LT1619ES8#TR [Linear]

LT1619 - Low Voltage Current Mode PWM Controller; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LT1619ES8#TR
型号: LT1619ES8#TR
厂家: Linear    Linear
描述:

LT1619 - Low Voltage Current Mode PWM Controller; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

开关 光电二极管 控制器
文件: 总20页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1619  
Low Voltage Current Mode  
PWM Controller  
U
FEATURES  
DESCRIPTIO  
Wide VIN Range: 1.9V to 18V  
The LT®1619 is a fixed frequency PWM controller for  
implementing current mode DC/DC converters with mini-  
mum external parts. The LT1619 operates with input  
voltages ranging from 1.9V to 18V and is suitable for a  
variety of battery-powered and distributed DC/DC con-  
verters. The internal rail-to-rail N-channel MOSFET driver  
operates either from the input in the nonbootstrapped  
mode or from the output in bootstrapped operation. The  
driver is designed to drive a low side power transistor in  
boost, SEPIC, flyback and other topologies.  
300kHz Fixed Frequency Current Mode Control  
1A Rail-to-Rail N-Channel MOSFET Driver  
Low 53mV Current Limit Threshold Voltage  
Improves Efficiency  
Implements Boost, SEPIC and Flyback Converters  
Requiring Low Side Power Transistors  
Internal Current Sense Amplifier  
with Leading Edge Blanking  
Up to 500kHz External Synchronization  
Burst Mode® Operation for High Efficiency  
Converter efficiency is improved at heavy loads with a  
53mV current sense voltage and at light load with Burst  
Mode operation. The operating frequency is internally set  
at 300kHz. The oscillator can also be synchronized exter-  
nallyupto500kHz.Noloadquiescentcurrentis140µAand  
shutdown current is 15µA.  
at Light Load  
140µA Quiescent Current  
15µA Shutdown Current  
8-Lead MSOP and SO Packages  
U
APPLICATIO S  
The LT1619 is available in 8-lead MSOP and SO packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
3.3V to 5V DC/DC Converters  
Distributed Power Supplies  
Isolated Power Supplies  
U
TYPICAL APPLICATIO  
Efficiency  
V
IN  
3.3V  
95  
90  
1
2
3
4
8
7
6
5
L1  
37.4k  
S/S  
FB  
V
IN  
+
5.6µH  
C1  
0.1µF  
5A  
22µF  
12.4k  
85  
80  
75  
70  
DRV  
LT1619  
GATE  
V
OUT  
5V  
0.1µF  
2.2A  
M1  
Si9804  
D1  
V
C
+
75k  
15nF  
C
OUT  
440µF  
GND SENSE  
220pF  
R
SENSE  
0.01Ω  
1619 F01  
C1: PANASONIC EEFCDOK220R  
1
10  
100  
1000  
C
: KEMET T495X227K010AS (×2)  
OUT  
LOAD CURRENT (mA)  
D1: MBRD835L  
1619 F01a  
L1: COILCRAFT DO5022P-562  
Figure 1. High Efficiency 3.3V to 5V DC/DC Converter  
1619fa  
1
LT1619  
ABSOLUTE AXI U RATI GS  
W W  
U W  
(Note 1)  
Current Sense Voltage (SENSE) ................. 0.5V to VIN  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Junction Temperature (Note 3)............................. 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Input Voltage (VIN) ................................... 0.3V to 20V  
Gate Drive Supply Voltage (DRV) ............. 0.3V to 20V  
Shutdown/Synch Voltage (S/S) ................ 0.3V to 20V  
Feedback Voltage (FB) .............................................. VIN  
Compensation Voltage (VC) ...................................... 3V  
Gate Drive Output Current (GATE) ........................ ±1.5A  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
S/S  
FB  
1
2
3
4
8
7
6
5
V
IN  
LT1619EMS8  
LT1619ES8  
S/S  
FB  
1
2
3
4
8 V  
IN  
DRV  
7 DRV  
6 GATE  
5 SENSE  
V
C
V
C
GATE  
SENSE  
GND  
GND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
LTHC  
S8 PART MARKING  
1619  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 200°C/ W  
TJMAX = 125°C, θJA = 120°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VIN = VDRV = 2.5V, VS/S = VIN, COMP open, VSENSE = 0V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.24  
0.004  
10  
MAX  
1.26  
0.05  
25  
UNITS  
V
Reference Voltage  
Measured at the FB Pin  
1.22  
Reference Line Regulation  
FB Input Bias Current  
1.9V V 18V  
%/V  
IN  
V
= V  
REF  
nA  
FB  
–1  
Error Amplifier Transconductance  
Error Amplifier Output Source Current  
Error Amplifier Output Sink Current  
Error Amplifier Clamp Voltage  
Undervoltage Lockout Threshold  
Input Voltage Range  
80  
4
170  
8.7  
260  
14  
µΩ  
V
V
V
= 1V, V  
= 1V  
µA  
µA  
V
FB  
FB  
FB  
COMP  
= 1.5V, V  
= 1V  
= 1V  
4
8.7  
14  
COMP  
1.6  
1.65  
1.9  
220  
370  
88  
2.2  
1.85  
18  
V
V
Switching Frequency  
1.9V V 18V  
300  
360  
500  
kHz  
kHz  
%
IN  
Synchronization Frequency Range  
Maximum Duty Cycle  
92  
53  
10  
Current Limit Threshold  
40  
66  
mV  
mV  
Burst Mode Operation Current Limit  
1619fa  
2
LT1619  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VIN = VDRV = 2.5V, VS/S = VIN, COMP open, VSENSE = 0V unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 0V  
MIN  
TYP  
120  
150  
30  
MAX  
UNITS  
µA  
Current Sense Input Current  
Current Limit Delay  
V
90  
150  
SENSE  
ns  
Driver Output Rise Time  
Driver Output Fall Time  
Driver Output High Level  
C = 3300pF  
L
ns  
C = 3300pF  
L
35  
ns  
I
I
= 20mA  
= 200mA  
V
V
– 0.6  
– 1.6  
V – 0.35  
DRV  
V
V
OUT  
OUT  
DRV  
DRV  
V
– 1.2  
DRV  
Driver Output Low Level  
I
I
= 20mA  
= 200mA  
100  
200  
0.7  
mV  
V
OUT  
OUT  
0.5  
100  
100  
Shutdown Driver Output Level  
Idle Mode Driver Output Level  
S/S Pin Current  
V
V
= 0V, I  
= 20mA  
200  
200  
mV  
mV  
S/S  
S/S  
OUT  
= V , V = 1.5V, I  
= 20mA  
IN FB  
OUT  
V
V
= V  
4
–2  
µA  
µA  
S/S  
S/S  
IN  
= 0V  
Operating Supply Current  
Quiescent Supply Current  
Shutdown Supply Current  
V
V
= 1V  
9
mA  
FB  
= V , V = 1.5V  
140  
220  
19  
µA  
S/S  
IN FB  
V
V
= 0V  
15  
40  
µA  
µA  
S/S  
S/S  
= 0V, V = 18V, T = 85°C  
IN  
A
Shutdown Threshold  
Shutdown Delay  
0.45  
12  
1.2  
33  
V
17  
µs  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 3: T is calculated from the ambient temperature T , the power  
J A  
dissipation P and the thermal resistance θ of the package according to  
D
JA  
the formula:  
T = T + P • θ  
JA  
Note 2: The LT1619E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
J
A
D
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
S/S Pin Current vs Temperature  
Bandgap Voltage vs Temperature  
IS/S vs VS/S  
1.245  
1.243  
1.241  
1.239  
1.237  
5
4
5
4
V
IN  
= 2.5V  
T
= –40°C  
A
V
S/S  
= 2.5V  
T
= 25°C  
= 85°C  
A
3
3
T
A
2
2
1
1.235  
1.233  
1.231  
1.229  
1.227  
1.225  
1
0
0
–1  
–2  
–3  
V
S/S  
= 0V  
–1  
–2  
–3  
–20  
0
20 40 60  
120  
80 100  
–40  
40 60  
20  
TEMPERATURE (°C)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
–40 –20  
0
80 100 120  
TEMPERATURE (°C)  
V
S/S  
1619 G01  
1619 G02  
1619 G03  
1619fa  
3
LT1619  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Frequency Deviation from  
Nominal vs Temperature  
Shutdown Supply Current  
vs Input Voltage  
Idle Mode Supply Current  
vs Temperature  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
200  
190  
180  
170  
160  
150  
140  
V
= 2.5V  
V
= 2.5V  
IN  
IN  
NOMINAL FREQUENCY = 300kHz  
6
4
2
T
= –40°C  
A
T
= 25°C  
A
0
T
= 85°C  
A
–2  
–4  
–6  
–8  
–10  
60 80  
20 40  
TEMPERATURE (°C)  
40 20  
0
20  
40  
60  
80 100  
–40 –20  
0
100 120  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1619 G05  
1619 G06  
1619 G04  
Maximum Duty Ratio  
vs Temperature  
Deviation from Nominal  
Current Limit Threshold  
vs Temperature  
Frequency vs Input Voltage  
95  
94  
93  
92  
91  
90  
8
6
58  
57  
56  
55  
54  
53  
52  
51  
50  
V = 2.5V  
IN  
V
IN  
= 2.5V  
T
= 25°C  
A
NOMINAL FREQUENCY = 300kHZ  
4
2
0
–2  
–4  
–40 –20  
0
20  
40  
60  
80 100  
2
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
–40  
20  
0
20  
40  
60  
80 100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1619 G07  
1619 G08  
1619 G09  
SENSE Pin Input Bias Current  
vs Sense Voltage  
Burst Mode Operation Current  
Limit Threshold vs Temperature  
SENSE Pin Input Bias Current  
vs Temperature  
–115  
–117  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
14  
12  
90  
95  
V
= 0V  
T
= 25°C  
SENSE  
V
= 2.5V  
A
IN  
DUTY CYCLE = 0  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
10  
8
6
4
2
0
–40  
0
20  
40  
60  
80 100  
40  
TEMPERATURE (°C)  
80 100  
–20  
20  
30  
–40 –20  
0
20  
60  
–10  
0
10  
40  
50  
60  
TEMPERATURE (°C)  
V
(mV)  
SENSE  
1619 G11  
1619 G10  
1619 G12  
1619fa  
4
LT1619  
U
U
U
PI FU CTIO S  
S/S (Pin 1): Shutdown and Synchronization. Shutdown is  
active low with a typical threshold voltage of 0.9V. For  
normal operation, the S/S pin is tied to VIN. To externally  
synchronize the controller, drive the S/S pin with pulses.  
SENSE (Pin 5): The Input of the Current Sense Amplifier.  
TheSENSEpinisconnectedtothesourceoftheN-channel  
MOSFETandtoasenseresistortotheground. Thecurrent  
limitthresholdisinternallysetat53mV,givingamaximum  
switch current of 53mV/RSENSE  
.
FB (Pin 2): The inverting Input of the Error Amplifier.  
Connect the resistor divider tap here. Set VOUT according  
to VOUT = 1.24(1 + R1/R2). See Figure 1.  
GATE (Pin 6): The Output of the MOSFET Driver.  
DRV(Pin7):ThePull-UpSupplyoftheMOSFETDriver.Tie  
this pin to VIN (Pin 8) for nonbootstrapped operation or to  
the converter output for bootstrapped operation.  
VC (Pin 3): Compensation Pin for the Error Amplifier. VC is  
the output of the transconductance amplifier. Overall loop  
is compensated with an RC network from this pin to the  
ground.  
VIN (Pin 8): Supply or Battery Input. Must be closely  
bypassed to the ground plane.  
GND (Pin 4): Ground. Connect to local ground plane.  
W
BLOCK DIAGRA  
V
V
IN  
C
3
8
+
UVLO  
A2  
1.8V  
ERROR  
AMPLIFIER  
1.24V  
+
g
m
+
IDLE  
FB  
A1  
2
V
B
V
IN  
DRV  
7
+
C1  
S
R
GATE  
SENSE  
GND  
DRIVER  
6
5
4
Q
LOAD  
+
+
Σ
R
SENSE  
CLK  
RAMP COMP  
300kHz  
OSCILLATOR  
CURRENT  
280ns  
S/S  
SYNC  
1
SENSE  
AMP  
LEADING  
EDGE  
BLANKING  
+
+
SHUTDOWN  
DELAY  
I
REF/BIAS  
CURRENT  
LIM  
LIMIT  
1619 F02  
COMPARATOR  
Figure 2. LT1619 Block Diagram  
1619fa  
5
LT1619  
U
OPERATIO  
The LT1619 is a fixed frequency current mode switching  
regulatorPWMcontrollerthatcanbeusedinboost, SEPIC  
or flyback modes. The device operates from an input  
supply range of 1.9V to 18V, and has a separate supply pin  
(DRV)forthegatedriver.TheDRVpincanbebootstrapped  
to VOUT for additional gate enhancement in low voltage  
applications like 3.3V to 5V boost converters, or con-  
nected to the input supply for higher voltage inputs.  
discharges the output capacitor, causing the output volt-  
age to decrease. As VOUT decreases, VC increases. As VC  
increases above VB, switching action begins, delivering  
power to the output. The switch current sense threshold is  
about 10mV in this VC region. If the output load remains  
light, the output voltage will rise and VC will fall, causing  
the converter to idle again. This is known as Burst Mode  
operation. The burst frequency depends on input voltage,  
output voltage, inductance and output capacitance. Out-  
put voltage ripple during Burst Mode operation is usually  
higher than when the converter is switching continuously.  
Burst Mode operation increases light load efficiency be-  
causeitdeliversmoreenergyperclockcyclethanpossible  
with discontinuous mode operation and extremely low  
peak switch current, allowing fewer switching cycles to  
maintain a given output. IC supply current therefore be-  
comes a small fraction of the total input current.  
To best understand operation of the LT1619, please refer  
to Figure 2, the Block Diagram. The gate drive circuit turns  
on the external MOSFET at the trailing edge of oscillator  
output signal CLK. MOSFET current is sensed with an  
external resistor (RSENSE of Figure 1). A leading edge  
blanking circuit disables the current sense amplifier for  
280ns immediately following switch turn-on, preventing  
gate charging current from prematurely tripping the PWM  
comparator. A slope compensating ramp, derived from  
the oscillator, is added to the current sense output. The  
driver turns off the MOSFET when this sum exceeds the  
error amplifier output VC. The switch current is limited  
with a separate comparator. The compensating ramp is a  
progressive nonlinear function of the operating duty ratio  
whereas the current limit does not vary with the duty ratio.  
Setting Output Voltage  
The output voltage of the LT1619 is set with resistive  
divider R1 and R2 connected from the output to ground as  
detailed in Figure 3. The divider tap is tied to the device FB  
pin. Current through R2 should be significantly higher  
than the FB pin bias current of 25nA. With R2 = 10k, the  
input bias current of the error amplifier is 0.02% of the  
current in R2.  
Error amplifier output VC determines the peak switch cur-  
rent required to regulate the output voltage. VC can be  
considered a measure of output current. At heavy loads,  
VC is in its upper range. Average and peak inductor cur-  
rents are high. In this range, the inductor tends to run in  
continuous conduction mode (CCM), where current is al-  
ways flowing in the inductor. As load current decreases,  
average and peak inductor current decreases. When the  
averageinductorcurrentfallsbelow1/2ofthepeak-to-peak  
inductor current ripple, the converter enters discontinu-  
ous conduction mode (DCM), where current in the induc-  
tor reaches zero sometime during the discharge phase.  
V
O
R1  
R2  
R1  
R2  
V
= 1.24V 1 +  
LT1619  
FB  
O
(
)
V
O
– 1  
R1 = R2  
(
)
1.24  
1619 F03  
Figure 3. Feedback Resistive Divider  
Synchronization and Shutdown  
Further reduction in output current moves VC towards its  
lower operating range, decreasing inductor current. Hys-  
teretic comparator A1 determines if VC is too low for the  
LT1619 to operate efficiently. As VC falls below the trip  
voltage VB, A1’s output goes high, turning off all blocks  
except the error amplifier, A1 and A2. The LT1619 enters  
the idle state and switching stops. The device draws just  
140µA from the input in the idle state. Output load current  
The S/S pin (Pin 1) can be used to synchronize the  
oscillator to an external source. The S/S pin is tied to the  
input (VIN > 1.9V) for normal operation. The oscillator in  
the LT1619 can be externally synchronized by driving the  
S/S pin with a pulse train with an amplitude of at least 1V.  
The maximum allowable rise time is a function of the  
pulse amplitude, as shown in Table 1. Rise times equal to  
1619fa  
6
LT1619  
U
OPERATIO  
or less than the number specified in Table 1 are accept-  
able.Themaximumdutycycleisessentiallyunaffectedby  
synchronization.  
more than 33µs. This shutdown delay is reset whenever  
the S/S pin voltage rises above the shutdown threshold.  
Applying a logic low signal at the S/S pin causes the gate  
drive output to go low. Although all circuits in the LT1619  
are disabled, the pull-down circuit in the MOSFET buffer is  
still biased on. It is capable of shunting any leakage or  
transient current at the GATE pin to ground, eliminating  
the need for an external bleed resistor. The LT1619 con-  
sumes 15µA in shutdown.  
The device will go into shutdown mode if the S/S pin  
voltage stays below the shutdown threshold of 0.45V for  
Table 1. Maximum Allowable Rise Time of Synchronization  
Pulse. Rise Time Can Be Slower if Clock Amplitude is Higher  
SYNCHRONIZATION  
AMPLITUDE (V)  
MAXIMUM ALLOWABLE  
RISE TIME (ns)  
The LT1619 is guaranteed to start with a minimum VIN of  
1.85V. Comparator A2 senses the input voltage and gen-  
erates an undervoltage lockout (UVLO) signal if VIN falls  
below this minimum. While in undervoltage lockout, VC is  
pulled low and the LT1619 stops switching. The supply  
current drawn by the device falls to 140µA.  
1.2  
1.5  
2.0  
2.5  
3.0  
120  
220  
350  
470  
530  
W U U  
U
APPLICATIO S I FOR ATIO  
Inductor  
pin (DRV) for design flexibility. In a boost converter  
design, the DRV pin can be tied to the converter output if  
the minimum input voltage is insufficient to fully enhance  
thepowerMOSFET.Duringstart-up,theMOSFETisdriven  
with a gate voltage starting from VIN – VD (VD is the  
forward voltage of the rectifying diode). As the output  
voltage rises, the gate drive also increases until steady  
state is reached. If the steady-state converter output  
voltage exceeds the maximum allowable gate source  
voltage and the input voltage is sufficient to enhance the  
MOSFET, the DRV pin is tied to the input supply. For a  
SEPIC converter, the DRV pin can be tied to the input or  
diode OR’ed from the input and the output (Figure 4).  
The value of the inductor is usually selected so that the  
peak-to-peak ripple current is less than 30% of the maxi-  
mum inductor current. The inductor should be able to  
handle the maximum inductor current at full load without  
saturation. Powder iron cores are not suitable for high  
frequency switch mode power supply applications be-  
cause of their high core losses. Ferrite cores have very low  
core losses and are the material of choice for high fre-  
quency DC/DC converters.  
Power MOSFET Driver  
The LT1619 is capable of driving a low side N-channel  
power MOSFET with up to 60nC of total gate charge (Qg).  
An external driver is recommended for MOSFETs with  
greater than 80nC of total gate charge. The peak gate drive  
current varies from 0.5A with VDRV = 2.5V to 1.2A with  
VDRV = 10V. The MOSFET driver is capable of charging the  
gate of the power MOSFET to within 350mV of the upper  
gate drive supply rail (DRV). It can also pull the gate of the  
MOSFET to within 100mV of ground during turnoff. The  
uppersupplyrailofthegatedriveisbroughtoutasadevice  
V
OUT  
V
IN  
DRV  
+
LT1619  
GND  
R
S
1619 F03  
Figure 4. SEPIC Converter with Diode OR’ed Gate Drive Supply  
1619fa  
7
LT1619  
W U U  
U
APPLICATIO S I FOR ATIO  
Power MOSFET  
the output capacitor and the peak-to-peak capacitor  
current. Depending on topology, current feeding the out-  
putcapacitorcanbecontinuousordiscontinuous.Theinput  
currentcanalsobecontinuousordiscontinuousevenifthe  
inductorcurrentitselfiscontinuous.Inboosttopology,the  
inductor is in series with the input source so the input  
currentiscontinuousandtheoutputcurrentisdiscontinu-  
ous. In buck-boost or flyback converters, the inductor is  
not in series with the input source nor the output, so nei-  
ther the input current nor output current is continuous.  
MOSFET power dissipation can be separated into fre-  
quency independent and frequency dependent compo-  
nents. The RDS(ON) loss in the switch is the product of the  
mean square switch current and switch RDS(ON) and it  
does not vary with the operating frequency.  
The frequency-dependent switching losses consist of 1)  
switchtransitionlossduetofiniteriseandfalltimesofthe  
drainsourcevoltageandthedraincurrent2)gateswitch-  
ing loss, i.e., a packet of charge Qg (the total gate charge)  
which is moved from the gate drive power supply to  
ground in every switch cycle, and 3) the drain switching  
loss, charge stored on the parasitic drain capacitance,  
COSS isdumpedtogroundastheswitchisturnedon. The  
transistor loss can be expressed as:  
Whenever a terminal current is discontinuous, the capaci-  
tor at that terminal should be chosen to handle the ripple  
current. Capacitor reliability will be adversely affected if  
the ripple current exceeds the maximum allowable rat-  
ings. This maximum rating is specified as the RMS ripple  
current. Several capacitors may be mounted in parallel to  
meet the size and ripple current requirements.  
2
PLOSS = IDRMS RDS(ON) + transition loss + QgVGfS  
+ 1/2COSS DS(OFF)  
V
2fS  
Besides the ripple voltage requirements, the output ca-  
pacitor also needs to be sized for acceptable output  
voltage variation under load transients.  
where the transition loss can be estimated with:  
CRSS DS(OFF) S  
V
2f  
TransitionLoss = ID  
Current Sensing Resistor RSENSE  
IG(AVG)  
The LT1619 drives a low side N-channel MOSFET switch.  
The switch current is sensed with an external resistor  
RSENSE connected between the source of the MOSFET and  
ground. The internal blanking circuit blocks the voltage  
spike developed across RSENSE for 280ns at switch turn-  
on. The switch is turned off when the instantaneous  
voltageacrossRSENSE exceedsthecurrentlimitthreshold,  
Qg = The total gate charge  
VG = Gate drive voltage VDRV  
IG(AVG) = The average MOSFET buffer output current  
fS = Operating frequency  
CRSS = The average CGD between VDS = 0V  
and VDS = VDS(OFF)  
V
SENSE. Allowing variations in VSENSE yields:  
VSENSE(MIN)  
IL(MAX)  
At low VDS(OFF) (12V) and operating frequencies below  
500kHz,theohmiclossesoftendominate.Forhighvoltage  
converters, the transition loss and COSS charge dumping  
loss can dramatically impact the converter efficiency.  
MOSFETs with lower parasitic capacitances but higher  
RDS(ON) may actually provide better efficiency in these  
situations.  
RSENSE  
=
The current limit threshold is constant and does not vary  
with duty ratio.  
Duetolowsignallevelofthesensevoltage,lowinductance  
sense resistors are required to reduce switching noise.  
Low TC resistors maintain constant current limit over  
temperature. Dale WSL and IRC series sense resistors  
meet these criteria.  
Capacitors  
In a switch mode DC/DC converter, output ripple voltage  
is the product of the equivalent series resistance (ESR) of  
1619fa  
8
LT1619  
W U U  
APPLICATIO S I FOR ATIO  
U
Diode  
toleranceof±25%andistemperaturestable, developsan  
offsetvoltageatthesenseinput.ThevalueofROS required  
for non-Burst Mode operation can be obtained with the  
expression:  
Schottky diodes are recommended for low output voltage  
applications because of their low forward voltage. Since  
Schottky diodes have negligible stored charge, charge  
dumping loss is also reduced. The reverse breakdown  
voltage of the diode should exceed the maximum reverse  
voltage stress of the topology used. The diode should also  
be able to carry the peak diode current with acceptable  
foward voltage. For the boost converter in Figure 1, the  
peak inductor current is approximately 5A. A Motorola  
MBRD835 is used due to its low forward voltage.  
I
R
BIAS OS VSENSE(BURST)  
where  
VSENSE(BURST) = (Burst Mode operation peak switch  
current, ID(BURST)) • RSENSE  
For example, if IBIAS = 120µA and VSENSE(BURST) = 10mV:  
10mV  
120µA  
ROS  
= 83Ω  
Lowering Burst Mode Operation Current Limit  
The LT1619 automatically enters Burst Mode operation as  
VC voltage falls below VB. The corresponding switch  
currentistheBurstModeoperationswitchcurrentthresh-  
Allowing for 25% and 30% variations in IBAIS and  
VSENSE(BURST) respectively:  
old, ID(BURST)  
.
ROS = (1.25)(1.3)(83)  
The effective Burst Mode operation current threshold can  
be lowered by adding an offset to the input of the current  
sense amplifier so that the switch current appears higher  
to the PWM comparator. This has the effect of shifting the  
VC operatingrangeaboveVB. AlthoughBurstModeopera-  
tionisnotentirelydisabled, thepeakswitchcurrentbefore  
entering Burst Mode operation is greatly reduced due to  
the offset of the current sense amplifier. The peak switch  
current is also determined by the current sense amplifier  
blanking.  
Choose ROS = 137to completely disable Burst Mode  
operation. Lower values of ROS (for example, 50to  
100) can be used to lower the effective Burst Mode  
current limit.  
Thevalueofthesenseresistoristhenadjustedtocompen-  
sate for the reduced full-scale sense voltage.  
IBIAS OS  
Filtering Current Sense Signal  
n a current mode converter, the current sense circuit  
R
+ IL(MAX)RSENSE = 40mV  
To lower the Burst Mode operation current sense thresh-  
old, a resistor ROS is added between the SENSE pin and  
the sense resistor RSENSE (Figure 5). The input bias  
current IBIAS of the current sense amplifier, which has a  
I
senses the switch current and terminates the switch  
conduction. In the LT1619, the current sense amplifier  
hasafull-scaleinputvoltagerangefromthegroundtothe  
currentlimitthreshold(53mV).Duetohighspeedswitch-  
ingtransientsandparasitictraceinductances, thecurrent  
sense signal VSENSE tends to be noisy. If the VSENSE  
switching transient is excessive, the current sense ampli-  
fierwillamplifythespurioustransientinstead,resultingin  
jittery operation. In situations where the internal leading  
edge blanking is inadequate, a lowpass filter (Figure 6)  
with corner frequency about 5 times the switching  
frequency can be used to further attenuate high speed  
switchingtransients. InFigure6thelowpassfilterROS and  
CS has a corner frequency of:  
CURRENT  
I
D
SENSE  
AMPLIFIER  
+
I
= 120µA  
I
= 120µA  
BIAS  
BIAS  
5
R
OS  
SENSE  
R
SENSE  
4
1619 F05  
GND  
Figure 5. Lowering Burst Mode Operation Current Limit  
1619fa  
9
LT1619  
W U U  
U
APPLICATIO S I FOR ATIO  
V
IN  
1
V
fCORNER  
=
5fS  
Z
1
2
3
4
8
7
6
5
2πROSCS  
S/S  
FB  
V
IN  
I
I
S/S  
S/S  
R3 < SHUTDOWN THRESHOLD  
(
)
V
= 0  
S/S  
(The input impedance of the sense amplifier at the SENSE  
pin is 2500and ROS is typically less than 137.) Typical  
values for ROS and CS are 100and 1nF. The 100value  
for ROS reduces Burst Mode threshold; use 10and 10nF  
when this is not desireable.  
DRV  
LT1619  
GATE  
UVLO THRESHOLD = V + SHUTDOWN  
THRESHOLD V + V  
R3  
Z
Z
BE  
V
C
I
S/S  
–2µA  
V
= 0  
S/S  
GND SENSE  
1619 F07  
Figure 7. Implementing Undervoltage Lockout  
I
LT1619  
D
PWM  
COMPARATOR  
CURRENT  
SENSE  
AMPLIFIER  
I
R
OS  
ZENER  
DIODE  
AVALANCHE  
DIODE  
SENSE  
GND  
+
5
4
+
+
C
S
R
V
SENSE  
SENSE  
I
V
1619 F06  
V
Figure 6. Current Sense Filter for Improving Jitter Performance  
0
BV < 5V  
Figure 8. I-V Characteristics of Zener  
and Avalanche Breakdown Diodes  
Use of Shutdown Function to  
Modify Undervoltage Lockout  
V
IN  
The LT1619 is designed to operate from an input supply  
with voltage as low as 1.85V. Shutdown is activated when  
theS/Spinispulledbelow0.45V. Theshutdownthreshold  
is slightly greater than one junction diode forward voltage  
and has the temperature characteristics of a junction  
diode. The S/S pin is normally tied to the input when  
operating from a low voltage input source.  
R4  
R3  
1
2
3
4
8
7
6
5
S/S  
FB  
V
IN  
DRV  
LT1619  
GATE  
C1  
V
C
GND SENSE  
Consider the 12V to 65V isolated flyback converter (see  
Typical Applications). The converter draws 3A at low line  
while delivering 0.4A to the output. If the S/S pin is tied to  
the input, then the LT1619 will start switching as soon as  
VIN exceeds the internal UVLO threshold. With full load,  
the converter can draw much higher than the steady-state  
3A from the input source during start-up. If the input  
source is current limited, the input voltage will collapse  
and latch low.  
1619 F09  
Figure 9. Filtering Input Voltage Ripple in UVLO Circuit  
resistor R3. The voltage developed across R3 due to IS/S  
should be less than the shutdown threshold. The LT1619  
remains off until VIN exceeds the sum of VZ and the  
shutdown threshold. True zener diodes (BV < 5V) and  
higher voltage avalanche diodes have different I-V charac-  
teristics (Figure 8). They need to be biased appropriately  
(value of R3) in order to obtain correct UVLO threshold.  
The start-up problem can be prevented by adding a zener  
diode and a resistor to the S/S pin (Figure 7). This is  
equivalent to increasing undervoltage lockout voltage of  
thecontroller. BeforeVIN exceedsthezenervoltageVZ, the  
S/S pin current is shunted to the ground through the  
WhenimplementingUVLOwithconverterswithhighinput  
ripple voltages (such as flyback and forward), the circuit  
in Figure 7 is modified and shown in Figure 9.  
1619fa  
10  
LT1619  
W U U  
APPLICATIO S I FOR ATIO  
U
Here the input voltage ripple is filtered with R3, R4 and C1  
so as to prevent the input ripple from falsely tripping the  
LT1619 synchronization circuit. It is recommended that:  
The collector votage of Q2 is made about 1.4V at the VIN  
lower trip voltage. This is necessary to prevent the UVLO  
circuit from interfering with the feedback amplifier in the  
LT1619.  
1
R4 R3  
Trickle Current Start from High Voltage Supplies  
5
1
The low shutdown and idle mode quiescent supply cur-  
rents of the LT1619 can be utilized to implement trickle  
current start from high voltage input sources (such as a  
36V to 72V telecom bus). The trickle current start-up  
circuit in Figure 11 is modified from the UVLO circuit of  
Figure 10. R10 is a high value resistor that charges the  
storage capacitor C2 during start-up. Before VCC reaches  
the upper UVLO trip point, Q2 holds the S/S pin low. The  
LT1619drawsshutdownmodecurrent(15µA)fromVCC.  
Q2 collector can also be tied to the VC pin through a diode  
as in Figure 10. The LT1619 will then draw idle mode  
quiescent current (140µA) from VCC. R10 should be able  
to charge C2 while supplying current to the UVLO circuit  
and the LT1619. Maximizing R5 to R9 values reduces  
power dissipation in R10.  
and  
<< fOSC  
2π R3||R4 C1  
(
)
Implementation of Hysteretic UVLO  
with External Synchronization  
The UVLO circuit shown in Figure 10 operates down to  
0.9V supply voltage. Algebraically the UVLO trip points  
are:  
R5  
R6||R7  
VINH = VZ + VBE 1+  
and  
R5|| R7 +R9  
R5|| R7 +R9  
(
)
(
)
V
INL  
=
VZ + VBE  
R5  
R5||R6|| R7 +R9  
(
)
When VCC crosses the upper UVLO threshold, the LT1619  
starts switching and its current consumption increases.  
Before the bootstrap takes over, the LT1619 draws its  
current from C2. VCC ramps towards the lower UVLO  
threshold. Increasing the value of C2 allows more time for  
thebootstrapcircuittoestablishitselfbeforetheconverter  
enters undervoltage lockout.  
R5  
UVLOHysteresis = VINH – V  
=
VZ +  
INL  
R5 +R7 +R9  
R5|| R7 +R9  
(
)
R5  
R6||R7  
VBE  
R6  
V
IN  
HV V  
IN  
1
2
3
4
8
7
6
5
R8  
30k  
R9  
BOOTSTRAP  
WINDING  
R10  
CLK  
S/S  
FB  
V
IN  
510k  
V
CC  
+
8.2V  
R7  
51k  
DRV  
LT1619  
GATE  
D1  
BAT85  
D2  
1
8
7
6
5
C2  
R8  
R9  
R7  
S/S  
FB  
V
IN  
V
C
2
3
4
DRV  
LT1619  
GATE  
Q2  
R5  
51k  
2N2222  
T1  
GND SENSE  
Q1  
2N2222  
1619 F10  
V
R5  
R6  
C
Q2  
R6  
51k  
Q1  
V
V
UPPER TRIP POINT = 10V  
LOWER TRIP POINT = 8.4V  
GND SENSE  
IN  
IN  
1619 F11  
Figure 10. Addition of Hysteresis UVLO While Synchronizing the  
LT1619. Component Values Shown are for the Upper and the  
Lower VIN Trip Points of 10V and 8.4V. In UVLO, the Gate Drive  
is Disabled by Pulling the VC Pin Low. Disabling the Clock Shuts  
Down the LT1619. If Not Synchronized, the Collector of Q2 Can  
Be Tied to the S/S Pin and the Diode D1 Can Be Eliminated  
Figure 11. Trickle Current Start-Up with Bootstrapped VCC  
1619fa  
11  
LT1619  
W U U  
U
APPLICATIO S I FOR ATIO  
Increasing Ramp Compensation While Synchronizing  
whosepeakamplitudesaremadebetween1/4to1/3ofthe  
current limit threshold, are developed across R13. As a  
result, the effective current limit threshold is reduced by  
the sum of the compensating ramp and the offset voltage  
developed across R13 due to the SENSE pin input bias  
current (see Figure 5). Moreover, the current limit thresh-  
old becomes duty cycle dependent.  
The LT1619 is synchronized by forced discharge of the  
internal timing ramp. The timing ramp amplitude de-  
creasesasthesynchronizationfrequencyincreases.Since  
theinternalcompensationrampisderivedfromthetiming  
ramp, reduced timing ramp results in diminished com-  
pensating ramp. If the LT1619 is synchronized at frequen-  
cies 20% to 30% higher than the free-running frequency,  
external ramp compensation will be required. Figures 12  
and 13 show two such schemes.  
PC Board Layout and Other Practical Considerations  
The following is recommended for PC board layout:  
1. Trace lengths of the branches carrying switched cur-  
rent should be kept short. For example, in the boost  
converter of Figure 1, the circuit loop formed by M1,  
In both figures the compensating ramps are kept linear by  
makingR11-C1andR14-C2productssubstantiallyhigher  
than the synchronizing period. The compensation ramps,  
RSENSE, D1 and COUT carries switched current. The size  
of this loop must be minimized. RSENSE and COUT  
should be grounded to a single point on a large ground  
plane. This reduces switching noise and overall con-  
verter jitter. It is also preferable to ground the input  
capacitor C1 close to the common point between COUT  
and RSENSE although this is less important.  
1
2
3
4
8
7
6
5
MAIN POWER  
TRANSISTOR  
CLK  
S/S  
FB  
V
IN  
R11  
100k  
DRV  
LT1619  
GATE  
Q1  
D2  
1N4148  
2N2222  
V
C
R12  
2200Ω  
GND SENSE  
R13  
51Ω  
C1  
220pF  
R
2. Keep the trace between the sense resistor and the  
SENSE pin short. When sensing high switch current,  
Kelvin connection to RSENSE is necessary.  
SENSE  
1619 F12  
Figure 12. Increasing Ramp Compensation. Q1 Buffers the C1  
Ramp. D2 Discharges C1. Values Shown are for 10V Gate Drive  
and 15mV Ramp Across R13 at 90% Duty Cycle and 500kHz  
3. Bypass both the VIN and DRV pins with ceramic capaci-  
tors next to the IC and the ground plane.  
4. Keep high voltage switching nodes, such as the drain  
and gate of the MOSFET, away from the FB and VC pins.  
1
2
3
4
8
7
6
5
CLK  
S/S  
FB  
V
IN  
R14  
5. Use inductor so that its ripple current is between 1/4  
and 1/3 of its peak current. Steeper inductor current  
ramp results in sharper PWM comparator switching,  
hence less jitter.  
8200Ω  
DRV  
LT1619  
GATE  
D2  
D3  
1N4148  
1N4148  
V
C
R15  
2400Ω  
GND SENSE  
6. In most cases, filtering the current sense signal is not  
necessary for jitter-free operation.  
R13  
51Ω  
C2  
2.2nF  
R
SENSE  
1619 F13  
Figure 14 is the PC board layout for the 5V/8A and 12V/5A  
boost converters shown in Figures 15a and 16a.  
Figure 13. Externally Increasing Ramp Compensation. Similar  
to Figure 12 Except That C2 is Not Buffered with Transistor  
1619fa  
12  
LT1619  
W U U  
APPLICATIO S I FOR ATIO  
U
C
DRV  
C
IN2  
R1  
R2  
R
C
1
2
3
4
8
7
6
5
S
S
LT1619  
G
M1  
M1  
G
C
Z
C
P
D
D
R
SENSE  
C
OUT1, 2  
GND  
C
IN1  
D1  
L1  
V
OUT  
V
IN  
1619 F14  
Figure 14. Recommended Component Placement for the Boost Converters in Figures 15a and 16a  
1619fa  
13  
LT1619  
APPLICATIO S I FOR ATIO  
W U U  
U
V
IN  
3.3V  
1
2
3
4
8
7
6
5
C
L1  
S/S  
FB  
V
IN  
IN2  
1µF  
1µH  
CERAMIC  
DRV  
LT1619  
GATE  
C
+
DRV  
C
5V  
8A  
IN1  
0.1µF  
300µF  
CERAMIC  
V
C
M1  
D1  
R1  
FDS6680A  
R
C
OUT2  
C
37400Ω  
×2  
C
P
75k  
10µF  
+
GND SENSE  
C
OUT1  
220µF  
×4  
150pF  
CERAMIC  
C
15nF  
Z
R
SENSE  
R2  
12400Ω  
1619 F15a  
C
C
: SANYO POSCAP 6TPB150M ×2  
OUT1  
IN1  
: SANYO POSCAP 10TPB220M ×4  
D1: MOTOROLA MBRB1545CT  
L1: SUMIDA CEPH149-1R0  
R
: PANASONIC 0.0021W  
SENSE  
Figure 15a. 3.3V to 5V/8A Boost Converter  
89  
V
= 3.3V  
IN  
88  
87  
86  
85  
84  
83  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
1619 F15b  
Figure 15b. Efficiency of the 5V/8A Boost Converter  
1619fa  
14  
LT1619  
W U U  
APPLICATIO S I FOR ATIO  
U
V
IN  
5V  
1
2
3
4
8
7
6
5
C
L1  
S/S  
FB  
V
IN  
IN2  
1µF  
1.8µH  
CERAMIC  
DRV  
LT1619  
GATE  
C
+
DRV  
C
12V  
5A  
IN1  
0.1µF  
100µF  
CERAMIC  
V
C
M1  
D1  
R1  
FDS6690A  
R
C
OUT2  
C
107k  
×2  
C
P
68.1k  
10µF  
+
GND SENSE  
47pF  
C
CERAMIC  
OUT1  
600µF  
C
Z
R
SENSE  
R2  
2200pF  
12400Ω  
1619 F15a  
C
C
: SANYO OS-CON 10SA100M  
OUT1  
IN1  
: SANYO OS-CON 16SA150M ×4  
D1: MOTOROLA MBRB1545CT  
L1: SUMIDA CDEP149-1R8  
R
: PANASONIC 0.0021W  
SENSE  
Figure 16a. 5V to 12V/5A Boost Converter  
95  
V
= 5V  
IN  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
1619 F16b  
Figure 16b. Efficiency of the 12V/5A Boost Converter  
1619fa  
15  
LT1619  
TYPICAL APPLICATIO S  
U
V
IN  
T1  
4.75V TO  
5.25V  
–48V/0.5A  
470µF  
35V  
+
MBRS340T3  
SANYO MV-GX  
1µF  
+
1500µF  
470µF  
1N749  
4.3V  
4.7µF  
FILM  
15Ω  
6.3V  
35V  
+
SANYO MV-GX  
SANYO MV-GX  
1
8
7
6
5
S/S  
V
IN  
4.7µF  
FILM  
MBRS340T3  
1.1k  
2
FB  
DRV  
LT1619  
GATE  
1M  
12k  
10µF  
SUD45N05-20L  
50V, 0.018Ω  
43nC  
3
V
C
30Ω  
220pF  
2.2nF  
36k  
22nF  
4
2N5210  
GND SENSE  
10.5k  
1%  
0.007Ω  
2N5210  
432k  
1%  
1619 F17a  
T1: COILTRONICS CTX02-14261, EFD20-3F3, 6 WINDINGS EACH, 12µH  
Figure 17a. 5V to 48V Cuk Converter  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
V
= 5.25V  
IN  
V
= 5V  
IN  
V
= 4.75V  
IN  
10  
100  
LOAD CURRENT (mA)  
1000  
1619 F17b  
Figure 17b. Efficiency of the 5V to 48V Cuk  
1619fa  
16  
LT1619  
U
TYPICAL APPLICATIO S  
10k  
CNY17-3  
6.2V  
V
IN  
10.5V TO  
13.7V  
220pF  
330pF  
100V  
470  
T1  
2.2µF  
100Ω  
43Ω  
40V  
1/4W  
62k  
0.22µF  
50V  
1k  
W1  
W3  
8.1V  
43Ω  
470pF  
121Ω  
1W  
LT1431  
1
2
3
4
8
7
6
5
COLL  
NC  
REF  
NC  
–32.5V  
MBRS1100T3  
V+  
NC  
FGND  
SGND  
20k  
W4  
W2  
MBRS1100T3  
2.49k  
1µF  
50V  
2.2µF  
40V  
330pF  
50V  
–65V  
MBRS1100T3  
1
2
3
4
8
7
6
5
S/S  
FB  
V
IN  
0.1µF  
82k  
DRV  
T1  
PHILIPS EFD20-3F3-A100-S  
CORE SET (0.013" GAP, AI = 100nH/T  
LT1619  
10µF  
IRLR024N  
10k  
2
150µF  
20V  
55V, 0.065Ω  
V
C
GATE  
Q
= 15nC  
G
2mil  
POLYESTER  
FILM  
W4 6T TRIFILAR 28AWG  
W3 24T 28AWG  
100Ω  
1µF  
SANYO  
GND SENSE  
20SV150M  
(OS-CON)  
W2 24T 28AWG  
0.008Ω  
W1 6T TRIFILAR 28AWG  
1619 F18a  
Figure 18a. Isolated Local SLIC Power Supply (Flyback) 20W Total Output Power (65V/0.3A or 32.5V/0.6A)  
90  
85  
80  
75  
70  
65  
60  
V
V
V
= 13.7V  
= 12V  
IN  
IN  
IN  
55  
50  
= 10.5V  
10  
100  
LOAD CURRENT (mA)  
1000  
1619 F18b  
Figure 18b. Efficiency of the Isolated Local SLIC (Flyback)  
1619fa  
17  
LT1619  
U
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.206)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0802  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1619fa  
18  
LT1619  
U
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
N
7
5
8
6
N
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
4
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
3
2
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0502  
1619fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1619  
U
TYPICAL APPLICATIO  
V
IN  
T1  
4V TO 28V  
7
9
C4  
1.5µF  
100V  
R3  
5.6k  
10  
2
12  
1
5
3
4
8
6
11  
C5  
D2  
1.5µF  
MBRS340T3  
100V  
V
OUT  
Q1  
D3  
5V  
FMMT3904  
MBRS0530T1  
0.5A  
D4  
Q3  
1N4687  
4.3V  
MMFT3055VL  
8
7
6
R5  
LOW LEVEL  
R7  
30Ω  
C6  
10µF  
10V  
R6  
3.74k  
1%  
100Ω  
V
IN  
DRV GATE  
(I = 50µA)  
ZT  
5
2
SENSE  
LT1619  
FB  
C1  
0.022µF  
S/S GND  
V
C
R10  
1.24k  
1%  
1
4
3
R9  
2.2k  
C9  
R8  
0.015Ω  
C7  
220pF  
C8  
1µF  
16V  
2.2nF  
C4, C5: VITRAMON VJ1825Y155MXB (1825/X7R)  
C6: TAIYO YUDEN LMK325BJ106MN (1210/X7R)  
1619 TA01  
C8: TAIYO YUDEN EMK316BJ105ML (1206/X7R)  
T1: COILTRONICS VP1-0190 (ER11/5, 6 WINDINGS EACH 12.2µH)  
Figure 19. 2.5W, 4VIN-28VIN to 5V/0.5A Nonisolated Supply  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Boost, Buck, Flyback, Forward, Inverting; 42V Switch Voltage  
SO-8, 2.7V V 30V, 42V Switch Voltage  
LT1370  
LT1372  
LT1613  
LTC1624  
LT1680  
LT1698  
500kHz, 6A Switching Regulator  
500kHz, 1.5A Switching Regulator  
1.4MHz, SOT-23 DC/DC Converter  
Switching Regulator Controller  
Synchronous Boost Controller  
IN  
Fixed Frequency, 0.9V V 10V, 36V Switch Voltage  
IN  
SO-8, Drives N-Ch MOSFET, 3.5V V 36V  
IN  
Synchronous Operation for High Current/High Efficiency  
Isolated or Nonisolated 10W to 100W  
Power Supply Solution with Multiple Outputs  
50% Lower Cost than Quarter Brick and Half Brick Modules  
Fits the Foot Print  
LTC1871  
No R  
Boost, Flyback, SEPIC Controller  
2.5V V 36V, Current Mode Control, 50kHz to 1MHz  
SENSE  
IN  
Adjustabe Frequency, MSOP-10  
550kHz Fixed Frequency, Current Mode  
MSOP-8, 5V to 12V/400mA  
LTC1872  
LT1946  
SOT-23 Boost Controller  
1.2MHz, 65A DC/DC Converter  
LT3710/LT3781 Isolated or Nonisolated 10W to 100W  
Power Supply Solution with Multiple Outputs  
50% Lower Cost than Quarter Brick and Half Brick Modules  
Fits the Foot Print  
1619fa  
LT/TP 1002 1K REV A • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

LT1619ES8#TRPBF

LT1619 - Low Voltage Current Mode PWM Controller; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1620

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CGN

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CGN#PBF

LT1620 - Rail-to-Rail Current Sense Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1620CGN#TR

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 0.150 INCH, PLASTIC, SSOP-16, Analog IC:Other
Linear

LT1620CGN#TRPBF

LT1620 - Rail-to-Rail Current Sense Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1620CMS8

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CMS8#TR

暂无描述
Linear

LT1620CMS8#TRPBF

LT1620 - Rail-to-Rail Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1620CS8

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CS8#PBF

暂无描述
Linear

LT1620CS8#TR

暂无描述
Linear