LT1013_1 [Linear]

Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013); 四路精密运算放大器( LT1014 )的双精度运算放大器( LT1013 )
LT1013_1
型号: LT1013_1
厂家: Linear    Linear
描述:

Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013)
四路精密运算放大器( LT1014 )的双精度运算放大器( LT1013 )

运算放大器
文件: 总24页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1013/LT1014  
Quad Precision Op Amp (LT1014)  
Dual Precision Op Amp (LT1013)  
U
DESCRIPTIO  
FEATURES  
TheLT®1014isthefirstprecisionquadoperationalamplifier  
which directly upgrades designs in the industry standard  
14-pinDIPLM324/LM348/OP-11/4156pinconfiguration.  
It is no longer necessary to compromise specifications,  
while saving board space and cost, as compared to single  
operational amplifiers.  
Single Supply Operation  
Input Voltage Range Extends to Ground  
Output Swings to Ground while Sinking Current  
Pin Compatible to 1458 and 324 with Precision Specs  
Guaranteed Offset Voltage: 150μV Max  
Guaranteed Low Drift: 2μV/°C Max  
Guaranteed Offset Current: 0.8nA Max  
TheLT1014’slowoffsetvoltageof50μV, driftof0.3μV/°C,  
offset current of 0.15nA, gain of 8 million, common mode  
rejection of 117dB and power supply rejection of 120dB  
qualify it as four truly precision operational amplifiers.  
Particularly important is the low offset voltage, since no  
offset null terminals are provided in the quad configura-  
tion. Although supply current is only 350μA per amplifier,  
a new output stage design sources and sinks in excess of  
20mA of load current, while retaining high voltage gain.  
Guaranteed High Gain  
5mA Load Current: 1.5 Million Min  
17mA Load Current: 0.8 Million Min  
Guaranteed Low Supply Current: 500μA Max  
Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p  
Low Current Noise—Better than 0P-07, 0.07pA/Hz  
U
APPLICATIO S  
Similarly, the LT1013 is the first precision dual op amp in  
the 8-pin industry standard configuration, upgrading the  
performance of such popular devices as the MC1458/  
1558, LM158 and OP-221. The LT1013’s specifications  
are similar to (even somewhat better than) the LT1014’s.  
Battery-Powered Precision Instrumentation  
Strain Gauge Signal Conditioners  
Thermocouple Amplifiers  
Instrumentation Amplifiers  
4mA–20mA Current Loop Transmitters  
Both the LT1013 and LT1014 can be operated off a single  
5V power supply: input common mode range includes  
ground;theoutputcanalsoswingtowithinafewmillivolts  
of ground. Crossover distortion, so apparent on previous  
single-supply designs, is eliminated. A full set of specifi-  
cations is provided with ±15V and single 5V supplies.  
Multiple Limit Threshold Detection  
Active Filters  
Multiple Gain Blocks  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
LT1014 Distribution of Offset Voltage  
3 Channel Thermocouple Thermometer  
4k  
1M  
700  
V
T
=
±15V  
3k  
299k  
S
A
+5V  
= 25°C  
+5V  
600  
500  
400  
300  
200  
100  
0
425 LT1014s  
(1700 OP AMPS)  
TESTED FROM  
THREE RUNS  
J PACKAGE  
4
LT1004  
1.2V  
2 –  
YSI 44007  
5kΩ  
1684Ω  
260Ω  
1
OUTPUT A  
AT 25°C  
3 +LT1014  
10mV/°C  
12  
+
11  
14  
LT1014  
1.8k  
4k  
13  
1M  
6 –  
7
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.  
COLD JUNCTION COMPENSATION ACCURATE  
TO ±1°C FROM 0°C  
USE 4TH AMPLIFIER FOR OUTPUT C.  
OUTPUT B  
10mV/°C  
–300 –200 –100  
0
100  
200  
300  
5 +LT1014  
INPUT OFFSET VOLTAGE (μV)  
60°C.  
1013/14 TA02  
10134fc  
1
LT1013/LT1014  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Supply Voltage ...................................................... ±22V  
Differential Input Voltage ....................................... ±30V  
Input Voltage ...............Equal to Positive Supply Voltage  
............5V Below Negative Supply Voltage  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
Operating Temperature Range  
LT1013AM/LT1013M/  
LT1014AM/LT1014M ...................... 55 °C to 125°C  
LT1013AC/LT1013C/LT1013D  
Output Short-Circuit Duration.......................... Indefinite  
Storage Temperature Range  
LT1014AC/LT1014C/LT1014D................. 0°C to 70°C  
All Grades ......................................... 65°C to 150°C  
LT1013I/ LT1014I............................... 40°C to 85°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
OUTPUT A  
–IN A  
1
2
3
4
5
6
7
8
16 OUTPUT D  
15 –IN D  
TOP VIEW  
NUMBER  
+
+INA  
1
2
3
4
8
7
6
5
–INA  
+IN A  
14  
13  
12  
11  
10  
9
+IN D  
LT1013DS8  
LT1013IS8  
LT1014DSW  
LT1014ISW  
V
OUTA  
+
V
V
+
+INB  
–INB  
V
+
+IN B  
–IN B  
+IN C  
OUTB  
–IN C  
S8 PACKAGE  
8-LEAD PLASTIC SO  
OUTPUT B  
NC  
OUTPUT C  
NC  
PART MARKING  
PART MARKING  
NOTE: THIS PIN CONFIGURATION DIFFERS FROM  
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION  
SW PACKAGE  
1013  
1013I  
LT1014DSW  
LT1014ISW  
16-LEAD PLASTIC SO  
T
JMAX = 150°C, θJA = 130°C/W  
TJMAX = 150°C, θJA = 190°C/W  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
1
2
3
4
5
6
7
OUTPUT D  
–IN D  
14  
13  
12  
11  
10  
9
OUTPUT A  
–IN A  
+
TOP VIEW  
+
A
D
C
+
LT1013ACN8  
LT1013CN8  
LT1013DN8  
LT1013IN8  
LT1014ACN  
LT1014CN  
LT1014DN  
LT1014IN  
+IN D  
+IN A  
OUTPUT A  
–IN A  
1
2
3
4
V
8
7
6
5
+
V
V
OUTPUT B  
–IN B  
+IN B  
+IN C  
+IN B  
–IN B  
+
+
A
+
B
+
+IN A  
–IN C  
B
V
OUTPUT C  
8
OUTPUT B  
N PACKAGE  
14-LEAD PDIP  
TJMAX = 150°C, θJA = 100°C/W  
N8 PACKAGE  
8-LEAD PDIP  
TJMAX = 150°C, θJA = 130°C/W  
LT1013AMJ8  
LT1013MJ8  
LT1013ACJ8  
LT1013CJ8  
LT1014AMJ  
LT1014MJ  
LT1014ACJ  
LT1014CJ  
J PACKAGE  
14-LEAD CERDIP  
J8 PACKAGE  
8-LEAD CERDIP  
T
JMAX = 150°C, θJA = 100°C/W  
TJMAX = 150°C, θJA = 100°C/W  
OBSOLETE PACKAGE  
OBSOLETE PACKAGE  
Consider the N or S8 Packages for Alternate Source  
Consider the N or SW Packages for Alternate Source  
TOP VIEW  
ORDER PART  
NUMBER  
+
V
8
OUTPUT B  
OUTPUT A  
–IN A  
+IN A  
1
3
7
A
B
+
LT1013AMH  
LT1013MH  
LT1013ACH  
LT1013CH  
OBSOLETE PACKAGE  
6
2
–IN B  
+
5
Consider the N or S8 (not N8) Packages for Alternate Source  
+IN B  
4
V (CASE)  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
TJMAX = 150°C, θJA = 150°C/W, θJC = 45°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
10134fc  
2
LT1013/LT1014  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.  
LT1013AM/AC  
LT1014AM/AC  
LT1013C/D/I/M  
LT1014C/D/I/M  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT1013  
LT1014  
LT1013D/I, LT1014D/I  
40  
50  
150  
180  
60  
60  
200  
300  
300  
800  
μV  
μV  
μV  
OS  
Long Term Input Offset Voltage  
Stability  
0.4  
0.5  
μV/Mo.  
I
I
Input Offset Current  
Input Bias Current  
0.15  
12  
0.8  
20  
0.2  
15  
1.5  
30  
nA  
nA  
SO  
B
e
e
Input Noise Voltage  
Input Noise Voltage Density  
0.1Hz to 10Hz  
0.55  
0.55  
μVp-p  
nV/Hz  
nV/Hz  
n
n
f = 10Hz  
24  
22  
24  
22  
O
f = 1000Hz  
O
i
Input Noise Current Density  
f = 10Hz  
O
0.07  
0.07  
pA/Hz  
n
Input Resistance – Differential  
Common Mode  
(Note 2)  
100  
400  
5
70  
300  
4
MΩ  
GΩ  
A
Large Signal Voltage Gain  
V = ±10V, R = 2k  
1.5  
0.8  
8.0  
2.5  
1.2  
0.5  
7.0  
2.0  
V/μV  
V/μV  
VOL  
O
L
V = ± 10V, R = 600Ω  
O
L
Input Voltage Range  
+13.5  
15.0  
+13.8  
15.3  
+13.5  
15.0  
+13.8  
15.3  
V
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Channel Separation  
Output Voltage Swing  
Slew Rate  
V
= +13.5V, 15.0V  
100  
103  
123  
± 13  
0.2  
117  
120  
140  
± 14  
0.4  
97  
100  
120  
±12.5  
0.2  
114  
117  
137  
± 14  
0.4  
dB  
dB  
CM  
V = ±2V to ±18V  
S
V = ±10V, R = 2k  
dB  
O
L
V
OUT  
R = 2k  
V
L
V/μs  
mA  
I
Supply Current  
Per Amplifier  
0.35  
0.50  
0.35  
0.55  
S
TA = 25°C. VS+ = +5V, VS= 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted  
LT1013AM/AC  
LT1013C/D/I/M  
LT1014C/D/I/M  
LT1014AM/AC  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT1013  
LT1014  
LT1013D/I, LT1014D/I  
60  
70  
250  
280  
90  
90  
250  
450  
450  
950  
μV  
μV  
μV  
OS  
I
I
Input Offset Current  
Input Bias Current  
0.2  
15  
1.3  
35  
0.3  
18  
2.0  
50  
nA  
nA  
OS  
B
A
Large Signal Voltage Gain  
Input Voltage Range  
V = 5mV to 4V, R = 500Ω  
1.0  
1.0  
V/μV  
VOL  
O
L
+3.5  
0
+3.8  
0.3  
+3.5  
0
+3.8  
0.3  
V
V
V
Output Voltage Swing  
Supply Current  
Output Low, No Load  
Output Low, 600Ω to Ground  
15  
5
220  
25  
10  
350  
15  
5
220  
25  
10  
350  
mV  
mV  
mV  
OUT  
Output Low, I  
= 1mA  
SINK  
Output High, No Load  
Output High, 600Ω to Ground 3.4  
Per Amplifier  
4.0  
4.4  
4.0  
4.0  
3.4  
4.4  
4.0  
V
V
I
0.31  
0.45  
0.32  
0.50  
mA  
S
10134fc  
3
LT1013/LT1014  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range  
55°C TA 125°C. VS = ±15V, VCM = 0V unless otherwise noted.  
LT1013AM  
LT1014AM  
LT1013M/LT1014M  
SYMBOL PARAMETER  
CONDITIONS  
V = +5V, 0V; V = +1.4V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
V
Input Offset Voltage  
80  
300  
90  
350  
110  
550  
μV  
OS  
S
O
55°C T 100°C  
80  
120  
250  
450  
450  
900  
90  
150  
300  
480  
480  
960  
100  
200  
400 1500  
750  
750  
μV  
μV  
μV  
A
V
CM  
V
CM  
= 0.1V, T = 125°C  
A
= 0V, T = 125°C  
A
Input Offset Voltage Drift  
Input Offset Current  
(Note 3)  
0.4  
0.3  
0.6  
15  
20  
2.0  
2.5  
6.0  
30  
80  
0.4  
0.3  
0.7  
15  
25  
2.0  
2.8  
7.0  
30  
90  
0.5  
0.4  
0.9  
18  
28  
2.5 μV/°C  
I
I
5.0  
10.0  
nA  
nA  
OS  
V = +5V, 0V; V = +1.4V  
S
O
Input Bias Current  
45  
120  
nA  
nA  
B
V = +5V, 0V; V = +1.4V  
S
O
A
Large Signal Voltage Gain  
Common Mode Rejection  
Power Supply Rejection  
Ratio  
V = ±10V, R = 2k  
0.5  
97  
100  
2.0  
114  
117  
0.4  
96  
100  
2.0  
114  
117  
0.25  
94  
97  
2.0  
113  
116  
V/μV  
dB  
dB  
VOL  
O
L
CMRR  
PSRR  
V
CM  
= +13.0V, 14.9V  
V = ±2V to ±18V  
S
V
Output Voltage Swing  
R = 2k  
V = +5V, 0V  
S
± 12 ±13.8  
± 12 ±13.8  
± 11.5 ±13.8  
V
OUT  
L
R = 600Ω to Ground  
Output Low  
Output High  
L
3.2  
6
3.8  
15  
3.2 3.8  
6
15  
3.1  
6
3.8  
18  
mV  
V
I
Supply Current  
Per Amplifier  
0.38 0.60  
0.34 0.55  
0.38 0.60  
0.34 0.55  
0.38  
0.34  
0.7  
0.65  
mA  
mA  
S
V = +5V, 0V; V = +1.4V  
S
O
10134fc  
4
LT1013/LT1014  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The denotes the specifications which apply over the temperature range  
40°C TA 85°C for LT1013I, LT1014I, 0°C TA 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless  
LT1013C/D/I  
LT1014C/D/I  
LT1013AC  
LT1014AC  
SYMBOL PARAMETER  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
V
Input Offset Voltage  
55  
75  
240  
350  
65  
85  
270  
380  
80  
230 1000  
110 570  
400  
μV  
μV  
μV  
OS  
LT1013D/I, LT1014D/I  
V = +5V, 0V; V = 1.4V  
S
O
LT1013D/I, LT1014D/I  
V = +5V, 0V; V = 1.4V  
280 1200  
μV  
S
O
Average Input Offset  
Voltage Drift  
Input Offset Current  
(Note 3)  
0.3  
0.2  
0.4  
2.0  
1.5  
3.5  
0.3  
0.2  
0.4  
2.0  
1.7  
4.0  
0.4  
0.7  
0.3  
0.5  
2.5 μV/°C  
5.0 μV/°C  
LT1013D/I, LT1014D/I  
V = +5V, 0V; V = 1.4V  
I
I
2.8  
6.0  
nA  
nA  
OS  
S
O
Input Bias Current  
13  
18  
25  
55  
13  
20  
25  
60  
16  
24  
38  
90  
nA  
nA  
B
V = +5V, 0V; V = 1.4V  
S
O
A
Large Signal Voltage Gain  
Common Mode Rejection  
Ratio  
V = ±10V, R = 2k  
1.0  
98  
5.0  
116  
1.0  
98  
5.0  
116  
0.7  
94  
4.0  
113  
V/μV  
dB  
VOL  
O
L
CMRR  
V
CM  
= +13.0V, 15.0V  
PSRR  
Power Supply Rejection  
Ratio  
Output Voltage Swing  
V = ± 2V to ±18V  
101  
119  
101  
119  
97  
116  
dB  
V
S
V
R = 2k  
±12.5 ±13.9  
±12.5 ±13.9  
±12.0 ±13.9  
OUT  
L
V = +5V, 0V; R = 600Ω  
S
L
Output Low  
Output High  
3.3  
6
3.9  
13  
3.3  
6
3.9  
13  
3.2  
6
3.9  
13  
mV  
V
I
Supply Current per Amplifier  
0.36 0.55  
0.32 0.50  
0.36 0.55  
0.32 0.50  
0.37 0.60  
0.34 0.55  
mA  
mA  
S
V = +5V, 0V; V = 1.4V  
S
O
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Rating condition for extended periods may affect device reliability  
and lifetime.  
Note 2: This parameter is guaranteed by design and is not tested. Typical  
parameters are defined as the 60% yield of parameter distributions of  
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically  
240 op amps (or 120 ) will be better than the indicated specification.  
Note 3: This parameter is not 100% tested.  
10134fc  
5
LT1013/LT1014  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Offset Voltage Drift with  
Temperature of Representative  
Units  
Offset Voltage vs Balanced  
Source Resistance  
Warm-Up Drift  
10  
1
5
4
3
2
1
0
V
S
= ±15V  
V
= ±15V  
= 25°C  
S
A
200  
100  
0
T
V
= 5V, 0V, –55°C TO 125°C  
S
V
= ±15V, 0V, –55°C TO 125°C  
S
LT1013 METAL CAN (H) PACKAGE  
V
= 5V, 0V, 25°C  
S
0.1  
0.01  
LT1014  
–100  
–200  
R
S
+
V
= ±15V, 0V, 25°C  
S
LT1013 CERDIP (J) PACKAGE  
R
S
–50  
0
25  
50  
75 100 125  
–25  
1k  
3k 10k 30k 100k 300k 1M 3M 10M  
BALANCED SOURCE RESISTANCE (Ω)  
0
1
2
3
4
5
TEMPERATURE (°C)  
TIME AFTER POWER ON (MINUTES)  
1013/14 TPC01  
1013/14 TPC02  
1013/14 TPC03  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
0.1Hz to 10Hz Noise  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
= ±2V TO ±18V  
T
= 25°C  
A
S
A
V
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
V
= 5V, 0V  
V
= ±15V  
S
S
V
= ±15V + 1V SINE WAVE  
P-P  
S
A
T
= 25°C  
10  
100  
1k  
10k  
100k  
1M  
1k  
FREQUENCY (Hz)  
100k 1M  
2
6
0.1  
1
10 100  
10k  
0
4
8
10  
FREQUENCY (Hz)  
TIME (SECONDS)  
1013/14 TPC04  
1013/14 TPC05  
1013/14 TPC06  
10Hz Voltage Noise  
Distribution  
Noise Spectrum  
Supply Current vs Temperature  
460  
1000  
200  
180  
160  
140  
120  
100  
80  
T
= 25°C  
= ±2V TO ±18V  
V
S
T
A
= ±15V  
= 25°C  
A
S
V
328 UNITS TESTED  
FROM THREE RUNS  
420  
380  
340  
300  
260  
300  
100  
V
= ±15V  
S
CURRENT NOISE  
V
= 5V, 0V  
S
60  
VOLTAGE NOISE  
30  
10  
40  
20  
1/f CORNER 2Hz  
0
–50  
–25  
0
25  
50  
75 100 125  
10  
20  
30  
40  
50  
60  
1
10  
100  
1k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
VOLTAGE NOISE DENSITY (nV/Hz)  
1013/14 TPC09  
1013/14 TPC07  
1013/14 TPC08  
10134fc  
6
LT1013/LT1014  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current vs  
Common Mode Voltage  
Input Offset Current vs  
Temperature  
Input Bias Current vs  
Temperature  
5
4
15  
10  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0
–30  
–25  
–20  
–15  
–10  
–5  
T
A
= 25°C  
V
= 0V  
V
= 0V  
CM  
CM  
3
V
= 5V, 0V  
S
2
0
V
S
= ±15V  
V = 5V, 0V  
S
V
= ±15V  
S
1
–5  
–10  
–15  
2.5V  
±
V
= 5V, 0V  
S
=
S
V
0
V
= ±15V  
S
–1  
0
0
–10  
–15  
–20  
–25 –30  
–5  
–50  
0
25  
50  
75 100 125  
–25  
50  
100 125  
–50 –25  
0
25  
75  
INPUT BIAS CURRENT (nA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1013/14 TPC10  
1013/14 TPC11  
1013/14 TPC12  
Output Saturation vs Sink  
Current vs Temperature  
Small Signal Transient  
Response, VS = ±15V  
Large Signal Transient  
Response, VS = ±15V  
10  
+
V
V
= 5V TO 30V  
= 0V  
I
= 10mA  
SINK  
1
0.1  
I
I
= 5mA  
= 1mA  
SINK  
SINK  
I
I
= 100μA  
= 10μA  
SINK  
SINK  
AV = +1  
2μs/DIV  
1013/14 TPC14  
AV = +1  
50μs/DIV  
1013/14 TPC15  
I
= 0  
SINK  
0.01  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
1013/14 TPC13  
Large Signal Transient  
Response, VS = 5V, 0V  
Large Signal Transient  
Response, VS = 5V, 0V  
Small Signal Transient  
Response, VS = 5V, 0V  
4V  
4V  
2V  
0V  
100mV  
2V  
0V  
50mV  
0
AV = +1  
20μs/DIV  
1013/14 TPC16  
AV = +1  
10μs/DIV  
1013/14 TPC17  
AV = +1  
10μs/DIV  
1013/14 TPC18  
RL = 600Ω TO GROUND  
RL = 4.7k TO 5V  
NO LOAD  
INPUT = 0V TO 100mV PULSE  
INPUT = 0V TO 4V PULSE  
INPUT = 0V TO 4V PULSE  
10134fc  
7
LT1013/LT1014  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Output Short-Circuit Current  
vs Time  
Voltage Gain vs Load  
Resistance  
Voltage Gain vs Frequency  
10M  
TA = 25°C, VS = ±15V  
TA = –55°C, VS = ±15V  
TA = 125°C, VS = ±15V  
40  
30  
140  
120  
100  
80  
V
= ±15V  
S
–55°C  
25°C  
T
= 25°C  
= 100pF  
A
L
C
125°C  
20  
TA = –55°C, VS = 5V, 0V  
TA = 25°C, VS = 5V, 0V  
10  
V
= 5V, 0V  
V = ±15V  
S
S
1M  
0
60  
TA = 125°C, VS = 5V, 0V  
125°C  
–10  
–20  
–30  
–40  
40  
25°C  
20  
VO = ±10V WITH VS = ±15V  
–55°C  
0
VO = 20mV TO 3.5V  
WITH VS = 5V, 0V  
100k  
–20  
100  
1k  
10k  
1
2
0.01 0.1  
1
10  
100 1k  
10k 100k 1M 10M  
0
3
LOAD RESISTANCE TO GROUND (Ω)  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
FREQUENCY (Hz)  
1013/14 TPC20  
1013/14 TPC19  
1013/14 TPC21  
Channel Separation vs  
Frequency  
Gain, Phase vs Frequency  
80  
160  
140  
120  
100  
80  
T
= 25°C  
CM  
= 100pF  
A
V
T
V
R
= ±15V  
S
A
V
C
= 0V  
20  
10  
100  
120  
140  
160  
180  
200  
= 25°C  
PHASE  
L
= 20Vp-p to 5kHz  
IN  
= 2k  
±15V  
L
LIMITED BY  
THERMAL  
INTERACTION  
±15V  
GAIN  
R
= 100Ω  
S
R
= 1kΩ  
S
0
5V, 0V  
5V, 0V  
LIMITED BY  
PIN TO PIN  
CAPACITANCE  
–10  
60  
0.1  
0.3  
1
3
10  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
1013/14 TPC22  
1013/14 TPC23  
U
W U U  
APPLICATIO S I FOR ATIO  
Single Supply Operation  
The LT1013/LT1014 are fully specified for single supply  
operation, i.e., when the negative supply is 0V. Input  
common mode range includes ground; the output swings  
within a few millivolts of ground. Single supply operation,  
however, can create special difficulties, both at the input  
and at the output. The LT1013/LT1014 have specific  
circuitry which addresses these problems.  
lemscanoccuronprevioussinglesupplydesigns,suchas  
the LM124, LM158, OP-20, OP-21, OP-220, OP-221,  
OP-420:  
a)Whentheinputismorethanadiodedropbelowground,  
unlimited current will flow from the substrate (Vtermi-  
nal) to the input. This can destroy the unit. On the LT1013/  
LT1014, the 400Ω resistors, in series with the input (see  
Schematic Diagram), protect the devices even when the  
input is 5V below ground.  
At the input, the driving signal can fall below 0V— inad-  
vertently or on a transient basis. If the input is more than  
a few hundred millivolts below ground, two distinct prob-  
10134fc  
8
LT1013/LT1014  
U
W U U  
APPLICATIO S I FOR ATIO  
b) When the input is more than 400mV below ground (at  
25°C), the input stage saturates (transistors Q3 and Q4)  
and phase reversal occurs at the output. This can cause  
lock-up in servo systems. Due to a unique phase reversal  
protection circuitry (Q21, Q22, Q27, Q28), the LT1013/  
LT1014’s outputs do not reverse, as illustrated below, even  
when the inputs are at –1.5V.  
There is one circumstance, however, under which the phase  
reversal protection circuitry does not function: when the  
other op amp on the LT1013, or one specific amplifier of the  
other three on the LT1014, is driven hard into negative  
saturation at the output.  
D when A’s output is negative saturation. B’s and C’s  
outputs have no effect.  
At the output, the aforementioned single supply designs  
eithercannotswingtowithin600mVofground(OP-20) or  
cannot sink more than a few microamperes while swing-  
ing to ground (LM124, LM158). The LT1013/LT1014’s  
all-NPN output stage maintains its low output resistance  
and high gain characteristics until the output is saturated.  
In dual supply operations, the output stage is crossover  
distortion-free.  
Comparator Applications  
Phase reversal protection does not work on amplifier:  
The single supply operation of the LT1013/LT1014 lends  
itself to its use as a precision comparator with TTL  
compatible output:  
A when D’s output is in negative saturation. B’s and C’s  
outputs have no effect.  
B when C’s output is in negative saturation. A’s and D’s  
outputs have no effect.  
In systems using both op amps and comparators, the  
LT1013/LT1014canperformmultipleduties;forexample,  
on the LT1014, two of the devices can be used as op amps  
and the other two as comparators.  
C when B’s output is in negative saturation. A’s and D’s  
outputs have no effect.  
Voltage Follower with Input Exceeding the Negative Common Mode Range  
4V  
2V  
4V  
2V  
4V  
2V  
0V  
0V  
0V  
6Vp-p INPUT, 1.5V TO 4.5V  
LM324, LM358, OP-20  
EXHIBIT OUTPUT PHASE  
REVERSAL  
LT1013/LT1014  
NO PHASE REVERSAL  
Comparator Rise Response Time  
10mV, 5mV, 2mV Overdrives  
Comparator Fall Response Time  
to 10mV, 5mV, 2mV Overdrives  
4
2
4
2
0
0
0
100  
100  
0
VS = 5V, 0V  
50μs/DIV  
V
S = 5V, 0V  
50μs/DIV  
10134fc  
9
LT1013/LT1014  
U
W U U  
APPLICATIO S I FOR ATIO  
Test Circuit for Offset Voltage and  
Offset Drift with Temperature  
Low Supply Operation  
The minimum supply voltage for proper operation of the  
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical  
supply current at this voltage is 290μA, therefore power  
dissipation is only one milliwatt per amplifier.  
50k*  
+15V  
100Ω*  
V
O
+
Noise Testing  
LT1013  
OR LT1014  
50k*  
–15V  
For applications information on noise testing and calcula-  
tions, please see the LT1007 or LT1008 data sheet.  
*RESISTOR MUST HAVE LOW  
THERMOELECTRIC POTENTIAL.  
THIS CIRCUIT IS ALSO USED AS THE BURN-IN  
CONFIGURATION, WITH SUPPLY VOLTAGES  
INCREASED TO ±20V.  
**  
V
= 1000V  
OS  
LT1013/14 F06  
O
U
TYPICAL APPLICATIO S  
5V Single Supply Dual Instrumentation Amplifier  
50MHz Thermal rms to DC Converter  
100k*  
+5V  
+5V  
1/2 LTC1043  
0.01  
8
5
2
+INPUT  
6
5
+
7
10k*  
10k*  
10k*  
30k*  
10k  
30k*  
1/2 LT1013  
1
OUTPUT A  
R2  
LT1014  
6
+
3
2
3
+5V  
4
4
+
6
5
1μF  
1μF  
1μF  
300Ω*  
7
LT1014  
11  
100k*  
0.01  
R1  
10k*  
–INPUT  
+INPUT  
18  
7
15  
8
13  
14  
1/2 LTC1043  
LT1014  
0.01  
3
2
10k  
+
12  
+
1
1/2 LT1013  
INPUT  
OUTPUT B  
1μF  
300mV–  
11  
10V  
RMS  
10  
R2  
+
BRN RED  
RED BRN  
20k  
1μF  
1μF  
8
0V–4V  
OUTPUT  
10k  
LT1014  
FULL-  
SCALE  
TRIM  
12  
16  
9
R1  
10k*  
T1A T1B  
GRN  
T2B T2A  
GRN  
OFFSET = 150μV  
R2  
–INPUT  
13  
14  
GAIN =  
+ 1.  
10k*  
R1  
CMRR = 120dB.  
COMMON-MODE RANGE IS 0V TO 5V.  
2% ACCURACY, DC–50MHz.  
100:1 CREST FACTOR CAPABILITY.  
0.1% RESISTOR.  
0.01  
1013/14 TA04  
*
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.  
ENCLOSE T1 AND T2 IN STYROFOAM.  
7.5mW DISSIPATION.  
1013/14 TA03  
10134fc  
10  
LT1013/LT1014  
U
TYPICAL APPLICATIO S  
Hot Wire Anemometer  
+15V  
500pF  
Q2–Q5  
CA3046  
PIN 3 TO –15V  
Q1  
2N6533  
Q2  
2k  
Q5  
Q3  
220  
13  
1000pF  
150k*  
Q4  
6
A4  
14  
2k  
150k*  
0.01μF  
A2  
7
1μF  
LT1014  
10k*  
LT1014  
33k  
12  
10M  
+
27Ω  
1W  
5
+
0V–10V =  
0–1000 FEET/MINUTE  
12k  
+15V  
4
RESPONSE  
TIME  
2
3
2M  
A1  
LT1014  
1
1k  
ADJUST  
FULL-  
SCALE  
FLOW  
ZERO  
FLOW  
3.3k  
–15V  
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.  
#328  
+
100k  
500k  
11  
–15V  
2k*  
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.  
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.  
1% RESISTOR.  
1μF  
9
*
A3  
8
LT1014  
+
10  
1013/14 TA05  
Liquid Flowmeter  
3.2k**  
1M*  
6
10M  
RESPONSE  
TIME  
+15V  
3.2k*  
1M*  
2
A2  
LT1014  
7
15Ω  
+
5
A1  
1
DALE  
6.98k*  
LT1014  
1M*  
6.25k**  
HL-25  
100k  
+
3
6.25k**  
5k  
FLOW  
CALIB  
1μF  
1M*  
1k*  
T1  
T2  
+15V  
4.7k  
1N4148  
100k  
2N4391  
300pF  
0.1  
OUTPUT  
LT1004  
–1.2  
0Hz  
0
300Hz =  
300ML/MIN  
383k*  
9
+15V  
4
100k  
12  
13  
A3  
LT1014  
8
+
2.7k  
–15V  
+
10  
A4  
LT1014  
14  
100k  
11  
–15V  
T1  
T2  
15Ω HEATER RESISTOR  
* 1% FILM RESISTOR.  
FLOW  
FLOW  
** SUPPLIED WITH YSI THERMISTOR NETWORK.  
T1, T2 YSI THERMISTOR NETWORK = #44201.  
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO  
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.  
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED  
FREQUENCY OUTPUT.  
PIPE  
1013/14 TA06  
10134fc  
11  
LT1013/LT1014  
TYPICAL APPLICATIO S  
U
5V Powered Precision Instrumentation Amplifier  
9
TO  
8
INPUT  
LT1014  
200k*  
CABLE SHIELDS  
+
10  
2
3
+5V  
10k*  
10k*  
1
LT1014  
+
20k  
1μF  
20k  
–INPUT  
+5V  
10k  
4
13  
12  
RG (TYP 2k)  
200k*  
14  
OUTPUT  
LT1014  
+
11  
10k  
10k*  
6
5
10k*  
7
LT1014  
+
+INPUT  
*1% FILM RESISTOR. MATCH 10k's 0.05%  
400,000  
+5V  
GAIN EQUATION: A =  
+ 1.  
RG  
FOR HIGH SOURCE IMPEDANCES,  
USE 2N2222 AS DIODES.  
1013/14 TA07  
9V Battery Powered Strain Gauge Signal Conditioner  
15k  
+9V  
+9V  
22M  
1N4148  
47μF  
4
2
3
4.7k  
330Ω  
1
0.068  
LT1014  
11  
2N2219  
+
100k  
100k  
15  
0.01  
TO A/D RATIO  
REFERENCE  
100k  
100k  
6
5
350Ω  
STRAIN GAUGE  
BRIDGE  
+9V  
+9V  
499  
499  
+
7
8
13  
LT1014  
LT1014  
1
+
14  
15k  
3k  
13  
TO A/D  
LT1014  
12  
0.068  
14  
7
74C221  
+
9
100k  
0.068  
6
9
10  
5
TO A/D  
CONVERT COMMAND  
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT 650μA.  
4.7k–0.01μF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO  
1013/14 TA08  
HIGH ΔV/ΔT STEPS.  
10134fc  
12  
LT1013/LT1014  
U
TYPICAL APPLICATIO S  
5V Powered Motor Speed Controller  
No Tachometer Required  
+5V  
47  
+
100k  
1k  
82Ω  
Q3  
2N5023  
2
A1  
2k  
1
Q1  
2N3904  
0.47  
330k  
1/2 LT1013  
+
3
1N4001  
1M  
2k  
6.8M  
0.068  
1/4 CD4016  
5V  
8
1N4001  
1N4148  
1N4148  
Q2  
3.3M  
0.47  
6
0.068  
2k  
A2  
7
1/2 LT1013  
+
5
MOTOR = CANON–FN30–R13N1B.  
A1 DUTY CYCLE MODULATES MOTOR.  
A2 SAMPLES MOTORS BACK EMF.  
4
E
IN  
0V–3V  
1013/14 TA09  
5V Powered EEPROM Pulse Generator  
+5V  
DALE  
#TC-10-04  
1N4148  
1N4148  
1N4148  
2N2222  
10Ω  
+5V  
20k  
0.05  
0.1  
2N2222  
0.33  
2N2222  
4.7k  
1N4148  
820  
100k  
100Ω  
270Ω  
820  
4.7M  
2
1N4148  
8
+
1
6
5
1N4148  
LT1013  
TTL INPUT  
1k  
7
+
3
2N2222  
OUTPUT  
LT1013  
4
0.005  
MEETS ALL V PROGRAMMING SPECS WITH NO TRIMS AND  
PP  
21V  
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.  
SUITABLE FOR BATTERY POWERED USE (600μA QUIESCENT CURRENT).  
1% METAL FILM.  
120k  
100K*  
*
600μs RC  
LT1004  
1.2V  
6.19K  
1013/14 TA10  
10134fc  
13  
LT1013/LT1014  
TYPICAL APPLICATIO S  
U
Methane Concentration Detector with Linearized Output  
+5V  
1
*1% METAL FILM RESISTOR  
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813  
14  
LT1004  
1.2V  
–5V  
0.033  
1N4148 (4)  
CD4016  
390k*  
9
+
100k*  
A3  
LT1014  
13  
8
74C04  
74C04  
A4  
LT1014  
10  
14  
2.7k  
11  
5
12  
+
8
LTC1044  
2
+5V  
–5V  
10μF  
4
3
+
10μF  
470pF  
+
470pF  
10k  
+5V  
1
74C04  
14  
–5V  
SENSOR  
1N4148  
CA3046  
Q4  
Q1  
OUTPUT  
Q2 Q3  
500ppm-10,000ppm  
1000pF  
+5V  
4
50Hz  
1kHz  
2
3
2k  
+
100k*  
A1  
LT1014  
6
5
1
5k  
+
1000ppm  
TRIM  
2k  
150k*  
A2  
LT1014  
7
12k*  
1013/14 TA11  
Low Power 9V to 5V Converter  
L
+9V INPUT  
2N2905  
5V  
20mA  
2N5434  
+
1N4148  
47  
10k  
390k  
1%  
HP5082-2811  
V
= 200mV  
+
2
3
D
10k  
+9V  
8
100μA  
1
LT1013  
330k  
+
5
6
120k  
1%  
7
LT1013  
4
+9V  
LT1004  
1.2V  
47k  
L = DALE TE-3/Q3/TA.  
SHORT CIRCUIT CURRENT = 30mA.  
75% EFFICIENCY.  
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.  
1013/14 TA12  
10134fc  
14  
LT1013/LT1014  
U
TYPICAL APPLICATIO S  
5V Powered 4mA20mA Current Loop Transmitter†  
+5V  
Q3  
2N2905  
820Ω  
T1  
74C04  
(6)  
Q1  
2N2905  
1N4002 (4)  
10μF  
+
10μF  
+
68Ω  
0.002  
10k  
Q2  
2N2905  
820Ω  
10k  
0.33  
100k  
+5V  
8
10k*  
10k*  
20mA  
TRIM  
2
2k  
A1  
1/2 LT1013  
Q4  
2N2222  
1
100Ω*  
4k*  
3
+
100pF  
4
80k*  
10k*  
1k  
6
5
4mA  
4mA-20mA OUT  
TO LOAD  
2.2kΩ MAXIMUM  
TRIM  
4.3k  
A2  
7
+5V  
12-BIT ACCURACY.  
* 1% FILM.  
T1 = PICO-31080.  
1/2 LT1013  
+
LT1004  
1.2V  
INPUT  
0 TO 4V  
1013/14 TA13  
Fully Floating Modification to 4mA-20mA Current Loop†  
T1  
1N4002 (4)  
0.1Ω  
+5V  
+
3
8
100k  
A2  
6
5
1
10μF  
1/2 LT1013  
A1  
2
TO INVERTER  
DRIVE  
+
7
1/2 LT1013  
68k*  
+
4mA-20mA OUT  
FULLY FLOATING  
4
301Ω*  
4k*  
8-BIT ACCURACY.  
10k*  
1k  
20mA  
TRIM  
4.3k  
+5V  
2k  
LT1004  
1.2V  
4mA  
TRIM  
INPUT  
0V–4V  
1013/14 TA14  
10134fc  
15  
LT1013/LT1014  
TYPICAL APPLICATIO S  
U
5V Powered, Linearized Platinum RTD Signal Conditioner  
2M  
9
OUTPUT  
0V–4V =  
0°C–400°C  
±0.05°C  
499Ω  
167Ω  
Q2  
200k  
200k  
A4  
2
8
1/4 LT1014  
+
150Ω  
A2  
1
10  
Q1  
1/4 LT1014  
+
3
5k  
LINEARITY  
GAIN TRIM  
1k  
2N4250  
(2)  
2M  
3.01k  
SENSOR  
1.5k  
6
8.25k  
ROSEMOUNT  
118MF  
A3  
1/4 LT1014  
7
50k  
ZERO  
TRIM  
+
5
+5V  
2.4k  
5%  
274k  
+5V  
4
13  
LT1009  
2.5V  
A1  
14  
10k  
1/4 LT1014  
250k  
+
12  
11  
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.  
RATIO MATCH 2M–200K ± 0.01%.  
TRIM SEQUENCE:  
SET SENSOR TO 0° VALUE.  
ADJUST ZERO FOR 0V OUT.  
SET SENSOR TO 100°C VALUE.  
ADJUST GAIN FOR 1.000V OUT.  
SET SENSOR TO 400°C.  
1013/14 TA15  
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.  
Strain Gauge Bridge Signal Conditioner  
+5V  
220  
1.2V  
REFERENCE  
OUT  
TO A/D CONVERTER  
FOR RATIOMETRIC OPERATION  
1mA MAXIMUM LOAD  
+5V  
8
LT1004  
1.2V  
10k  
ZERO  
TRIM  
V
REF  
0.1  
2
301k  
39k  
1
1/2 LT1013  
4
100k  
+
3
8
5
6
+
2
4
7
A
E
D
+
OUTPUT  
0V–3.5V  
0psi–350psi  
1/2 LT1013  
0.33  
100μF  
LTC1044  
5
PRESSURE  
TRANSDUCER  
V –V  
REF  
0.047  
350Ω  
C
100μF  
2k GAIN TRIM  
46k*  
+
*
1% FILM RESISTOR.  
PRESSURE TRANSDUCER–BLH/DHF–350.  
CIRCLED LETTER IS PIN NUMBER.  
100Ω*  
1013/14 TA16  
10134fc  
16  
LT1013/LT1014  
U
TYPICAL APPLICATIO S  
LVDT Signal Conditioner  
7
0.005  
30k  
0.005  
8
30k  
+5V  
FREQUENCY =  
1.5kHz  
11  
5
6
+
LVDT  
7
YEL-BLK  
RD-  
BLUE  
LT1013  
BLUE  
GRN  
–5V  
10k  
YEL-RD  
BLK  
12  
4.7k  
1N914  
LT1004  
1.2V  
2N4338  
100k  
3
2
14  
+
0.01  
1
OUT  
1.2k  
1μF  
LT1013  
0V–3V  
13  
10μF  
7.5k  
+
1/2 LTC1043  
200k  
100k  
+5V  
2
3
8
1k  
+
7
10k  
TO PIN 16, LT1043  
LT1011  
100k  
PHASE  
TRIM  
LVDT = SCHAEVITZ E-100.  
4
1
1013/14 TA17  
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation  
+
3
–INPUT  
R2  
R1  
1
1/4 LT1014  
2
R3  
2R  
10M  
R
G
9
6
5
8
R1  
OUTPUT  
1/4 LT1014  
+
R2  
7
10  
1/4 LT1014  
+
+INPUT  
R3  
+
2R1 R3  
G
V
R
5M  
GAIN = 1 +  
(
)
R
R2  
4
+
12  
13  
14  
2R  
1/4 LT1014  
INPUT BIAS CURRENT TYPICALLY <1nA  
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN  
NEGATIVE COMMON-MODE LIMIT = V + I × 2R + 30mV  
10M  
11  
B
10pF  
= 150mV for V = 0V  
I
B
= 12nA  
100k  
1013/14 TA18  
V
10134fc  
17  
LT1013/LT1014  
U
TYPICAL APPLICATIO S  
Low Dropout Regulator for 6V Battery  
+12 OUTPUT  
1N914  
10  
100Ω  
+
3
8
LTC1044  
2
+
4
5
10  
2N2219  
5V OUTPUT  
V
BATT  
6V  
100k  
100Ω  
0.01Ω  
0.003μF  
120k  
1M  
8
3
2
+
1
LT1004  
1.2V  
1.2k  
LT1013  
4
6
5
7
A2  
LT1013  
1N914  
30k  
50k  
+
0.009V DROPOUT AT 5mA OUTPUT.  
0.108V DROPOUT AT 100mA OUTPUT.  
I
= 850μA.  
OUTPUT ADJUST  
QUIESCENT  
1013/14 TA19  
Voltage Controlled Current Source with Ground Referred Input and Output  
+5V  
8
3
2
0V–2V  
+
1
1/2 LT1013  
4
0.68μF  
1k  
1/2 LTC1043  
7
8
11  
1μF  
100Ω  
1μF  
12  
13  
14  
I
= 0mA TO 15mA  
OUT  
V
IN  
100Ω  
I
=
OUT  
FOR BIPOLAR OPERATION,  
RUN BOTH ICs FROM  
A BIPOLAR SUPPLY.  
1013/14 TA20  
10134fc  
18  
LT1013/LT1014  
U
TYPICAL APPLICATIO S  
6V to ±15V Regulating Converter  
+6V  
+
1μF  
+6V  
15pF  
10k  
22k  
10k  
2N3906  
2N4391  
–16V  
+15V  
OUT  
+V  
CLK 1  
D1 Q1 D2 Q2  
Q1  
CLK 2  
74C00  
+16V  
8
74C74  
100kHz INPUT  
Q2  
1.4M  
10  
0.005  
+
L1  
1MHY  
+
2
3
200k  
+16V  
1
V
LT1013  
OUT  
+6V  
100k  
10k  
ADJ  
+
22k  
2N3904  
10  
4
10k  
–16V  
15pF  
LT1004  
1.2V  
82k  
+
6
5
7
LT1013  
L1 = 24-104 AIE VERNITRON  
= 1N4148  
0.005  
2N5114  
1M  
± 5mA OUTPUT  
75% EFFICIENCY  
–15V  
OUT  
1013/14 TA21  
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)†  
+5V  
8
3
+
1
1/2 LT1013  
OSCILLATOR SUPPLY  
STABILIZATION  
1M*  
2
4
5M*  
4.3k  
3.4k*  
+5V  
R
1M*  
6
LT1009  
2.5V  
2.16k*  
T1  
3.2k  
4.22M*  
+5V  
TEMPERATURE  
COMPENSATION  
GENERATOR  
100Ω  
3.5MHz  
XTAL  
100k  
20k  
100k  
7
R
6.25k  
2N2222  
T2  
1/2 LT1013  
1M*  
OSCILLATOR  
560k  
5
510pF  
510pF  
+
MV-209  
3.5MHz OUTPUT  
0.03ppm/°C, 0°C–70°C  
680Ω  
4.22M*  
R
T
YSI 44201  
*1% FILM  
3.5MHz XTAL = AT CUT – 35°20'  
MOUNT R NEAR XTAL  
T
3mA POWER DRAIN  
THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES  
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO  
MINIMIZE OVERALL OSCILLATOR DRIFT  
1013/14 TA22  
10134fc  
19  
LT1013/LT1014  
W
W
SCHE ATIC DIAGRA  
1/2 LT1013, 1/4 LT1014  
+
V
9k  
9k  
1.6k  
Q13  
1.6k  
1.6k  
100Ω  
1k  
800Ω  
Q6  
Q16  
Q14  
Q36  
Q5  
Q30  
Q15  
Q32  
Q35  
Q3  
J1  
Q4  
Q37  
Q25  
Q33  
21pF  
Q27  
3.9k  
Q26  
Q1  
2.4k  
2.5pF  
18Ω  
400Ω  
400Ω  
Q38  
Q41  
Q39  
IN  
Q21  
OUTPUT  
14k  
Q28  
Q12  
Q2  
+
IN  
Q18  
Q22  
4pF  
Q31  
Q40  
Q29  
Q10  
Q19  
2k  
100pF  
Q34  
Q11  
10pF  
600Ω  
42k  
Q9  
Q7  
Q17  
2k  
Q24  
Q8  
5k  
Q23  
2k  
Q20  
1.3k  
75pF  
5k  
30Ω  
V
1013/14 SD  
10134fc  
20  
LT1013/LT1014  
U
PACKAGE DESCRIPTIO  
H Package  
8-Lead TO-5 Metal Can (.200 Inch PCD)  
(Reference LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.027 – 0.045  
(0.686 – 1.143)  
45°TYP  
PIN 1  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
0.028 – 0.034  
(0.711 – 0.864)  
0.050  
(1.270)  
MAX  
(1.016)  
MAX  
0.200  
(5.080)  
TYP  
0.165 – 0.185  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
0.010 – 0.045*  
(0.254 – 1.143)  
0.016 – 0.021**  
(0.406 – 0.533)  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
H8(TO-5) 0.200 PCD 1197  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
CORNER LEADS OPTION  
(4 PLCS)  
6
5
4
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.023 – 0.045  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
J Package  
14-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
0.785  
(19.939)  
MAX  
0.200  
(5.080)  
MAX  
0.005  
(0.127)  
MIN  
0.300 BSC  
(0.762 BSC)  
14  
13  
12  
11  
10  
9
8
0.015 – 0.060  
(0.381 – 1.524)  
0.220 – 0.310  
0.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
2
3
4
5
6
1
7
0.045 – 0.065  
(1.143 – 1.651)  
0.100  
(2.54)  
BSC  
0.125  
(3.175)  
MIN  
0.014 – 0.026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J14 1298  
OBSOLETE PACKAGES  
10134fc  
21  
LT1013/LT1014  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
5
6
7
4
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 ± .005  
(3.302 ± 0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.127)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 ± .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
N14 1103  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
10134fc  
22  
LT1013/LT1014  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.045 ±.005  
.050 BSC  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.245  
MIN  
.160 ±.005  
7
5
8
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.030 ±.005  
.008 – .010  
(0.203 – 0.254)  
TYP  
0°– 8° TYP  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
.228 – .244  
(5.791 – 6.197)  
.053 – .069  
.016 – .050  
(0.406 – 1.270)  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
1
2
3
4
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
TYP  
N
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
.325 ±.005  
.420  
MIN  
15 14  
12  
10  
9
16  
N
13  
11  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.010 – .029  
(0.254 – 0.737)  
× 45°  
.005  
(0.127)  
RAD MIN  
1
2
3
N/2  
.394 – .419  
(10.007 – 10.643)  
0° – 8° TYP  
NOTE 3  
RECOMMENDED SOLDER PAD LAYOUT  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
N/2  
8
.009 – .013  
(0.229 – 0.330)  
NOTE 3  
.016 – .050  
(0.406 – 1.270)  
2
3
5
7
1
4
6
.050  
(1.270)  
BSC  
.004 – .012  
(0.102 – 0.305)  
NOTE:  
.014 – .019  
INCHES  
(MILLIMETERS)  
1. DIMENSIONS IN  
S16 (WIDE) 0502  
(0.356 – 0.482)  
TYP  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
10134fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1013/LT1014  
U
TYPICAL APPLICATIO  
Step-Up Switching Regulator for 6V Battery  
OUTPUT  
INPUT  
+15V  
+6V  
50mA  
22k  
2N2222  
+
2.2  
200k  
LT1004  
1.2V  
L1  
1MHY  
8
LT1013  
4
5
+
220pF  
7
1N5821  
130k  
100  
6
1M  
220k  
3
2
+
+
300Ω  
1
2N5262  
LT1013  
0.001  
5.6k  
0.1  
5.6k  
LT = AIE–VERNITRON 24–104  
78% EFFICIENCY  
1013/14 TA23  
RELATED PARTS  
PART NUMBER  
LT2078/LT2079  
LT2178/LT2179  
DESCRIPTION  
COMMENTS  
50μA Max I , 70μV Max V  
Dual/Quad 50μA Single Supply Precision Amplifier  
Dual/Quad 17μA Single Supply Precision Amplifier  
S
OS  
OS  
17μA Max I , 70μV Max V  
S
10134fc  
LT 0807 REV C • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1990  

相关型号:

LT1013_15

Dual Precision Op Amp
Linear

LT1014

Quad Precision Op Amp
Linear

LT1014

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014A

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014ACJ

Quad Precision Op Amp
Linear

LT1014ACJ#PBF

IC QUAD OP-AMP, 270 uV OFFSET-MAX, CDIP14, 0.300 INCH, LEAD FREE, HERMETIC SEALED, CERAMIC, DIP-14, Operational Amplifier
Linear

LT1014ACJ#TRPBF

IC QUAD OP-AMP, 270 uV OFFSET-MAX, CDIP14, 0.300 INCH, LEAD FREE, HERMETIC SEALED, CERAMIC, DIP-14, Operational Amplifier
Linear

LT1014ACN

Quad Precision Op Amp
Linear

LT1014ACN#PBF

暂无描述
Linear

LT1014ACN#TRPBF

IC QUAD OP-AMP, 270 uV OFFSET-MAX, PDIP14, 0.300 INCH, LEAD FREE, PLASTIC, DIP-14, Operational Amplifier
Linear

LT1014ADW

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014AFK

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI