LT3757HMSE-PBF [Linear]

Boost, Flyback, SEPIC and Inverting Controller; 升压,反激式, SEPIC和负输出控制器
LT3757HMSE-PBF
型号: LT3757HMSE-PBF
厂家: Linear    Linear
描述:

Boost, Flyback, SEPIC and Inverting Controller
升压,反激式, SEPIC和负输出控制器

控制器
文件: 总36页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3757  
Boost, Flyback, SEPIC and  
Inverting Controller  
FeaTures  
DescripTion  
TheꢀLT®3757ꢀisꢀaꢀwideꢀinputꢀrange,ꢀcurrentꢀmode,ꢀDC/DCꢀ  
controllerꢀwhichꢀisꢀcapableꢀofꢀgeneratingꢀeitherꢀpositiveꢀorꢀ  
negativeꢀoutputꢀvoltages.ꢀItꢀcanꢀbeꢀconfiguredꢀasꢀeitherꢀaꢀ  
boost,ꢀflyback,ꢀSEPICꢀorꢀinvertingꢀconverter.ꢀTheꢀLT3757ꢀ  
drivesꢀaꢀlowꢀsideꢀexternalꢀN-channelꢀpowerꢀMOSFETꢀfromꢀ  
aninternalregulated7.2Vsupply.Thefixedfrequency,ꢀ  
current-modearchitectureresultsinstableoperationoverꢀ  
aꢀwideꢀrangeꢀofꢀsupplyꢀandꢀoutputꢀvoltages.ꢀ  
n
Wide Input Voltage Range: 2.9V to 40V  
n
Positive or Negative Output Voltage Programming  
with a Single Feedback Pin  
n
ꢀ CurrentꢀModeꢀControlꢀProvidesꢀExcellentꢀTransientꢀ  
Response  
n
ꢀ ProgrammableꢀOperatingꢀFrequencyꢀ(100kHzꢀtoꢀ  
1MHz)ꢀwithꢀOneꢀExternalꢀResistor  
n
ꢀ SynchronizableꢀtoꢀanꢀExternalꢀClock  
n
ꢀ LowꢀShutdownꢀCurrentꢀ<ꢀ1µA  
TheoperatingfrequencyofLT3757canbesetwithanꢀ  
externalꢀresistorꢀoverꢀaꢀ100kHzꢀtoꢀ1MHzꢀrange,ꢀandꢀcanꢀ  
beꢀsynchronizedꢀtoꢀanꢀexternalꢀclockꢀusingꢀtheꢀSYNCꢀpin.ꢀ  
Aꢀlowꢀminimumꢀoperatingꢀsupplyꢀvoltageꢀofꢀ2.9V,ꢀandꢀaꢀ  
lowꢀshutdownꢀquiescentꢀcurrentꢀofꢀlessꢀthanꢀ1µA,ꢀmakeꢀ  
theꢀLT3757ꢀideallyꢀsuitedꢀforꢀbattery-operatedꢀsystems.  
n
ꢀ Internalꢀ7.2VꢀLowꢀDropoutꢀVoltageꢀRegulator  
n
ꢀ ProgrammableꢀInputꢀUndervoltageꢀLockoutꢀwithꢀ  
Hysteresis  
ꢀ ProgrammableꢀSoft-Start  
n
n
ꢀ Smallꢀ10-LeadꢀDFNꢀ(3mmꢀ×ꢀ3mm)ꢀandꢀThermallyꢀ  
Enhancedꢀ10-PinꢀMSOPꢀPackages  
TheLT3757featuressoft-startandfrequencyfoldbackꢀ  
functionstolimitinductorcurrentduringstart-upandꢀ  
outputꢀshort-circuit.  
applicaTions  
ꢀ AutomotiveꢀandꢀIndustrialꢀBoost,ꢀFlyback,ꢀSEPICꢀandꢀ  
n
L,ꢀLT,LTC,ꢀLTM,ꢀLinearꢀTechnology,ꢀtheꢀLinearꢀlogoꢀandꢀBurstꢀModeꢀareꢀregisteredꢀtrademarksꢀ  
andꢀNoꢀR  
ꢀandꢀThinSOTꢀareꢀtrademarksꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀAllꢀotherꢀ  
SENSE  
InvertingꢀConverters  
trademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
n
ꢀ TelecomꢀPowerꢀSupplies  
n
ꢀ PortableꢀElectronicꢀEquipment  
Typical applicaTion  
High Efficiency Boost Converter  
Efficiency  
V
IN  
8V TO 16V  
100  
90  
10µF  
25V  
X5R  
200k  
V
IN  
10µH  
SHDN/UVLO  
V
24V  
2A  
OUT  
V
= 8V  
IN  
80  
43.2k  
LT3757  
V
= 16V  
IN  
SYNC  
GATE  
226k  
70  
60  
50  
40  
30  
SENSE  
RT  
SS  
+
47µF  
35V  
s2  
FBX  
GND INTV  
VC  
CC  
41.2k  
300kHz  
16.2k  
22k  
6.8nF  
10µF  
25V  
X5R  
4.7µF  
10V  
X5R  
0.1µF  
0.01Ω  
0.001  
0.1  
1
10  
0.01  
OUTPUT CURRENT (A)  
3757 TA01b  
3757 TA01a  
3757fb  
LT3757I  
                                                     
.............................................. –40°Cꢀtoꢀ125°Cꢀ  
VC,ꢀSS.........................................................................3V  
           
DFN.................................................... –65°Cꢀtoꢀ125°Cꢀ  
                                                  
SENSE.................................................................... 0.3V  
           
LT3757E  
                                                     
............................................. –40°Cꢀtoꢀ125°Cꢀ  
LT3757  
absoluTe MaxiMuM raTings (Note 1)  
IN  
OperatingꢀTemperatureꢀRangeꢀ(Notesꢀ2,ꢀ8)ꢀ  
V ,ꢀSHDN/UVLOꢀ(Noteꢀ6).........................................40Vꢀ  
INTV ....................................................V ꢀ+ꢀ0.3V,ꢀ20V  
CC  
IN  
GATE........................................................ INTV ꢀ+ꢀ0.3V  
CC  
LT3757Hꢀ............................................40°Cꢀtoꢀ150°Cꢀ  
LT3757MPꢀ......................................... –55°Cꢀtoꢀ125°C  
StorageꢀTemperatureꢀRangeꢀ  
SYNCꢀ..........................................................................8V  
RT............................................................................1.5V  
MSOPꢀ................................................ –65°Cꢀtoꢀ150°C  
LeadꢀTemperatureꢀ(Soldering,ꢀ10ꢀsec)ꢀ  
FBXꢀ................................................................. –6Vꢀtoꢀ6Vꢀ  
MSOPꢀ...............................................................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
VC  
FBX  
SS  
1
2
3
4
5
10  
9
V
IN  
VC  
FBX  
SS  
1
2
3
4
5
10  
9
V
IN  
SHDN/UVLO  
SHDN/UVLO  
11  
11  
8
INTV  
8
INTV  
CC  
CC  
RT  
7
6
GATE  
RT  
7
GATE  
SYNC  
SENSE  
SYNC  
6
SENSE  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
ꢀ=ꢀ150°C,ꢀθ ꢀ=ꢀ40°C/Wꢀ  
JA  
EXPOSEDꢀPADꢀ(PINꢀ11)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
DD PACKAGE  
T
JMAX  
10-LEAD (3mm s 3mm) PLASTIC DFN  
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ43°C/Wꢀ  
JA  
EXPOSEDꢀPADꢀ(PINꢀ11)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
T
JMAX  
orDer inForMaTion  
LEAD FREE FINISH  
LT3757EDD#PBF  
LT3757IDD#PBF  
TAPE AND REEL  
PART MARKING*  
LDYW  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3757EDD#TRPBF  
LT3757IDD#TRPBF  
LT3757EMSE#TRPBF  
LT3757IMSE#TRPBF  
LT3757HMSE#TRPBF  
LT3757MPMSE#TRPBF  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ150°C  
–55°Cꢀtoꢀ125°C  
10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀPlasticꢀDFN  
10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀPlasticꢀDFN  
10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀPlasticꢀMSOP  
10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀPlasticꢀMSOP  
10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀPlasticꢀMSOP  
10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀPlasticꢀMSOP  
LDYW  
LT3757EMSE#PBFꢀ  
LT3757IMSE#PBF  
LT3757HMSE#PBF  
LT3757MPMSE#PBF  
LTDYX  
LTDYX  
LTDYX  
LTDYX  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
3757fb  
LT3757  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VIN = 24V, SHDN/UVLO = 24V, SENSE = 0V, unless otherwise noted.  
PARAMETER  
V ꢀOperatingꢀRangeꢀꢀ  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2.9  
40  
V
IN  
V ꢀShutdownꢀI  
SHDN/UVLOꢀ=ꢀ0Vꢀ  
SHDN/UVLOꢀ=ꢀ1.15V  
0.1  
1ꢀ  
6
µAꢀ  
µA  
IN  
Q
V ꢀOperatingꢀI  
V ꢀ=ꢀ0.3V,ꢀR ꢀ=ꢀ41.2k  
1.6  
280  
110  
–65  
2.2  
400  
120  
mA  
µA  
IN  
Q
C
T
V ꢀOperatingꢀI ꢀwithꢀInternalꢀLDOꢀDisabled  
V ꢀ=ꢀ0.3V,ꢀR ꢀ=ꢀ41.2k,ꢀINTV ꢀ=ꢀ7.5V  
C T CC  
IN  
Q
l
SENSEꢀCurrentꢀLimitꢀThreshold  
SENSEꢀInputꢀBiasꢀCurrent  
Error Amplifier  
100  
mV  
µA  
CurrentꢀOutꢀofꢀPin  
l
l
FBXꢀRegulationꢀVoltageꢀ(V  
FBXꢀOvervoltageꢀLockout  
FBXꢀPinꢀInputꢀCurrent  
)
V
V
ꢀ>ꢀ0Vꢀ(Noteꢀ3)ꢀ  
ꢀ<ꢀ0Vꢀ(Noteꢀ3)  
1.569ꢀ  
–0.816  
1.6ꢀ  
1.631ꢀ  
Vꢀ  
V
FBX(REG)  
FBX  
FBX  
–0.80  
–0.784  
V
V
ꢀ>ꢀ0Vꢀ(Noteꢀ4)ꢀ  
FBX  
ꢀ<ꢀ0Vꢀ(Noteꢀ4)  
FBX  
6ꢀ  
7
8ꢀ  
11  
10ꢀ  
14  
%ꢀ  
%
V
V
ꢀ=ꢀ1.6Vꢀ(Noteꢀ3)ꢀ  
FBX  
ꢀ=ꢀ–0.8Vꢀ(Noteꢀ3)  
FBX  
70ꢀ  
100ꢀ  
10  
nAꢀ  
nA  
–10  
Transconductanceꢀg ꢀ(∆I /∆V  
)
FBX  
(Noteꢀ3)  
(Noteꢀ3)  
230  
5
µS  
m
VC  
VCꢀOutputꢀImpedance  
MΩ  
V
ꢀLineꢀRegulationꢀ[∆V /(∆V ꢀ•ꢀV  
)]  
V
V
ꢀ>ꢀ0V,ꢀ2.9Vꢀ<ꢀV ꢀ<ꢀ40Vꢀ(Notesꢀ3,ꢀ7)ꢀ  
0.002ꢀ  
0.0025  
0.056ꢀ  
0.05  
%/Vꢀ  
%/V  
FBX  
FBX  
IN  
FBX(REG)  
FBX  
FBX  
IN  
ꢀ<ꢀ0V,ꢀ2.9Vꢀ<ꢀV ꢀ<ꢀ40Vꢀ(Notesꢀ3,ꢀ7)  
IN  
VCꢀCurrentꢀModeꢀGainꢀ(∆V /∆V  
)
5.5  
V/V  
µA  
VC  
SENSE  
VCꢀSourceꢀCurrent  
VCꢀSinkꢀCurrent  
V
ꢀ=ꢀ0V,ꢀV ꢀ=ꢀ1.5V  
–15  
FBX  
C
V
V
ꢀ=ꢀ1.7Vꢀ  
FBX  
FBX  
12ꢀ  
11  
µAꢀ  
µA  
ꢀ=ꢀ–0.85V  
Oscillator  
SwitchingꢀFrequency  
R ꢀ=ꢀ41.2kꢀtoꢀGND,ꢀV ꢀ=ꢀ1.6Vꢀ  
270  
300ꢀ  
100ꢀ  
1000  
330  
0.4  
kHzꢀ  
kHzꢀ  
kHz  
T
FBX  
R ꢀ=ꢀ140kꢀtoꢀGND,ꢀV ꢀ=ꢀ1.6Vꢀ  
T
FBX  
R ꢀ=ꢀ10.5kꢀtoꢀGND,ꢀV ꢀ=ꢀ1.6V  
T
FBX  
RTꢀVoltage  
V
ꢀ=ꢀ1.6V  
FBX  
1.2  
220  
220  
V
ns  
ns  
V
MinimumꢀOff-Time  
MinimumꢀOn-Time  
SYNCꢀInputꢀLow  
SYNCꢀInputꢀHigh  
SSꢀPull-UpꢀCurrent  
Low Dropout Regulator  
1.5  
V
SSꢀ=ꢀ0V,ꢀCurrentꢀOutꢀofꢀPin  
–10  
7.2  
µA  
l
INTV ꢀRegulationꢀVoltage  
7
7.4  
2.8  
V
CC  
INTV ꢀUndervoltageꢀLockoutꢀThreshold  
FallingꢀINTV  
CC  
2.6  
2.7ꢀ  
0.1  
Vꢀ  
V
CC  
UVLOꢀHysteresis  
INTV ꢀOvervoltageꢀLockoutꢀThreshold  
16  
30  
17.5  
V
CC  
INTV ꢀCurrentꢀLimit  
V =ꢀ40Vꢀ  
INꢀ  
V =ꢀ15V  
INꢀ  
40ꢀ  
95  
55  
mAꢀ  
mA  
CC  
INTV ꢀLoadꢀRegulationꢀ(∆V  
/ V  
)
0ꢀ<ꢀI  
<ꢀ20mA,ꢀV =ꢀ8V  
–0.9  
–0.5  
0.008  
400  
%
%/V  
mV  
CC  
INTVCC INTVCC  
INTVCCꢀ  
INꢀ  
INTV ꢀLineꢀRegulationꢀ∆V  
/(V  
ꢀ•ꢀ∆V )  
8Vꢀ<ꢀV ꢀ<ꢀ40V  
0.03  
CC  
INTVCC  
INTVCC  
IN  
IN  
DropoutꢀVoltageꢀ(V ꢀ–ꢀV  
)
V =ꢀ6V,ꢀI  
INꢀ  
=ꢀ20mA  
INTVCCꢀ  
IN  
INTVCC  
3757fb  
LT3757  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating temp-  
erature range, otherwise specifications are at TA = 25°C. VIN = 24V, SHDN/UVLO = 24V, SENSE = 0V, unless otherwise noted.  
PARAMETER  
INTV ꢀCurrentꢀinꢀShutdown  
CONDITIONS  
SHDN/UVLOꢀ=ꢀ0V,ꢀINTV ꢀ=ꢀ8V  
MIN  
TYP  
MAX  
UNITS  
µA  
16  
CC  
CC  
INTV ꢀVoltageꢀtoꢀBypassꢀInternalꢀLDO  
7.5  
V
CC  
Logic Inputs  
l
SHDN/UVLOꢀThresholdꢀVoltageꢀFalling  
SHDN/UVLOꢀInputꢀLowꢀVoltage  
SHDN/UVLOꢀPinꢀBiasꢀCurrentꢀLow  
SHDN/UVLOꢀPinꢀBiasꢀCurrentꢀHigh  
Gate Driver  
V ꢀ=ꢀINTV ꢀ=ꢀ8V  
1.17  
1.7  
1.22  
1.27  
0.4  
V
V
IN  
CC  
I(V )ꢀDropsꢀBelowꢀ1µA  
IN  
SHDN/UVLOꢀ=ꢀ1.15V  
SHDN/UVLOꢀ=ꢀ1.30V  
2
2.5  
µA  
nA  
10  
100  
t ꢀGateꢀDriverꢀOutputꢀRiseꢀTime  
C ꢀ=ꢀ3300pFꢀ(Noteꢀ5),ꢀINTV ꢀ=ꢀ7.5V  
22  
20  
ns  
ns  
V
r
L
CC  
t ꢀGateꢀDriverꢀOutputꢀFallꢀTime  
f
C ꢀ=ꢀ3300pFꢀ(Noteꢀ5),ꢀINTV ꢀ=ꢀ7.5V  
L CC  
GateꢀV  
GateꢀV  
0.05  
OL  
OH  
INTV  
V
CC  
–0.05  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
Note 3:ꢀTheꢀLT3757ꢀisꢀtestedꢀinꢀaꢀfeedbackꢀloopꢀwhichꢀservosꢀV ꢀtoꢀtheꢀ  
referenceꢀvoltagesꢀ(1.6Vꢀandꢀ–0.8V)ꢀwithꢀtheꢀVCꢀpinꢀforcedꢀtoꢀ1.3V.  
FBX  
Note 4:ꢀFBXꢀovervoltageꢀlockoutꢀisꢀmeasuredꢀatꢀV ꢀrelativeꢀ  
FBX(OVERVOLTAGE)  
toꢀregulatedꢀV  
.
FBX(REG)  
Note 2: TheꢀLT3757Eꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀtheꢀ0°Cꢀtoꢀ125°Cꢀjunctionꢀtemperature.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀ  
toꢀ125°Cꢀoperatingꢀjunctionꢀtemperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀ  
characterizationꢀandꢀcorrelationꢀwithꢀstatisticalꢀprocessꢀcontrols.ꢀTheꢀ  
LT3757Iꢀisꢀguaranteedꢀoverꢀtheꢀfullꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀjunctionꢀ  
temperatureꢀrange.ꢀTheꢀLT3757Hꢀisꢀguaranteedꢀoverꢀtheꢀfullꢀ–40°Cꢀtoꢀ150°Cꢀ  
operatingꢀjunctionꢀtemperatureꢀrange.ꢀHighꢀjunctionꢀtemperaturesꢀdegradeꢀ  
operatingꢀlifetimes.ꢀOperatingꢀlifetimeꢀisꢀderatedꢀatꢀjunctionꢀtemperaturesꢀ  
greaterꢀthanꢀ125°C.ꢀTheꢀLT3757MPꢀisꢀ100%ꢀtestedꢀandꢀguaranteedꢀoverꢀtheꢀ  
fullꢀ–55°Cꢀtoꢀ125°Cꢀoperatingꢀjunctionꢀtemperatureꢀrange.  
Note 5:ꢀRiseꢀandꢀfallꢀtimesꢀareꢀmeasuredꢀatꢀ10%ꢀandꢀ90%ꢀlevels.  
Note 6:ꢀForꢀV ꢀbelowꢀ6V,ꢀtheꢀSHDN/UVLOꢀpinꢀmustꢀnotꢀexceedꢀV .  
IN  
IN  
Note 7:SHDN/UVLOꢀ=ꢀ1.33VꢀwhenꢀV ꢀ=ꢀ2.9V.  
IN  
Note 8:ꢀTheꢀLT3757ꢀincludesꢀovertemperatureꢀprotectionꢀthatꢀisꢀintendedꢀ  
toꢀprotectꢀtheꢀdeviceꢀduringꢀmomentaryꢀoverloadꢀconditions.ꢀJunctionꢀ  
temperatureꢀwillꢀexceedꢀtheꢀmaximumꢀoperatingꢀjunctionꢀtemperatureꢀ  
whenꢀovertemperatureꢀprotectionꢀisꢀactive.ꢀContinuousꢀoperationꢀaboveꢀ  
theꢀspecifiedꢀmaximumꢀoperatingꢀjunctionꢀtemperatureꢀmayꢀimpairꢀdeviceꢀ  
reliability.  
Typical perForMance characTerisTics TA = 25°C, unless otherwise noted.  
Positive Feedback Voltage  
vs Temperature, VIN  
Negative Feedback Voltage  
vs Temperature, VIN  
Quiescent Current  
vs Temperature, VIN  
1605  
1600  
1595  
1590  
1585  
1580  
–788  
–790  
–792  
–794  
–796  
–798  
–800  
–802  
–804  
1.8  
1.7  
1.6  
1.5  
1.4  
V
= 40V  
V
= INTV = 2.9V  
CC  
IN  
IN  
SHDN/UVLO = 1.33V  
V
= 24V  
IN  
V
= 40V  
IN  
V
= 24V  
IN  
V
= 8V  
IN  
V
= 8V  
IN  
V = 40V  
IN  
V
= INTV = 2.9V  
IN  
CC  
SHDN/UVLO = 1.33V  
V
IN  
= 24V  
V
= INTV = 2.9V  
CC  
IN  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3757 G01  
3757 G02  
3757 G03  
3757fb  
LT3757  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Dynamic Quiescent Current  
Normalized Switching Frequency  
vs FBX  
vs Switching Frequency  
RT vs Switching Frequency  
35  
30  
25  
20  
15  
10  
5
1000  
120  
100  
80  
60  
40  
20  
0
C
= 3300pF  
L
100  
0
10  
–0.8  
0
0.4  
FBX VOLTAGE (V)  
0.8  
1.2  
1.6  
0
300  
400 500 600 700 800 900 1000  
0
300 400 500 600 700 800 900 1000  
–0.4  
100 200  
100 200  
SWITCHING FREQUENCY (KHz)  
SWITCHING FREQUENCY (KHz)  
3757 G04  
3757 G05  
3757 G06  
Switching Frequency  
vs Temperature  
SENSE Current Limit Threshold  
vs Temperature  
SENSE Current Limit Threshold  
vs Duty Cycle  
330  
320  
310  
300  
290  
280  
270  
120  
115  
110  
105  
100  
115  
110  
105  
100  
95  
R
= 41.2K  
T
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DUTY CYCLE (%)  
3757 G07  
3757 G08  
3757 G09  
SHDN/UVLO Threshold  
vs Temperature  
SHDN/UVLO Hysteresis Current  
vs Temperature  
SHDN/UVLO Current vs Voltage  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
2.4  
2.2  
2.0  
1.8  
1.6  
40  
30  
20  
10  
0
SHDN/UVLO RISING  
SHDN/UVLO FALLING  
–75 –50 –25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SHDN/UVLO VOLTAGE (V)  
TEMPERATURE (°C)  
3757 G10  
3757 G12  
3757 G11  
3757fb  
LT3757  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
INTVCC Minimum Output Current  
vs VIN  
INTVCC vs Temperature  
INTVCC Load Regulation  
7.4  
7.3  
7.2  
7.1  
7.0  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7.3  
7.2  
T = 150°C  
J
V
= 8V  
IN  
7.1  
7
INTV = 6V  
CC  
INTV = 4.5V  
CC  
6.9  
6.8  
0
5
10 15 20 25 30 35 40  
–75 –50 –25  
0
25 50 75 100 125 150  
0
20  
30  
40  
50  
60  
70  
10  
TEMPERATURE (°C)  
V
(V)  
INTV LOAD (mA)  
IN  
CC  
3757 G13  
3757 G14  
3757 G15  
INTVCC Dropout Voltage  
vs Current, Temperature  
Gate Drive Rise  
INTVCC Line Regulation  
and Fall Time vs CL  
700  
600  
500  
400  
300  
200  
100  
0
7.30  
7.25  
7.20  
7.15  
7.10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 6V  
IN  
150°C  
INTV = 7.2V  
CC  
125°C  
75°C  
25°C  
RISE TIME  
FALL TIME  
0°C  
–55°C  
10  
15  
20  
0
5
0
5
10  
15  
(nF)  
20  
25  
30  
25 30  
40  
0
5
10 15 20  
(V)  
35  
INTV LOAD (mA)  
CC  
C
V
L
IN  
3757 G16  
3757 G17  
3757 G18  
Gate Drive Rise  
and Fall Time vs INTVCC  
FBX Frequency Foldback  
Waveforms During Overcurrent  
Typical Start-Up Waveforms  
30  
25  
20  
15  
10  
5
V
= 12V  
C
= 3300pF  
V = 12V  
IN  
V
IN  
L
OUT  
10V/DIV  
RISE TIME  
V
SW  
V
20V/DIV  
OUT  
FALL TIME  
5V/DIV  
I
+ I  
L1A L1B  
I
+ I  
5A/DIV  
L1A L1B  
5A/DIV  
3757 G20  
3757 G21  
2ms/DIV  
50µs/DIV  
PAGE 31 CIRCUIT  
PAGE 31 CIRCUIT  
0
9
12  
15  
3
6
INTV (V)  
CC  
3757 G19  
3757fb  
LT3757  
pin FuncTions  
VC (Pin 1):ꢀErrorꢀAmplifierꢀCompensationꢀPin.ꢀUsedꢀtoꢀ GATE (Pin 7):N-ChannelMOSFETGateDriverOutput.ꢀ  
stabilizeꢀtheꢀvoltageꢀloopꢀwithꢀanꢀexternalꢀRCꢀnetwork.  
SwitchesꢀbetweenꢀINTV ꢀandꢀGND.ꢀDrivenꢀtoꢀGNDꢀwhenꢀ  
CC  
ICꢀisꢀshutꢀdown,ꢀduringꢀthermalꢀlockoutꢀorꢀwhenꢀINTV ꢀisꢀ  
CC  
FBX(Pin2):PositiveandNegativeFeedbackPin.Receivesꢀ  
thefeedbackvoltagefromtheexternalresistordividerꢀ  
acrossꢀtheꢀoutput.ꢀAlsoꢀmodulatesꢀtheꢀfrequencyꢀduringꢀ INTV (Pin 8):ꢀRegulatedꢀSupplyꢀforꢀInternalꢀLoadsꢀandꢀ  
start-upꢀandꢀfaultꢀconditionsꢀwhenꢀFBXꢀisꢀcloseꢀtoꢀGND.  
aboveꢀorꢀbelowꢀtheꢀOVꢀorꢀUVꢀthresholds,ꢀrespectively.  
CC  
GateꢀDriver.ꢀSuppliedꢀfromꢀV ꢀandꢀregulatedꢀtoꢀ7.2Vꢀ(typi-  
IN  
cal).ꢀINTV ꢀmustꢀbeꢀbypassedꢀwithꢀaꢀminimumꢀofꢀ4.7µFꢀ  
CC  
SS (Pin 3):ꢀSoft-StartꢀPin.ꢀThisꢀpinꢀmodulatesꢀcompensa-  
tionꢀpinꢀvoltageꢀ(VC)ꢀclamp.ꢀꢀTheꢀsoft-startꢀintervalꢀisꢀsetꢀ  
withꢀanꢀexternalꢀcapacitor.ꢀTheꢀpinꢀhasꢀaꢀ10µAꢀ(typical)ꢀ  
pull-upꢀcurrentꢀsourceꢀtoꢀanꢀinternalꢀ2.5Vꢀrail.ꢀTheꢀsoft-  
startpinisresettoGNDbyanundervoltageconditionꢀ  
capacitorꢀplacedꢀcloseꢀtoꢀpin.ꢀINTV ꢀcanꢀbeꢀconnectedꢀ  
CC  
directlyꢀtoꢀV ,ꢀifꢀV ꢀisꢀlessꢀthanꢀ17.5V.ꢀINTV ꢀcanꢀalsoꢀ  
IN  
IN  
CC  
beꢀconnectedꢀtoꢀaꢀpowerꢀsupplyꢀwhoseꢀvoltageꢀisꢀhigherꢀ  
thanꢀ7.5V,ꢀandꢀlowerꢀthanꢀV ,ꢀprovidedꢀthatꢀsupplyꢀdoesꢀ  
IN  
notꢀexceedꢀ17.5V.ꢀ  
atꢀSHDN/UVLO,ꢀanꢀINTV ꢀundervoltageꢀorꢀovervoltageꢀ  
CC  
conditionꢀorꢀanꢀinternalꢀthermalꢀlockout.  
SHDN/UVLO (Pin 9):ꢀShutdownꢀandꢀUndervoltageꢀDetectꢀ  
Pin.ꢀAnꢀaccurateꢀ1.22Vꢀ(nominal)ꢀfallingꢀthresholdꢀwithꢀ  
externallyꢀprogrammableꢀhysteresisꢀdetectsꢀwhenꢀpowerꢀ  
isokaytoenableswitching.Risinghysteresisisgeneratedꢀ  
byꢀtheꢀexternalꢀresistorꢀdividerꢀandꢀanꢀaccurateꢀinternalꢀ  
2µAꢀpull-downꢀcurrent.ꢀAnꢀundervoltageꢀconditionꢀresetsꢀ  
sort-start.ꢀTieꢀtoꢀ0.4V,ꢀorꢀless,ꢀtoꢀdisableꢀtheꢀdeviceꢀandꢀ  
RT (Pin 4):ꢀSwitchingꢀFrequencyꢀAdjustmentꢀPin.ꢀSetꢀtheꢀ  
frequencyꢀusingꢀaꢀresistorꢀtoꢀGND.ꢀDoꢀnotꢀleaveꢀthisꢀpinꢀ  
open.  
SYNC (Pin 5):ꢀFrequencyꢀSynchronizationꢀPin.ꢀUsedꢀtoꢀ  
synchronizeꢀtheꢀswitchingꢀfrequencyꢀtoꢀanꢀoutsideꢀclock.ꢀ  
Ifꢀthisꢀfeatureꢀisꢀused,ꢀanꢀR ꢀresistorꢀshouldꢀbeꢀchosenꢀtoꢀ  
reduceꢀV ꢀquiescentꢀcurrentꢀbelowꢀ1µA.  
T
IN  
programaswitchingfrequency20%slowerthantheSYNCꢀ  
pulseꢀfrequency.ꢀTieꢀtheꢀSYNCꢀpinꢀtoꢀGNDꢀifꢀthisꢀfeatureꢀisꢀ  
notꢀused.ꢀSYNCꢀisꢀignoredꢀwhenꢀFBXꢀisꢀcloseꢀtoꢀGND.  
V (Pin 10): InputꢀSupplyꢀPin.ꢀMustꢀbeꢀlocallyꢀbypassedꢀ  
IN  
withꢀ aꢀ 0.22µF,ꢀ orꢀ larger,ꢀ capacitorꢀ placedꢀ closeꢀ toꢀ theꢀ  
pin.  
SENSE (Pin 6):ꢀTheꢀCurrentꢀSenseꢀInputꢀforꢀtheꢀControlꢀ  
Loop.ꢀKelvinꢀconnectꢀthisꢀpinꢀtoꢀtheꢀpositiveꢀterminalꢀofꢀ  
theꢀ switchꢀ currentꢀ senseꢀ resistorꢀ inꢀ theꢀ sourceꢀ ofꢀ theꢀ  
N-channelꢀMOSFET.ꢀTheꢀnegativeꢀterminalꢀofꢀtheꢀcurrentꢀ  
senseꢀresistorꢀshouldꢀbeꢀconnectedꢀtoꢀGNDꢀplaneꢀcloseꢀ  
toꢀtheꢀIC.  
ExposedPad(Pin11):Ground.Thispinalsoservesastheꢀ  
negativeterminalofthecurrentsenseresistor.TheExposedꢀ  
Padꢀmustꢀbeꢀsolderedꢀdirectlyꢀtoꢀtheꢀlocalꢀgroundꢀplane.  
3757fb  
LT3757  
block DiagraM  
C
DC  
L1  
D1  
V
IN  
V
OUT  
+
R4  
R3  
C
IN  
C
L2  
OUT2  
R2  
R1  
+
FBX  
C
OUT1  
9
10  
V
IN  
SHDN/UVLO  
A10  
+
I
S1  
2.5V  
2µA  
1.22V  
2.5V  
INTERNAL  
REGULATOR  
AND UVLO  
I
S3  
CURRENT  
LIMIT  
I
S2  
17.5V  
VC  
10µA  
+
UVLO  
A9  
1
7.2V LDO  
INTV  
Q3  
CC  
C
VCC  
8
7
G4  
G3  
A8  
C
R
C2  
C
+
2.7V UP  
C
A11  
A12  
C1  
1.72V  
2.6V DOWN  
+
TSD  
165˚C  
DRIVER  
G6  
SR1  
VC –  
GATE  
+
G5  
G2  
A7  
R
O
M1  
+
–0.88V  
S
Q2  
PWM  
COMPARATOR  
108mV  
+
1.6V  
+
A6  
A5  
A1  
SLOPE  
RAMP  
V
ISENSE  
FBX  
SENSE  
FBX  
2
6
+
+
RAMP  
A2  
R
SENSE  
GND  
–0.8V  
GENERATOR  
1.25V  
+
11  
A3  
100kHz-1MHz  
OSCILLATOR  
G1  
1.25V  
FREQ  
FOLDBACK  
+
FREQUENCY  
FOLDBACK  
+
A4  
Q1  
FREQ  
PROG  
SS  
3
SYNC  
RT  
5
4
3757 F01  
C
R
T
SS  
Figure 1. LT3757 Block Diagram Working as a SEPIC Converter  
3757fb  
LT3757  
applicaTions inForMaTion  
Main Control Loop  
isꢀpulledꢀdownꢀtoꢀ–0.8Vꢀbyꢀaꢀvoltageꢀdividerꢀconnectedꢀ  
fromꢀV ꢀtoꢀGND.ꢀComparatorꢀA1ꢀbecomesꢀinactiveꢀandꢀ  
OUT  
TheꢀLT3757ꢀusesꢀaꢀfixedꢀfrequency,ꢀcurrentꢀmodeꢀcontrolꢀ  
schemeꢀtoꢀprovideꢀexcellentꢀlineꢀandꢀloadꢀregulation.ꢀOp-  
erationꢀcanꢀbeꢀbestꢀunderstoodꢀbyꢀreferringꢀtoꢀtheꢀBlockꢀ  
DiagramꢀinꢀFigureꢀ1.ꢀ  
comparatorꢀA2ꢀperformsꢀtheꢀnoninvertingꢀamplificationꢀ  
fromꢀFBXꢀtoꢀVC.  
Theꢀ LT3757ꢀ hasꢀ overvoltageꢀ protectionꢀ functionsꢀ toꢀ  
protectꢀ theꢀ converterꢀ fromꢀ excessiveꢀ outputꢀ voltageꢀ  
overshootduringꢀstart-upꢀorꢀrecoveryꢀfromꢀaꢀshort-circuitꢀ  
condition.AnovervoltagecomparatorA11(with20mVꢀ  
hysteresis)ꢀsensesꢀwhenꢀtheꢀFBXꢀpinꢀvoltageꢀexceedsꢀtheꢀ  
positiveꢀregulatedꢀvoltageꢀ(1.6V)ꢀbyꢀ8%ꢀandꢀprovidesꢀaꢀ  
resetꢀ pulse.ꢀ Similarly,ꢀ anꢀ overvoltageꢀ comparatorꢀ A12ꢀ  
(withꢀ10mVꢀhysteresis)ꢀsensesꢀwhenꢀtheꢀFBXꢀpinꢀvoltageꢀ  
exceedsꢀtheꢀnegativeꢀregulatedꢀvoltageꢀ(–0.8V)ꢀbyꢀ11%ꢀ  
andꢀprovidesꢀaꢀresetꢀpulse.ꢀBothꢀresetꢀpulsesꢀareꢀsentꢀtoꢀ  
theꢀmainꢀRSꢀlatchꢀ(SR1)ꢀthroughꢀG6ꢀandꢀG5.ꢀTheꢀpowerꢀ  
MOSFETꢀswitchꢀM1ꢀisꢀactivelyꢀheldꢀoffꢀforꢀtheꢀdurationꢀofꢀ  
anꢀoutputꢀovervoltageꢀcondition.  
ThestartofeachoscillatorcyclesetstheSRlatch(SR1)andꢀ  
turnsꢀonꢀtheꢀexternalꢀpowerꢀMOSFETꢀswitchꢀM1ꢀthroughꢀ  
driverꢀG2.ꢀTheꢀswitchꢀcurrentꢀflowsꢀthroughꢀtheꢀexternalꢀ  
currentꢀsensingꢀresistorꢀR ꢀandꢀgeneratesꢀaꢀvoltageꢀ  
SENSE  
proportionalꢀ toꢀ theꢀ switchꢀ current.ꢀ Thisꢀ currentꢀ senseꢀ  
voltageꢀV ꢀ(amplifiedꢀbyꢀA5)ꢀisꢀaddedꢀtoꢀaꢀstabilizingꢀ  
ISENSE  
slopeꢀcompensationꢀrampꢀandꢀtheꢀresultingꢀsumꢀ(SLOPE)ꢀ  
isfedintothepositiveterminalofthePWMꢀcomparatorA7.ꢀ  
WhenꢀSLOPEꢀexceedsꢀtheꢀlevelꢀatꢀtheꢀnegativeꢀinputꢀofꢀA7ꢀ  
(VCꢀpin),ꢀSR1ꢀisꢀreset,ꢀturningꢀoffꢀtheꢀpowerꢀswitch.ꢀTheꢀ  
levelatthenegativeinputofA7issetbytheerroramplifierꢀ  
A1ꢀ(orꢀA2)ꢀandꢀisꢀanꢀamplifiedꢀversionꢀofꢀtheꢀdifferenceꢀ  
betweenꢀtheꢀfeedbackꢀvoltageꢀ(FBXꢀpin)ꢀandꢀtheꢀreferenceꢀ  
voltageꢀ(1.6Vꢀorꢀ–0.8V,ꢀdependingꢀonꢀtheꢀconfiguration).ꢀ  
Inꢀthisꢀmanner,ꢀtheꢀerrorꢀamplifierꢀsetsꢀtheꢀcorrectꢀpeakꢀ  
switchꢀcurrentꢀlevelꢀtoꢀkeepꢀtheꢀoutputꢀinꢀregulation.ꢀ  
Programming Turn-On and Turn-Off Thresholds with  
the SHDN/UVLO Pin  
Theꢀ SHDN/UVLOꢀ pinꢀ controlsꢀ whetherꢀ theꢀ LT3757ꢀ isꢀ  
enabledꢀ orꢀ isꢀ inꢀ shutdownꢀ state.ꢀ Aꢀ micropowerꢀ 1.22Vꢀ  
reference,ꢀaꢀcomparatorꢀA10ꢀandꢀaꢀcontrollableꢀcurrentꢀ  
TheLT3757hasaswitchcurrentlimitfunction.Thecurrentꢀ  
senseꢀvoltageꢀisꢀinputꢀtoꢀtheꢀcurrentꢀlimitꢀcomparatorꢀA6.ꢀ  
IfꢀtheꢀSENSEꢀpinꢀvoltageꢀisꢀhigherꢀthanꢀtheꢀsenseꢀcurrentꢀ  
sourceꢀI ꢀallowꢀtheꢀuserꢀtoꢀaccuratelyꢀprogramꢀtheꢀsup-  
S1  
plyꢀvoltageꢀatꢀwhichꢀtheꢀICꢀturnsꢀonꢀandꢀoff.ꢀTheꢀfallingꢀ  
valuecanbeaccuratelysetbytheresistordividersR3ꢀ  
andꢀR4.ꢀWhenꢀSHDN/UVLOꢀisꢀaboveꢀ0.7V,ꢀandꢀbelowꢀtheꢀ  
limitꢀthresholdꢀV  
ꢀ(110mV,ꢀtypical),ꢀA6ꢀwillꢀresetꢀ  
SENSE(MAX)  
SR1ꢀandꢀturnꢀoffꢀM1ꢀimmediately.  
TheLT3757iscapableofgeneratingeitherpositiveorꢀ 1.22Vꢀthreshold,ꢀtheꢀsmallꢀpull-downꢀcurrentꢀsourceꢀI ꢀ  
negativeꢀoutputꢀvoltageꢀwithꢀaꢀsingleꢀFBXꢀpin.ꢀItꢀcanꢀbeꢀ (typicalꢀ2µA)ꢀisꢀactive.ꢀ  
configuredꢀasꢀaꢀboost,ꢀflybackꢀorꢀSEPICꢀconverterꢀtoꢀgen-  
S1  
Theꢀpurposeꢀofꢀthisꢀcurrentꢀisꢀtoꢀallowꢀtheꢀuserꢀtoꢀprogramꢀ  
erateꢀpositiveꢀoutputꢀvoltage,ꢀorꢀasꢀanꢀinvertingꢀconverterꢀ  
therisinghysteresis.TheBlockDiagramofthecomparatorꢀ  
toꢀgenerateꢀnegativeꢀoutputꢀvoltage.ꢀWhenꢀconfiguredꢀasꢀ  
andꢀtheꢀexternalꢀresistorsꢀisꢀshownꢀinꢀFigureꢀ1.ꢀTheꢀtypicalꢀ  
aꢀSEPICꢀconverter,ꢀasꢀshownꢀinꢀFigureꢀ1,ꢀtheꢀFBXꢀpinꢀisꢀ  
fallingꢀthresholdꢀvoltageꢀandꢀrisingꢀthresholdꢀvoltageꢀcanꢀ  
pulledꢀupꢀtoꢀtheꢀinternalꢀbiasꢀvoltageꢀofꢀ1.6Vꢀbyꢀaꢀvolt-  
beꢀcalculatedꢀbyꢀtheꢀfollowingꢀequations:  
ageꢀdividerꢀ(R1ꢀandꢀR2)ꢀconnectedꢀfromꢀV ꢀtoꢀGND.ꢀ  
OUT  
(R3+R4)  
Comparatorꢀ A2ꢀ becomesꢀ inactiveꢀ andꢀ comparatorꢀ A1ꢀ  
performstheinvertingamplificationfromFBXtoVC.Whenꢀ  
theꢀLT3757ꢀisꢀinꢀanꢀinvertingꢀconfiguration,ꢀtheꢀFBXꢀpinꢀ  
VVIN,FALLING =1.22•  
R4  
VVIN,RISING = 2µA R3+ VIN,FALLING  
3757fb  
LT3757  
applicaTions inForMaTion  
ForꢀapplicationsꢀwhereꢀtheꢀSHDN/UVLOꢀpinꢀisꢀonlyꢀꢀusedꢀ P ꢀ=ꢀICꢀpowerꢀconsumption  
IC  
asꢀaꢀlogicꢀinput,ꢀtheꢀSHDN/UVLOꢀpinꢀcanꢀbeꢀconnectedꢀ  
=ꢀV ꢀ•ꢀ(I ꢀ+ꢀI  
)
IN  
Q
DRIVE  
directlyꢀtoꢀtheꢀinputꢀvoltageꢀV ꢀforꢀalways-onꢀoperation.  
IN  
I ꢀ=ꢀV ꢀoperationꢀI =ꢀ1.6mA  
Q
IN  
Qꢀ  
INTV Regulator Bypassing and Operation  
CC  
I
ꢀ=ꢀaverageꢀgateꢀdriveꢀcurrentꢀ=ꢀfꢀ•ꢀQ  
DRIVE G  
Aninternal,lowdropout(LDO)voltageregulatorproducesꢀ  
fꢀ=ꢀswitchingꢀfrequency  
Q ꢀ=ꢀpowerꢀMOSFETꢀtotalꢀgateꢀcharge  
theꢀ7.2VꢀINTV ꢀsupplyꢀwhichꢀpowersꢀtheꢀgateꢀdriver,ꢀasꢀ  
CC  
G
shownꢀinꢀFigureꢀ1.ꢀIfꢀaꢀlowꢀinputꢀvoltageꢀoperationꢀisꢀex-  
pectedꢀ(e.g.,ꢀsupplyingꢀpowerꢀfromꢀaꢀlithium-ionꢀbatteryꢀ TheꢀLT3757ꢀusesꢀpackagesꢀwithꢀanꢀExposedꢀPadꢀforꢀen-  
orꢀaꢀ3.3Vꢀlogicꢀsupply),ꢀlowꢀthresholdꢀMOSFETsꢀshouldꢀ hancedꢀthermalꢀconduction.ꢀWithꢀproperꢀsolderingꢀtoꢀtheꢀ  
beused.TheLT3757containsanundervoltageꢀlockoutꢀ ExposedꢀPadꢀonꢀtheꢀundersideꢀofꢀtheꢀpackageꢀandꢀaꢀfullꢀ  
comparatorA8andanovervoltagelockoutcomparatorꢀ copperꢀplaneꢀunderneathꢀtheꢀdevice,ꢀthermalꢀresistanceꢀ  
A9ꢀforꢀtheꢀINTV ꢀsupply.ꢀTheꢀINTV ꢀundervoltageꢀ(UV)ꢀ (θ )willbeabout43°C/WfortheDDpackageand40°C/Wꢀ  
CC  
CC  
JA  
thresholdꢀ isꢀ 2.7Vꢀ (typical),ꢀ withꢀ 100mVꢀ hysteresis,ꢀ toꢀ fortheMSEpackage.Foranambientboardtemperatureofꢀ  
ensurethattheMOSFETshavesufficientgatedrivevoltageꢀ T ꢀ=ꢀ70°Cꢀandꢀmaximumꢀjunctionꢀtemperatureꢀofꢀ125°C,ꢀ  
A
beforeꢀturningꢀon.ꢀTheꢀlogicꢀcircuitryꢀwithinꢀtheꢀLT3757ꢀisꢀ theꢀmaximumꢀI  
ꢀ(I  
)ꢀofꢀtheꢀDDꢀpackageꢀcanꢀ  
DRIVE DRIVE(MAX)  
alsoꢀpoweredꢀfromꢀtheꢀinternalꢀINTV ꢀsupply.  
beꢀcalculatedꢀas:  
CC  
TheꢀINTV ꢀovervoltageꢀ(OV)ꢀthresholdꢀisꢀsetꢀtoꢀbeꢀ17.5Vꢀ  
(TJ TA)  
(θJA • VIN)  
CC  
1.28W  
VIN  
IDRIVE(MAX)  
=
IQ =  
1.6mA  
(typical)ꢀtoꢀprotectꢀtheꢀgateꢀofꢀtheꢀpowerꢀMOSFET.ꢀWhenꢀ  
INTV ꢀisꢀbelowꢀtheꢀUVꢀthreshold,ꢀorꢀaboveꢀtheꢀOVꢀthresh-  
CC  
TheLT3757hasaninternalINTV I  
currentlimitꢀ  
old,ꢀtheꢀGATEꢀpinꢀwillꢀbeꢀforcedꢀtoꢀGNDꢀandꢀtheꢀsoft-startꢀ  
operationꢀwillꢀbeꢀtriggered.ꢀ  
CC DRIVE  
functionꢀtoꢀprotectꢀtheꢀICꢀfromꢀexcessiveꢀon-chipꢀpowerꢀ  
dissipation.ꢀTheꢀI  
ꢀcurrentꢀlimitꢀdecreasesꢀasꢀtheꢀV ꢀ  
DRIVE  
IN  
IN  
TheꢀINTV ꢀregulatorꢀmustꢀbeꢀbypassedꢀtoꢀgroundꢀim-  
CC  
increases(seetheINTV MinimumOutputCurrentvsV ꢀ  
CC  
mediatelyꢀadjacentꢀtoꢀtheꢀICꢀpinsꢀwithꢀaꢀminimumꢀofꢀ4.7µFꢀ  
ceramicꢀcapacitor.ꢀGoodꢀbypassingꢀisꢀnecessaryꢀtoꢀsupplyꢀ  
theꢀhighꢀtransientꢀcurrentsꢀrequiredꢀbyꢀtheꢀMOSFETꢀgateꢀ  
driver.ꢀ  
graphintheTypicalꢀPerformanceCharacteristicssection).ꢀ  
IfꢀI ꢀreachesꢀtheꢀcurrentꢀlimit,ꢀINTV ꢀvoltageꢀwillꢀfallꢀ  
DRIVE  
CC  
andꢀmayꢀtriggerꢀtheꢀsoft-start.  
BasedontheprecedingequationandtheINTV Minimumꢀ  
CC  
Inꢀanꢀactualꢀapplication,ꢀmostꢀofꢀtheꢀICꢀsupplyꢀcurrentꢀisꢀ  
usedꢀtoꢀdriveꢀtheꢀgateꢀcapacitanceꢀofꢀtheꢀpowerꢀMOSFET.ꢀ  
Theon-chippowerdissipationcanbeasignificantconcernꢀ  
whenalargepowerMOSFETisbeingdrivenatahighꢀ  
OutputꢀCurrentꢀvsꢀV ꢀgraph,ꢀtheꢀuserꢀcanꢀcalculateꢀtheꢀ  
IN  
maximumꢀMOSFETꢀgateꢀchargeꢀtheꢀLT3757ꢀcanꢀdriveꢀatꢀ  
aꢀgivenꢀV ꢀandꢀswitchꢀfrequency.ꢀAꢀplotꢀofꢀtheꢀmaximumꢀ  
IN  
IN  
Q vsV atdifferentfrequenciestoguaranteeaminimumꢀ  
G
frequencyꢀandꢀtheꢀV ꢀvoltageꢀisꢀhigh.ꢀItꢀisꢀimportantꢀtoꢀ  
IN  
4.5VꢀINTV ꢀisꢀshownꢀinꢀFigureꢀ2.  
CC  
limitꢀtheꢀpowerꢀdissipationꢀthroughꢀselectionꢀofꢀMOSFETꢀ  
and/oroperatingfrequencysotheLT3757doesnotexceedꢀ  
itsmaximumjunctiontemperaturerating.Thejunctionꢀ  
AsillustratedinFigure2,atrade-offbetweentheoperatingꢀ  
frequencyandthesizeofthepowerMOSFETmaybeneededꢀ  
inordertomaintainareliableICjunctiontemperature.ꢀ  
Priortoloweringtheoperatingfrequency,however,beꢀ  
suretocheckwithpowerMOSFETmanufacturersfortheirꢀ  
temperatureꢀ T ꢀ canꢀ beꢀ estimatedꢀ usingꢀ theꢀ followingꢀ  
J
equations:  
ꢀ T ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀθ  
JA  
J
A
IC  
mostꢀrecentꢀlowꢀQ ,ꢀlowꢀR  
ꢀdevices.ꢀPowerꢀMOSFETꢀ  
G
DS(ON)  
T ꢀ=ꢀambientꢀtemperature  
A
manufacturingtechnologiesarecontinuallyimproving,withꢀ  
newerꢀandꢀbetterꢀperformanceꢀdevicesꢀbeingꢀintroducedꢀ  
almostꢀyearly.ꢀ  
θ ꢀ=ꢀjunction-to-ambientꢀthermalꢀresistance  
JA  
3757fb  
ꢀ0  
LT3757  
applicaTions inForMaTion  
300  
LT3757  
INTV  
D
VCC  
R
VCC  
V
OUT  
CC  
250  
300kHz  
C
VCC  
4.7µF  
200  
GND  
3757 F03  
150  
Figure 3. Connecting INTVCC to VOUT  
100  
1MHz  
50  
0
orꢀnotꢀtheꢀINTV ꢀpinꢀisꢀconnectedꢀtoꢀanꢀexternalꢀvoltageꢀ  
CC  
source,ꢀitꢀisꢀalwaysꢀnecessaryꢀtoꢀhaveꢀtheꢀdriverꢀcircuitryꢀ  
10 15 20 25 30 35 40  
(V)  
0
5
bypassedwitha4.7µFlowESRceramiccapacitortogroundꢀ  
V
IN  
3757 F02  
immediatelyꢀadjacentꢀtoꢀtheꢀINTV ꢀandꢀGNDꢀpins.ꢀ  
CC  
Figure 2. Recommended Maximum QG vs VIN at Different  
Frequencies to Ensure INTVCC Higher Than 4.5V  
Operating Frequency and Synchronization  
Thechoiceofoperatingfrequencymaybedeterminedꢀ  
Anꢀeffectiveꢀapproachꢀtoꢀreduceꢀtheꢀpowerꢀconsumptionꢀ byꢀon-chipꢀpowerꢀdissipation,ꢀotherwiseꢀitꢀisꢀaꢀtrade-offꢀ  
ofꢀtheꢀinternalꢀLDOꢀforꢀgateꢀdriveꢀisꢀtoꢀtieꢀtheꢀINTV ꢀpinꢀ betweenꢀefficiencyꢀandꢀcomponentꢀsize.ꢀLowꢀfrequencyꢀ  
CC  
toꢀanꢀexternalꢀvoltageꢀsourceꢀhighꢀenoughꢀtoꢀturnꢀoffꢀtheꢀ operationꢀimprovesꢀefficiencyꢀbyꢀreducingꢀgateꢀdriveꢀcur-  
internalꢀLDOꢀregulator.  
rentꢀandꢀMOSFETꢀandꢀdiodeꢀswitchingꢀlosses.ꢀHowever,ꢀ  
lowerꢀ frequencyꢀ operationꢀ requiresꢀ aꢀ physicallyꢀ largerꢀ  
inductor.Switchingfrequencyalsohasimplicationsforꢀ  
loopcompensation.TheLT3757usesaconstant-frequencyꢀ  
architectureꢀthatꢀcanꢀbeꢀprogrammedꢀoverꢀaꢀ100kHzꢀtoꢀ  
1000kHzrangewithasingleexternalresistorfromtheꢀ  
RTꢀpinꢀtoꢀground,ꢀasꢀshownꢀinꢀFigureꢀ1.ꢀTheꢀRTꢀpinꢀmustꢀ  
haveꢀanꢀexternalꢀresistorꢀtoꢀGNDꢀforꢀproperꢀoperationꢀofꢀ  
Ifꢀ theꢀ inputꢀ voltageꢀ V ꢀ doesꢀ notꢀ exceedꢀ theꢀ absoluteꢀ  
IN  
maximumꢀratingꢀofꢀbothꢀtheꢀpowerꢀMOSFETꢀgate-sourceꢀ  
voltage(V )andtheINTV overvoltagelockoutthresholdꢀ  
GS  
CC  
CC  
voltageꢀ(17.5V),ꢀtheꢀINTV ꢀpinꢀcanꢀbeꢀshortedꢀdirectlyꢀ  
toꢀtheꢀV ꢀpin.ꢀInꢀthisꢀcondition,ꢀtheꢀinternalꢀLDOꢀwillꢀbeꢀ  
IN  
turnedoffandthegatedriverwillbepowereddirectlyꢀ  
fromtheinputvoltage,V .WiththeINTV ꢀpinꢀshortedꢀtoꢀ  
IN  
CC  
theꢀLT3757.ꢀAꢀtableꢀforꢀselectingꢀtheꢀvalueꢀofꢀR ꢀforꢀaꢀgivenꢀ  
T
V ,ꢀhowever,ꢀaꢀsmallꢀcurrentꢀ(aroundꢀ16µA)ꢀwillꢀloadꢀtheꢀ  
IN  
operatingꢀfrequencyꢀisꢀshownꢀinꢀTableꢀ1.  
INTV ꢀinꢀshutdownꢀmode.ꢀForꢀapplicationsꢀthatꢀrequireꢀ  
CC  
theꢀlowestꢀshutdownꢀmodeꢀinputꢀsupplyꢀcurrent,ꢀdoꢀnotꢀ  
connectꢀtheꢀINTV ꢀpinꢀtoꢀV .  
Table 1. Timing Resistor (RT) Value  
OSCILLATOR FREQUENCY (kHz)  
R (kΩ)  
T
CC  
IN  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
140  
63.4  
41.2  
30.9  
24.3  
19.6  
16.5  
14  
InꢀSEPICꢀorꢀflybackꢀapplications,ꢀtheꢀINTV ꢀpinꢀcanꢀbeꢀ  
CC  
connectedꢀtoꢀtheꢀoutputꢀvoltageꢀV ꢀthroughꢀaꢀblockingꢀ  
OUT  
diode,ꢀasꢀshownꢀinꢀFigureꢀ3,ꢀifꢀV ꢀmeetsꢀtheꢀfollowingꢀ  
OUT  
conditions:  
ꢀ 1.ꢀV ꢀ<ꢀV ꢀ(pinꢀvoltage)  
OUT  
IN  
ꢀ 2.ꢀ7.2ꢀ<ꢀV ꢀ<ꢀ17.5V  
OUT  
ꢀ 3.ꢀV ꢀ<ꢀmaximumꢀV ꢀratingꢀofꢀpowerꢀMOSFET  
OUT  
GS  
12.1  
10.5  
AꢀresistorꢀR ꢀcanꢀbeꢀconnected,ꢀasꢀshownꢀinꢀFigureꢀ3,ꢀtoꢀ  
VCC  
limitꢀtheꢀinrushꢀcurrentꢀfromꢀV .ꢀRegardlessꢀofꢀwhetherꢀ  
OUT  
3757fb  
ꢀꢀ  
LT3757  
applicaTions inForMaTion  
TheoperatingfrequencyoftheLT3757canbesynchronizedꢀ Soft-Start  
toꢀanꢀexternalꢀclockꢀsource.ꢀByꢀprovidingꢀaꢀdigitalꢀclockꢀ  
TheꢀLT3757ꢀcontainsꢀseveralꢀfeaturesꢀtoꢀlimitꢀpeakꢀswitchꢀ  
signalꢀintoꢀtheꢀSYNCꢀpin,ꢀtheꢀLT3757ꢀwillꢀoperateꢀatꢀtheꢀ  
currentsꢀ andꢀ outputꢀ voltageꢀ (V )ꢀ overshootꢀ duringꢀ  
OUT  
SYNCclockfrequency.Ifthisfeatureisused,anR ꢀresistorꢀ  
T
start-upꢀorꢀrecoveryꢀfromꢀaꢀfaultꢀcondition.ꢀTheꢀprimaryꢀ  
purposeꢀofꢀtheseꢀfeaturesꢀisꢀtoꢀpreventꢀdamageꢀtoꢀexternalꢀ  
componentsꢀorꢀtheꢀload.  
shouldꢀbeꢀchosenꢀtoꢀprogramꢀaꢀswitchingꢀfrequencyꢀ20%ꢀ  
slowerthanSYNCpulsefrequency.TheSYNCpulseshouldꢀ  
haveꢀaꢀminimumꢀpulseꢀwidthꢀofꢀ200ns.ꢀTieꢀtheꢀSYNCꢀpinꢀ  
toꢀGNDꢀifꢀthisꢀfeatureꢀisꢀnotꢀused.  
Highꢀpeakꢀswitchꢀcurrentsꢀduringꢀstart-upꢀmayꢀoccurꢀinꢀ  
switchingꢀregulators.ꢀSinceꢀV ꢀisꢀfarꢀfromꢀitsꢀfinalꢀvalue,ꢀ  
OUT  
theꢀfeedbackꢀloopꢀisꢀsaturatedꢀandꢀtheꢀregulatorꢀtriesꢀtoꢀ  
chargetheoutputcapacitorasquicklyaspossible,resultingꢀ  
inꢀlargeꢀpeakꢀcurrents.ꢀAꢀlargeꢀsurgeꢀcurrentꢀmayꢀcauseꢀ  
inductorꢀsaturationꢀorꢀpowerꢀswitchꢀfailure.ꢀ  
Duty Cycle Consideration  
Switchingꢀdutyꢀcycleꢀisꢀaꢀkeyꢀvariableꢀdefiningꢀconverterꢀ  
operation.Assuch,itslimitsmustbeconsidered.Minimumꢀ  
on-timeꢀisꢀtheꢀsmallestꢀtimeꢀdurationꢀthatꢀtheꢀLT3757ꢀisꢀ  
capableofturningonthepowerMOSFET.Thistimeisꢀ  
generallyꢀaboutꢀ220nsꢀ(typical)ꢀ(seeꢀMinimumꢀOn-Timeꢀ  
inꢀtheꢀElectricalꢀCharacteristicsꢀtable).ꢀInꢀeachꢀswitchingꢀ  
cycle,ꢀtheꢀLT3757ꢀkeepsꢀtheꢀpowerꢀswitchꢀoffꢀforꢀatꢀleastꢀ  
220nsꢀ(typical)ꢀ(seeꢀMinimumꢀOff-TimeꢀinꢀtheꢀElectricalꢀ  
Characteristicsꢀtable).ꢀ  
TheꢀLT3757ꢀaddressesꢀthisꢀmechanismꢀwithꢀtheꢀSSꢀpin.ꢀAsꢀ  
shownꢀinꢀFigureꢀ1,ꢀtheꢀSSꢀpinꢀreducesꢀtheꢀpowerꢀMOSFETꢀ  
currentꢀbyꢀpullingꢀdownꢀtheꢀVCꢀpinꢀthroughꢀQ2.ꢀInꢀthisꢀwayꢀ  
theꢀSSꢀallowsꢀtheꢀoutputꢀcapacitorꢀtoꢀchargeꢀgraduallyꢀto-  
warditsfinalvaluewhilelimitingthestart-uppeakcurrents.ꢀ  
Theꢀtypicalꢀstart-upꢀwaveformsꢀareꢀshownꢀinꢀtheꢀTypicalꢀ  
PerformanceꢀCharacteristicsꢀsection.ꢀTheꢀinductorꢀcurrentꢀ  
Theꢀ minimumꢀ on-timeꢀ andꢀ minimumꢀ off-timeꢀ andꢀ theꢀ  
switchingꢀfrequencyꢀdefineꢀtheꢀminimumꢀandꢀmaximumꢀ  
switchingꢀdutyꢀcyclesꢀaꢀconverterꢀisꢀableꢀtoꢀgenerate:  
I ꢀslewingꢀrateꢀisꢀlimitedꢀbyꢀtheꢀsoft-startꢀfunction.ꢀ  
L
Besidesꢀstart-up,ꢀsoft-startꢀcanꢀalsoꢀbeꢀtriggeredꢀbyꢀtheꢀ  
followingꢀfaults:  
Minimumꢀdutyꢀcycleꢀ=ꢀminimumꢀon-timeꢀ•ꢀfrequency  
Maximumꢀdutyꢀcycleꢀ=ꢀ1ꢀ–ꢀ(minimumꢀoff-timeꢀ•ꢀfrequency)  
ꢀ 1.ꢀINTV >ꢀ17.5V  
CCꢀ  
ꢀ 2.ꢀINTV <ꢀ2.6V  
CCꢀ  
Programming the Output Voltage  
ꢀ 3.ꢀThermalꢀlockout  
Theꢀoutputꢀvoltageꢀ(V )ꢀisꢀsetꢀbyꢀaꢀresistorꢀdivider,ꢀasꢀ  
OUT  
AnyꢀofꢀtheseꢀthreeꢀfaultsꢀwillꢀcauseꢀtheꢀLT3757ꢀtoꢀstopꢀ  
switchingꢀimmediately.ꢀTheꢀSSꢀpinꢀwillꢀbeꢀdischargedꢀbyꢀ  
Q3.ꢀWhenꢀallꢀfaultsꢀareꢀclearedꢀandꢀtheꢀSSꢀpinꢀhasꢀbeenꢀ  
shownꢀinꢀFigureꢀ1.ꢀTheꢀpositiveꢀandꢀnegativeꢀV ꢀareꢀsetꢀ  
OUT  
byꢀtheꢀfollowingꢀequations:  
dischargedꢀbelowꢀ0.2V,ꢀaꢀ10µAꢀcurrentꢀsourceꢀI ꢀstartsꢀ  
R2  
R1  
S2  
VOUT,POSITIVE =1.6V • 1+  
chargingꢀtheꢀSSꢀpin,ꢀinitiatingꢀaꢀsoft-startꢀoperation.ꢀ  
Thesoft-startintervalissetbythesoft-startcapacitorꢀ  
selectionꢀaccordingꢀtoꢀtheꢀequation:  
R2  
R1  
VOUT,NEGATIVE = –0.8V • 1+  
1.25V  
10µA  
Theꢀ resistorsꢀ R1ꢀ andꢀ R2ꢀ areꢀ typicallyꢀ chosenꢀ soꢀ thatꢀ  
theꢀerrorꢀcausedꢀbyꢀtheꢀcurrentꢀflowingꢀintoꢀtheꢀFBXꢀpinꢀ  
duringꢀnormalꢀoperationꢀisꢀlessꢀthanꢀ1%ꢀ(thisꢀtranslatesꢀ  
toꢀaꢀmaximumꢀvalueꢀofꢀR1ꢀatꢀaboutꢀ158k).  
TSS =CSS  
3757fb  
ꢀꢁ  
LT3757  
applicaTions inForMaTion  
FBX Frequency Foldback  
componentvaluesandtheoperatingconditions(includingꢀ  
theꢀinputꢀvoltage,ꢀloadꢀcurrent,ꢀetc.).ꢀToꢀcompensateꢀtheꢀ  
feedbackꢀloopꢀofꢀtheꢀLT3757,ꢀaꢀseriesꢀresistor-capacitorꢀ  
networkisusuallyconnectedfromtheVCpintoGND.ꢀ  
Figureꢀ1ꢀshowsꢀtheꢀtypicalꢀVCꢀcompensationꢀnetwork.ꢀForꢀ  
mostꢀapplications,ꢀtheꢀcapacitorꢀshouldꢀbeꢀinꢀtheꢀrangeꢀofꢀ  
470pFꢀtoꢀ22nF,ꢀandꢀtheꢀresistorꢀshouldꢀbeꢀinꢀtheꢀrangeꢀofꢀ  
5kꢀtoꢀ50k.ꢀAꢀsmallꢀcapacitorꢀisꢀoftenꢀconnectedꢀinꢀparal-  
lelwiththeRCcompensationnetworktoattenuatetheꢀ  
WhenꢀV ꢀisꢀveryꢀlowꢀduringꢀstart-upꢀorꢀaꢀshort-circuitꢀ  
OUT  
faultꢀonꢀtheꢀoutput,ꢀtheꢀswitchingꢀregulatorꢀmustꢀoperateꢀ  
atꢀlowꢀdutyꢀcyclesꢀtoꢀmaintainꢀtheꢀpowerꢀswitchꢀcurrentꢀ  
withinꢀtheꢀcurrentꢀlimitꢀrange,ꢀsinceꢀtheꢀinductorꢀcurrentꢀ  
decayrateisverylowduringswitchofftime.Theminimumꢀ  
on-timelimitationmaypreventtheswitcherfromattainingꢀ  
aꢀsufficientlyꢀlowꢀdutyꢀcycleꢀatꢀtheꢀprogrammedꢀswitch-  
ingꢀfrequency.ꢀSo,ꢀtheꢀswitchꢀcurrentꢀwillꢀkeepꢀincreasingꢀ  
througheachswitchcycle,exceedingtheprogrammedꢀ  
currentꢀlimit.ꢀToꢀpreventꢀtheꢀswitchꢀpeakꢀcurrentsꢀfromꢀ  
exceedingtheprogrammedvalue,theLT3757containsꢀ  
afrequencyfoldbackfunctiontoreducetheswitchingꢀ  
frequencyꢀwhenꢀtheꢀFBXꢀvoltageꢀisꢀlowꢀ(seeꢀtheꢀNormal-  
izedꢀ Switchingꢀ Frequencyꢀ vsꢀ FBXꢀ graphꢀ inꢀ theꢀ Typicalꢀ  
PerformanceꢀCharacteristicsꢀsection).ꢀ  
V ꢀvoltageꢀrippleꢀinducedꢀfromꢀtheꢀoutputꢀvoltageꢀrippleꢀ  
C
throughꢀtheꢀinternalꢀerrorꢀamplifier.ꢀTheꢀparallelꢀcapacitorꢀ  
usuallyꢀrangesꢀinꢀvalueꢀfromꢀ10pFꢀtoꢀ100pF.ꢀAꢀpracticalꢀ  
approachꢀtoꢀdesignꢀtheꢀcompensationꢀnetworkꢀisꢀtoꢀstartꢀ  
withꢀoneꢀofꢀtheꢀcircuitsꢀinꢀthisꢀdataꢀsheetꢀthatꢀisꢀsimilarꢀ  
toꢀyourꢀapplication,ꢀandꢀtuneꢀtheꢀcompensationꢀnetworkꢀ  
toꢀ optimizeꢀ theꢀ performance.ꢀ Stabilityꢀ shouldꢀ thenꢀ beꢀ  
checkedꢀacrossꢀallꢀoperatingꢀconditions,ꢀincludingꢀloadꢀ  
current,ꢀinputꢀvoltageꢀandꢀtemperature.ꢀ  
Theꢀtypicalꢀfrequencyꢀfoldbackꢀwaveformsꢀareꢀshownꢀinꢀ  
theꢀTypicalꢀPerformanceꢀCharacteristicsꢀsection.ꢀTheꢀfre-  
SENSE Pin Programming  
quencyꢀfoldbackꢀfunctionꢀpreventsꢀI ꢀfromꢀexceedingꢀtheꢀ  
L
programmedꢀlimitsꢀbecauseꢀofꢀtheꢀminimumꢀon-time.  
Forꢀ controlꢀ andꢀ protection,ꢀ theꢀ LT3757ꢀ measuresꢀ theꢀ  
powerMOSFETcurrentbyusingasenseresistor(R  
)ꢀ  
Duringfrequencyfoldback,externalclocksynchroniza-  
tionisdisabledtopreventinterferencewithfrequencyꢀ  
reducingꢀoperation.  
SENSE  
betweenꢀGNDꢀandꢀtheꢀMOSFETꢀsource.ꢀFigureꢀ4ꢀshowsꢀaꢀ  
typicalꢀwaveformꢀofꢀtheꢀsenseꢀvoltageꢀ(V )ꢀacrossꢀtheꢀ  
SENSE  
senseꢀresistor.ꢀItꢀisꢀimportantꢀtoꢀuseꢀKelvinꢀtracesꢀbetweenꢀ  
theꢀSENSEꢀpinꢀandꢀR ,ꢀandꢀtoꢀplaceꢀtheꢀICꢀGNDꢀasꢀ  
Thermal Lockout  
SENSE  
closeꢀasꢀpossibleꢀtoꢀtheꢀGNDꢀterminalꢀofꢀtheꢀR  
properꢀoperation.  
ꢀforꢀ  
SENSE  
IfLT3757dietemperaturereaches165°C(typical),theꢀ  
partꢀwillꢀgoꢀintoꢀthermalꢀlockout.ꢀTheꢀpowerꢀswitchꢀwillꢀ  
beꢀturnedꢀoff.ꢀAꢀsoft-startꢀoperationꢀwillꢀbeꢀtriggered.ꢀTheꢀ  
partꢀwillꢀbeꢀenabledꢀagainꢀwhenꢀtheꢀdieꢀtemperatureꢀhasꢀ  
droppedꢀbyꢀ5°Cꢀ(nominal).  
V
SENSE  
$V  
V
SENSE = C v SENSE(MAX)  
V
V
SENSE(PEAK)  
SENSE(MAX)  
Loop Compensation  
t
Loopꢀcompensationꢀdeterminesꢀtheꢀstabilityꢀandꢀtransientꢀ  
performance.ꢀTheꢀLT3757ꢀusesꢀcurrentꢀmodeꢀcontrolꢀtoꢀ  
regulateꢀtheꢀoutputꢀwhichꢀsimplifiesꢀloopꢀcompensation.ꢀ  
Theoptimumvaluesdependontheconvertertopology,theꢀ  
DT  
S
T
S
3757 F04  
Figure 4. The Sense Voltage During a Switching Cycle  
3757fb  
ꢀꢂ  
LT3757  
applicaTions inForMaTion  
DueꢀtoꢀtheꢀcurrentꢀlimitꢀfunctionꢀofꢀtheꢀSENSEꢀpin,ꢀR  
APPLICATION CIRCUITS  
SENSEꢀ  
shouldbeselectedtoguaranteethatthepeakcurrentsenseꢀ  
voltageV ꢀduringsteadystatenormaloperationꢀ  
isꢀlowerꢀthanꢀtheꢀSENSEꢀcurrentꢀlimitꢀthresholdꢀ(seeꢀtheꢀ  
TheLT3757canbeconfiguredasdifferenttopologies.Theꢀ  
firstꢀtopologyꢀtoꢀbeꢀanalyzedꢀwillꢀbeꢀtheꢀboostꢀconverter,ꢀ  
followedꢀbyꢀtheꢀflyback,ꢀSEPICꢀandꢀinvertingꢀconverters.  
SENSE(PEAK)  
Electricalꢀ Characteristicsꢀ table).ꢀ Givenꢀ aꢀ 20%ꢀ margin,ꢀ  
V
ꢀ isꢀ setꢀ toꢀ beꢀ 80mV.ꢀ Then,ꢀ theꢀ maximumꢀ  
SENSE(PEAK)  
Boost Converter: Switch Duty Cycle and Frequency  
switchꢀrippleꢀcurrentꢀpercentageꢀcanꢀbeꢀcalculatedꢀusingꢀ  
TheꢀLT3757ꢀcanꢀbeꢀconfiguredꢀasꢀaꢀboostꢀconverterꢀforꢀ  
theapplicationswheretheconverteroutputvoltageisꢀ  
higherꢀthanꢀtheꢀinputꢀvoltage.ꢀRememberꢀthatꢀboostꢀcon-  
vertersꢀareꢀnotꢀshort-circuitꢀprotected.ꢀUnderꢀaꢀshortedꢀ  
outputꢀcondition,ꢀtheꢀinductorꢀcurrentꢀisꢀlimitedꢀonlyꢀbyꢀ  
theꢀinputꢀsupplyꢀcapability.ꢀForꢀapplicationsꢀrequiringꢀaꢀ  
step-upꢀconverterꢀthatꢀisꢀshort-circuitꢀprotected,ꢀpleaseꢀ  
referꢀ toꢀ theꢀ Applicationsꢀ Informationꢀ sectionꢀ coveringꢀ  
SEPICꢀconverters.  
theꢀfollowingꢀequation:  
VSENSE  
80mV 0.5VSENSE  
c =  
c
isusedinsubsequentdesignexamplestocalculateinduc-  
torꢀvalue.ꢀ∆V  
ꢀisꢀtheꢀrippleꢀvoltageꢀacrossꢀR  
.
SENSE  
SENSE  
TheLT3757switchingcontrollerincorporates100nstimingꢀ  
intervalꢀtoꢀblankꢀtheꢀringingꢀonꢀtheꢀcurrentꢀsenseꢀsignalꢀ  
immediatelyꢀafterꢀM1ꢀisꢀturnedꢀon.ꢀThisꢀringingꢀisꢀcausedꢀ  
byꢀtheꢀparasiticꢀinductanceꢀandꢀcapacitanceꢀofꢀtheꢀPCBꢀ  
trace,ꢀtheꢀsenseꢀresistor,ꢀtheꢀdiode,ꢀandꢀtheꢀMOSFET.ꢀTheꢀ  
100nsꢀtimingꢀintervalꢀisꢀadequateꢀforꢀmostꢀofꢀtheꢀLT3757ꢀ  
applications.ꢀInꢀtheꢀapplicationsꢀthatꢀhaveꢀveryꢀlargeꢀandꢀ  
longꢀringingꢀonꢀtheꢀcurrentꢀsenseꢀsignal,ꢀaꢀsmallꢀRCꢀfilterꢀ  
canbeaddedtofilterouttheexcessringing.Figure5ꢀ  
showsꢀtheꢀRCꢀfilterꢀonꢀSENSEꢀpin.ꢀItꢀisꢀusuallyꢀsufficientꢀ  
Theꢀconversionꢀratioꢀasꢀaꢀfunctionꢀofꢀdutyꢀcycleꢀis  
VOUT  
VIN 1D  
1
=
inꢀcontinuousꢀconductionꢀmodeꢀ(CCM).  
ForꢀaꢀboostꢀconverterꢀoperatingꢀinꢀCCM,ꢀtheꢀdutyꢀcycleꢀ  
ofꢀtheꢀmainꢀswitchꢀcanꢀbeꢀcalculatedꢀbasedꢀonꢀtheꢀoutputꢀ  
toꢀ chooseꢀ 22Ωꢀ forꢀ R ꢀ andꢀ 2.2nFꢀ toꢀ 10nFꢀ forꢀ C .ꢀ  
FLT  
FLT  
voltageꢀ(V )ꢀandꢀtheꢀinputꢀvoltageꢀ(V ).ꢀTheꢀmaximumꢀ  
OUT  
dutyꢀ cycleꢀ (D  
minimumꢀinputꢀvoltage:  
IN  
KeepꢀR ’sꢀresistanceꢀlow.ꢀRememberꢀthatꢀthereꢀisꢀ65µAꢀ  
FLT  
)ꢀ occursꢀ whenꢀ theꢀ converterꢀ hasꢀ theꢀ  
MAX  
(typical)ꢀflowingꢀoutꢀofꢀtheꢀSENSEꢀpin.ꢀAddingꢀR ꢀwillꢀ  
FLT  
affectꢀtheꢀSENSEꢀcurrentꢀlimitꢀthreshold:  
VOUT VIN(MIN)  
ꢀ V ꢀ=ꢀ108mVꢀ–ꢀ65µAꢀ•ꢀR  
SENSE_ILIM  
DMAX  
=
FLT  
VOUT  
M1  
GATE  
Discontinuousꢀconductionꢀmodeꢀ(DCM)ꢀprovidesꢀhigherꢀ  
conversionratiosatagivenfrequencyatthecostofreducedꢀ  
efficienciesꢀandꢀhigherꢀswitchingꢀcurrents.  
LT3757  
R
FLT  
SENSE  
GND  
C
FLT  
R
SENSE  
3757 F05  
Figure 5. The RC Filter on SENSE Pin  
3757fb  
ꢀꢃ  
ꢀ •ꢀC ꢀ•ꢀf/1A  
                                                      
LT3757  
applicaTions inForMaTion  
Boost Converter: Inductor and Sense Resistor Selection  
Basedontheseequations,theusershouldchoosetheꢀ  
inductorsꢀhavingꢀsufficientꢀsaturationꢀandꢀRMSꢀcurrentꢀ  
ratings.  
Forꢀtheꢀboostꢀtopology,ꢀtheꢀmaximumꢀaverageꢀinductorꢀ  
currentꢀis:  
SetꢀtheꢀsenseꢀvoltageꢀatꢀI  
ꢀtoꢀbeꢀtheꢀminimumꢀofꢀtheꢀ  
L(PEAK)  
1
SENSEꢀcurrentꢀlimitꢀthresholdꢀwithꢀaꢀ20%ꢀmargin.ꢀTheꢀ  
IL(MAX) =IO(MAX)  
1DMAX  
senseꢀresistorꢀvalueꢀcanꢀthenꢀbeꢀcalculatedꢀtoꢀbe:  
Then,ꢀtheꢀrippleꢀcurrentꢀcanꢀbeꢀcalculatedꢀby:  
80mV  
IL(PEAK)  
RSENSE  
=
1
IL = c •IL(MAX) = c •IO(MAX)  
1DMAX  
Boost Converter: Power MOSFET Selection  
c
Theꢀconstantꢀ ꢀinꢀtheꢀprecedingꢀequationꢀrepresentsꢀtheꢀ  
percentagepeak-to-peakripplecurrentintheinductor,ꢀ  
ImportantꢀparametersꢀforꢀtheꢀpowerꢀMOSFETꢀincludeꢀtheꢀ  
drain-sourceꢀvoltageꢀratingꢀ(V ),ꢀtheꢀthresholdꢀvoltageꢀ  
DS  
DS(ON)  
GS  
relativeꢀtoꢀI  
.
L(MAX)  
(V  
),ꢀtheꢀon-resistanceꢀ(R  
),ꢀtheꢀgateꢀtoꢀsourceꢀ  
GD  
GS(TH)  
andꢀgateꢀtoꢀdrainꢀchargesꢀ(Q ꢀandꢀQ ),ꢀtheꢀmaximumꢀ  
Theinductorripplecurrenthasadirecteffectonthechoiceꢀ  
drainꢀ currentꢀ (I  
)ꢀ andꢀ theꢀ MOSFET’sꢀ thermalꢀ  
ofꢀ theꢀ inductorꢀ value.ꢀ Choosingꢀ smallerꢀ valuesꢀ ofꢀ ∆I  
D(MAX)  
Lꢀ  
resistancesꢀ(R ꢀandꢀR ).  
requiresꢀlargeꢀinductancesꢀandꢀreducesꢀtheꢀcurrentꢀloopꢀ  
θJC  
θJA  
gain(theconverterwillapproachvoltagemode).Acceptingꢀ  
ThepowerMOSFETwillseefulloutputvoltage,plusaꢀ  
diodeꢀforwardꢀvoltage,ꢀandꢀanyꢀadditionalꢀringingꢀacrossꢀ  
itsꢀdrain-to-sourceꢀduringꢀitsꢀoff-time.ꢀItꢀisꢀrecommendedꢀ  
toꢀchooseꢀaꢀMOSFETꢀwhoseꢀB  
aꢀsafetyꢀmarginꢀ(aꢀ10Vꢀsafetyꢀmarginꢀisꢀusuallyꢀsufficient).  
largerꢀvaluesꢀofꢀ∆I ꢀprovidesꢀfastꢀtransientꢀresponseꢀandꢀ  
L
allowstheuseoflowinductances,butresultsinhigherinputꢀ  
currentꢀrippleꢀandꢀgreaterꢀcoreꢀlosses.ꢀItꢀisꢀrecommendedꢀ  
ꢀisꢀhigherꢀthanꢀV ꢀbyꢀ  
VDSS  
OUT  
c
thatꢀ ꢀfallꢀwithinꢀtheꢀrangeꢀofꢀ0.2ꢀtoꢀ0.6.ꢀ  
Givenanoperatinginputvoltagerange,andhavingchosenꢀ  
theꢀoperatingꢀfrequencyꢀandꢀrippleꢀcurrentꢀinꢀtheꢀinductor,ꢀ  
theinductorvalueoftheboostconvertercanbedeterminedꢀ  
usingꢀtheꢀfollowingꢀequation:  
TheꢀpowerꢀdissipatedꢀbyꢀtheꢀMOSFETꢀinꢀaꢀboostꢀconverterꢀis:  
2
2
ꢀ P ꢀ=ꢀI  
ꢀ•ꢀR  
ꢀ•ꢀD  
ꢀ+ꢀ2ꢀ•ꢀV  
ꢀ•ꢀI  
ꢀꢀ  
FET  
L(MAX)  
DS(ON)  
MAX  
OUT L(MAX)  
RSS  
Theꢀfirstꢀtermꢀinꢀtheꢀprecedingꢀequationꢀrepresentsꢀtheꢀ  
conductionꢀlossesꢀinꢀtheꢀdevice,ꢀandꢀtheꢀsecondꢀterm,ꢀtheꢀ  
V
L = IN(MIN) DMAX  
IL • f  
switchingꢀloss.ꢀC ꢀisꢀtheꢀreverseꢀtransferꢀcapacitance,ꢀ  
RSS  
whichꢀisꢀusuallyꢀspecifiedꢀinꢀtheꢀMOSFETꢀcharacteristics.ꢀ  
TheꢀpeakꢀandꢀRMSꢀinductorꢀcurrentꢀare:  
Forꢀ maximumꢀ efficiency,ꢀ R ꢀ andꢀ C ꢀ shouldꢀ beꢀ  
DS(ON) RSS  
c
2
minimized.ꢀFromꢀaꢀknownꢀpowerꢀdissipatedꢀinꢀtheꢀpowerꢀ  
MOSFET,ꢀitsꢀjunctionꢀtemperatureꢀcanꢀbeꢀobtainedꢀusingꢀ  
theꢀfollowingꢀequation:  
IL(PEAK) =IL(MAX) 1+  
c2  
12  
IL(RMS) =IL(MAX) • 1+  
ꢀ T ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀθ ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀ(θ ꢀ+ꢀθ )  
J
A
FET  
JA  
A
FET  
JC  
CA  
3757fb  
ꢀꢄ  
LT3757  
applicaTions inForMaTion  
T ꢀ mustꢀ notꢀ exceedꢀ theꢀ MOSFETꢀ maximumꢀ junctionꢀ  
J
Boost Converter: Output Capacitor Selection  
temperaturerating.Itisrecommendedtomeasuretheꢀ  
MOSFETtemperatureinsteadystatetoensurethatabsoluteꢀ  
maximumꢀratingsꢀareꢀnotꢀexceeded.  
ContributionsꢀofꢀESRꢀ(equivalentꢀseriesꢀresistance),ꢀESLꢀ  
(equivalentꢀseriesꢀinductance)ꢀandꢀtheꢀbulkꢀcapacitanceꢀ  
mustbeconsideredwhenchoosingthecorrectoutputꢀ  
capacitorsꢀforꢀaꢀgivenꢀoutputꢀrippleꢀvoltage.ꢀTheꢀeffectꢀofꢀ  
thesethreeparameters(ESR,ESLandbulkC)ontheoutputꢀ  
voltageꢀrippleꢀwaveformꢀforꢀaꢀtypicalꢀboostꢀconverterꢀisꢀ  
illustratedꢀinꢀFigureꢀ6.  
Boost Converter: Output Diode Selection  
Tomaximizeꢀefficiency,ꢀaꢀfastꢀswitchingꢀdiodeꢀwithꢀlowꢀ  
forwardꢀdropꢀandꢀlowꢀreverseꢀleakageꢀisꢀdesirable.ꢀTheꢀ  
peakreversevoltagethatthediodemustwithstandisꢀ  
equalꢀtoꢀtheꢀregulatorꢀoutputꢀvoltageꢀplusꢀanyꢀadditionalꢀ  
ringingꢀacrossꢀitsꢀanode-to-cathodeꢀduringꢀtheꢀon-time.ꢀ  
Theꢀaverageꢀforwardꢀcurrentꢀinꢀnormalꢀoperationꢀisꢀequalꢀ  
toꢀtheꢀoutputꢀcurrent,ꢀandꢀtheꢀpeakꢀcurrentꢀisꢀequalꢀto:  
t
t
OFF  
ON  
$V  
COUT  
V
OUT  
(AC)  
RINGING DUE TO  
TOTAL INDUCTANCE  
(BOARD + CAP)  
$V  
ESR  
c
2
3757 F05  
ID(PEAK) =IL(PEAK) = 1+  
•IL(MAX)  
Figure 6. The Output Ripple Waveform of a Boost Converter  
Itꢀisꢀrecommendedꢀthatꢀtheꢀpeakꢀrepetitiveꢀreverseꢀvoltageꢀ  
ratingꢀV ꢀisꢀhigherꢀthanꢀV ꢀbyꢀaꢀsafetyꢀmarginꢀ(aꢀ10Vꢀ  
RRM  
OUT  
Theꢀchoiceꢀofꢀcomponent(s)ꢀbeginsꢀwithꢀtheꢀmaximumꢀ  
acceptableꢀrippleꢀvoltageꢀ(expressedꢀasꢀaꢀpercentageꢀofꢀ  
theꢀoutputꢀvoltage),ꢀandꢀhowꢀthisꢀrippleꢀshouldꢀbeꢀdividedꢀ  
safetyꢀmarginꢀisꢀusuallyꢀsufficient).  
Theꢀpowerꢀdissipatedꢀbyꢀtheꢀdiodeꢀis:  
betweenꢀtheꢀESRꢀstepꢀ∆V ꢀandꢀtheꢀcharging/discharg-  
ESR  
ꢀ P ꢀ=ꢀI  
ꢀ•ꢀV  
O(MAX) D  
D
ingꢀ∆V  
.ꢀForꢀtheꢀpurposeꢀofꢀsimplicity,ꢀweꢀwillꢀchooseꢀ  
COUT  
2%ꢀforꢀtheꢀmaximumꢀoutputꢀripple,ꢀtoꢀbeꢀdividedꢀequallyꢀ  
betweenV andV .Thispercentageripplewillꢀ  
change,ꢀdependingꢀonꢀtheꢀrequirementsꢀofꢀtheꢀapplica-  
tion,ꢀandꢀtheꢀfollowingꢀequationsꢀcanꢀeasilyꢀbeꢀmodified.ꢀ  
Forꢀaꢀ1%ꢀcontributionꢀtoꢀtheꢀtotalꢀrippleꢀvoltage,ꢀtheꢀESRꢀ  
ofꢀtheꢀoutputꢀcapacitorꢀcanꢀbeꢀdeterminedꢀusingꢀtheꢀfol-  
lowingꢀequation:  
andꢀtheꢀdiodeꢀjunctionꢀtemperatureꢀis:  
ꢀ T ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀR  
ESR  
COUT  
J
A
D
θJA  
TheꢀR ꢀtoꢀbeꢀusedꢀinꢀthisꢀequationꢀnormallyꢀincludesꢀ  
θJA  
theꢀR forꢀtheꢀdeviceꢀplusꢀtheꢀthermalꢀresistanceꢀfromꢀ  
θJCꢀ  
theꢀboardꢀtoꢀtheꢀambientꢀtemperatureꢀinꢀtheꢀenclosure.ꢀT ꢀ  
J
mustnotexceedthediodemaximumjunctiontemperatureꢀ  
rating.ꢀ  
0.01• VOUT  
ID(PEAK)  
ESRCOUT  
3757fb  
ꢀꢅ  
LT3757  
applicaTions inForMaTion  
ForꢀtheꢀbulkꢀCꢀcomponent,ꢀwhichꢀalsoꢀcontributesꢀ1%ꢀtoꢀ FLYBACK CONVERTER APPLICATIONS  
theꢀtotalꢀripple:  
TheLT3757canbeconfiguredasaflybackconverterfortheꢀ  
applicationsꢀwhereꢀtheꢀconvertersꢀhaveꢀmultipleꢀoutputs,ꢀ  
highꢀoutputꢀvoltagesꢀorꢀisolatedꢀoutputs.ꢀFigureꢀ7ꢀshowsꢀ  
aꢀsimplifiedꢀflybackꢀconverter.  
IO(MAX)  
COUT  
0.01• VOUT • f  
Theoutputcapacitorinaboostregulatorexperienceshighꢀ  
RMSripplecurrents,asshowninFigure6.TheRMSrippleꢀ  
currentꢀratingꢀofꢀtheꢀoutputꢀcapacitorꢀcanꢀbeꢀdeterminedꢀ  
usingꢀtheꢀfollowingꢀequation:  
Theꢀflybackꢀconverterꢀhasꢀaꢀveryꢀlowꢀpartsꢀcountꢀforꢀmul-  
tipleoutputs,andwithprudentselectionofturnsratio,canꢀ  
haveꢀhighꢀoutput/inputꢀvoltageꢀconversionꢀratiosꢀwithꢀaꢀ  
desirableꢀdutyꢀcycle.ꢀHowever,ꢀitꢀhasꢀlowꢀefficiencyꢀdueꢀtoꢀ  
thehighpeakcurrents,highpeakvoltagesandconsequentꢀ  
powerꢀloss.ꢀTheꢀflybackꢀconverterꢀisꢀcommonlyꢀusedꢀforꢀ  
anꢀoutputꢀpowerꢀofꢀlessꢀthanꢀ50W.ꢀ  
DMAX  
1DMAX  
IRMS(COUT) IO(MAX)  
Theꢀflybackꢀconverterꢀcanꢀbeꢀdesignedꢀtoꢀoperateꢀeitherꢀ  
inꢀcontinuousꢀorꢀdiscontinuousꢀmode.ꢀComparedꢀtoꢀcon-  
tinuousꢀmode,ꢀdiscontinuousꢀmodeꢀhasꢀtheꢀadvantageꢀofꢀ  
smallerꢀtransformerꢀinductancesꢀandꢀeasyꢀloopꢀcompen-  
sation,ꢀandꢀtheꢀdisadvantageꢀofꢀhigherꢀpeak-to-averageꢀ  
currentꢀandꢀlowerꢀefficiency.ꢀInꢀtheꢀhighꢀoutputꢀvoltageꢀ  
applications,ꢀ theꢀ flybackꢀ convertersꢀ canꢀ beꢀ designedꢀ  
tooperateindiscontinuousmodetoavoidusinglargeꢀ  
transformers.ꢀꢀ  
MultiplecapacitorsareoftenparalleledtomeetESRrequire-  
ments.Typically,oncetheESRrequirementissatisfied,theꢀ  
capacitanceꢀisꢀadequateꢀforꢀfilteringꢀandꢀhasꢀtheꢀrequiredꢀ  
RMSꢀcurrentꢀrating.ꢀAdditionalꢀceramicꢀcapacitorsꢀinꢀpar-  
allelꢀareꢀcommonlyꢀusedꢀtoꢀreduceꢀtheꢀeffectꢀofꢀparasiticꢀ  
inductanceintheoutputcapacitor,whichreduceshighꢀ  
frequencyꢀswitchingꢀnoiseꢀonꢀtheꢀconverterꢀoutput.  
Boost Converter: Input Capacitor Selection  
Theꢀinputꢀcapacitorꢀofꢀaꢀboostꢀconverterꢀisꢀlessꢀcriticalꢀ  
thanꢀtheꢀoutputꢀcapacitor,ꢀdueꢀtoꢀtheꢀfactꢀthatꢀtheꢀinductorꢀ  
isinserieswiththeinput,andtheinputcurrentwave-  
formꢀisꢀcontinuous.ꢀTheꢀinputꢀvoltageꢀsourceꢀimpedanceꢀ  
determinesꢀtheꢀsizeꢀofꢀtheꢀinputꢀcapacitor,ꢀwhichꢀisꢀtypi-  
callyꢀinꢀtheꢀrangeꢀofꢀ10µFꢀtoꢀ100µF.ꢀAꢀlowꢀESRꢀcapacitorꢀ  
isꢀrecommended,ꢀalthoughꢀitꢀisꢀnotꢀasꢀcriticalꢀasꢀforꢀtheꢀ  
outputꢀcapacitor.  
SUGGESTED  
D
RCD SNUBBER  
N :N  
P
S
V
IN  
SN  
+
+
+
+
V
C
I
D
C
R
IN  
SN  
SN  
C
L
L
OUT  
P
S
D
SN  
I
SW  
LT3757  
GATE  
+
V
M
R
DS  
TheꢀRMSꢀinputꢀcapacitorꢀrippleꢀcurrentꢀforꢀaꢀboostꢀcon-  
verterꢀis:  
SENSE  
SENSE  
GND  
ꢀ I ꢀ=ꢀ0.3ꢀ•ꢀ∆I  
RMS(CIN) L  
3757 F06  
Figure 7. A Simplified Flyback Converter  
3757fb  
ꢀꢆ  
LT3757  
applicaTions inForMaTion  
Flyback Converter: Switch Duty Cycle and Turns Ratio  
Accordingtotheprecedingequations,theuserhasrelativeꢀ  
freedomꢀinꢀselectingꢀtheꢀswitchꢀdutyꢀcycleꢀorꢀturnsꢀratioꢀtoꢀ  
suitꢀaꢀgivenꢀapplication.ꢀTheꢀselectionsꢀofꢀtheꢀdutyꢀcycleꢀ  
andꢀtheꢀturnsꢀratioꢀareꢀsomewhatꢀiterativeꢀprocesses,ꢀdueꢀ  
toꢀtheꢀnumberꢀofꢀvariablesꢀinvolved.ꢀTheꢀuserꢀcanꢀchooseꢀ  
eitherꢀaꢀdutyꢀcycleꢀorꢀaꢀturnsꢀratioꢀasꢀtheꢀstartꢀpoint.ꢀTheꢀ  
followingꢀtrade-offsꢀshouldꢀbeꢀconsideredꢀwhenꢀselect-  
ingꢀtheꢀswitchꢀdutyꢀcycleꢀorꢀturnsꢀratio,ꢀtoꢀoptimizeꢀtheꢀ  
converterperformance.Ahigherdutycycleaffectstheꢀ  
flybackꢀconverterꢀinꢀtheꢀfollowingꢀaspects:  
Theꢀflybackꢀconverterꢀconversionꢀratioꢀinꢀtheꢀcontinuousꢀ  
modeꢀoperationꢀis:  
VOUT NS  
VIN NP 1D  
D
=
whereꢀN /N ꢀisꢀtheꢀsecondꢀtoꢀprimaryꢀturnsꢀratio.  
S
P
Figureꢀ8ꢀshowsꢀtheꢀwaveformsꢀofꢀtheꢀflybackꢀconverterꢀ  
inꢀdiscontinuousꢀmodeꢀoperation.ꢀDuringꢀeachꢀswitchingꢀ  
•ꢀ Lowerꢀ MOSFETꢀ RMSꢀ currentꢀ I  
,ꢀ butꢀ higherꢀ  
SW(RMS)  
periodT ,threesubintervalsoccur:DT ,D2T ,D3T .ꢀ  
S
S
S
S
MOSFETꢀV ꢀpeakꢀvoltage  
DS  
DuringDT ,Mison,andDisreverse-biased.Duringꢀ  
S
D2T ,ꢀMꢀisꢀoff,ꢀandꢀL ꢀisꢀconductingꢀcurrent.ꢀBothꢀL ꢀandꢀ  
•ꢀ Lowerdiodepeakreversevoltage,buthigherdiodeꢀ  
RMSꢀcurrentꢀI  
S
S
P
L ꢀcurrentsꢀareꢀzeroꢀduringꢀD3T .  
S
S
D(RMS)  
Theꢀflybackꢀconverterꢀconversionꢀratioꢀinꢀtheꢀdiscontinu-  
ousꢀmodeꢀoperationꢀis:  
•ꢀ Higherꢀtransformerꢀturnsꢀratioꢀ(N /N )  
P
S
Theꢀchoice,  
VOUT NS  
VIN NP D2  
D
D
1
=
=
D+D2 3  
(forꢀdiscontinuousꢀmodeꢀoperationꢀwithꢀaꢀgivenꢀD3)ꢀgivesꢀ  
theꢀpowerꢀMOSFETꢀtheꢀlowestꢀpowerꢀstressꢀ(theꢀproductꢀ  
ofꢀRMSꢀcurrentꢀandꢀpeakꢀvoltage).ꢀHowever,ꢀinꢀtheꢀhighꢀ  
outputꢀvoltageꢀapplications,ꢀaꢀhigherꢀdutyꢀcycleꢀmayꢀbeꢀ  
adoptedꢀ toꢀ limitꢀ theꢀ largeꢀ peakꢀ reverseꢀ voltageꢀ ofꢀ theꢀ  
diode.ꢀTheꢀchoice,  
V
DS  
I
SW  
D
2
=
I
SW(MAX)  
D+D2 3  
(forꢀdiscontinuousꢀmodeꢀoperationꢀwithꢀaꢀgivenꢀD3)ꢀgivesꢀ  
theꢀdiodeꢀtheꢀlowestꢀpowerꢀstressꢀ(theꢀproductꢀofꢀRMSꢀ  
currentꢀandꢀpeakꢀvoltage).ꢀAnꢀextremeꢀhighꢀorꢀlowꢀdutyꢀ  
cycleresultsinhighpowerstressontheMOSFETordiode,ꢀ  
andꢀreducesꢀefficiency.ꢀItꢀisꢀrecommendedꢀtoꢀchooseꢀaꢀ  
dutyꢀcycle,ꢀD,ꢀbetweenꢀ20%ꢀandꢀ80%.  
I
D
I
D(MAX)  
DT  
S
D2T  
D3T  
S
t
S
T
S
3757 F07  
Figure 8. Waveforms of the Flyback Converter  
in Discontinuous Mode Operation  
3757fb  
ꢀꢇ  
LT3757  
applicaTions inForMaTion  
Flyback Converter: Transformer Design for  
Discontinuous Mode Operation  
AccordingꢀtoꢀFigureꢀ8,ꢀtheꢀprimaryꢀandꢀsecondaryꢀpeakꢀ  
currentsꢀare:  
Thetransformerdesignfordiscontinuousmodeofopera-  
tionꢀisꢀchosenꢀasꢀpresentedꢀhere.ꢀAccordingꢀtoꢀFigureꢀ8,ꢀ  
ꢀ I  
ꢀ I  
ꢀ=ꢀI  
ꢀ=ꢀ2ꢀ•ꢀI  
SW(PEAK)  
LP(PEAK)  
LS(PEAK)  
LP(MAX)  
LS(MAX)  
ꢀ=ꢀI  
ꢀ=ꢀ2ꢀ•ꢀI  
D(PEAK)  
theminimumD3(D3 )occurswhentheconverterꢀ  
MIN  
Theprimaryandsecondinductorvaluesoftheflybackꢀ  
converterꢀtransformerꢀcanꢀbeꢀdeterminedꢀusingꢀtheꢀfol-  
lowingꢀequations:  
hasꢀtheꢀminimumꢀV ꢀandꢀtheꢀmaximumꢀoutputꢀpowerꢀ  
IN  
(P ).ꢀChooseꢀD3 ꢀtoꢀbeꢀequalꢀtoꢀorꢀhigherꢀthanꢀ10%ꢀ  
OUT  
MIN  
toꢀguaranteeꢀtheꢀconverterꢀisꢀalwaysꢀinꢀdiscontinuousꢀ  
modeꢀ operationꢀ (choosingꢀ higherꢀ D3ꢀ allowsꢀ theꢀ useꢀ  
ofꢀlowꢀinductances,ꢀbutꢀresultsꢀinꢀaꢀhigherꢀswitchꢀpeakꢀ  
current).  
D2MAX • V2IN(MAX) h  
LP =  
2•POUT(MAX) • f  
TheꢀuserꢀcanꢀchooseꢀaꢀD  
maximumꢀaverageꢀprimaryꢀcurrentsꢀcanꢀbeꢀcalculatedꢀbyꢀ  
theꢀfollowingꢀequation:  
ꢀasꢀtheꢀstartꢀpoint.ꢀThen,ꢀtheꢀ  
D22 •(VOUT + VD)  
2•IOUT(MAX) • f  
MAX  
LS =  
Theꢀprimaryꢀtoꢀsecondꢀturnsꢀratioꢀis:  
POUT(MAX)  
ILP(MAX) =ISW(MAX)  
=
NP  
NS  
LP  
LS  
DMAX • VIN(MIN) h  
=
whereꢀhꢀisꢀtheꢀconverterꢀefficiency.ꢀ  
Ifꢀtheꢀflybackꢀconverterꢀhasꢀmultipleꢀoutputs,ꢀP  
isꢀtheꢀsumꢀofꢀallꢀtheꢀoutputꢀpower.  
OUT(MAX)  
Flyback Converter: Snubber Design  
Transformerleakageinductance(oneithertheprimaryꢀ  
orꢀsecondary)ꢀcausesꢀaꢀvoltageꢀspikeꢀtoꢀoccurꢀafterꢀtheꢀ  
MOSFETꢀturn-off.ꢀThisꢀisꢀincreasinglyꢀprominentꢀatꢀhigherꢀ  
loadcurrents,wheremorestoredenergymustbedis-  
sipated.ꢀInꢀsomeꢀcasesꢀaꢀsnubberꢀcircuitꢀwillꢀbeꢀrequiredꢀ  
toavoidovervoltageꢀbreakdownꢀatꢀtheꢀMOSFET’sꢀdrainꢀ  
node.Therearedifferentsnubbercircuits,andApplicationꢀ  
Noteꢀ19ꢀisꢀaꢀgoodꢀreferenceꢀonꢀsnubberꢀdesign.ꢀAnꢀRCDꢀ  
snubberꢀisꢀshownꢀinꢀFigureꢀ7.  
Theꢀmaximumꢀaverageꢀsecondaryꢀcurrentꢀis:  
IOUT(MAX)  
ILS(MAX) =ID(MAX)  
=
D2  
where:  
ꢀ D2ꢀ=ꢀ1ꢀ–ꢀD ꢀ–ꢀD3  
MAX  
theꢀprimaryꢀandꢀsecondaryꢀRMSꢀcurrentsꢀare:  
DMAX  
Theꢀsnubberꢀresistorꢀvalueꢀ(R )ꢀcanꢀbeꢀcalculatedꢀbyꢀtheꢀ  
ILP(RMS) = 2ILP(MAX)  
SN  
3
followingꢀequation:  
D2  
3
NP  
V2SN VSN • VOUT  
ILS(RMS) = 2ILS(MAX)  
NS  
I2SW(PEAK) LLK • f  
RSN = 2 •  
3757fb  
ꢀꢈ  
C
ꢀ•ꢀf/1A  
                                                   
LT3757  
applicaTions inForMaTion  
whereV ꢀisthesnubbercapacitorvoltage.Asmallerꢀ Flyback Converter: Power MOSFET Selection  
SN  
V ꢀresultsꢀinꢀaꢀlargerꢀsnubberꢀloss.ꢀAꢀreasonableꢀV ꢀisꢀ  
SN  
SN  
Fortheflybackconfiguration,theMOSFETisselectedwithꢀ  
aꢀV ꢀratingꢀhighꢀenoughꢀtoꢀhandleꢀtheꢀmaximumꢀV ,ꢀtheꢀ  
2ꢀtoꢀ2.5ꢀtimesꢀof:  
DC  
IN  
reflectedꢀsecondaryꢀvoltageꢀandꢀtheꢀvoltageꢀspikeꢀdueꢀtoꢀ  
VOUT NP  
theleakageinductance.ApproximatetherequiredMOSFETꢀ  
V ꢀratingꢀusing:  
DC  
NS  
L ꢀ isꢀ theꢀ leakageꢀ inductanceꢀ ofꢀ theꢀ primaryꢀ winding,ꢀ  
LK  
ꢀ BV ꢀ>ꢀV  
DSS  
DS(PEAK)  
whichꢀisꢀusuallyꢀspecifiedꢀinꢀtheꢀtransformerꢀcharacter-  
where:  
istics.ꢀ L ꢀ canꢀ beꢀ obtainedꢀ byꢀ measuringꢀ theꢀ primaryꢀ  
LK  
inductanceꢀ withꢀ theꢀ secondaryꢀ windingsꢀ shorted.ꢀ Theꢀ  
VDS(PEAK) = VIN(MAX)+ VSN  
snubberꢀcapacitorꢀvalueꢀ(C )ꢀcanꢀbeꢀdeterminedꢀusingꢀ  
CN  
theꢀfollowingꢀequation:  
TheꢀpowerꢀdissipatedꢀbyꢀtheꢀMOSFETꢀinꢀaꢀflybackꢀcon-  
verterꢀis:  
VSN  
VSN •RCN • f  
CCN  
=
2
2
ꢀ P ꢀ=ꢀI  
RSS  
ꢀ•ꢀR ꢀ+ꢀ2ꢀ•ꢀV  
M(RMS) DS(ON)  
ꢀ•ꢀI  
ꢀ•ꢀꢀꢀ  
FET  
DS(PEAK) L(MAX)  
whereꢀ∆V ꢀisꢀtheꢀvoltageꢀrippleꢀacrossꢀC .ꢀAꢀreasonableꢀ  
SN  
CN  
Theꢀfirstꢀtermꢀinꢀthisꢀequationꢀrepresentsꢀtheꢀconductionꢀ  
lossesꢀinꢀtheꢀdevice,ꢀandꢀtheꢀsecondꢀterm,ꢀtheꢀswitchingꢀ  
∆V ꢀisꢀ5%ꢀtoꢀ10%ꢀofꢀV .ꢀTheꢀreverseꢀvoltageꢀratingꢀofꢀ  
SN  
SN  
D ꢀshouldꢀbeꢀhigherꢀthanꢀtheꢀsumꢀofꢀV ꢀandꢀV .  
SN  
SN  
IN(MAX)  
loss.ꢀC ꢀisꢀtheꢀreverseꢀtransferꢀcapacitance,ꢀwhichꢀisꢀ  
RSS  
usuallyꢀspecifiedꢀinꢀtheꢀMOSFETꢀcharacteristics.ꢀ  
Flyback Converter: Sense Resistor Selection  
FromꢀaꢀknownꢀpowerꢀdissipatedꢀinꢀtheꢀpowerꢀMOSFET,ꢀitsꢀ  
junctionꢀtemperatureꢀcanꢀbeꢀobtainedꢀusingꢀtheꢀfollowingꢀ  
equation:  
Inꢀaꢀflybackꢀconverter,ꢀwhenꢀtheꢀpowerꢀswitchꢀisꢀturnedꢀ  
on,ꢀ theꢀ currentꢀ flowingꢀ throughꢀ theꢀ senseꢀ resistorꢀ  
SENSE  
(I  
)ꢀis:ꢀ  
ꢀ T ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀθ ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀ(θ ꢀ+ꢀθ )  
J
A
FET  
JA  
A
FET  
JC  
CA  
ꢀ I ꢀ=ꢀI  
SENSE LP  
T ꢀ mustꢀ notꢀ exceedꢀ theꢀ MOSFETꢀ maximumꢀ junctionꢀ  
J
SetꢀtheꢀsenseꢀvoltageꢀatꢀI  
ꢀtoꢀbeꢀtheꢀminimumꢀofꢀ  
LP(PEAK)  
temperaturerating.Itisrecommendedtomeasuretheꢀ  
MOSFETtemperatureinsteadystatetoensurethatabsoluteꢀ  
maximumꢀratingsꢀareꢀnotꢀexceeded.  
theꢀSENSEꢀcurrentꢀlimitꢀthresholdꢀwithꢀaꢀ20%ꢀmargin.ꢀTheꢀ  
senseꢀresistorꢀvalueꢀcanꢀthenꢀbeꢀcalculatedꢀtoꢀbe:  
80mV  
ILP(PEAK)  
RSENSE  
=
3757fb  
ꢁ0  
LT3757  
applicaTions inForMaTion  
Flyback Converter: Output Diode Selection  
Flyback Converter: Input Capacitor Selection  
Theꢀoutputꢀdiodeꢀinꢀaꢀflybackꢀconverterꢀisꢀsubjectꢀtoꢀlargeꢀ Theinputcapacitorinaflybackconverterissubjecttoꢀ  
RMScurrentandpeakreversevoltagestresses.Afastꢀ alargeRMScurrentduetothediscontinuousprimaryꢀ  
switchingdiodewithalowforwarddropandalowreverseꢀ current.Topreventlargevoltagetransients,usealowꢀ  
leakageꢀisꢀdesired.ꢀSchottkyꢀdiodesꢀareꢀrecommendedꢀifꢀ ESRꢀinputꢀcapacitorꢀsizedꢀforꢀtheꢀmaximumꢀRMSꢀcurrent.ꢀ  
theꢀoutputꢀvoltageꢀisꢀbelowꢀ100V.ꢀ  
TheꢀRMSꢀrippleꢀcurrentꢀratingꢀofꢀtheꢀinputꢀcapacitorsꢀinꢀ  
discontinuousꢀ operationꢀ canꢀ beꢀ determinedꢀ usingꢀ theꢀ  
followingꢀequation:  
Approximateꢀtheꢀrequiredꢀpeakꢀrepetitiveꢀreverseꢀvoltageꢀ  
ratingꢀV  
ꢀusing:  
RRM  
POUT(MAX)  
4(3DMAX  
)
NS  
IRMS(CIN),DISCONTINUOUS  
VRRM  
>
• VIN(MAX) + VOUT  
VIN(MIN) h  
3•DMAX  
NP  
Theꢀpowerꢀdissipatedꢀbyꢀtheꢀdiodeꢀis:  
ꢀ P ꢀ=ꢀI ꢀ•ꢀV  
SEPIC CONVERTER APPLICATIONS  
D
O(MAX)  
D
TheꢀLT3757ꢀcanꢀbeꢀconfiguredꢀasꢀaꢀSEPICꢀ(single-endedꢀ  
primaryꢀinductanceꢀconverter),ꢀasꢀshownꢀinꢀFigureꢀ1.ꢀThisꢀ  
topologyꢀallowsꢀforꢀtheꢀinputꢀtoꢀbeꢀhigher,ꢀequal,ꢀorꢀlowerꢀ  
thanꢀtheꢀdesiredꢀoutputꢀvoltage.ꢀTheꢀconversionꢀratioꢀasꢀ  
aꢀfunctionꢀofꢀdutyꢀcycleꢀis:  
andꢀtheꢀdiodeꢀjunctionꢀtemperatureꢀis:  
ꢀ T ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀR  
J
A
D
θJA  
TheꢀR ꢀtoꢀbeꢀusedꢀinꢀthisꢀequationꢀnormallyꢀincludesꢀ  
θJA  
θJC  
theꢀR ꢀforꢀtheꢀdevice,ꢀplusꢀtheꢀthermalꢀresistanceꢀfromꢀ  
VOUT + VD  
D
theꢀboardꢀtoꢀtheꢀambientꢀtemperatureꢀinꢀtheꢀenclosure.ꢀT ꢀ  
=
J
VIN  
1D  
mustnotexceedthediodemaximumjunctiontemperatureꢀ  
rating.ꢀ  
inꢀcontinuousꢀconductionꢀmodeꢀ(CCM).  
InꢀaꢀSEPICꢀconverter,ꢀnoꢀDCꢀpathꢀexistsꢀbetweenꢀtheꢀinputꢀ  
andꢀoutput.ꢀThisꢀisꢀanꢀadvantageꢀoverꢀtheꢀboostꢀconverterꢀ  
forꢀapplicationsꢀrequiringꢀtheꢀoutputꢀtoꢀbeꢀdisconnectedꢀ  
fromꢀtheꢀinputꢀsourceꢀwhenꢀtheꢀcircuitꢀisꢀinꢀshutdown.ꢀ  
Flyback Converter: Output Capacitor Selection  
Theꢀoutputꢀcapacitorꢀofꢀtheꢀflybackꢀconverterꢀhasꢀaꢀsimilarꢀ  
operationconditionasthatoftheboostconverter.Refertoꢀ  
theꢀBoostꢀConverter:ꢀOutputꢀCapacitorꢀSelectionꢀsectionꢀ  
Comparedꢀtoꢀtheꢀflybackꢀconverter,ꢀtheꢀSEPICꢀconverterꢀ  
hasꢀtheꢀadvantageꢀthatꢀbothꢀtheꢀpowerꢀMOSFETꢀandꢀtheꢀ  
forꢀtheꢀcalculationꢀofꢀC ꢀandꢀESR  
.ꢀ  
COUT  
OUT  
TheRMSripplecurrentratingoftheoutputcapacitorsꢀ  
inꢀdiscontinuousꢀoperationꢀcanꢀbeꢀdeterminedꢀusingꢀtheꢀ  
followingꢀequation:  
outputꢀdiodeꢀvoltagesꢀareꢀclampedꢀbyꢀtheꢀcapacitorsꢀ(C ,ꢀ  
IN  
C andC ),therefore,thereislessvoltageringingꢀ  
DC  
OUT  
acrossthepowerMOSFETandtheoutputdiodes.Theꢀ  
SEPICꢀconverterꢀrequiresꢀmuchꢀsmallerꢀinputꢀcapacitorsꢀ  
thanꢀthoseꢀofꢀtheꢀflybackꢀconverter.ꢀThisꢀisꢀdueꢀtoꢀtheꢀfactꢀ  
4(3D2)  
IRMS(COUT),DISCONTINUOUS IO(MAX)  
3•D2  
3757fb  
ꢁꢀ  
LT3757  
applicaTions inForMaTion  
that,ꢀinꢀtheꢀSEPICꢀconverter,ꢀtheꢀinductorꢀL1ꢀisꢀinꢀseriesꢀ  
withꢀtheꢀinput,ꢀandꢀtheꢀrippleꢀcurrentꢀflowingꢀthroughꢀtheꢀ  
inputꢀcapacitorꢀisꢀcontinuous.  
InꢀaꢀSEPICꢀconverter,ꢀtheꢀswitchꢀcurrentꢀisꢀequalꢀtoꢀI ꢀ+ꢀ  
L2  
averageꢀswitchꢀcurrentꢀisꢀdefinedꢀas:  
L1  
I ꢀwhenꢀtheꢀpowerꢀswitchꢀisꢀon,ꢀtherefore,ꢀtheꢀmaximumꢀ  
1
SEPIC Converter: Switch Duty Cycle and Frequency  
ISW(MAX) =IL1(MAX) +IL2(MAX) =IO(MAX)  
1DMAX  
ForꢀaꢀSEPICꢀconverterꢀoperatingꢀinꢀCCM,ꢀtheꢀdutyꢀcycleꢀ  
ofꢀtheꢀmainꢀswitchꢀcanꢀbeꢀcalculatedꢀbasedꢀonꢀtheꢀoutputꢀ  
andꢀtheꢀpeakꢀswitchꢀcurrentꢀis:  
voltageꢀ (V ),ꢀ theꢀ inputꢀ voltageꢀ (V )ꢀ andꢀ theꢀ diodeꢀ  
OUT  
IN  
ISW(PEAK) = 1+  
c
2
1
forwardꢀvoltageꢀ(V ).  
D
•IO(MAX)  
1DMAX  
Themaximumdutycycle(D )occurswhentheconverterꢀ  
MAX  
hasꢀtheꢀminimumꢀinputꢀvoltage:  
c
Theꢀconstantꢀ ꢀinꢀtheꢀprecedingꢀequationsꢀrepresentsꢀtheꢀ  
percentageꢀpeak-to-peakꢀrippleꢀcurrentꢀinꢀtheꢀswitch,ꢀrela-  
VOUT + VD  
VIN(MIN) + VOUT + VD  
DMAX  
=
tiveꢀtoꢀI  
,ꢀasꢀshownꢀinꢀFigureꢀ9.ꢀThen,ꢀtheꢀswitchꢀ  
SW(MAX)  
rippleꢀcurrentꢀ∆I ꢀcanꢀbeꢀcalculatedꢀby:  
SW  
c
ꢀ ∆I ꢀ=ꢀ ꢀ•ꢀI  
SEPIC Converter: Inductor and Sense Resistor Selection  
SW  
SW(MAX)  
Theꢀinductorꢀrippleꢀcurrentsꢀ∆I ꢀandꢀꢀ∆I ꢀareꢀidentical:  
AsꢀshownꢀinꢀFigureꢀ1,ꢀtheꢀSEPICꢀconverterꢀcontainsꢀtwoꢀ  
inductors:ꢀL1ꢀandꢀL2.ꢀL1ꢀandꢀL2ꢀcanꢀbeꢀindependent,ꢀbutꢀ  
canꢀalsoꢀbeꢀwoundꢀonꢀtheꢀsameꢀcore,ꢀsinceꢀidenticalꢀvolt-  
agesꢀareꢀappliedꢀtoꢀL1ꢀandꢀL2ꢀthroughoutꢀtheꢀswitchingꢀ  
cycle.ꢀ  
L1  
L2  
ꢀ ∆I ꢀ=ꢀꢀ∆I ꢀ=ꢀ0.5ꢀ•ꢀ∆I  
SW  
L1  
L2  
Theꢀ inductorꢀ rippleꢀ currentꢀ hasꢀ aꢀ directꢀ effectꢀ onꢀ theꢀ  
choiceꢀofꢀtheꢀinductorꢀvalue.ꢀChoosingꢀsmallerꢀvaluesꢀofꢀ  
∆I ꢀrequiresꢀlargeꢀinductancesꢀandꢀreducesꢀtheꢀcurrentꢀ  
L
FortheSEPICtopology,thecurrentthroughL1istheꢀ  
converterꢀinputꢀcurrent.ꢀBasedꢀonꢀtheꢀfactꢀthat,ꢀideally,ꢀtheꢀ  
outputꢀpowerꢀisꢀequalꢀtoꢀtheꢀinputꢀpower,ꢀtheꢀmaximumꢀ  
averageꢀinductorꢀcurrentsꢀofꢀL1ꢀandꢀL2ꢀare:  
loopꢀ gainꢀ (theꢀ converterꢀ willꢀ approachꢀ voltageꢀ mode).ꢀ  
Acceptingꢀlargerꢀvaluesꢀofꢀ∆I ꢀallowsꢀtheꢀuseꢀofꢀlowꢀin-  
L
ductances,ꢀbutꢀresultsꢀinꢀhigherꢀinputꢀcurrentꢀrippleꢀandꢀ  
c
greaterꢀcoreꢀlosses.ꢀItꢀisꢀrecommendedꢀthatꢀ ꢀfallsꢀinꢀtheꢀ  
rangeꢀofꢀ0.2ꢀtoꢀ0.4.  
DMAX  
1DMAX  
IL1(MAX) =IIN(MAX) =IO(MAX)  
IL2(MAX) =IO(MAX)  
I
SW  
$I  
I
SW = C v SW(MAX)  
I
SW(MAX)  
t
DT  
S
T
S
3757 F08  
Figure 9. The Switch Current Waveform of the SEPIC Converter  
3757fb  
ꢁꢁ  
ꢀ +ꢀ2ꢀ•ꢀ(V  
ꢀ+ꢀV ) ꢀ•ꢀI  
ꢀ•ꢀC ꢀ•ꢀf/1A  
L(MAX)  
                                                                            
LT3757  
applicaTions inForMaTion  
Givenanoperatinginputvoltagerange,andhavingchosenꢀ Basedontheprecedingequations,theusershouldchooseꢀ  
theꢀoperatingꢀfrequencyꢀandꢀrippleꢀcurrentꢀinꢀtheꢀinduc- theꢀinductorsꢀhavingꢀsufficientꢀsaturationꢀandꢀRMSꢀcur-  
tor,ꢀtheꢀinductorꢀvalueꢀ(L1ꢀandꢀL2ꢀareꢀindependent)ꢀofꢀtheꢀ rentꢀratings.  
SEPICꢀconverterꢀcanꢀbeꢀdeterminedꢀusingꢀtheꢀfollowingꢀ  
InꢀaꢀSEPICꢀconverter,ꢀwhenꢀtheꢀpowerꢀswitchꢀisꢀturnedꢀon,ꢀ  
equation:  
theꢀcurrentꢀflowingꢀthroughꢀtheꢀsenseꢀresistorꢀ(I  
theꢀswitchꢀcurrent.ꢀ  
)ꢀisꢀ  
SENSE  
VIN(MIN)  
L1=L2=  
DMAX  
SetꢀtheꢀsenseꢀvoltageꢀatꢀI  
toꢀbeꢀtheꢀminimumꢀ  
0.5ISW • f  
SENSE(PEAK)ꢀ  
ofꢀtheꢀSENSEꢀcurrentꢀlimitꢀthresholdꢀwithꢀaꢀ20%ꢀmargin.ꢀ  
Theꢀsenseꢀresistorꢀvalueꢀcanꢀthenꢀbeꢀcalculatedꢀtoꢀbe:  
ForꢀmostꢀSEPICꢀapplications,ꢀtheꢀequalꢀinductorꢀvaluesꢀ  
willꢀfallꢀinꢀtheꢀrangeꢀofꢀ1µHꢀtoꢀ100µH.ꢀ  
80mV  
ISW(PEAK)  
RSENSE  
=
BymakingL1=L2,andwindingthemonthesamecore,theꢀ  
valueꢀofꢀinductanceꢀinꢀtheꢀprecedingꢀequationꢀisꢀreplacedꢀ  
byꢀ2L,ꢀdueꢀtoꢀmutualꢀinductance:ꢀ  
SEPIC Converter: Power MOSFET Selection  
V
L = IN(MIN) DMAX  
FortheSEPICconfiguration,chooseaMOSFETwithaꢀ  
ISW • f  
V ꢀratingꢀhigherꢀthanꢀtheꢀsumꢀofꢀtheꢀoutputꢀvoltageꢀandꢀ  
DC  
inputꢀvoltageꢀbyꢀaꢀsafetyꢀmarginꢀ(aꢀ10Vꢀsafetyꢀmarginꢀisꢀ  
usuallyꢀsufficient).  
Thismaintainsthesameripplecurrentandenergystorageꢀ  
inꢀtheꢀinductors.ꢀTheꢀpeakꢀinductorꢀcurrentsꢀare:  
ThepowerdissipatedbytheMOSFETinaSEPICcon-  
verterꢀis:  
ꢀ I  
ꢀ I  
ꢀ=ꢀI  
ꢀ=ꢀI  
ꢀ+ꢀ0.5ꢀ•ꢀ∆I  
ꢀ+ꢀ0.5ꢀ•ꢀ∆I  
L1(PEAK)  
L1(MAX)  
L1  
L2  
2
L2(PEAK)  
L2(MAX)  
ꢀ P ꢀ=ꢀI  
ꢀ•ꢀR  
ꢀ•ꢀD  
MAX  
FET  
SW(MAX)  
DS(ON)  
2
TheꢀRMSꢀinductorꢀcurrentsꢀare:  
IN(MIN)  
OUT  
RSS  
Theꢀfirstꢀtermꢀinꢀthisꢀequationꢀrepresentsꢀtheꢀconductionꢀ  
lossesꢀinꢀtheꢀdevice,ꢀandꢀtheꢀsecondꢀterm,ꢀtheꢀswitchingꢀ  
c2  
12  
L1  
IL1(RMS) =IL1(MAX) • 1+  
loss.ꢀC ꢀisꢀtheꢀreverseꢀtransferꢀcapacitance,ꢀwhichꢀisꢀ  
RSS  
usuallyꢀspecifiedꢀinꢀtheꢀMOSFETꢀcharacteristics.ꢀ  
where:  
Forꢀ maximumꢀ efficiency,ꢀ R  
ꢀ andꢀ C ꢀ shouldꢀ beꢀ  
RSS  
IL1  
IL1(MAX)  
DS(ON)  
cL1=  
minimized.ꢀFromꢀaꢀknownꢀpowerꢀdissipatedꢀinꢀtheꢀpowerꢀ  
MOSFET,ꢀitsꢀjunctionꢀtemperatureꢀcanꢀbeꢀobtainedꢀusingꢀ  
theꢀfollowingꢀequation:  
c2  
12  
L2  
IL2(RMS) =IL2(MAX) • 1+  
ꢀ T ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀθ ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀ(θ ꢀ+ꢀθ )  
J
A
FET  
JA  
A
FET  
JC  
CA  
T ꢀ mustꢀ notꢀ exceedꢀ theꢀ MOSFETꢀ maximumꢀ junctionꢀ  
J
where:  
temperaturerating.Itisrecommendedtomeasuretheꢀ  
MOSFETtemperatureinsteadystatetoensurethatabsoluteꢀ  
maximumꢀratingsꢀareꢀnotꢀexceeded.  
IL2  
IL2(MAX)  
cL2 =  
3757fb  
ꢁꢂ  
LT3757  
applicaTions inForMaTion  
SEPIC Converter: Output Diode Selection  
C ꢀhasꢀnearlyꢀaꢀrectangularꢀcurrentꢀwaveform.ꢀDuringꢀ  
DC  
theꢀswitchꢀoff-time,ꢀtheꢀcurrentꢀthroughꢀC ꢀisꢀI ,ꢀwhileꢀ  
DC  
IN  
Toꢀmaximizeꢀefficiency,ꢀaꢀfastꢀswitchingꢀdiodeꢀwithꢀaꢀlowꢀ  
forwardꢀdropꢀandꢀlowꢀreverseꢀleakageꢀisꢀdesirable.ꢀTheꢀ  
averageꢀforwardꢀcurrentꢀinꢀnormalꢀoperationꢀisꢀequalꢀtoꢀ  
theꢀoutputꢀcurrent,ꢀandꢀtheꢀpeakꢀcurrentꢀisꢀequalꢀto:  
approximately–I ꢀflowsduringtheon-time.TheRMSꢀ  
O
ratingꢀofꢀtheꢀcouplingꢀcapacitorꢀisꢀdeterminedꢀbyꢀtheꢀfol-  
lowingꢀequation:  
VOUT + VD  
VIN(MIN)  
ID(PEAK) = 1+  
c
2
1
IRMS(CDC) >IO(MAX)  
•IO(MAX)  
1DMAX  
AꢀlowꢀESRꢀandꢀESL,ꢀX5RꢀorꢀX7Rꢀceramicꢀcapacitorꢀworksꢀ  
Itꢀisꢀrecommendedꢀthatꢀtheꢀpeakꢀrepetitiveꢀreverseꢀvoltageꢀ  
ratingꢀV ꢀisꢀhigherꢀthanꢀV ꢀ+ꢀV ꢀbyꢀaꢀsafetyꢀ  
wellꢀforꢀC .  
DC  
RRM  
OUT  
IN(MAX)  
marginꢀ(aꢀ10Vꢀsafetyꢀmarginꢀisꢀusuallyꢀsufficient).  
INVERTING CONVERTER APPLICATIONS  
Theꢀpowerꢀdissipatedꢀbyꢀtheꢀdiodeꢀis:  
TheꢀLT3757ꢀcanꢀbeꢀconfiguredꢀasꢀaꢀdual-inductorꢀinvert-  
ꢀ P ꢀ=ꢀI  
ꢀ•ꢀV  
D
D
O(MAX)  
ingtopology,asshowninFigure10.TheV ꢀtoV ꢀ  
OUT  
IN  
andꢀtheꢀdiodeꢀjunctionꢀtemperatureꢀis:  
ꢀ T ꢀ=ꢀT ꢀ+ꢀP ꢀ•ꢀR  
ratioꢀis:  
J
A
D
θJA  
VOUT V  
D
1D  
D = −  
TheꢀR ꢀusedꢀinꢀthisꢀequationꢀnormallyꢀincludesꢀtheꢀR  
θJC  
θJA  
V
IN  
forꢀtheꢀdevice,ꢀplusꢀtheꢀthermalꢀresistanceꢀfromꢀtheꢀboard,ꢀ  
toꢀtheꢀambientꢀtemperatureꢀinꢀtheꢀenclosure.ꢀT ꢀmustꢀnotꢀ  
inꢀcontinuousꢀconductionꢀmodeꢀ(CCM).  
J
exceedꢀtheꢀdiodeꢀmaximumꢀjunctionꢀtemperatureꢀrating.ꢀ  
C
+
DC  
L1  
L2  
C
SEPIC Converter: Output and Input Capacitor Selection  
V
IN  
+
C
LT3757  
GATE  
IN  
Theꢀselectionsꢀofꢀtheꢀoutputꢀandꢀinputꢀcapacitorsꢀofꢀtheꢀ  
SEPICconverteraresimilartothoseoftheboostconverter.ꢀ  
Pleaseꢀ referꢀ toꢀ theꢀ Boostꢀ Converter,ꢀ Outputꢀ Capacitorꢀ  
SelectionꢀandꢀBoostꢀConverter,ꢀInputꢀCapacitorꢀSelectionꢀ  
sections.  
D1  
OUT  
M1  
+
V
OUT  
SENSE  
R
SENSE  
+
GND  
3757 F09  
Figure 10. A Simplified Inverting Converter  
SEPIC Converter: Selecting the DC Coupling Capacitor  
TheꢀDCꢀvoltageꢀratingꢀofꢀtheꢀDCꢀcouplingꢀcapacitorꢀ(C ,ꢀ  
DC  
asꢀshownꢀinꢀFigureꢀ1)ꢀshouldꢀbeꢀlargerꢀthanꢀtheꢀmaximumꢀ  
inputꢀvoltage:  
ꢀ V ꢀ>ꢀV  
CDC  
IN(MAX)  
3757fb  
ꢁꢃ  
LT3757  
applicaTions inForMaTion  
Inverting Converter: Switch Duty Cycle and Frequency  
Afterꢀspecifyingꢀtheꢀmaximumꢀoutputꢀripple,ꢀtheꢀuserꢀcanꢀ  
selectꢀtheꢀoutputꢀcapacitorsꢀaccordingꢀtoꢀtheꢀprecedingꢀ  
equation.ꢀ  
ForaninvertingconverteroperatinginCCM,thedutycycleꢀ  
ofthemainswitchcanbecalculatedbasedonthenegativeꢀ  
outputꢀvoltageꢀ(V )ꢀandꢀtheꢀinputꢀvoltageꢀ(V ).  
TheꢀESRꢀcanꢀbeꢀminimizedꢀbyꢀusingꢀhighꢀqualityꢀX5Rꢀorꢀ  
X7Rꢀdielectricꢀceramicꢀcapacitors.ꢀInꢀmanyꢀapplications,ꢀ  
ceramicꢀcapacitorsꢀareꢀsufficientꢀtoꢀlimitꢀtheꢀoutputꢀvolt-  
ageꢀripple.  
OUT  
IN  
Themaximumdutycycle(D )occurswhentheconverterꢀ  
MAX  
hasꢀtheꢀminimumꢀinputꢀvoltage:  
VOUT VD  
VOUT VD VIN(MIN)  
Theꢀ RMSꢀ rippleꢀ currentꢀ ratingꢀ ofꢀ theꢀ outputꢀ capacitorꢀ  
needsꢀtoꢀbeꢀgreaterꢀthan:  
DMAX  
=
ꢀ I  
ꢀ>ꢀ0.3ꢀ•ꢀ∆I  
L2  
RMS(COUT)  
Inverting Converter: Inductor, Sense Resistor, Power  
MOSFET, Output Diode and Input Capacitor Selections  
Inverting Converter: Selecting the DC Coupling Capacitor  
Theꢀ selectionsꢀ ofꢀ theꢀ inductor,ꢀ senseꢀ resistor,ꢀ powerꢀ  
MOSFET,ꢀoutputꢀdiodeꢀandꢀinputꢀcapacitorꢀofꢀanꢀinvertingꢀ  
converteraresimilartothoseoftheSEPICconverter.Pleaseꢀ  
referꢀtoꢀtheꢀcorrespondingꢀSEPICꢀconverterꢀsections.  
Theꢀ DCꢀ voltageꢀ ratingꢀ ofꢀ theꢀ DCꢀ couplingꢀ capacitorꢀ  
(C ,ꢀasꢀshownꢀinꢀFigureꢀ10)ꢀshouldꢀbeꢀlargerꢀthanꢀtheꢀ  
DC  
maximumꢀinputꢀvoltageꢀminusꢀtheꢀoutputꢀvoltageꢀ(nega-  
tiveꢀvoltage):  
ꢀ V ꢀ>ꢀV  
ꢀ–ꢀV  
IN(MAX) OUT  
Inverting Converter: Output Capacitor Selection  
CDC  
C ꢀhasꢀnearlyꢀaꢀrectangularꢀcurrentꢀwaveform.ꢀDuringꢀ  
Theꢀ invertingꢀ converterꢀ requiresꢀ muchꢀ smallerꢀ outputꢀ  
capacitorsthanthoseoftheboost,flybackandSEPICꢀ  
convertersforsimilaroutputripples.Thisisduetothefactꢀ  
that,ꢀinꢀtheꢀinvertingꢀconverter,ꢀtheꢀinductorꢀL2ꢀisꢀinꢀseriesꢀ  
withꢀtheꢀoutput,ꢀandꢀtheꢀrippleꢀcurrentꢀflowingꢀthroughꢀtheꢀ  
outputcapacitorsarecontinuous.Theoutputripplevoltageꢀ  
isproducedbytheripplecurrentofL2flowingthroughtheꢀ  
ESRꢀandꢀbulkꢀcapacitanceꢀofꢀtheꢀoutputꢀcapacitor:  
DC  
theꢀswitchꢀoff-time,ꢀtheꢀcurrentꢀthroughꢀC ꢀisꢀI ,ꢀwhileꢀ  
DC  
IN  
approximately–I ꢀflowsduringtheon-time.TheRMSꢀ  
O
ratingꢀofꢀtheꢀcouplingꢀcapacitorꢀisꢀdeterminedꢀbyꢀtheꢀfol-  
lowingꢀequation:  
DMAX  
1DMAX  
IRMS(CDC) >IO(MAX)  
AꢀlowꢀESRꢀandꢀESL,ꢀX5RꢀorꢀX7Rꢀceramicꢀcapacitorꢀworksꢀ  
1
VOUT(P–P) = ∆I • ESR  
+
COUT  
wellꢀforꢀC .  
DC  
L2  
8• f •C  
OUT   
3757fb  
ꢁꢄ  
LT3757  
applicaTions inForMaTion  
Board Layout  
topologiesꢀshouldꢀbeꢀkeptꢀasꢀtightꢀasꢀpossibleꢀtoꢀreduceꢀ  
inductiveꢀringing:ꢀ  
TheꢀhighꢀspeedꢀoperationꢀofꢀtheꢀLT3757ꢀdemandsꢀcarefulꢀ  
attentionꢀtoꢀboardꢀlayoutꢀandꢀcomponentꢀplacement.ꢀTheꢀ  
ExposedꢀPadꢀofꢀtheꢀpackageꢀisꢀtheꢀonlyꢀGNDꢀterminalꢀofꢀ  
theꢀIC,ꢀandꢀisꢀimportantꢀforꢀthermalꢀmanagementꢀofꢀtheꢀ  
IC.ꢀTherefore,ꢀitꢀisꢀcrucialꢀtoꢀachieveꢀaꢀgoodꢀelectricalꢀandꢀ  
thermalꢀcontactꢀbetweenꢀtheꢀExposedꢀPadꢀandꢀtheꢀgroundꢀ  
planeꢀofꢀtheꢀboard.ꢀForꢀtheꢀLT3757ꢀtoꢀdeliverꢀitsꢀfullꢀoutputꢀ  
power,ꢀitꢀisꢀimperativeꢀthatꢀaꢀgoodꢀthermalꢀpathꢀbeꢀpro-  
videdꢀtoꢀdissipateꢀtheꢀheatꢀgeneratedꢀwithinꢀtheꢀpackage.ꢀ  
Itꢀisꢀrecommendedꢀthatꢀmultipleꢀviasꢀinꢀtheꢀprintedꢀcircuitꢀ  
boardꢀbeꢀusedꢀtoꢀconductꢀheatꢀawayꢀfromꢀtheꢀICꢀandꢀintoꢀ  
aꢀcopperꢀplaneꢀwithꢀasꢀmuchꢀareaꢀasꢀpossible.  
•ꢀ Inboostꢀ configuration,ꢀ theꢀ highꢀ di/dtꢀ loopꢀ containsꢀ  
theoutputcapacitor,thesensingresistor,thepowerꢀ  
MOSFETꢀandꢀtheꢀSchottkyꢀdiode.  
•ꢀ Inflybackconfiguration,thehighdi/dtprimaryloopꢀ  
containsꢀtheꢀinputꢀcapacitor,ꢀtheꢀprimaryꢀwinding,ꢀtheꢀ  
powerꢀ MOSFETꢀ andꢀ theꢀ sensingꢀ resistor.ꢀ Theꢀ highꢀ  
di/dtꢀsecondaryꢀloopꢀcontainsꢀtheꢀoutputꢀcapacitor,ꢀtheꢀ  
secondaryꢀwindingꢀandꢀtheꢀoutputꢀdiode.  
•ꢀ InSEPICconfiguration,thehighdi/dtloopcontainsꢀ  
thepowerMOSFET,senseresistor,outputcapacitor,ꢀ  
Schottkyꢀdiodeꢀandꢀtheꢀcouplingꢀcapacitor.  
Toꢀ preventꢀ radiationꢀ andꢀ highꢀ frequencyꢀ resonanceꢀ  
problems,properlayoutofthecomponentsconnectedꢀ  
totheICisessential,especiallythepowerpathswithꢀ  
higherdi/dt.Thefollowinghighdi/dtloopsofdifferentꢀ  
•ꢀ Inꢀinvertingꢀconfiguration,ꢀtheꢀhighꢀdi/dtꢀloopꢀcontainsꢀ  
powerꢀMOSFET,ꢀsenseꢀresistor,ꢀSchottkyꢀdiodeꢀandꢀtheꢀ  
couplingꢀcapacitor.  
C
IN  
V
IN  
C
C
C1  
C2  
L1  
R3  
R
C
R1  
R2  
R
1
2
3
4
5
10  
LT3757  
9
8
7
6
C
SS  
VCC  
R
T
1
2
3
4
8
7
6
5
M1  
R
S
VIAS TO GROUND  
PLANE  
D1  
C
C
OUT1  
OUT2  
V
OUT  
3757 F10  
Figure 11. 8V to 16V Input, 24V/2A Output Boost Converter Suggested Layout  
3757fb  
ꢁꢅ  
LT3757  
applicaTions inForMaTion  
CheckꢀtheꢀstressꢀonꢀtheꢀpowerꢀMOSFETꢀbyꢀmeasuringꢀitsꢀ  
drain-to-sourcevoltagedirectlyacrossthedeviceterminalsꢀ  
(referenceꢀtheꢀgroundꢀofꢀaꢀsingleꢀscopeꢀprobeꢀdirectlyꢀtoꢀ  
thesourcepadonthePCboard).Bewareofinductiveꢀ  
ringing,ꢀwhichꢀcanꢀexceedꢀtheꢀmaximumꢀspecifiedꢀvoltageꢀ  
ratingꢀofꢀtheꢀMOSFET.ꢀIfꢀthisꢀringingꢀcannotꢀbeꢀavoided,ꢀ  
andexceedsthemaximumratingofthedevice,eitherꢀ  
chooseꢀaꢀhigherꢀvoltageꢀdeviceꢀorꢀspecifyꢀanꢀavalanche-  
ratedꢀpowerꢀMOSFET.  
Table 2. Recommended Component Manufacturers  
VENDOR  
AVX  
COMPONENTS  
WEB ADDRESS  
Capacitors  
avx.com  
BHꢀElectronics  
Inductors,ꢀ  
Transformers  
bhelectronics.com  
Coilcraft  
Inductors  
Inductors  
Diodes  
coilcraft.com  
bussmann.com  
CooperꢀBussmann  
Diodes,ꢀInc  
Fairchild  
diodes.com  
MOSFETs  
Diodes  
fairchildsemi.com  
generalsemiconductor.com  
Generalꢀ  
Semiconductor  
Thesmall-signalcomponentsshouldbeplacedawayfromꢀ  
highfrequencyswitchingnodes.Foroptimumloadregula-  
tionꢀandꢀtrueꢀremoteꢀsensing,ꢀtheꢀtopꢀofꢀtheꢀoutputꢀvoltageꢀ  
sensingꢀresistorꢀdividerꢀshouldꢀconnectꢀindependentlyꢀtoꢀ  
thetopoftheoutputcapacitor(Kelvinconnection),stayingꢀ  
awayꢀfromꢀanyꢀhighꢀdV/dtꢀtraces.ꢀPlaceꢀtheꢀdividerꢀresis-  
torsꢀnearꢀtheꢀLT3757ꢀinꢀorderꢀtoꢀkeepꢀtheꢀhighꢀimpedanceꢀ  
FBXꢀnodeꢀshort.ꢀ  
InternationalꢀRectifier MOSFETs,ꢀDiodes  
irf.com  
irctt.com  
IRC  
SenseꢀResistors  
Capacitors  
ToroidꢀCores  
Diodes  
Kemet  
kemet.com  
mag-inc.com  
microsemi.com  
murata.co.jp  
MagneticsꢀInc  
Microsemi  
Murata-Erie  
Inductors,ꢀ  
Capacitors  
Nichicon  
Capacitors  
Diodes  
nichicon.com  
onsemi.com  
Figureꢀ11ꢀshowsꢀtheꢀsuggestedꢀlayoutꢀofꢀtheꢀ8Vꢀtoꢀ16Vꢀ  
Input,ꢀ24V/2AꢀOutputꢀBoostꢀConverter.  
OnꢀSemiconductor  
Panasonic  
Sanyo  
Capacitors  
Capacitors  
Inductors  
Capacitors  
panasonic.com  
sanyo.co.jp  
Recommended Component Manufacturers  
Sumida  
sumida.com  
Someoftherecommendedꢀ componentꢀ manufacturersꢀ  
areꢀlistedꢀinꢀTableꢀ2.  
TaiyoꢀYuden  
TDK  
t-yuden.com  
Capacitors,ꢀ  
Inductors  
component.tdk.com  
Thermalloy  
Tokin  
HeatꢀSinks  
Capacitors  
Inductors  
Capacitors  
Resistors  
MOSFETs  
Capacitors  
Inductors  
aavidthermalloy.com  
nec-tokinamerica.com  
tokoam.com  
Toko  
UnitedꢀChemicon  
Vishay/Dale  
Vishay/Siliconix  
Vishay/Sprague  
WürthꢀElectronik  
Zetex  
chemi-com.com  
vishay.com  
vishay.com  
vishay.com  
we-online.com  
zetex.com  
Small-Signalꢀ  
Discretes  
3757fb  
ꢁꢆ  
LT3757  
Typical applicaTions  
3.3V Input, 5V/10A Output Boost Converter  
L1  
0.5µH  
V
IN  
3.3V  
C
IN  
22µF  
6.3V  
s2  
V
IN  
49.9k  
34k  
C
INTV  
VCC  
CC  
4.7µF  
10V  
SHDN/UVLO  
D1  
V
5V  
10A  
OUT  
X5R  
LT3757  
SYNC  
GATE  
M1  
34k  
1%  
FBX  
22Ω  
C
RT  
SS  
+
OUT1  
SENSE  
150µF  
6.3V  
VC  
GND  
s4  
41.2k  
300kHz  
0.004Ω  
1W  
C
6.8k  
22nF  
OUT2  
22µF  
15.8k  
1%  
0.1µF  
2.2nF  
6.3V  
X5R  
s4  
C
C
C
: TAIYO YUDEN JMK325BJ226MM  
D1: MBRB2515L  
L1: VISHAY SILICONIX IHLP-5050FD-01  
M1: VISHAY SILICONIX SI4448DY  
IN  
3757 TA02a  
: PANASONIC EEFUEOJ151R  
OUT1  
OUT2  
: TAIYO YUDEN JMK325BJ226MM  
Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0.001  
0.1  
1
10  
0.01  
OUTPUT CURRENT (A)  
3757 TA02b  
3757fb  
ꢁꢇ  
LT3757  
Typical applicaTions  
8V to 16V Input, 24V/2A Output Boost Converter  
V
IN  
8V TO 16V  
C
IN  
R3  
200k  
L1  
10µF  
25V  
X5R  
V
IN  
10µH  
SHDN/UVLO  
D1  
V
24V  
2A  
OUT  
R4  
43.2k  
LT3757  
SYNC  
GATE  
M1  
R2  
226k  
1%  
SENSE  
C
OUT1  
RT  
SS  
+
47µF  
35V  
s4  
FBX  
GND INTV  
CC  
VC  
R
T
R
41.2k  
300kHz  
S
C
R
C2  
C
0.01Ω  
1W  
C
10µF  
25V  
X5R  
100pF  
22k  
OUT2  
R1  
16.2k  
1%  
C
VCC  
C
4.7µF  
10V  
C
6.8nF  
SS  
0.1µF  
C1  
X5R  
C
C
, C  
OUT1  
: MURATA GRM31CR61E106KA12  
IN OUT2  
3757 TA03a  
: KEMET T495X476K035AS  
D1: ON SEMI MBRS340T3G  
L1: VISHAY SILICONIX IHLP-5050FD-01 10µH  
M1: VISHAY SILICONIX Si4840BDP  
Efficiency vs Output Current  
Load Step Response at VIN = 12V  
100  
90  
V
OUT  
V
= 8V  
500mV/DIV  
(AC)  
IN  
80  
V
= 16V  
IN  
70  
60  
50  
40  
30  
1.6A  
I
OUT  
1A/DIV  
0.4A  
3757 TA03c  
500µs/DIV  
0.001  
0.1  
1
10  
0.01  
OUTPUT CURRENT (A)  
3757 TA03b  
3757fb  
ꢁꢈ  
LT3757  
Typical applicaTions  
High Voltage Flyback Power Supply  
DANGER! HIGH VOLTAGE OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1  
1:10  
D1  
V
350V  
OUT  
V
IN  
5V TO 12V  
C
10mA  
IN  
150µF  
6.3V  
s2  
105k  
1.50M  
1%  
SHDN/UVLO  
V
IN  
22Ω  
C
47µF  
25V  
46.4k  
INTV  
CC  
VCC  
1M  
1%  
220pF  
C
68nF  
OUT  
SYNC  
V
SW  
LT3757  
X5R  
s2  
1M  
1%  
GATE  
M1  
RT  
SS  
VC  
22Ω  
SENSE  
FBX  
GND  
140k  
100kHz  
10nF  
16.2k  
1%  
6.8k  
22nF  
0.02Ω  
0.1µF  
100pF  
3757 TA04a  
C
C
: MURATA GRM32DR61C106K  
IN  
: TDK C3225X7R2J683K  
OUT  
D1: VISHAY SILICONIX GSD2004S DUAL DIODE CONNECTED IN SERIES  
M1: VISHAY SILICONIX Si7850DP  
T1: TDK DCT15EFD-U44S003  
Start-Up Waveforms  
Switching Waveforms  
V
OUT  
5V/DIV  
(AC)  
V
SW  
20V/DIV  
V
OUT  
100V/DIV  
3757 TA04b  
3757 TA04c  
2ms/DIV  
5µs/DIV  
3757fb  
ꢂ0  
LT3757  
Typical applicaTions  
5.5V to 36V Input, 12V/2A Output SEPIC Converter  
V
IN  
5.5V TO 36V  
C
IN  
C
4.7µF  
4.7µF  
50V  
s2  
DC  
105k  
I
V
L1A  
L1A  
IN  
50V, X5R, s2  
SHDN/UVLO  
D1  
V
OUT  
12V  
2A  
V
SW  
46.4k  
LT3757  
SYNC  
GATE  
M1  
L1B  
I
L1B  
105k  
1%  
SENSE  
0.008Ω  
1W  
C
47µF  
OUT1  
RT  
SS  
+
FBX  
20V  
VC  
GND INTV  
CC  
s2  
41.2k  
300kHz  
10k  
6.8nF  
C
10µF  
25V  
X5R  
OUT2  
4.7µF  
10V  
X5R  
15.8k  
1%  
0.1µF  
3757 TA05a  
C
C
C
, C : TAIYO YUDEN UMK316BJ475KL  
IN DC  
: KEMET T495X476K020AS  
OUT1  
OUT2  
: TAIYO YUDEN TMK432BJ106MM  
D1: ON SEMI MBRS360T3G  
L1A, L1B: COILTRONICS DRQ127-3R3 (*COUPLED INDUCTORS)  
M1: VISHAY SILICONIX Si7460DP  
Efficiency vs Output Current  
Load Step Waveforms  
100  
90  
V
= 8V  
IN  
V
OUT  
80  
70  
200mV/DIV  
(AC)  
V
= 16V  
IN  
60  
50  
1.6A  
I
OUT  
1A/DIV  
0.4A  
40  
3757 TA05c  
500µs/DIV  
30  
20  
0.001  
0.1  
1
10  
0.01  
OUTPUT CURRENT (A)  
3757 TA05b  
Start-Up Waveforms  
Frequency Foldback Waveforms When Output Short-Circuits  
V
= 12V  
V
= 12V  
V
IN  
IN  
OUT  
10V/DIV  
V
SW  
V
20V/DIV  
OUT  
5V/DIV  
I
+ I  
L1A L1B  
I
+ I  
5A/DIV  
L1A L1B  
5A/DIV  
3757 TA05d  
3757 TA05e  
2ms/DIV  
50µs/DIV  
3757fb  
ꢂꢀ  
LT3757  
Typical applicaTions  
5V to 12V Input, 12V/0.2A Output SEPIC Converter  
V
IN  
5V TO 12V  
C
47µF  
16V  
C
IN1  
IN2  
+
C
105k  
DC1  
V
1µF  
IN  
T1  
1,2,3,4  
4.7µF  
16V, X5R  
16V, X5R  
SHDN/UVLO  
D1  
V
OUT1  
12V  
46.4k  
LT3757  
0.4A  
1.05k  
1%  
C
M1  
C
OUT2  
SYNC  
RT  
GATE  
DC2  
4.7µF  
16V, X5R  
s3  
4.7µF  
16V  
5
SENSE  
FBX  
158Ω  
1%  
X5R  
GND  
0.02Ω  
C
OUT2  
SS  
VC  
D2  
4.7µF  
16V, X5R  
s3  
GND INTV  
CC  
6
V
–12V  
0.4A  
OUT2  
30.9k  
400kHz  
22k  
6.8nF  
3757 TA06  
C
VCC  
4.7µF  
10V  
0.1µF  
100pF  
X5R  
D1, D2: MBRS140T3  
T1: COILTRONICS VP1-0076 (*PRIMARY = 4 WINDINGS IN PARALLEL)  
M1: SILICONIX/VISHAY Si4840BDY  
Nonisolated Inverting SLIC Supply  
VP5-0155 (PRIMARY = 3 WINDINGS IN PARALLEL)  
D1  
DFLS160  
V
IN  
GND  
5V TO 16V  
C
IN  
22µF  
C2  
C3  
R2  
10µF  
50V  
X5R  
V
IN  
22µF  
25V  
X5R  
T1  
105k  
25V, X5R  
s2  
4
1,2,3  
SHDN/UVLO  
R1  
46.4k  
LT3757  
M1  
Si7850DP  
D2  
DFLS160  
SYNC  
RT  
GATE  
V
OUT1  
–24V  
SENSE  
FBX  
200mA  
C4  
C
3.3µF  
100V  
OUT  
22µF  
25V  
X5R  
5
SS  
VC  
GND INTV  
CC  
D3  
63.4k  
200kHz  
0.012Ω  
0.5W  
DFLS160  
9.1k  
10nF  
C
4.7µF  
10V, X5R  
VCC  
0.1µF  
C5  
22µF  
25V  
X5R  
100pF  
6
V
OUT1  
15.8k  
–72V  
464k  
200mA  
3757 TA07  
3757fb  
ꢂꢁ  
LT3757  
package DescripTion  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1699ꢀRevꢀB)  
0.70 p0.05  
3.55 p0.05  
2.15 p0.05 (2 SIDES)  
1.65 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50  
BSC  
2.38 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 p 0.10  
TYP  
6
10  
3.00 p0.10  
(4 SIDES)  
1.65 p 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD) DFN REV B 0309  
5
1
0.25 p 0.05  
0.50 BSC  
0.75 p0.05  
0.200 REF  
2.38 p0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3757fb  
ꢂꢂ  
LT3757  
package DescripTion  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev C)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 p 0.102  
(.081 p .004)  
1.83 p 0.102  
(.072 p .004)  
2.794 p 0.102  
(.110 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
0.29  
REF  
0.05 REF  
5.23  
(.206)  
MIN  
2.083 p 0.102 3.20 – 3.45  
(.082 p .004) (.126 – .136)  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAIL “B”  
10  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.497 p 0.076  
(.0196 p .003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0908 REV C  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3757fb  
LT3757  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
3/10  
DeletedꢀBulletꢀfromꢀFeaturesꢀandꢀLastꢀLineꢀofꢀDescription  
UpdatedꢀEntireꢀPageꢀtoꢀAddꢀH-GradeꢀandꢀMilitaryꢀGrade  
UpdatedꢀElectricalꢀCharacteristicsꢀNotesꢀandꢀTypicalꢀPerformanceꢀCharacteristicsꢀforꢀH-GradeꢀandꢀMilitaryꢀGrade  
RevisedꢀTA04aꢀandꢀReplacedꢀTA04cꢀinꢀTypicalꢀApplications  
UpdatedꢀRelatedꢀParts  
1
2
4ꢀtoꢀ6  
30  
36  
3757fb  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢀꢁ  
LT3757  
Typical applicaTion  
High Efficiency Inverting Power Supply  
Efficiency vs Output Current  
V
IN  
100  
5V TO  
15V  
C
47µF  
16V  
R2  
105k  
IN  
C
47µF  
25V, X5R  
DC  
V
IN  
90  
80  
70  
60  
50  
40  
L1  
L2  
SHDN/UVLO  
V
–5V  
3A to 5A  
X5R  
OUT  
R1  
46.4k  
V
= 5V  
IN  
LT3757  
V
= 16V  
SYNC  
GATE  
M1  
IN  
84.5k  
Si7848BDP  
SENSE  
D1  
MBRD835L  
0.006Ω  
1W  
RT  
SS  
FBX  
VC  
GND INTV  
CC  
30  
20  
10  
41.2k  
300kHz  
C
9.1k  
10nF  
VCC  
C
16k  
OUT  
4.7µF  
10V  
X5R  
100µF  
0.1µF  
6.3V, X5R  
0.001  
0.1  
1
10  
0.01  
s2  
OUTPUT CURRENT (A)  
3757 TA08b  
3757 TA08a  
L1, L2: COILTRONICS DRQ127-3R3 (*COUPLED INDUCTORS)  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT3758  
Boost,ꢀFlyback,ꢀSEPICꢀandꢀInvertingꢀController  
2.9Vꢀ≤ꢀV ꢀ≤ꢀ100V,ꢀCurrentꢀModeꢀControl,ꢀ100kHzꢀtoꢀ1MHzꢀProgrammableꢀ  
IN  
OperationꢀFrequency,ꢀ3mmꢀ×ꢀ3mmꢀ10-LeadꢀDFNꢀandꢀ10-LeadꢀMSOP-Eꢀ  
Packages  
LT3573  
IsolatedꢀFlybackꢀSwitchingꢀRegulatorꢀwithꢀ60Vꢀ  
IntegratedꢀSwitch  
3Vꢀ≤ꢀV ꢀ≤ꢀ40V,ꢀNoꢀOpto-IsolatorꢀorꢀThirdꢀWindingꢀRequired,ꢀUpꢀtoꢀ7W,ꢀꢀ  
IN  
16-LeadꢀMSOP-EꢀPackage  
LTC1871/LTC1871-1/ Boost,ꢀFlybackꢀandꢀSEPICꢀController,ꢀNoꢀR  
™,ꢀ AdjustableꢀSwitchingꢀFrequency,ꢀ2.5Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀBurstꢀMode®ꢀOperationꢀatꢀ  
SENSE  
IN  
LTC1871-7  
LowꢀQuiescentꢀCurrent  
LightꢀLoads  
LTC3872  
Boost,ꢀFlyback,ꢀSEPICꢀController  
2.75Vꢀ≤ꢀV ꢀ≤ꢀ9.8V,ꢀ23-LeadꢀThinSot™ꢀandꢀ2mmꢀ×ꢀ3mmꢀ8-LeadꢀDFNꢀ  
IN  
Packages  
LT3837  
LT3825  
IsolatedꢀNo-OptoꢀSynchronousꢀFlybackꢀController  
IsolatedꢀNo-OptoꢀSynchronousꢀFlybackꢀController  
IdealꢀforꢀV ꢀfromꢀ4.5Vꢀtoꢀ36VꢀLimitedꢀbyꢀExternalꢀComponents,ꢀUpꢀtoꢀ60W,ꢀ  
IN  
CurrentꢀModeꢀControl  
V ꢀ16Vꢀtoꢀ75VꢀLimitedꢀbyꢀExternalꢀComponents,ꢀUpꢀtoꢀ60W,ꢀCurrentꢀModeꢀ  
IN  
Control  
LTC3803/LTC3803-3/ 200kHzꢀFlybackꢀDC/DCꢀController  
LTC3803-5  
V ꢀandꢀV ꢀLimitedꢀOnlyꢀbyꢀExternalꢀComponents,ꢀ6-LeadꢀThinSotꢀPackage  
IN OUT  
LTC3805/LTC3805-5 AdjustableꢀFixedꢀ70kHzꢀtoꢀ700kHzꢀOperatingꢀ  
FrequencyꢀFlybackꢀController  
V ꢀandꢀV ꢀLimitedꢀOnlyꢀbyꢀExternalꢀComponents,ꢀ3mmꢀ×ꢀ3mmꢀ10-Leadꢀ  
IN  
OUT  
DFN,ꢀ10-LeadꢀMSOP-EꢀPackages  
3757fb  
LT 0310 REV B • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢀꢂ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2008  
(408)ꢀ432-1900ꢀ ꢀFAX:ꢀ(408)ꢀ434-0507ꢀ ꢀwww.linear.com  

相关型号:

LT3757HMSE-TRPBF

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757IDD

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757IDD-PBF

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757IDD-TRPBF

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757IMSE

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757IMSE-PBF

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757IMSE-TRPBF

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757MPMSE

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757MPMSE-PBF

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757MPMSE-TRPBF

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3757_15

Boost, Flyback, SEPIC and Inverting Controller
Linear

LT3758

High Input Voltage, Boost, Flyback, SEPIC and Inverting Controller
Linear