LT1620CGN#TR [Linear]

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 0.150 INCH, PLASTIC, SSOP-16, Analog IC:Other;
LT1620CGN#TR
型号: LT1620CGN#TR
厂家: Linear    Linear
描述:

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 0.150 INCH, PLASTIC, SSOP-16, Analog IC:Other

放大器
文件: 总12页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1620/LT1621  
Rail-to-Rail Current  
Sense Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
The LT®1620 simplifies the design of high performance,  
controlled current battery charging circuits when used in  
conjunction with a current mode PWM controller IC.  
Accurate Output Current Programming  
Usable in Charging Applications Up to 32V Output  
Programmable Load Current Monitor for End-of-  
Charging-Cycle Notification (16-Pin Version)  
Dual Function IC (LT1621) Allows Convenient  
Integration of Load and Input Current Sensing  
Level-Shifted Current Sense Output for Current Mode  
PWM Controllers  
TheLT1620regulatesaverageoutputcurrentindependent  
of input and output voltage variations. Output current can  
be easily adjusted via a programming voltage applied to  
the LT1620’s PROG pin.  
Most current mode PWM controllers have limited output  
voltagerangebecauseofcommonmodelimitationsonthe  
current sense inputs. The LT1620 overcomes this restric-  
tion by providing a level-shifted current sense signal,  
allowing a 0V to 32V output voltage range.  
Can be Used for NiCd, NiMH, Lead-Acid and Lithium-  
Ion Battery Charging  
Greater than 96% Efficiency Possible in Charger  
Applications  
High Output Currents Possible: > 10A  
Easily Obtained  
The 16-pin version of the LT1620 contains a program-  
mable low charging current flag output. This output flag  
can be used to signal when a Li-Ion battery charging cycle  
is nearing completion.  
O U  
PPLICATI  
A
S
High Current Battery Chargers  
High Output Voltage DC/DC Converters  
Constant Current Sources  
The LT1621 incorporates two fully independent current  
control circuits for dual loop applications.  
Overcurrent Fault Protectors  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
(V  
+ 0.5V) TO 32V  
BATT  
V
IN  
V
IN  
+
22µF  
LTC1435  
Efficiency  
35V  
SYNCHRONOUS  
BUCK  
100  
95  
× 2  
V
= 24V  
IN  
I
TO 4A  
V
= 16V  
= 12V  
BATT  
BATT  
REGULATOR  
V
I
SW  
BATT  
TH  
0.025Ω  
1.43M  
0.1%  
27µH  
SENSE  
V
BATT  
+
INTV  
FB  
CC  
22µF  
35V  
90  
V
= 6V  
BATT  
0.1µF  
0.1µF  
110k  
0.1%  
6
3k  
1%  
85  
80  
75  
V
CC  
1
2
8
SENSE  
AVG  
7
5
I
PROG  
LT1620MS8  
OUT  
15.75k  
1%  
3
4
GND  
+
IN  
IN  
0
1
2
3
4
5
LT1620/21 • F01  
BATTERY CHARGE CURRENT (A)  
SIMPLIFIED SCHEMATIC. SEE FIGURE 2 FOR COMPLETE SCHEMATIC  
1620/21 • TA02  
Figure 1. Low Dropout, High Current Li-Ion Battery Charger  
1
LT1620/LT1621  
W W W  
U
(Referenced to Ground) (Note 1)  
ABSOLUTE AXI U RATI GS  
Sense Amplifier Input Common Mode .......0.3V to 36V  
Operating Ambient Temperature Range  
Commercial ............................................ 0°C to 70°C  
Industrial ............................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Power Supply Voltage: VCC ..........................0.3V to 7V  
Programming Voltage:  
PROG, PROG2 ............ 0.3V to VCC + 0.3V (7V Max)  
I
OUT, SENSE, AVG, AVG2,  
MODE Voltage ................ – 0.3V to VCC + 0.3V (7V Max)  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
TOP VIEW  
PROG A  
AVG A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC A  
+
SENSE  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
AVG  
SENSE  
1
2
3
4
8
7
6
5
AVG  
IN  
IN  
A
A
NC  
I
PROG  
OUT  
SENSE A  
I
PROG  
PROG2  
AVG2  
OUT  
GND  
V
CC  
I
OUT A  
GND A  
+
NC  
GND  
MODE  
NC  
IN  
IN  
GND B  
I
OUT B  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
θJA = 250°C/W (MS)  
θJA = 120°C/W (S)  
IN  
IN  
V
B
B
SENSE B  
AVG B  
V
CC  
+
NC  
+
PROG B  
CC B  
IN  
IN  
ORDER PART NUMBER  
GN PACKAGE  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
16-LEAD PLASTIC SSOP  
LT1620CS8  
LT1620IS8  
LT1620CMS8  
θJA = 149°C/W  
θJA = 149°C/W  
ORDER PART NUMBER  
ORDER PART NUMBER  
LT1620CGN  
LT1620IGN  
LT1621CGN  
LT1621IGN  
MS8 PART MARKING  
BC  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
+
VIN = 16.8V, VCC = 5V, VIOUT = 2V, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
5V Supply Voltage  
DC Active Supply Current  
LT1620GN  
DC Active Supply Current  
LT1620S8, LT1620MS8, 1/2 LT1621GN 4.5V V 5.5V, IN – IN = 100mV  
4.5  
5.0  
2.8  
5.5  
3.8  
4.0  
3.3  
3.7  
1.9  
2.1  
V
mA  
mA  
mA  
mA  
mA  
mA  
CC  
I
SENSE = AVG = PROG = PROG2 = V  
CC  
CC  
+
4.5V V 5.5V, IN – IN = 100mV  
CC  
SENSE = AVG = PROG = V  
2.3  
1.3  
CC  
+
CC  
DC Active Supply Current  
LT1620S8, LT1620MS8, 1/2 LT1621GN 4.5V V 5.5V, IN – IN = 0mV  
SENSE = AVG = PROG = V  
CC  
+
CC  
Current Sense Amplifier  
V
V
Input Common Mode Range  
0
0
32  
125  
V
mV  
CM  
ID  
Differential Input Voltage Range  
0V V 32V  
CM  
+
(IN – IN )  
V
Input Offset - Measured at ×1 Output  
SENSE  
V
CC  
V
ID  
V 32V  
–5  
–6  
5
6
mV  
mV  
OSSENSE  
CM  
= 80mV  
(V  
)
2
LT1620/LT1621  
ELECTRICAL CHARACTERISTICS  
IN+ = 16.8V, VCC = 5V, VIOUT = 2V, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
Current Sense Amplifier  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset - Measured at ×10 Output  
(V  
V
V 32V  
–3  
–4  
10  
–3  
–4  
0.1  
3
4
15  
3
4
mV  
mV  
mV  
mV  
mV  
mV  
OSAVG  
CC  
CM  
)
35mV V 125mV  
AVG  
ID  
V
V
= 0V, V = 80mV  
CM  
ID  
V
V
Input Offset - Measured at ×20 Output  
(V  
V 32V  
OSAVG2  
CC  
CM  
)
0V V 35mV  
0V V 32V, V = 0V, Referenced to V  
CC  
AVG2  
ID  
No-Load Output Offset  
–3  
SENSE  
CM  
ID  
+
I
Input Bias Current (Sink)  
V
V 32V (Note 2)  
200  
185  
270  
400  
430  
5.25  
5.50  
µA  
µA  
mA  
mA  
B(IN , IN )  
CC  
CM  
Input Bias Current (Source)  
V
CM  
= 0V (Note 2)  
4.0  
Transconductance Amplifier  
g
Amplifier Transconductance  
3000  
2200  
60  
3500  
80  
4000  
4800  
µmho  
µmho  
m
A
Amplifier Voltage Gain  
1V V  
3V  
dB  
V
IOUT  
V
I
Saturation Limit (Sink)  
I
I
I
= 50µA  
= 200µA  
= 1mA  
0.05  
0.10  
0.35  
0.15  
0.30  
0.65  
V
V
V
OLIOUT  
OUT  
IOUT  
IOUT  
IOUT  
V
PROG Input Range  
Input Bias Current  
Input Offset Voltage  
V
– 1.25  
V
CC  
V
nA  
mV  
mV  
PROG  
CC  
I
Measured at PROG Pin  
= 130µA  
20  
BPROG  
V
I
–7  
–8  
7
8
OSPROG  
IOUT  
(V  
– V  
)
AVG  
PROG  
End-of-Cycle Comparator  
V
V
PROG2 Input Range  
Input Hysteresis  
Input Bias Current  
V
– 2.5  
V – 0.15  
CC  
V
mV  
nA  
PROG2  
HYST  
CC  
Measured at AVG2 Pin  
Measured at PROG2 Pin  
15  
20  
I
BPROG2  
V
Output Logic Low Output (Sink)  
I
I
= 0.5mA  
= 10mA  
0.1  
0.5  
0.5  
1.2  
V
V
OLMODE  
MODE  
MODE  
The  
denotes specifications which apply over the full operating  
Note 1: Absolute Maximum Ratings are those values beyond which the  
life of a device may be impaired.  
temperature range.  
Note 2: Input bias currents are disabled when V is removed, even  
CC  
+
with common mode voltage present at IN , IN .  
U
U
U
PI FU CTIO S  
VCC: 5V ±10% Power Supply Input.  
ensure continuity around zero inductor current. Typical out-  
put is –3mV with differential input voltage (IN+ – IN) = 0.  
IN+: Sense Amplifier Positive Input. Typically connected  
to inductor side of current sense resistor. Common mode  
voltage range is 0V to 32V.  
IN: Sense Amplifier Negative Input. Typically connected  
to load side of current sense resistor. Common mode  
voltage range is 0V to 32V.  
AVG: Sense Amplifier AV = –10 Output and  
Transconductance Amplifier Positive Input. Used as inte-  
gration node for average current control. Integration time  
constant is calculated using 2.5ktypical output imped-  
ance.  
PROG: Transconductance Amplifier Negative Input. Pro-  
gram node for average current delivered to load during  
current mode operation. Average current delivered to load  
imposes voltage differential at current sense amplifier  
SENSE: Sense Amplifier AV = 1 Output. Used as level-  
shiftedoutputforPWMcontrollercurrentsenseinput.The  
sense output is designed to have an inherent offset to  
3
LT1620/LT1621  
U
U
U
PI FU CTIO S  
input (across external sense resistor) equal to (VCC  
equals (VCC – VPROG2)/20. Input voltage range is (VCC  
0.15V) to (VCC – 2.5V).  
V
PROG)/10. Input voltage range is VCC to (VCC – 1.25V).  
AVG2: Sense Amplifier AV = 20 Output and Comparator  
Positive Input. Used as integration node for end-of-cycle  
determination flag. Integration time constant is calculated  
using 5ktypical output impedance.  
GND: Ground Reference.  
MODE:ComparatorOpenCollectorOutput. Outputislogic  
lowwhenmagnitudeofcurrentsenseamplifierdifferential  
input voltage is less than (VCC – VPROG2)/20.  
PROG2: Comparator Negative Input. Program node for  
end-of-cycle determination typically used during voltage  
mode operation. The comparator threshold is reached  
when the current sense amplifier differential input voltage  
IOUT: Transconductance Amplifier Output. In typical appli-  
cation, IOUT sinks current from current-setting node on  
companion PWM controller IC, facilitating current mode  
loop control.  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
5V  
V
CC  
INTV  
CC  
SENSE+  
SENSE–  
500  
SENSE  
AVG  
(×1 GAIN)  
+
+
2.5k  
(×10 GAIN)  
(×20 GAIN)  
PWM  
CONTROLLER  
5k  
+
AVG2*  
IN  
+
CURRENT  
SENSE  
RESISTOR  
SENSE  
V
ID  
AMPLIFIER  
IN  
+
I
OUT  
g
I
m
TH  
PROG  
MODE*  
END-OF-CYCLE  
(ACTIVE LOW)  
+
PROG2*  
LT1620/21 • FBD  
*AVAILABLE IN THE LT1620GN ONLY  
GND  
U
(Refer to the Functional Block Diagram)  
OPERATION  
Current Sense Amplifier  
The first output (SENSE) is a unity gain, level-shifted repre-  
sentation of the input signal (IN+ – IN). In typical PWM/  
charger type applications, this output is used to drive the  
current sense amplifier of the mated PWM controller IC.  
The current sense amplifier is a multiple output voltage  
amplifier with an operational input common mode range  
from 0V to 32V. The amplifier generates scaled output  
voltages at the SENSE, AVG and AVG2 (available in  
LT1620GN) pins. These output signal voltages are refer-  
enced to the VCC supply by pulling signal current through  
internal VCC referred resistors.  
The other two outputs (AVG and AVG2) are internally  
connected to a transconductance amplifier and compara-  
tor, respectively. The AVG output yields a gain of 10, and  
the AVG2 output provides a gain of 20. These pins are  
4
LT1620/LT1621  
U
OPERATION (Refer to the Functional Block Diagram)  
used as integration nodes to facilitate averaging of the  
current sense amplifier signal. (Note: filter capacitors on  
these pins should bypass to the VCC supply.) Integration  
of these signals enables direct sensing and control of DC  
load current, eliminating the inclusion of ripple current in  
load determination.  
with VAVG = VPROG. In typical PWM/charger type applica-  
tions, the I  
current is used to servo the current control  
OUT  
loop on the mated PWM controller IC to maintain a  
programmed load current.  
Comparator  
The comparator circuit (available only in the LT1620GN)  
may be used as an end-of-cycle sensor in a Li-Ion battery  
chargingsystem.Thecomparatordetectswhenthecharg-  
ing current has fallen to a small value (typically 20% of the  
maximumchargingcurrent). Thecomparatordrivesanopen  
collector output (MODE) that pulls low when the VAVG2  
voltageis more positive thanVPROG2 (output current below  
the programmed threshold).  
Transconductance Amplifier  
The transconductance amplifier converts the difference  
between the current programming input voltage (VPROG  
and theaveragecurrentsenseoutput(VAVG)into a current  
at the amplifier output pin (IOUT). The amplifier output is  
unidirectional and only sinks current. The amplifier is  
designed to operate at a typical output current of 130µA  
)
U
W U U  
APPLICATIONS INFORMATION  
In Figure 2, an LT1620MS8 is coupled with an LTC1435  
switching regulator in a high performance lithium-ion  
battery charger application. The LTC1435 switching regu-  
lator delivers extremely low dropout as it is capable of  
approximately 99% duty cycle operation. No additional  
power supply voltage is required for the LT1620 in this  
application; it is powered directly from a 5V local supply  
generated by the LTC1435. The DC charge current control  
and high common mode current sense range of the  
LT1620 combine with the low dropout capabilities of the  
LTC1435 to make a 4-cell Li-Ion battery charger with over  
96% efficiency, and only 0.5V input-to-output drop at 3A  
charging current. Refer to the LTC1435 data sheet (available  
from the LTC factory) for additional information on IC func-  
tionality, performance and associated component selection.  
RSENSE Selection  
The LT1620 will operate throughout a current program-  
ming voltage (VPROG) range of 0V to 1.25V (relative to  
VCC), however, optimum accuracy will be obtained with a  
current setting program voltage of 0.8V, corresponding  
to 80mV differential voltage across the current sense  
amplifier inputs. Given the desired current requirement,  
selection of the load current sense resistor RSENSE is  
possible. For the desired 3.2A charge current;  
RSENSE = 80mV/3.2A or 0.025Ω  
At the programmed 3.2A charge current, the sense resis-  
tor will dissipate (0.08V)(3.20A) = 0.256W, and must be  
rated accordingly.  
Current Sense  
This LT1620/LTC1435 battery charger is designed to yield  
a 16.8V float voltage with a battery charge current of 3.2A.  
TheVIN supplycanrangefrom17.3Vto28V(limitedbythe  
switch MOSFETs). The charger provides a constant 3.2A  
charge current until the battery voltage reaches the pro-  
grammed float voltage. Once the float voltage is achieved,  
a precision voltage regulation loop takes control, allowing  
the charge current to fall as required to complete the  
battery charge cycle.  
The current sense inputs are connected on either side of  
the sense resistor with IN+ at the more positive potential,  
given average charging current flow. The sense resistor to  
IN+, INinput paths should be connected using twisted  
pair or minimum PC trace spacing for noise immunity.  
Keep lead lengths short and away from noise sources for  
best performance.  
5
LT1620/LT1621  
U
W U U  
APPLICATIONS INFORMATION  
V
IN  
17.3V TO 28V  
+
+
C1  
22µF  
35V  
C2  
22µF  
35V  
R2  
1.5M  
C4  
0.1µF  
RUN  
C11, 56pF  
C
OSC  
TG  
Si4412DY  
C5, 0.1µF  
C13  
0.033µF  
X7R  
C12, 0.1µF  
RUN/SS  
BOOST  
L1  
27µH  
R
SENSE  
D1*  
0.025Ω  
V
BATT  
16.8V  
I
SW  
TH  
R1  
1k  
C14  
1nF  
LTC1435  
+
C3  
22µF  
35V  
SFB  
V
Li-ION  
IN  
D2*  
C6  
0.1µF  
SGND  
INTV  
CC  
V
Si4412DY  
BG  
OSENSE  
C9, 100pF  
SENSE  
PGND  
C17, 0.01µF  
C7  
4.7µF  
+
EXTV  
CC  
SENSE  
+
C10  
100pF  
5
6
4
3
+
IN  
IN  
*
D1, D2: CENTRAL  
SEMICONDUCTOR CMDSH-3  
V
GND  
LT1620MS8  
CC  
C18  
0.1µF  
7
8
2
1
I
PROG  
AVG  
OUT  
SENSE  
R
P1  
3k  
C16  
0.1µF  
C15  
0.1µF  
1%  
C8, 100pF  
R
P2  
15.75k  
1%  
R
F1  
1.44M  
0.1%  
R
110k  
0.1%  
F2  
LT1620/21 • F02  
Figure 2. LT1620/LTC1435 Battery Charger  
Charge Current Programming  
Output Float Voltage  
Output current delivered during current mode operation is  
determinedthroughprogrammingthevoltageatthePROG  
pin (VPROG). As mentioned above, optimum performance  
is obtained with (VCC – VPROG) = 0.8V. The LT1620 is  
biasedwithaprecision5VsupplyproducedbytheLTC1435,  
enabling use of a simple resistor divider from VCC to  
ground for a VPROG reference. Using the desired 2.5kΩ  
Thevenin impedance at the PROG pin, values of RP1 = 3k  
and RP2 = 15.75k are readily calculated. The PROG pin  
should be decoupled to the VCC supply.  
The 3.2A charger circuit is designed for a 4-cell Li-Ion  
battery, or a battery float voltage of 16.8V. This voltage is  
programmed through a resistor divider feedback to the  
LTC1435 VOSENSE pin, referencing its 1.19V bandgap  
voltage. Resistor values are determined through the rela-  
tion: RF1 = (VBATT – 1.19)/(1.19/RF2). Setting RF2 = 110k  
yields RF1 = 1.44M.  
Other Decoupling Concerns  
The application schematic shown in Figure 2 employs  
severaladditionaldecouplingcapacitors. Duetotheinher-  
entlynoisyenvironmentcreatedinswitchingapplications,  
decoupling of sensitive nodes is prudent. As noted in the  
schematic, decoupling capacitors are included on the  
current programming pin (PROG) to the VCC rail and  
Different values of charging current can be obtained by  
changing the values of the resistors in the VPROG setting  
divider to raise or lower the value of the programming  
voltage, or by changing the sense resistor to an appropri-  
ate value as described above.  
6
LT1620/LT1621  
U
W U U  
APPLICATIONS INFORMATION  
between the IN+ and INinputs. Effective decoupling of  
supply rails is also imperative in these types of circuits, as  
large current transients are the norm. Power supply  
decoupling should be placed as close as possible to the  
ICs, and each IC should have a dedicated capacitor.  
As mentioned in the previous circuit discussion, the  
charging current level is set to correspond to a sense  
voltage of 80mV. The circuit in Figure 3 uses a resistor  
divider to create a programming voltage (VCC –VPROG2)of  
0.5V. The MODE flag will therefore trip when the charging  
current sense voltage has fallen to 0.5V/20 or 0.025V.  
Thus, the end-of-cycle flag will trip when the charging  
current has been reduced to about 30% of the maximum  
value.  
Design Equations  
Sense resistor: RSENSE = VID/IMAX  
Current limit programming voltage:  
VPROG = VCC [(10)(VID)]  
Input Current Sensing Application  
Voltage feedback resistors:  
RF1/RF2 = (VBATT(FLOAT) – 1.19)/1.19  
Monitoring the load placed on the VIN supply of a charging  
system is achieved by placing a second current sense  
resistor in front of the charger VIN input. This function is  
useful for systems that will overstress the input supply  
(wall adapter, etc.) if both battery charging and other  
system functions simultaneously require high currents.  
This allows use of input supply systems that are capable  
of driving full-load battery charging and full-load system  
requirements, but not simultaneously. If the input supply  
current exceeds a predetermined value due to a combina-  
tion of high battery charge current and external system  
demand, the input current sense function automatically  
End-of-Cycle Flag Application  
Figure 3 illustrates additional connections using the  
LT1620GN, including the end-of-cycle (EOC) flag feature.  
The EOC threshold is used to notify the user when the  
required load current has fallen to a programmed value,  
usually a given percentage of maximum load.  
Theend-of-cycleoutput(MODE)isanopen-collectorpull-  
down; the circuit in Figure 3 uses a 10k pull-up resistor on  
the MODE pin, connected to VCC.  
5V  
+
C1  
1µF  
The EOC flag threshold is determined through program-  
ming VPROG2. The magnitude of this threshold corre-  
sponds to 20 times the voltage across the sense amplifier  
inputs.  
22µF  
R
P1  
C2  
1µF  
3k  
1
2
8
7
SENSE  
AVG  
PROG  
LT1620MS8  
1%  
I
OUT  
R
12k  
1%  
P2  
6
5
3
4
V
GND  
CC  
+
IN  
IN  
R1  
0.033Ω  
CONNECTED AS IN FIGURE 2  
LT1620GN  
TO  
+
SYSTEM LOAD  
22µF  
L1B  
10µH  
SENSE  
AVG  
MBRS340  
I
OUT  
V
= 12.3V  
BATT  
7
5
V
SW  
V
IN  
V
PROG  
PROG2  
AVG2  
EE  
4.7µF  
24Ω  
L1A  
10µH  
57k  
+
LT1513  
C1, 3.3µF  
22µF  
× 2  
6
4
2
3
Li-ION  
MODE  
V
I
RUN  
S/S  
FB  
IN  
V
CC  
6.4k  
GND  
FB  
+
C2  
3.3µF  
R1  
5.5k  
GND  
TAB  
+
IN  
V
C
R3  
10k  
R
SENSE  
0.1Ω  
0.22µF  
8
1
R2  
50k  
0.1µF  
X7R  
END-OF-CYCLE  
(ACTIVE LOW)  
LT1620/21 • F03  
1620/21 • F04  
Figure 3. End-of-Cycle Flag Implementation with LT1620GN  
Figure 4. Input Current Sensing Application  
7
LT1620/LT1621  
U
W U U  
APPLICATIONS INFORMATION  
voltage VPROG. A plot of typical VPROG offset voltage vs  
IN+ – INis pictured in Figure 5b. For example, if the  
desired load current corresponds to 100mV across the  
sense resistor, the typical offset, at VPROG is 7.5mV (the  
absolute voltage at the PROG pin must be 7.5mV higher).  
This error term should be taken into consideration when  
using VID values significantly away from 80mV.  
reduces battery charging current until the external load  
subsides.  
In Figure 4 the LT1620 is coupled with an LT1513 SEPIC  
batterychargerICtocreateaninputovercurrentprotected  
charger circuit.  
The programming voltage (VCC – VPROG) is set to 1.0V  
througharesistordivider(RP1 and RP2)fromthe5Vinput  
supplytoground. Inthisconfiguration, iftheinputcurrent  
drawn by the battery charger combined with the system  
loadrequirementsexceedsacurrentlimitthresholdof3A,  
the battery charger current will be reduced by the LT1620  
such that the total input supply current is limited to 3A.  
Refer to the LT1513 data sheet for additional information.  
VCC – VPROG2 Programmed Voltage 1.6V  
(LT1620GN Only)  
The offset term described above for VPROG also affects the  
VPROG2 programming voltage proportionally (times an addi-  
tional factor of 2). However, VPROG2 voltage is typically set  
wellbelowthezerooffsetpointof1.6V,soadjustmentforthis  
term is usually required. A plot of typical VPROG2 offset  
voltage vs IN+ – INis pictured in Figure 5c. For example,  
settingtheVPROG2 voltagetocorrespondtoIN+ IN=15mV  
typically requires an additional 50mV offset (the absolute  
voltage at the PROG2 pin must be 50mV lower).  
PROGRAMMING ACCURACY CONSIDERATIONS  
PWM Controller Error Amp Maximum Source Current  
In a typical battery charger application, the LT1620 con-  
trols charge current by servoing the error amplifier output  
pin of the associated PWM controller IC. Current mode  
control is achieved when the LT1620 sinks all of the  
currentavailablefromtheerroramplifier.SincetheLT1620  
has finite transconductance, the voltage required to gen-  
erate its necessary output current translates to input  
offset error. The LT1620 is designed for a typical IOUT sink  
current of 130µA to help reduce this term. Knowing the  
current source capability of the associated PWM control-  
ler in a given application will enable adjustment of the  
required programming voltage to accommodate the de-  
sired charge current. A plot of typical VPROG voltage offset  
vs PWM source capability is shown in Figure 5a. For  
example, the LTC1435 has a current source capability of  
about 75µA. This translates to about –15mV of induced  
programming offset at VPROG (the absolute voltage at the  
PROG pin must be 15mV lower).  
Sense Amplifier Input Common Mode < (VCC – 0.5V)  
The LT1620 sense amplifier has additional input offset  
tolerance when the inputs are pulled significantly below  
the VCC supply. The amplifier can induce additional input  
referred offset of up to 11mV when the inputs are at 0V  
common-mode.Thisadditionaloffsettermreducesroughly  
linearly to zero when VCM is about VCC – 0.5V. In typical  
applications, this offset increases the charge current tol-  
erance for “cold start” conditions until VBAT moves away  
from ground. The resulting output current shift is generally  
negative; however, this offset is not precisely controlled.  
Precision operation should not be attempted with sense  
amplifier common mode inputs below VCC – 0.5V. Input  
referred offset tolerance vs VCM is shown in Figure 5d.  
VCC 5V  
The LT1620 sense amplifier induces a small additional  
offset when VCC moves away from 5V. This offset follows  
a linear characteristic and amounts to about ±0.33mV  
(input-referred) over the recommended operating range  
of VCC, centered at 5V. This offset is translated to the AVG  
and AVG2 outputs (times factors of 10 and 20), and thus  
to the programming voltages. A plot of programming  
offsets vs VCC is shown in Figure 5e.  
VCC – VPROG Programmed Voltage 0.8V  
The LT1620 sense amplifier circuit has an inherent input  
referred 3mV offset when IN+ – IN= 0V to insure closed-  
loop operation during light load conditions. This offset vs  
input voltage has a linear characteristic, crossing 0V as  
IN+ – IN= 80mV. The offset is translated to the AVG  
output(timesafactorof10),andthustotheprogramming  
8
LT1620/LT1621  
U
W U U  
APPLICATIONS INFORMATION  
40  
20  
10  
V
V
V
= 5V  
= 80mV  
= 16.8V  
V
V
I
= 5V  
CC  
ID  
CM  
CC  
CM  
30  
20  
= 16.8V  
= 130µA  
OUT  
0
10  
0
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
50  
100  
200  
0
250  
150  
80  
120 140  
0
20  
40  
+
60  
100  
I
SINK CURRENT (µA)  
IN – IN (V ) INPUT (mV)  
OUT  
ID  
LT1620/21 • F05a  
LT1620/21 • F05b  
Figure 5a. Typical Setpoint Voltage (VPROG) Changes Slightly  
Depending Upon the Amount of Current Sinked by the IOUT Pin  
Figure 5b. Typical Setpoint Voltage (VPROG) Changes Slightly  
Depending Upon the Programmed Differential Input Voltage (VID)  
40  
±14  
V
V
I
= 5V  
V
V
I
= 5V  
CC  
ID  
CC  
CM  
= 80mV  
= 130µA  
= 16.8V  
= 130µA  
±12  
±10  
±8  
±6  
±4  
±2  
0
20  
0
OUT  
OUT  
–20  
–40  
–60  
–80  
4
36  
80  
120 140  
0
1
2
3
5
0
20  
40  
+
60  
100  
+
IN , IN COMMON MODE VOLTAGE (V ) (V)  
CM  
IN – IN (V ) INPUT (mV)  
ID  
LT1620/21 • F05d  
LT1620/21 • F05c  
Figure 5c. Typical Comparator Threshold Voltage (VPROG2  
)
Figure 5d. Sense Amplifier Input Offset Tolerence Degrades for  
Input Common Mode Voltage (VCM) Below (VCC – 0.5V). This  
Affects the SENSE, AVG and AVG2 Amplifier Outputs  
Changes Slightly Depending Upon the Programmed Differential  
Input Voltage (VID)  
10  
V
V
= 80mV  
ID  
= 16.8mV  
CM  
OUT  
I
= 130µA  
5
V
PROG2  
V
PROG  
0
–5  
–10  
5.00  
(V)  
5.25  
4.50  
5.50  
4.75  
V
CC  
LT1620/21 • F05e  
Figure 5e. Typical Setpoint Voltages for VPROG and VPROG2  
Change Slightly Depending Upon the Supply Voltage (VCC  
)
9
LT1620/LT1621  
U
TYPICAL APPLICATIONS  
Programmable Constant Current Source  
D45VH10  
0.1  
6V  
TO 28V  
I
OUT  
0A TO 1A  
0.1µF  
470Ω  
LT1121CS8-5  
8
1
IN  
OUT  
+
0.1µF  
SHDN GND  
1µF  
10k  
1%  
0.1µF  
5
3
18k  
0.1µF  
1
2
8
7
SENSE  
AVG  
SHUTDOWN  
I
PROG  
VN2222LM  
OUT  
LT1620MS8  
3
4
6
5
V
2N3904  
GND  
CC  
I
PROG  
R
PROG  
22Ω  
+IN  
–IN  
I
= (I  
PROG  
)(10,000)  
OUT  
PROG  
R
= 40k FOR 1A OUTPUT  
LT1620/21 • TA01  
High Efficiency Buck Constant Current Source  
50µH  
CTX50-4  
Si9405  
0.05Ω  
I
6V TO  
15V  
OUT  
0A TO 1A  
22µF  
25V  
TPS  
+
25V  
TPS  
+
4.7k  
10k  
22µF  
MBRS130T3  
2N4401  
2N4403  
5V  
0.04µ7F  
10k  
1%  
0.1µF  
820Ω  
20k  
0.1µF  
10k  
1
3
16  
14  
SENSE  
AVG  
2N7002  
I
PROG  
OUT  
LT1620GN  
1µF  
13  
PROG2  
4.7k  
5
GND  
12  
11  
9
AVG2  
6
8
I
R
PROG  
PROG  
MODE  
–IN  
V
CC  
47k  
+IN  
2N7002  
I
= (I  
PROG  
)(20,000)  
OUT  
PROG  
33k  
R
= 90k FOR 1A OUTPUT  
LT1620/21 • TA04  
10  
LT1620/LT1621  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
16 15 14 13 12 11 10  
9
0.229 – 0.244  
(5.817 – 6.198)  
0.015 ± 0.004  
(0.38 ± 0.10)  
0.150 – 0.157**  
(3.810 – 3.988)  
× 45° 0.053 – 0.069  
0.004 – 0.009  
(0.102 – 0.249)  
(1.351 – 1.748)  
0.0075 – 0.0098  
(0.191 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.025  
(0.635)  
BSC  
1
2
3
4
5
6
7
8
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
GN16 (SSOP) 0895  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
MS8 Package  
8-Lead MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.10)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.006 ± 0.004  
(0.15 ± 0.10)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.10)  
0.192 ± 0.004  
(4.88 ± 0.10)  
SEATING  
PLANE  
0.021 ± 0.004  
(0.53 ± 0.01)  
0.012  
(0.30)  
0.025  
(0.65)  
TYP  
1
2
3
4
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
MSOP08 0596  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.228 – 0.244  
(5.791 – 6.197)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
1
3
4
2
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT1620/LT1621  
TYPICAL APPLICATION  
U
Electronic Circuit Breaker  
Si9434DY  
0.033Ω  
5V AT 1A  
PROTECTED  
5V  
0.1µF  
1k  
FAULT  
C
DELAY  
100Ω  
1N4148  
1
2
8
7
33k  
SENSE  
AVG  
100k  
I
PROG  
2N3904  
OUT  
LT1620MS8  
4.7k  
3
4
6
5
33k  
V
GND  
CC  
+IN  
–IN  
2N3904  
TYPICAL DC TRIP AT 1.6A  
3A FAULT TRIPS  
LT1620/21 • TA03  
IN 2ms WITH C  
= 1.0µF  
DELAY  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
®
LTC 1435  
High Efficiency Low Noise Synchronous Step-Down  
Switching Regulator  
16-Pin Narrow SO and SSOP, V 36V, Programmable  
Constant Frequency  
IN  
LTC1436/LTC1436-PPL/ High Efficiency Low Noise Synchronous Step-Down  
Full-Featured Single Controller, V 36V, Programmable  
Constant Frequency  
IN  
LTC1437  
Switching Regulator Controllers  
LTC1438/LTC1439  
Dual High Efficiency Low Noise Synchronous Step-Down Full-Featured Dual Controllers, V 36V, Programmable  
IN  
Switching Regulators  
Constant Frequency  
LT1510  
LT1511  
1.5A Constant-Current/Constant-Voltage Battery Charger Step-Down Charger for Li-Ion, NiCd and NiMH  
3.0A Constant-Current/Constant-Voltage Battery Charger Step-Down Charger that Allows Charging During Computer  
with Input Current Limiting  
Operation and Prevents Wall-Adapter Overload  
LT1512  
SEPIC Constant-Current/Constant-Voltage Battery Charger Step-Up/Step-Down Charger for up to 1A Charging Current  
SEPIC Constant-Current/Constant-Voltage Battery Charger Step-Up/Step-Down Charger for up to 2A Charging Current  
LT1513  
LTC1538-AUX  
Dual High Efficiency Low Noise Synchronous Step-Down 5V Standby in Shutdown, V 36V, Programmable  
IN  
Switching Regulator  
Constant Frequency  
LTC1539  
Dual High Efficiency Low Noise Synchronous Step-Down 5V Standby in Shutdown, V 36V, Programmable  
IN  
Switching Regulator  
Constant Frequency  
16201f LT/GP 0197 7K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1996  
12 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

LT1620CGN#TRPBF

LT1620 - Rail-to-Rail Current Sense Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1620CMS8

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CMS8#TR

暂无描述
Linear

LT1620CMS8#TRPBF

LT1620 - Rail-to-Rail Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1620CS8

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CS8#PBF

暂无描述
Linear

LT1620CS8#TR

暂无描述
Linear

LT1620CS8#TRPBF

LT1620 - Rail-to-Rail Current Sense Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1620IGN

Rail-to-Rail Current Sense Amplifier
Linear

LT1620IGN#PBF

暂无描述
Linear

LT1620IS8

Rail-to-Rail Current Sense Amplifier
Linear

LT1620IS8#TR

IC SPECIALTY ANALOG CIRCUIT, PDSO8, 0.150 INCH, PLASTIC, SO-8, Analog IC:Other
Linear