꢁV Load Regulation (Sourcing)  
2ꢀꢁV Load Regulation (Sinking)  
2ꢀꢁV Output Noise 0ꢀ1Hz to 10Hz  
10  
0
180  
160  
140  
120  
100  
80  
–55°C  
–40°C  
125°C  
–10  
–20  
–30  
–40  
125°C  
25°C  
25°C  
60  
40  
–40°C  
20  
–55°C  
0
6654 G15  
0.1  
1
0.1  
1
TIME (1s/DIV)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
6654 G13  
6654 G14  
2ꢀꢁV Minimum VIN to VOUT  
Differential (Sourcing)  
2ꢀꢁV Minimum VIN to VOUT  
Differential (Sinking)  
2ꢀꢁV Output Voltage Noise  
Spectrum  
10  
10  
400  
350  
300  
250  
200  
–55°C  
25°C  
–55°C  
–40°C  
–40°C  
125°C  
25°C  
I
= 0µA  
125°C  
O
1
1
150  
100  
50  
I
= 5mA  
O
0.1  
0.1  
0
0
50 100 150 200 250 300  
INPUT-OUTPUT VOLTAGE (mV)  
–300 –250 –200 –150 –100 –50  
0
0.01  
0.1  
1
10  
INPUT-OUTPUT VOLTAGE (mV)  
FREQUENCY (kHz)  
6654 G16  
6654 G17  
6654 G18  
6654fh  
8
For more information www.linear.com/LT6654  
LT6654  
The characteristic curves are similar across the  
Typical perForMance characTerisTics  
LT66ꢁ4 familyꢀ Curves from the LT66ꢁ4-1ꢀ2ꢁ, LT66ꢁ4-2ꢀꢁ and the LT66ꢁ4-ꢁ represent the full range of typical performance of all  
voltage optionsꢀ Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
2ꢀꢁV Integrated Noise  
10Hz to 10kHz  
2ꢀꢁV Power Supply Rejection  
Ratio vs Frequency  
2ꢀꢁV Output Impedance  
vs Frequency  
100  
10  
1
–20  
–30  
–40  
–50  
–60  
100  
10  
1
C
= 1µF  
L
C
= 1µF  
L
–70  
–80  
C
= 10µF  
100  
L
C
= 10µF  
L
–90  
0.1  
–100  
0.1  
0.01  
0.1  
1
0.1  
1
10  
FREQUENCY (kHz)  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6654 G19  
6654 G20  
6654 G21  
2ꢀꢁV Load Transient Response  
(Sourcing)  
2ꢀꢁV Turn-On Characteristics  
2ꢀꢁV Line Transient Response  
V
IN  
0.5V/DIV  
3V/DC  
I
OUT  
0mA  
V
IN  
1V/DIV  
5mA  
GND  
V
V
OUT  
OUT  
2mV/DIV/AC  
2.5V/DC  
20mV/DIV/AC  
V
OUT  
2.5V/DC  
1V/DIV  
GND  
6654 G22  
6654 G23  
6654 G24  
20µs/DIV  
50µs/DIV  
50µs/DIV  
C
= 1µF  
C
= 1µF  
C
= 1µF  
LOAD  
LOAD  
LOAD  
2ꢀꢁV Hysteresis Plot for –40°C  
and 12ꢁ°C (TSOT-23)  
2ꢀꢁV Hysteresis Plot for –40°C  
and 12ꢁ°C (LS8)  
2ꢀꢁV Long Term Drift (TSOT-23)  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
6
5
4
3
2
1
0
150  
120  
90  
MAX AVG HOT CYCLE MAX AVG COLD CYCLE  
25°C TO 125°C TO 25°C 25°C TO –40°C TO 25°C  
T
= 35°C  
25°C TO –40°C TO 25°C  
AND 25°C TO 125°C TO 25°C  
A
60  
30  
0
–30  
–60  
–90  
–120  
–150  
4
0
–150125 –100–7550 –25 0 25 50 75 100125 150  
DISTRIBUTION (ppm)  
0
400  
800  
1200  
1600  
–40 –30 –20 –10  
0
10 20 30 40  
TIME (HOURS)  
DISTRIBUTION (ppm)  
6654 G25  
6654 G26  
6654 G37  
6654fh  
9
For more information www.linear.com/LT6654  
LT6654  
The characteristic curves are similar across the  
Typical perForMance characTerisTics  
LT66ꢁ4 familyꢀ Curves from the LT66ꢁ4-1ꢀ2ꢁ, LT66ꢁ4-2ꢀꢁ and the LT66ꢁ4-ꢁ represent the full range of typical performance of all  
voltage optionsꢀ Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
2ꢀꢁV Load Transient Response  
(Sinking)  
ꢁV Output Voltage Temperature  
Drift  
2ꢀꢁV Long Term Drift (LS8)  
150  
120  
90  
5.003  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
4.996  
4.995  
4.994  
4.993  
THREE TYPICAL PARTS  
I
OUT  
5mA  
60  
0mA  
30  
0
–30  
–60  
–90  
–120  
–150  
V
OUT  
20mV/DIV/AC  
2.5V/DC  
6654 G27  
0
500  
1000  
1500  
2000  
–60 –40 –20  
0
20 40 60 80 100 120  
50µs/DIV  
C
= 1µF  
LOAD  
TIME (HOURS)  
TEMPERATURE (°C)  
6654 G38  
6654 G28  
ꢁV Output Impedance  
vs Frequency  
ꢁV Turn-On Characteristics  
ꢁV Load Regulation (Sourcing)  
100  
10  
50  
40  
30  
V
IN  
2V/DIV  
C
= 1µF  
L
20  
–55°C  
–40°C  
GND  
1
10  
V
OUT  
125°C  
0
C
= 10µF  
0.1  
0.01  
L
2V/DIV  
25°C  
–10  
GND  
–20  
6654 G29  
0.1  
1
10  
FREQUENCY (kHz)  
100  
0.1  
1
50µs/DIV  
C
= 1µF  
LOAD  
OUTPUT CURRENT (mA)  
6654 G30  
6654 G31  
ꢁV Minimum VIN to VOUT  
Differential (Sourcing)  
ꢁV Load Regulation (Sinking)  
ꢁV Output Noise 0ꢀ1Hz to 10Hz  
220  
200  
180  
160  
140  
120  
100  
80  
10  
25°C  
–55°C  
–40°C  
125°C  
–55°C  
–40°C  
1
125°C  
60  
25°C  
40  
20  
0
0.1  
0
1
2
3
4
5
6
7
8
9
10  
0.1  
1
0
50 100 150 200 250 300 350  
INPUT-OUTPUT VOLTAGE (mV)  
TIME (1s/DIV)  
OUTPUT CURRENT (mA)  
6654 G33  
6654 G32  
6654 G34  
6654fh  
10  
For more information www.linear.com/LT6654  
LT6654  
The characteristic curves are similar across the  
Typical perForMance characTerisTics  
LT66ꢁ4 familyꢀ Curves from the LT66ꢁ4-1ꢀ2ꢁ, LT66ꢁ4-2ꢀꢁ and the LT66ꢁ4-ꢁ represent the full range of typical performance of all  
voltage optionsꢀ Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
ꢁV Minimum VIN to VOUT  
Differential (Sinking)  
ꢁV Output Voltage Noise  
Spectrum  
10  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
–55°C  
I
= 0µA  
O
25°C  
125°C  
–40°C  
1
I
O
= 5mA  
0.1  
0
–300 –250 –200 –150 –100 –50  
0
50  
0.01  
0.1  
1
10  
INPUT-OUTPUT VOLTAGE (mV)  
FREQUENCY (kHz)  
6654 G35  
6654 G36  
pin FuncTions  
(LS8)  
(TSOT)  
DNC (Pins 1, 7): Do Not Connect. Keep leakage current  
from this pin to V or GND to a minimum.  
GND (Pin 1): Internal Function. This pin must be tied to  
ground, near Pin 2.  
IN  
NC (Pin 2): Not internally connected. May be tied to V ,  
OUT  
GND (Pin 2): Primary Device Ground.  
IN  
V
, GND or floated.  
DNC (Pin 3): Do Not Connect. Keep leakage current from  
GND (Pin 3): Internal Function. This pin must be tied to  
GND near Pin 4.  
this pin to V or GND to a minimum.  
IN  
V
(Pin 4): Power Supply. Bypass V with a ꢀ.1µF  
IN  
IN  
GND (Pin 4): Primary Device Ground. Pin 3 and the load  
ground should be star-connected to Pin 4.  
capacitor to ground.  
DNC (Pin ꢁ): Do Not Connect. Keep leakage current from  
V
(Pin ꢁ): V  
Pin. An output capacitor of 1µF or  
this pin to V or GND to a minimum.  
OUT  
OUT  
IN  
greater is required for stable operation.  
V
(Pin 6): Output Voltage. An output capacitor of 1µF  
OUT  
V
(Pin 6): V Pin. Tie to Pin 5 for proper load regu-  
minimum is required for stable operation.  
OUT  
lation.  
OUT  
V
(Pin 8): Power Supply. Bypass V with a ꢀ.1µF, or  
IN  
IN  
larger, capacitor to GND.  
6654fh  
11  
For more information www.linear.com/LT6654  
LT6654  
block DiagraMs  
V
IN  
8
DNC  
DNC  
7
1
+
V
V
OUT  
BANDGAP  
5
6
OUT  
GND  
GND  
3
4
NC  
2
6654 BDa  
LS8  
V
IN  
4
DNC  
DNC  
3
5
+
V
OUT  
BANDGAP  
6
1
GND  
GND  
2
6654 BD  
SOT23  
6654fh  
12  
For more information www.linear.com/LT6654  
LT6654  
applicaTions inForMaTion  
Bypass and Load Capacitors  
The LT6654 voltage references should have an input by-  
pass capacitor of ꢀ.1µF or larger, however the bypassing  
on other components nearby is sufficient. In high voltage  
V
IN  
1V/DIV  
GND  
applications, V > 3ꢀV, an output short-circuit to ground  
IN  
can create an input voltage transient that could exceed the  
maximum input voltage rating. To prevent this worst-case  
condition, an RC input line filter of 1ꢀµs (i.e. 1ꢀΩ and 1µF)  
is recommended. These references also require an output  
capacitorforstability.Theoptimumoutputcapacitancefor  
most applications is 1µF, although larger values work as  
well. This capacitor affects the turn-on and settling time  
for the output to reach its final value.  
V
OUT  
1V/DIV  
GND  
6654 F01  
20µs/DIV  
C
= 1µF  
LOAD  
Figure 1ꢀ Turn-On Characteristics of LT66ꢁ4-2ꢀꢁ  
Figure 1 shows the turn-on time for the LT6654-2.5 with a  
ꢀ.1µF input bypass and 1µF load capacitor. Figure 2 shows  
V
IN  
0.5V/DIV  
3V/DC  
the output response to a ꢀ.5V transient on V with the  
IN  
same capacitors.  
The test circuit of Figure 3 is used to measure the stability  
with various load currents. With R = 1k, the 1V step pro-  
L
V
OUT  
duces a current step of 1mA. Figure 4 shows the response  
to a ꢀ.5mA load. Figure 5 is the output response to a  
sourcingstepfrom4mAto5mA,andFigure 6istheoutput  
response of a sinking step from 4mA to 5mA.  
2mV/DIV/AC  
2.5V/DC  
6654 F02  
50µs/DIV  
C
= 1µF  
LOAD  
Figure 2ꢀ Output Response to 0ꢀꢁV Ripple on VIN  
1k  
V
IN  
LT6654-2.5  
GND  
IN  
OUT  
3V  
C
C
L
IN  
1V  
V
GEN  
1µF  
0.1µF  
6654 F03  
Figure 3ꢀ Load Current Response Time Test Circuit  
6654fh  
13  
For more information www.linear.com/LT6654  
LT6654  
applicaTions inForMaTion  
Positive or Negative Operation  
I
OUT  
In addition to the series connection, as shown on the front  
page of this data sheet, the LT6654 can be operated as a  
negative voltage reference.  
–0.5mA  
0.5mA  
The circuit in Figure 7 shows an LT6654 configured for  
negative operation. In this configuration, a positive volt-  
V
OUT  
age is required at V (Pin 4) to bias the LT6654 internal  
20mV/DIV/AC  
2.5V/DC  
IN  
circuitry. This voltage must be current limited with R1 to  
keep the output PNP transistor from turning on and driv-  
ing the grounded output. C1 provides stability during load  
transients.Thisconnectionmaintainsthesameaccuracyand  
temperature coefficient of the positive connected LT6654.  
6654 F04  
50µs/DIV  
C
= 1µF  
LOAD  
Figure 4ꢀ LT66ꢁ4-2ꢀꢁ Sourcing and Sinking 0ꢀꢁmA  
R1  
4.7k  
3V  
I
OUT  
4mA  
IN  
5mA  
LT6654-2.5  
GND  
OUT  
0.1µF  
V
= –2.5V  
OUT  
V
V
– V  
OUT  
C1  
1µF  
OUT  
EE  
R ≤  
10mV/DIV/AC  
550µA + I  
OUT  
2.5V/DC  
V
6654 F07  
EE  
6654 F05  
Figure 7ꢀ Using the LT66ꢁ4-2ꢀꢁ to Build a –2ꢀꢁV Reference  
50µs/DIV  
C
= 1µF  
LOAD  
Figure ꢁꢀ LT66ꢁ4-2ꢀꢁ Sourcing 4mA to ꢁmA  
I
OUT  
–5mA  
–4mA  
V
OUT  
10mV/DIV/AC  
2.5V/DC  
6654 F06  
50µs/DIV  
C
= 1µF  
LOAD  
Figure 6ꢀ LT66ꢁ4-2ꢀꢁ Sinking 4mA to ꢁmA  
6654fh  
14  
For more information www.linear.com/LT6654  
LT6654  
applicaTions inForMaTion  
Long-Term Drift  
Long-termdriftcannotbeextrapolatedfromaccelerated  
high temperature testingꢀ This erroneous technique  
gives drift numbers that are wildly optimisticꢀ The only  
way long-term drift can be determined is to measure it  
over the time interval of interestꢀ The LT6654 drift data  
was taken on 4ꢀ parts that were soldered into PC boards  
similar to a real world application. The boards were then  
placed into a constant temperature oven with T = 35°C,  
A
their outputs scanned regularly and measured with an 8.5  
digit DVM. Long-term drift curves are shown in Figure 8.  
Their drift is much smaller after the first thousand hours.  
80  
40  
80  
40  
0
0
–40  
–80  
–40  
–80  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
TIME (HOURS)  
LT6654-2.5 S6 PACKAGE  
FIRST THOUSAND HOURS  
TIME (HOURS)  
LT6654-2.5 S6 PACKAGE  
SECOND THOUSAND HOURS  
6654 F08a  
6654 F08b  
(NORMALIZED TO THE FIRST THOUSAND HOURS)  
80  
40  
0
–40  
–80  
0
500  
1000  
1500  
2000  
TIME (HOURS)  
LT6654-2.5 LS8 PACKAGE  
6654 G38  
Figure 8ꢀ LT66ꢁ4-2ꢀꢁ Long Term Drift  
6654fh  
15  
For more information www.linear.com/LT6654  
LT6654  
applicaTions inForMaTion  
Power Dissipation  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
335mW  
The power dissipation in the LT6654 is dependent on V ,  
IN  
load current and the package. The LT6654 package has  
a thermal resistance, or θ , of 192°C/W. A curve that  
10mA LOAD  
JA  
illustrates allowed power dissipation versus temperature  
for the 6-lead SOT-23 package is shown in Figure 9. The  
power dissipation of the LT6654-2.5 as a function of input  
voltage is shown in Figure 1ꢀ. The top curve shows power  
dissipation with a 1ꢀmA load and the bottom curve shows  
power dissipation with no load. When operated within  
NO LOAD  
10 15 20 25 30 35 40  
0
5
its specified limits of V = 36V and sourcing 1ꢀmA, the  
V
(V)  
IN  
IN  
6654 F10  
LT6654-2.5consumesabout335mWatroomtemperature.  
The power-derating curve in Figure 9 shows the LT6654-  
2.5 can only safely dissipate 13ꢀmW at 125°C, which is  
less than its maximum power output. Care must be taken  
when designing the circuit so that the maximum junction  
temperature is not exceeded. For best performance, junc-  
tion temperature should be kept below 125°C.  
Figure 10ꢀ Typical Power Dissipation of the LT66ꢁ4  
50  
MAX AVG HOT CYCLE MAX AVG COLD CYCLE  
25°C TO 125°C TO 25°C 25°C TO –40°C TO 25°C  
40  
30  
20  
10  
0
The LT6654 includes output current limit circuitry, as well  
as thermal limit circuitry, to protect the reference from  
damage in the event of excessive power dissipation. The  
LT6654 is protected from damage by a thermal shutdown  
circuit. However, changes in performance may occur as a  
result of operation at high temperature.  
–150  
–100  
–50  
0
50  
100  
150  
DISTRIBUTION (ppm)  
0.7  
T = 150°C  
= 192°C/W  
6654 F11  
θ
JA  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Figure 11aꢀ LT66ꢁ4 S6 Thermal Hysteresis –40°C to 12ꢁ°C  
6
25°C TO –40°C TO 25°C  
AND 25°C TO 125°C TO 25°C  
5
130mW  
4
3
2
1
0
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
6654 F09  
Figure 9ꢀ Maximum Allowed Power Dissipation of the LT66ꢁ4  
–40 –30 –20 –10  
0
10 20 30 40  
DISTRIBUTION (ppm)  
6654 F11b  
Figure 11bꢀ LT66ꢁ4 LS8 Thermal Hysteresis –40°C to 12ꢁ°C  
6654fh  
16  
For more information www.linear.com/LT6654  
LT6654  
applicaTions inForMaTion  
Hysteresis  
Humidity Sensitivity  
The hysteresis data is shown in Figure 11. The LT6654 is  
capable of dissipating relatively high power. For example,  
with a 36V input voltage and 1ꢀmA load current applied  
Plastic mould compounds absorb water. With changes in  
relative humidity, plastic packaging materials change the  
amount of pressure they apply to the die inside, which  
can cause slight changes in the output of a voltage refer-  
ence, usually on the order of 1ꢀꢀppm. The LS8 package is  
hermetic, so it is not affected by humidity, and is therefore  
more stable in environments where humidity may be a  
concern.  
to the LT6654-2.5, the power dissipation is P = 33.5V  
D
1ꢀmA = 335mW, which causes an increase in the die  
temperature of 64°C. This could increase the junction  
temperatureabove125°C(T  
is15ꢀ°C)andmaycause  
JMAX  
the output to shift due to thermal hysteresis.  
300  
PC Board Layout  
380s  
T
= 260°C  
P
RAMP  
DOWN  
The mechanical stress of soldering a surface mount volt-  
age reference to a PC board can cause the output voltage  
to shift and temperature coefficient to change. These two  
changes are not correlated. For example, the voltage may  
shift but the temperature coefficient may not.  
T = 217°C  
L
225  
150  
T
= 200°C  
S(MAX)  
t
P
T
S
= 190°C  
30s  
T = 150°C  
t
L
130s  
RAMP TO  
150°C  
40s  
To reduce the effects of stress-related shifts, mount the  
reference near the short edge of the PC board or in a  
corner. In addition, slots can be cut into the board on two  
sides of the device.  
75  
0
120s  
0
2
4
6
8
10  
MINUTES  
6654 F12  
The capacitors should be mounted close to the LT6654.  
The GND and V  
traces should be as short as possible  
OUT  
Figure 12ꢀ Lead Free Reflow Profile  
tominimizeIRdrops, sincehightraceresistancedirectly  
impacts load regulation.  
14  
12  
260°C 3 CYCLES  
260°C 1 CYCLE  
LT6654S6  
IR Reflow Shift  
The different expansion and contraction rates of the ma-  
terials that make up the LT6654 package may cause the  
outputvoltagetoshiftafterundergoingIRreflow.Leadfree  
solderreflowprofilesreachover25ꢀ°C,considerablymore  
than with lead based solder. A typical lead free IR reflow  
profile is shown in Figure 12. Similar profiles are found  
using a convection reflow oven. LT6654 devices run up  
to three times through this reflow process show that the  
standard deviation of the output voltage increases with a  
slightnegativemeanshiftof.ꢀꢀ3%asshowninFigure13.  
While there can be up to ꢀ.ꢀ14% of output voltage shift,  
the overall drift of the LT6654 after IR reflow does not  
vary significantly.  
10  
8
6
4
2
0
–140 –120 –100 –80 –60 –40 –20  
CHANGE IN OUTPUT (ppm)  
0
6654 F13  
Figure 13ꢀ Output Voltage Shift Due to IR Reflow (5)  
6654fh  
17  
For more information www.linear.com/LT6654  
LT6654  
Typical applicaTions  
Extended Supply Range Reference  
Boosted Output Current Reference  
4.5V < V < 36V  
IN  
UP TO 160V  
330k  
4.7µF  
220Ω  
MMBT5551  
2N2905  
1µF  
IN  
LT6654-2.5  
BZX84C12  
IN  
I
OUT  
OUT  
GND  
UP TO 300mA  
LT6654-2.5 OUT  
0.1µF  
GND  
1µF  
6654 TA02  
6654 TA03  
Boosted Output Current with Current Limit  
Octal DAC Reference  
4.5V < V < 36V  
IN  
LT6654-2.5  
2.65V < V < 5V  
IN  
OUT  
GND  
IN  
V
IN  
1
2
0.1µF  
10µF  
LED1*  
10Ω  
220Ω  
4.7µF  
0.1µF  
V
REF  
V
CC  
2N2905  
CS  
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
LT6654-2.5  
OUT  
GND  
SCK  
SDI  
I
LTC2600  
OUT  
IN  
UP TO 100mA  
1µF  
CLEAR  
6654 TA04  
*
LED CANNOT BE OMMITTED  
THE LED CLAMPS THE VOLTAGE  
DROP ACROSS THE 220Ω AND  
LIMITS OUTPUT CURRENT  
DAC H  
GND  
6654 TA05  
6654fh  
18  
For more information www.linear.com/LT6654  
LT6654  
package DescripTion  
Please refer to http://wwwꢀlinearcom/product/LT66ꢁ4#packaging for the most recent package drawingsꢀ  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6654fh  
19  
For more information www.linear.com/LT6654  
LT6654  
package DescripTion  
Please refer to http://wwwꢀlinearcom/product/LT66ꢁ4#packaging for the most recent package drawingsꢀ  
LS8 Package  
8-Pin Leadless Chip Carrier (5mm × 5mm)  
(Reference LTC DWG # 05-08-1852 Rev B)  
8
2.50 0.15  
PACKAGE OUTLINE  
7
1
0.5  
2
3
6
2.54 0.15  
1.4  
1.50 0.15  
XYY ZZ  
ABCDEF  
4
Q12345  
0.70 0.05 × 8  
COMPONENT  
PIN “A1”  
5.00 SQ 0.15  
5.80 SQ 0.15  
TRAY PIN 1  
BEVEL  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PACKAGE IN TRAY LOADING ORIENTATION  
5.00 SQ 0.15  
4.20 SQ 0.10  
8
1.45 0.10  
0.95 0.10  
5.00 SQ 0.15  
8
R0.20 REF  
2.00 REF  
PIN 1  
1
2
1
2
7
6
7
6
TOP MARK  
(SEE NOTE 5)  
0.5  
2.54 0.15  
4.20 0.10  
1.4  
5
3
3
5
R0.20 REF  
1.00 × 7 TYP  
LS8 0113 REV B  
4
4
0.70 TYP  
0.10 TYP  
0.64 × 8 TYP  
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS PACKAGE DO NOT INCLUDE PLATING BURRS  
PLATING BURRS, IF PRESENT, SHALL NOT EXCEED 0.30mm ON ANY SIDE  
4. PLATING—ELECTO NICKEL MIN 1.25UM, ELECTRO GOLD MIN 0.30UM  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
6654fh  
20  
For more information www.linear.com/LT6654  
LT6654  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/1ꢀ Added voltage options (1.25ꢀV, 2.ꢀ48V, 3.ꢀꢀꢀV, 4.ꢀ96V, 5.ꢀꢀꢀV) reflected throughout the data sheet.  
1-18  
4
B
3/11  
8/12  
Revised conditions for Output Voltage Noise in the Electrical Characteristics section.  
C
Addition of LS8 Features and Order Information.  
1, 2, 4  
Update to Electrical Characteristics to Include LS8 Package.  
Addition of Long Term Drift and Hysteresis Plots for LS8 Package.  
Addition of Humidity Sensitivity Information.  
6
9, 15, 16  
17  
Addition of LS8 Package Description.  
2ꢀ  
Addition of Related Parts.  
22  
1, 13, 14, 18  
2, 11, 12  
11  
D
2/14  
6/15  
Schematics updated to refer to pin functions instead of pin numbers.  
Label of Pin 2 on LS8 package changed to NC.  
The pin descriptions of Pin 2, Pin 3 and Pin 4 on LS8 package changed.  
GND label added on all schematic references of LT6654.  
SOT-23 removed from data sheet title.  
18, 22  
1
E
F
Order Information updated to include 2.ꢀ48V, 4.ꢀ96V and 5V option in LS8 package.  
3, 4  
12/15 Part marking correction for 4.ꢀ96V options in TSOT-23 package.  
Web link to Package Description updated.  
3
19, 2ꢀ  
2-5  
G
H
ꢀ3/17 Added 2.5V option in I-temp grade.  
ꢀ5/17 Added 1.25V, 2.ꢀ48V, 3V, 3.3V, 4.ꢀ96V and 5V Option in I-temp grade.  
2-5  
6654fh  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnecti of it ci it as cribe ei ll ot infrin on existing patent rights.  
21  
onsrcusdesdher nwinge
LT6654  
Typical applicaTion  
16-Bit ADC Reference  
4.6V < V < 36V  
S
LT6654-4.096  
IN OUT  
GND  
10µF  
0.1µF  
V
V
CC  
REF  
SDO  
SDI  
CS  
+
IN+  
IN–  
–2.048V < V  
< 2.048V  
LTC2480  
TO MCU  
DIFFERENTIAL  
SCK  
f
GND  
O
6654 TA06  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT146ꢀ  
Micropower Series Reference  
ꢀ.ꢀ75% Max, 1ꢀppm/°C Max Drift, 2.5V, 5V and 1ꢀV Versions, MSOP, PDIP, Sꢀ-8,  
SOT-23 and TO-92 Packages  
LT1461  
LT179ꢀ  
LT665ꢀ  
LTC6652  
Micropower Precision LDO Series Reference 3ppm/°C Max Drift, ꢀ°C to 7ꢀ°C, –4ꢀ°C to 85°C, –4ꢀ°C to 125°C Options in SO-8  
Micropower Precision Series References  
Micropower Reference with Buffer Amplifier  
ꢀ.ꢀ5% Max, 1ꢀppm/°C Max, 6ꢀµA Supply, SOT-23 Package  
ꢀ.ꢀ5% Max, 5.6µA Supply, SOT-23 Package  
Precision Low Drift Low Noise Buffered  
Reference  
ꢀ.5% Max, 5ppm/°C Max, 2.1ppm Noise (ꢀ.1Hz to 1ꢀHz) 1ꢀꢀ% Tested at –4ꢀ°C,  
P-P  
25°C and 125°C  
LT666ꢀ  
LTC6655  
LT6656  
Tiny Micropower Series Reference  
Precision Low Noise Reference  
8ꢀꢀnA Precision Voltage Reference  
ꢀ.2% Max, 2ꢀppm/°C Max, 2ꢀmA Output Current, 2mm × 2mm DFN  
2ppm/°C Max, 65ꢀnV Noise (ꢀ.1Hz to 1ꢀHz) 1ꢀꢀ% Tested at –4ꢀ°C, 25°C and 125°C  
P-P  
8ꢀꢀnA, 1ꢀppm/°C Max, ꢀ.ꢀ5% Max, SOT-23 Package  
6654fh  
LT 0517 REV H • PRINTED IN USA  
www.linear.com/LT6654  
22  
LINEAR TECHNOLOGY CORPORATION 2010  

相关型号:

LT6654AHLS8-5#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-1.25#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-1.25#TRMPBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-1.25#TRPBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-2.048#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654AHS6-2.5#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear
Linear

LT6654AIS6-1.25#TRMPBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6654AIS6-5#TRMPBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6654BHLS8-2.048#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654BHLS8-4.096#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6654BHLS8-5#PBF

LT6654 - Precision Wide Supply High Output Drive Low Noise Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear