LT1618EMS#TRPBF [Linear]

LT1618 - Constant-Current/Constant-Voltage 1.4MHz Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C;
LT1618EMS#TRPBF
型号: LT1618EMS#TRPBF
厂家: Linear    Linear
描述:

LT1618 - Constant-Current/Constant-Voltage 1.4MHz Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1618  
Constant-Current/  
Constant-Voltage 1.4MHz  
Step-Up DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
Accurate Input/Output Current Control: ±5% Over  
The LT®1618 step-up DC/DC converter combines a tradi-  
tionalvoltagefeedbackloopandauniquecurrentfeedback  
loop to operate as a constant-current, constant-voltage  
source. Thisfixedfrequency, currentmodeswitcheroper-  
ates from a wide input voltage range of 1.6V to 18V, and  
thehighswitchingfrequencyof1.4MHzpermitstheuseof  
tiny, low profile inductors and capacitors. The current  
sensevoltageissetat50mVandcanbeadjustedusingthe  
Temperature  
Accurate Output Voltage Control: ±1%  
Wide VIN Range: 1.6V to 18V  
1.4MHz Switching Frequency  
High Output Voltage: Up to 35V  
Low VCESAT Switch: 200mV at 1A  
Available in (3mm × 3mm × 0.8mm) 10-Pin DFN and  
IADJ pin.  
10-Pin MSOP PaUckages  
Available in the 10-Pin (3mm × 3mm) Exposed Pad DFN  
and 10-pin MSOP packages, the LT1618 provides a com-  
plete solution for constant-current applications.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
LED Backlight Drivers  
USB Powered Boost/SEPIC Converters  
Input Current Limited Boost/SEPIC Converters  
Battery Chargers  
U
TYPICAL APPLICATIO  
USB to 12V Boost Converter  
(with Selectable 100mA/500mA Input Current Limit)  
L1  
10µH  
D1  
0.1  
Efficiency Curve  
V
IN  
5V  
V
OUT  
12V  
90  
85  
80  
75  
70  
65  
60  
2
7
ISN  
ISP  
SW  
C1  
4.7µF  
R1  
3
909k  
LT1618  
1
8
9
C2  
4.7µF  
V
FB  
IN  
3.3V  
ON  
R2  
107k  
SHDN  
OFF  
0V  
I
V
GND  
5
ADJ  
C
20k  
4
10  
2k  
10nF  
3.3V  
500mA  
100mA  
0V  
13k  
100 160  
120 140  
0
80  
20 40 60  
LOAD CURRENT (mA)  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK316BJ475  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-100  
1618 TA01a  
1618 TA01b  
sn1618 1618fas  
1
LT1618  
W W  
U W  
ABSOLUTE AXI U RATI GS (Note 1)  
VIN, SHDN Voltage ................................................... 18V  
SW Voltage .............................................................. 36V  
ISP, ISN Voltage ...................................................... 36V  
Junction Temperature........................................... 125°C  
Operating Temperature Range (Note 2) .. – 40°C to 85°C  
Storage Temperature Range  
MSOP ............................................... 65°C to 150°C  
DFN ................................................. 65°C to 125°C  
Lead Temperature (Soldering, 10 sec) (MSOP) .... 300°C  
I
ADJ Voltage ............................................................... 6V  
FB Voltage .............................................................. 1.5V  
VC Voltage .............................................................. 1.5V  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
FB  
ISN  
ISP  
1
2
3
4
5
10  
9
V
C
FB  
ISN  
ISP  
ADJ  
GND  
1
2
3
4
5
10  
9
V
C
SHDN  
SHDN  
LT1618EDD  
LT1618EMS  
11  
8
V
IN  
8
V
SW  
NC  
IN  
I
7
SW  
SW  
I
7
6
ADJ  
GND  
6
DD PART  
MARKING  
MS PART  
MARKING  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 160°C/W  
TJMAX = 125°C, θJA = 43°C/W, θJC = 3°C/W  
LAFQ  
LTNH  
EXPOSED PAD (PIN 11) IS GND AND  
MUST BE SOLDERED TO PCB  
Consult LTC marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.6V, VSHDN = 1.6V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage  
1.6  
18  
V
Quiescent Current  
V
SHDN  
V
SHDN  
= 1.6V, Not Switching  
= 0V  
1.8  
0.1  
2.7  
1
mA  
µA  
Reference Voltage  
Measured at FB Pin  
1.250  
1.243  
1.263  
1.263  
1.276  
1.283  
V
V
Reference Voltage Line Regulation  
FB Pin Bias Current  
1.6V < V < 18V  
0.01  
±2  
0.03  
%/V  
nA  
IN  
V
FB  
= 1.263V, V = 1.8V  
±12  
IN  
Error Amplifier Voltage Gain  
180  
160  
15  
V/V  
µmho  
µA  
Error Amplifier Transconductance  
Error Amplifier Sink Current  
I = ± 5µA  
C
V
FB  
V
FB  
V
FB  
V
ISP  
= 1.35V, V = 1V  
C
Error Amplifier Source Current  
Current Sense Voltage (ISP, ISN)  
ISP, ISN Pin Bias Currents (Note 3)  
(ISP, ISN) Common Mode Minimum Voltage  
Switching Frequency  
= 1.10V, V = 1V  
30  
µA  
C
= 0V, V  
= 0V  
47.5  
1.25  
50  
52.5  
80  
mV  
µA  
IADJ  
= 1.85V, V = 1.80V, V  
= 0V  
IADJ  
50  
ISN  
1.8  
1.6  
V
V
FB  
V
FB  
= 1V  
= 0V  
1.4  
550  
MHz  
kHz  
Maximum Switch Duty Cycle  
Switch Current Limit  
88  
92  
%
A
(Note 4)  
1.5  
2.1  
2.8  
sn1618 1618fas  
2
LT1618  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.6V, VSHDN = 1.6V, unless otherwise noted.  
PARAMETER  
Switch V  
CONDITIONS  
= 1A (Note 4)  
MIN  
TYP  
200  
0.01  
5
MAX  
260  
5
UNITS  
mV  
µA  
I
CESAT  
SW  
Switch Leakage Current  
Switch Off, V = 5V  
SW  
SHDN Pin Current  
V
= 1.6V  
20  
µA  
SHDN  
Shutdown Threshold (SHDN Pin)  
Start-Up Threshold (SHDN Pin)  
0.3  
V
1
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
temperature range are assured by design, characterization, and correlation  
with statistical process controls.  
Note 2: The LT1618 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
Note 3: Bias currents flow into the ISP and ISN pins.  
Note 4: Switch current limit and switch V  
for the DD package is  
CESAT  
guaranteed by design and/or correlation to static test.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Saturation Voltage  
(VCE, SAT  
)
FB Pin Voltage and Bias Current  
Switch Current Limit  
1.270  
1.265  
1.260  
1.255  
1.250  
4
500  
400  
300  
200  
100  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
2
T = 125°C  
VOLTAGE  
CURRENT  
J
T = 25°C  
J
0
T = –50°C  
–2  
J
–4  
50 25  
25  
50  
75  
125  
0
100  
50 25  
25  
50  
75  
125  
1.0  
1.5  
0
100  
0
0.5  
2.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCH CURRENT (A)  
1618 G02  
1618 G03  
1618 G01  
Current Sense Voltage  
(IADJ Pin = 0V)  
Current Sense Voltage  
(VISP, ISN  
Quiescent Current  
)
2.5  
2.0  
1.5  
1.0  
0.5  
0
52  
51  
50  
49  
48  
60  
50  
40  
30  
20  
10  
0
V
= 18V  
IN  
V
= 1.6V  
IN  
50 25  
25  
50  
75  
125  
0
100  
50 25  
25  
50  
75  
125  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
PIN VOLTAGE (V)  
0
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
I
ADJ  
1618 G06  
1618 G04  
1618 G05  
sn1618 1618fas  
3
LT1618  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switching Frequency  
Frequency Foldback  
SHDN Pin Current  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T = 25°C  
J
T = 50°C  
J
V
= 18V  
IN  
T = 25°C  
J
V
= 1.6V  
IN  
T = 125°C  
J
0
50 25  
25  
50  
75  
125  
0.4  
0.6  
0.8  
1.2  
0
100  
0
0.2  
1.0  
5
15  
0
10  
20  
TEMPERATURE (°C)  
FEEDBACK PIN VOLTAGE (V)  
SHUTDOWN PIN VOLTAGE (V)  
1618 G07  
1618 G08  
1618 G09  
U
U
U
PIN FUNCTIONS (MS/DD)  
FB (Pin 1/Pin 1): Feedback Pin. Set the output voltage by  
selecting values for R1 and R2 (see Figure 1):  
SW (NA/Pin 6): Switch Pin for DD Package. Connect this  
pin to Pin 7.  
SW (Pin 7/Pin 7): Switch Pin. This is the collector of the  
internal NPN power switch. Minimize the metal trace area  
connected to this pin to minimize EMI.  
VOUT  
R1= R2  
– 1  
1.263V  
VIN (Pin 8/Pin 8): Input Supply Pin. Bypass this pin with  
a capacitor to ground as close to the device as possible.  
ISN (Pin 2/Pin 2): Current Sense (–) Pin. The inverting  
input to the current sense amplifier.  
SHDN (Pin 9/Pin 9): Shutdown Pin. Tie this pin higher  
than 1V to turn on the LT1618; tie below 0.3V to turn it off.  
ISP (Pin3/Pin3):CurrentSense(+)Pin. Thenoninverting  
input to the current sense amplifier.  
VC (Pin 10/Pin 10): Compensation Pin for Error Amplifier.  
ConnectaseriesRCfromthispintoground.Typicalvalues  
are 2kand 10nF.  
IADJ (Pin 4/Pin 4): Current Sense Adjust Pin. A DC voltage  
applied to this pin will reduce the current sense voltage. If  
this adjustment is not needed, tie this pin to ground.  
Exposed Pad (NA/Pin 11): The Exposed Pad on the DD  
package is GND and must be soldered to the PCB GND for  
optimum thermal performance.  
GND(Pin5/Pin5):GroundPin. Tiethispindirectlytolocal  
ground plane.  
NC (Pin 6/NA): No Connection for MS Package.  
sn1618 1618fas  
4
LT1618  
W
BLOCK DIAGRA  
D1  
R
L1  
SENSE  
V
V
OUT  
IN  
C1  
C2  
SHDN  
V
SW  
IN  
9
7
8
Q1  
DRIVER  
ISP  
ISN  
+
+
3
2
4
A1  
×25  
0.02  
×5  
I
ADJ  
+
1.4MHz  
OSCILLATOR  
Σ
+
S
R
+
Q
R1  
R2  
A3  
+
FB  
1
A2  
1.263V  
5
10  
V
GND  
C
R
C
C
C
Figure 1. LT1618 Block Diagram  
U
OPERATIO  
The LT1618 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
Block Diagram in Figure 1. At the start of each oscillator  
cycle, the SR latch is set, turning on power switch Q1. The  
signal at the noninverting input of PWM comparator A3 is  
a scaled-down version of the switch current (summed  
together with a portion of the oscillator ramp). When this  
signal reaches the level set by the output of error amplifier  
A2, comparatorA3resetsthelatchandturnsoffthepower  
switch. In this manner, A2 sets the correct peak current  
leveltokeeptheoutputinregulation.Iftheerroramplifier’s  
output increases, more current is delivered to the output;  
if it decreases, less current is delivered. A2 has two  
inverting inputs, one from the voltage feedback loop, and  
one from the current feedback loop. Whichever inverting  
input is higher takes precedence, forcing the converter  
into either a constant-current or a constant-voltage mode.  
The LT1618 is designed to transition cleanly between the  
twomodesofoperation.CurrentsenseamplifierA1senses  
the voltage between the ISP and ISN pins and provides a  
25× level-shifted version to error amplifier A2. When the  
voltage between ISP and ISN reaches 50mV, the output of  
A1provides1.263VtooneofthenoninvertinginputsofA2  
and the converter is in constant-current mode. If the  
current sense voltage exceeds 50mV, the output of A1 will  
increase causing the output of A2 to decrease, thus  
reducing the amount of current delivered to the output. In  
this manner the current sense voltage is regulated to  
50mV. Similarly, if the FB pin increases above 1.263V, the  
output of A2 will decrease to reduce the peak current level  
and regulate the output (constant-voltage mode).  
sn1618 1618fas  
5
LT1618  
U
W U U  
APPLICATIONS INFORMATION  
the same footprint device. Always use a capacitor with a  
sufficient voltage rating.  
Inductor Selection  
SeveralinductorsthatworkwellwiththeLT1618arelisted  
in Table 1, although there are many other manufacturers  
and devices that can be used. Consult each manufacturer  
for more detailed information and for their entire selection  
of related parts. Many different sizes and shapes are  
available. Ferrite core inductors should be used to obtain  
the best efficiency, as core losses at 1.4MHz are much  
lower for ferrite cores than for the cheaper powdered-iron  
ones. Choose an inductor that can handle the necessary  
peak current without saturating, and ensure that the  
inductor has a low DCR (copper-wire resistance) to mini-  
mize I2R power losses. A 4.7µH or 10µH inductor will be  
a good choice for many LT1618 designs.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the VIN pin of the LT1618. A 1µF to 4.7µF input  
capacitorissufficientformostapplications.Table2shows  
a list of several ceramic capacitor manufacturers. Consult  
the manufacturers for detailed information on their entire  
selection of ceramic parts.  
Table 2. Recommended Ceramic Capacitor Manufacturers  
VENDOR  
Taiyo Yuden  
Murata  
PHONE  
URL  
(408) 573-4150  
(814) 237-1431  
(408) 986-0424  
www.t-yuden.com  
www.murata.com  
www.kemet.com  
Kemet  
Table 1. Recommended Inductors  
L
(µH)  
MAX  
(m)  
HEIGHT  
(mm)  
Diode Selection  
PART  
VENDOR  
CDRH5D18-4R1  
CDRH5D18-100  
CR43-2R2  
CR43-4R7  
CR43-100  
4.1  
10  
2.2  
4.7  
10  
57  
124  
71  
109  
182  
100  
2.0  
2.0  
3.5  
3.5  
3.5  
4.8  
Sumida  
(847) 956-0666  
www.sumida.com  
Schottky diodes, with their low forward voltage drop and  
fast switching speed, are the ideal choice for LT1618  
applications. Table 3 shows several Schottky diodes that  
work well with the LT1618. Many different manufacturers  
make equivalent parts, but make sure that the component  
chosen has a sufficient current rating and a voltage rating  
greater than the output voltage. The diode conducts cur-  
rent only when the power switch is turned off (typically  
less than half the time), so a 0.5A or 1A diode will be  
sufficient for most designs. The companies below also  
offer Schottky diodes with higher voltage and current  
ratings.  
CR54-100  
10  
LQH3C1R0M24  
LQH3C2R2M24  
LQH3C4R7M24  
1.0  
2.2  
4.7  
78  
126  
260  
2.0  
2.0  
2.0  
Murata  
(814) 237-1431  
www.murata.com  
Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are an excellent choice.  
They have an extremely low ESR and are available in very  
small packages. X5R and X7R dielectrics are preferred, as  
these materials retain their capacitance over wider voltage  
and temperature ranges than other dielectrics. A 4.7µF to  
10µF output capacitor is sufficient for high output current  
designs. Converters with lower output currents may need  
only a 1µF or 2.2µF output capacitor. Solid tantalum or  
OSCON capacitors can be used, but they will occupy more  
board area than a ceramic and will have a higher ESR for  
Table 3. Recommended Schottky Diodes  
1A PART  
0.5A PART  
VENDOR  
PHONE/URL  
UPS120  
UPS130  
UPS140  
Microsemi  
(510) 353-0822  
www.microsemi.com  
MBRM120 MBR0520  
MBRM130 MBR0530  
MBRM140 MBR0540  
ON Semiconductor (800) 282-9855  
www.onsemi.com  
B120  
B130  
B140  
B0520  
B0530  
B0540  
Diodes, Inc  
(805) 446-4800  
www.diodes.com  
sn1618 1618fas  
6
LT1618  
U
W U U  
APPLICATIONS INFORMATION  
Setting Output Voltage  
the output of the error amplifier (the VC pin) will be pulled  
down and the LT1618 will stop switching.  
To set the output voltage, select the values of R1 and R2  
(see Figure 1) according to the following equation.  
A pulse width modulated (PWM) signal can also be used  
to adjust the current sense voltage; simply add an RC  
filterto convert the PWM signal into a DC voltage for the  
IADJ pin. If the IADJ pin is not used, it should be tied to  
ground. Do not leave the pin floating.  
VOUT  
1.263  
R1= R2  
– 1  
For current source applications, use the FB pin for over-  
voltage protection. Pick R1 and R2 so that the output  
voltage will not go too high if the load is disconnected or  
if the load current drops below the preset value. Typically  
choose R1 and R2 so that the overvoltage value will be  
about 20% to 30% higher than the normal output voltage  
(when in constant-current mode). This prevents the volt-  
age loop from interfering with the current loop in current  
sourceapplications. Forbattery chargerapplications, pick  
the values of R1 and R2 to give the desired end of charge  
voltage.  
For applications needing only a simple one-step current  
sense adjustment, the circuit in Figure 2 works well. If a  
largevalueresistor(2M)isplacedbetweentheIADJ pin  
and ground, the current sense voltage will reduce to about  
25mV, providing a 50% reduction in current. Do not leave  
the IADJ pin open. This method gives a well-regulated  
current value in both states, and is controlled by a logic  
signal without the need for a variable PWM or DC control  
signal. When the NMOS transistor is on, the current sense  
voltage will be 50mV, when it is off, the current sense  
voltage will be reduced to 25mV.  
Selecting RSENSE/Current Sense Adjustment  
LT1618  
Use the following formula to choose the correct current  
sense resistor value (for constant current operation).  
I
ADJ  
FULL  
CURRENT  
RSENSE = 50mV/IMAX  
2M  
1618 F02  
For designs needing an adjustable current level, the IADJ  
pin is provided. With the IADJ pin tied to ground, the  
nominal current sense voltage is 50mV (appearing be-  
tween the ISP and ISN pins). Applying a positive DC  
voltage to the IADJ pin will decrease the current sense  
voltage according to the following formula:  
Figure 2  
Considerations When Sensing Input Current  
In addition to regulating the DC output current for current-  
source applications, the constant-current loop of the  
LT1618 can also be used to provide an accurate input  
current limit. Boost converters cannot provide output  
short-circuit protection, but the surge turn-on current can  
be drastically reduced using the LT1618’s current sense  
at the input. SEPICs, however, have an output that is DC-  
isolated from the input, so an input current limit not only  
helps soft-start the output but also provides excellent  
short-circuit protection.  
1.263V – (0.8)V  
IADJ  
V
=
ISENSE  
25  
For example, if 1V is applied to the IADJ pin, the current  
sense voltage will be reduced to about 18mV. This  
adjustability allows the regulated current to be reduced  
without changing the current sense resistor (e.g. to adjust  
brightnessinanLEDdriverortoreducethechargecurrent  
in a battery charger). If the IADJ pin is taken above 1.6V,  
sn1618 1618fas  
7
LT1618  
U
W U U  
APPLICATIONS INFORMATION  
When sensing input current, the sense resistor should be  
placed in front of the inductor (between the decoupling  
capacitor and the inductor) as shown in the circuits in the  
TypicalApplicationssection. Thiswillregulatetheaverage  
inductor current and maintain a consistent inductor ripple  
current, which will, in turn, maintain a well regulated input  
current. Do not place the sense resistor between the input  
source and the input decoupling capacitor, as this may  
allow the inductor ripple current to vary widely (even  
though the average input current and the average inductor  
current will still be regulated). Since the inductor current  
is a triangular waveform (not a DC waveform like the  
output current) some tweaking of the compensation  
values(RC andCC ontheVC pin)mayberequiredtoensure  
a clean inductor ripple current while the constant-current  
loop is in effect. For these applications, the constant-  
current loop response can usually be improved by reduc-  
ing the RC value, or by adding a capacitor (with a value of  
approximately CC/10) in parallel with the RC and CC  
compensation network.  
loop transfer function of a switching regulator, so the VC  
pin pole and zero are positioned to provide the best loop  
response. A thorough analysis of the switching regulator  
control loop is not within the scope of this data sheet, and  
will not be presented here, but values of 2kand 10nF will  
be a good choice for many designs. For those wishing to  
optimize the compensation, use the 2kand 10nF as a  
starting point. For LED backlight applications where a  
pulse-width modulation (PWM) signal is used to drive  
the IADJ pin, the resistor is usually not included in the  
compensation network. This helps to provide additional  
filtering of the PWM signal at the output of the error  
amplifier (the VC pin).  
Switch Node Considerations  
Tomaximizeefficiency, switchriseandfalltimesaremade  
as short as possible. To prevent radiation and high fre-  
quency resonance problems, proper layout of the high  
frequency switching path is essential. Keep the output  
switch (SW pin), diode and output capacitor as close  
together as possible. Minimize the length and area of all  
traces connected to the switch pin, and always use a  
ground plane under the switching regulator to minimize  
interplane coupling. The high speed switching current  
path is shown in Figure 3. The signal path including the  
switch, output diode and output capacitor contains nano-  
second rise and fall times and should be kept as short as  
possible.  
Frequency Compensation  
TheLT1618hasanexternalcompensationpin(VC), which  
allows the loop response to be optimized for each applica-  
tion. An external resistor and capacitor (or sometimes just  
a capacitor) are placed at the VC pin to provide a pole and  
azero(orjustapole)toensureproperloopcompensation.  
Numerousotherpolesandzeroesarepresentintheclosed  
SWITCH  
NODE  
L1  
V
OUT  
HIGH  
FREQUENCY  
CIRCULATING  
PATH  
V
IN  
LOAD  
1618 • F03  
Figure 3  
sn1618 1618fas  
8
LT1618  
U
TYPICAL APPLICATIO S  
4.5W Direct Broadcast Satellite (DBS) Power Supply with Short-Circuit Protection  
C2  
1µF  
L1  
33µH  
L3  
2.2µH  
D1  
0.068  
V
IN  
12V  
R3  
10k  
D2  
2
7
L2  
33µH  
MURS110  
Q1  
FMMT717  
ZETEX  
ISN  
ISP  
SW  
R1  
100k  
3
13.5V/18.5V  
LT1618  
1
8
9
C3  
3.3µF  
C4  
3.3µF  
V
IN  
FB  
22kHz  
NETWORK  
TUNING  
R5  
24.9k  
R2  
10k  
SHDN  
Q1  
MMBT3904  
ADD 5V  
3.3V  
I
V
GND  
5
ADJ  
C
4
10  
RHCP  
LHCP  
C1  
4.7µF  
R
C
R4  
1k  
0V  
2k  
C
C
33nF  
1618 TA02a  
C1: TAIYO YUDEN EMK316BJ475  
C2: TAIYO YUDEN TMK316BJ105  
(408) 573-4150  
(408) 573-4150  
(408) 573-4150  
(800) 282-9855  
(847) 956-0666  
(847) 956-0666  
C3, C4: TAIYO YUDEN TMK325BJ335  
D1: ON SEMICONDUCTOR MBRM140  
L1, L2: SUMIDA CR54-330  
L3: SUMIDA CR43-2R2  
Efficiency  
80  
75  
70  
65  
60  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
1618 TA02b  
sn1618 1618fas  
9
LT1618  
U
TYPICAL APPLICATIONS  
2-Cell White LED Driver  
L1  
4.7µH  
20mA  
D1  
2.49  
V
IN  
1.6V TO 3V  
C1  
8
7
4.7µF  
V
SW  
IN  
9
4
3
2
SHDN  
ISP  
ISN  
10kHz TO 50kHz  
PWM  
BRIGHTNESS  
ADJUST  
R3  
R1  
LT1618  
5.1k  
2M  
1
I
ADJ  
FB  
V
C
GND  
5
10  
C3  
0.1µF  
C2  
1µF  
R2  
160k  
C
C
0.1µF  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK316BJ105  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CLQ4D10-4R7  
(408) 573-4150  
(408) 573-4150  
(800) 282-9855  
(847) 956-0666  
1618 • TA03  
2-Cell Luxeon LED Driver  
L1  
10µH  
350mA  
D1  
0.15Ω  
V
IN  
1.8V TO 3V  
8
7
V
SW  
IN  
9
4
3
2
SHDN  
ISP  
ISN  
C1  
1µF  
D2  
LT1618  
100nF  
332k  
124k  
1
I
ADJ  
FB  
V
C
GND  
5
10  
C2  
1µF  
C1, C2: TAIYO YUDEN JMK107BJ105KA  
D1: ON SEMICONDUCTOR MBR0520  
D2: LUMILEDS LXHL-BW02  
L1: SUMIDA CR43-100  
1618 • TA12  
sn1618 1618fas  
10  
LT1618  
U
TYPICAL APPLICATIONS  
Li Ion White LED Driver  
L1  
10µH  
20mA  
D1  
2.49Ω  
V
IN  
2.7V TO 5V  
C1  
8
7
4.7µF  
V
SW  
IN  
9
4
3
2
SHDN  
ISP  
ISN  
10kHz TO 50kHz  
PWM  
BRIGHTNESS  
ADJUST  
R1  
2M  
R3  
5.1k  
LT1618  
1
I
FB  
ADJ  
GND  
V
C
5
10  
C2  
1µF  
C3  
0.1µF  
R2  
100k  
C
C
0.1µF  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN TMK316BJ105  
D1: ON SEMICONDUCTOR MBR0530  
L1: SUMIDA CLQ4D10-100  
(408) 573-4150  
(408) 573-4150  
(800) 282-9855  
(847) 956-0666  
1618 • TA04  
White LED Driver for 20 LEDs  
L1  
10µH  
80mA  
D1  
0.619  
V
IN  
2.7V TO 5V  
C1  
8
7
4.7µF  
V
SW  
IN  
SHDN  
9
4
3
2
ISP  
ISN  
10kHz TO 50kHz  
PWM  
BRIGHTNESS  
ADJUST  
R3  
5.1k  
R1  
LT1618  
2M  
1
I
ADJ  
FB  
V
C
GND  
5
10  
C2  
1µF  
C3  
0.1µF  
R2  
121k  
C
C
0.1µF  
51Ω  
515151Ω  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN TMK316BJ105  
D1: ON SEMICONDUCTOR MBR0530  
L1: SUMIDA CR43-100  
(408) 573-4150  
(408) 573-4150  
(800) 282-9855  
(847) 956-0666  
1618 • TA05  
sn1618 1618fas  
11  
LT1618  
U
TYPICAL APPLICATIONS  
USB to 5V SEPIC Converter  
C3  
0.47µF  
L1  
10µH  
I
IN  
D1  
0.1  
V
V
OUT  
IN  
Efficiency  
5V  
5V  
80  
75  
70  
65  
60  
2
7
L2  
10µH  
ISN  
ISP  
SW  
C1  
R1  
3
4.7µF  
316k  
LT1618  
1
8
9
C2  
10µF  
V
FB  
IN  
3.3V  
ON  
R2  
107k  
SHDN  
OFF  
0V  
I
V
GND  
5
ADJ  
C
20k  
4
10  
2k  
10nF  
3.3V  
100mA  
0V  
500mA  
13k  
0
50  
150 200 250  
350  
100  
300  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN JMK316BJ106  
C3: TAIYO YUDEN EMK212BJ474  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-100  
(408) 573-4150  
(408) 573-4150  
(408) 573-4150  
(800) 282-9855  
(847) 956-0666  
LOAD CURRENT (mA)  
1618 F09b  
1618 • TA09a  
USB SEPIC During Start-Up  
USB SEPIC Start-Up with Output Shorted  
V
OUT  
2V/DIV  
V
OUT  
2V/DIV  
I
IN  
50mA/DIV  
50mA/DIV  
1618 TA10  
1618 TA11  
1ms/DIV  
1ms/DIV  
sn1618 1618fas  
12  
LT1618  
U
TYPICAL APPLICATIO S  
12V Boost Converter with 500mA Input Current Limit  
L1  
10µH  
I
D1  
L1  
0.1Ω  
V
V
IN  
OUT  
Efficiency  
1.8V TO 5V  
12V  
90  
85  
80  
75  
70  
65  
60  
2
7
V
= 5V  
IN  
ISN  
ISP  
SW  
R1  
3
909k  
LT1618  
1
8
9
C2  
4.7µF  
V
FB  
IN  
V
IN  
= 3.3V  
R2  
107k  
SHDN  
I
V
GND  
5
ADJ  
C
10  
4
C1  
4.7µF  
2k  
10nF  
20 40 60 80 100  
160  
0
120 140  
L0AD CURRENT (mA)  
C1: TAIYO YUDEN JMK212BJ475  
C2: TAIYO YUDEN EMK316BJ475  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-100  
(408) 573-4150  
(408) 573-4150  
(800) 282-9855  
(847) 956-0666  
1618 TA06b  
1618 • TA06a  
12V Boost Converter Start-Up with Input Current Limit  
(VIN = 1.8V, ILOAD = 40mA)  
12V Boost Converter Start-Up without Input Current Limit  
(VIN = 1.8V, ILOAD = 40mA)  
V
OUT  
5V/DIV  
V
OUT  
5V/DIV  
I
LI  
200mA/DIV  
I
LI  
200mA/DIV  
1618 TA08  
1618 TA07  
50µs/DIV  
50µs/DIV  
sn1618 1618fas  
13  
LT1618  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
sn1618 1618fas  
14  
LT1618  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.50  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
(.0197)  
10 9  
8
7 6  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
sn1618 1618fas  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1618  
U
TYPICAL APPLICATIONS  
Li-Ion Buck-Boost Mode Luxeon LED Driver  
Buck Mode Luxeon LED Driver  
D2  
700mA  
350mA  
0.07  
0.15  
V
IN  
16V  
D2  
L1  
3.3µH  
D1  
D1  
V
IN  
3.2V TO 5V  
L1  
47µH  
3
7
ISP  
ISN  
SW  
2
7
2
100k  
10k  
ISN  
SW  
LT1618  
3
1
8
9
C2  
4.7µF  
ISP  
C1  
4.7µF  
V
IN  
FB  
LT1618  
1
8
9
V
FB  
SHDN  
IN  
C1  
4.7µF  
I
V
C
GND  
5
ADJ  
SHDN  
4
10  
I
V
C
GND  
5
ADJ  
4
10  
10nF  
10k  
2.2nF  
220pF  
C1: TAIYO YUDEN JMK212BJ475KG  
C2: TAIYO YUDEN EMK316BJ475ML  
D1: ON SEMICONDUCTOR MBRM120  
D2: LUMILEDS DS25  
1618 TA13  
L1: NEC PLC-07453R3  
C1: TAIYO YUDEN TMK325BJ475MN  
D1: PHILIPS PMEG2010  
D2: LUMILEDS DS45  
1618 TA14  
L1: TOKO D104C  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1613  
550mA (I ), 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V : 0.9V to 10V, V  
= 34V, I = 3mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
ThinSOTTM Package  
LT1615/LT1615-1 300mA/80mA (I ), Constant Off-Time, High Efficiency Step-Up  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I < 1µA,  
Q SD  
SW  
IN  
DC/DC Converter  
ThinSOT Package  
LT1930/LT1930A  
LT1932  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
V : 2.6V to 16V, V  
= 34V, I = 4.2mA/5.5mA,  
Q
SW  
IN  
SD  
DC/DC Converter  
I
< 1µA, ThinSOT Package  
Constant Current, 1.2MHz, High Efficiency White LED  
Boost Regulator  
V : 1V to 10V, V  
= 34V, I = 1.2mA, I < 1µA,  
IN  
OUT(MAX) Q SD  
ThinSOT Package  
LT1944/LT1944-1 Dual Output 350mA/100mA (I ), Constant Off-Time,  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
(Dual)  
High Efficiency Step-Up DC/DC Converter  
MS Package  
LT1945 (Dual)  
Dual Output, Pos/Neg, 350mA (I ), Constant Off-Time,  
V : 1.2V to 15V, V  
= ±34V, I = 20µA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
High Efficiency Step-Up DC/DC Converter  
MS Package  
LT1961  
1.5A (I ), 1.25MHz, High Efficiency Step-Up DC/DC Converter  
V : 3V to 25V, V  
= 35V, I = 0.9mA, I < 6µA,  
OUT(MAX) Q SD  
SW  
IN  
MS8E Package  
LTC3401/LTC3402 1A/2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
= 6V, I = 38µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
MS Package  
LT3461/LT3461A  
LT3463/LT3463A  
LT3464  
0.3A (I ), 1.3MHz/3MHz, High Efficiency Step-Up DC/DC  
V : 2.5V to 16V, V  
= 38V, I = 2.8mA, I < 1µA,  
SW  
IN  
OUT(MAX) Q SD  
Converter with Integrated Schottky  
SC70 and ThinSOT Packages  
250mA (I ), Boost/Inverter Dual, Micropower DC/DC Converter  
V : 2.4V to 15V, V  
= ±40V, I = 40µA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
with Integrated Schottky Diodes  
DFN Package  
0.08A (I ), High Efficiency Step-Up DC/DC Converter with  
V : 2.3V to 10V, V  
= 34V, I = 25µA, I < 1µA,  
Q SD  
SW  
IN  
Integrated Schottky, Output Disconnect  
ThinSOT Package  
LT3465/LT3465A  
LT3467/LT3467A  
Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED  
Boost Regulator with Integrated Schottky Diode  
V : 2.7V to 16V, V  
= 34V, I = 1.9mA, I < 1µA,  
Q SD  
IN  
ThinSOT Package  
1.1A (I ), 1.3MHz/2.1MHz, High Efficiency Step-Up DC/DC  
V : 2.4V to 16V, V  
IN  
= 40V, I = 1.2mA, I < 1µA,  
Q SD  
SW  
Converter with Integrated Soft-Start  
ThinSOT Package  
ThinSOT is a trademark of Linear Technology Corporation.  
sn1618 1618fas  
LT/TP 0504 1K REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LT1618EMSPBF

Constant-Current/ Constant-Voltage 1.4MHz Step-Up DC/DC Converter
Linear

LT1618_1

Constant-Current/Constant-Voltage 1.4MHz Step-Up DC/DC Converter
Linear

LT1619

Low Voltage Current Mode PWM Controller
Linear

LT1619EMS8

Low Voltage Current Mode PWM Controller
Linear

LT1619EMS8#TR

LT1619 - Low Voltage Current Mode PWM Controller; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1619ES8

Low Voltage Current Mode PWM Controller
Linear

LT1619ES8#PBF

暂无描述
Linear

LT1619ES8#TR

LT1619 - Low Voltage Current Mode PWM Controller; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1619ES8#TRPBF

LT1619 - Low Voltage Current Mode PWM Controller; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1620

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CGN

Rail-to-Rail Current Sense Amplifier
Linear

LT1620CGN#PBF

LT1620 - Rail-to-Rail Current Sense Amplifier; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear