LT1014 [TI]

QUAD PRECISION OPERATIONAL AMPLIFIERS; 四路精密运算放大器
LT1014
型号: LT1014
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUAD PRECISION OPERATIONAL AMPLIFIERS
四路精密运算放大器

运算放大器
文件: 总30页 (文件大小:628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
DW PACKAGE  
(TOP VIEW)  
Single-Supply Operation:  
Input Voltage Range Extends to Ground,  
and Output Swings to Ground While  
Sinking Current  
1OUT  
1IN–  
1IN+  
4OUT  
1
2
3
4
5
6
7
8
16  
15 4IN–  
14 4IN+  
Input Offset Voltage 300 µV Max at 25°C for  
LT1014  
13  
12  
11  
10  
9
V
V
/GND  
CC–  
CC+  
Offset Voltage Temperature Coefficient  
2.5 µV/°C Max for LT1014  
2IN+  
2IN–  
2OUT  
NC  
3IN+  
3IN–  
Input Offset Current 1.5 nA Max at 25°C for  
LT1014  
3OUT  
NC  
High Gain 1.2 V/µV Min (R = 2 k), 0.5 V/µV  
L
Min (R = 600 ) for LT1014  
L
J OR N PACKAGE  
(TOP VIEW)  
Low Supply Current 2.2 mA Max at 25°C for  
LT 1014  
1OUT  
1IN–  
1IN+  
4OUT  
4IN–  
4IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Low Peak-to-Peak Noise Voltage  
0.55 µV Typ  
Low Current Noise 0.07 pA/Hz Typ  
V
V
CC+  
CC–  
2IN+  
2IN–  
3IN+  
3IN–  
3OUT  
description  
2OUT  
8
The LT1014, LT1014A, and LT1014D are quad  
precision operational amplifiers with 14-pin  
industry-standard configuration. They feature low  
offset-voltage temperature coefficient, high gain,  
low supply current, and low noise.  
FK PACKAGE  
(TOP VIEW)  
The LT1014, LT1014A, and LT1014D can be  
operated with both dual ±  
3
2 1 20 19  
The common-mode input voltage  
4IN+  
1IN+  
18  
17  
16  
15  
14  
4
5
6
7
8
rangeincludesground, andtheoutputvoltagecan  
also swing to within a few milivolts of ground.  
Crossover distortion is eliminated.  
NC  
V
NC  
/GND  
V
CC–  
CC+  
NC  
NC  
3IN+  
2IN+  
The LT1014C and LT1014 AC are characterized  
for operation from 0°C to 70°C. The LT1014I and  
LT1014DI are characterized for operation from  
–40°C to 105°C. The LT1014M, LT1014AM and  
LT1014DM are characterized for operation over  
the full military temperature range of –55°C to  
125°C.  
9 10 11 12 13  
NC – No internal connection  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP CERAMIC  
CARRIER DIP  
V
max  
IO  
SMALL  
OUTLINE  
(DW)  
PLASTIC  
DIP  
T
A
AT 25°C  
(FK)  
(J)  
(N)  
300 µV  
800 µV  
LT1014CN  
LT1014DN  
0°C to 70°C  
LT1014DDW  
300 µV  
800 µV  
LT1014IN  
LT1014DIN  
–40°C to 105°C  
LT1014DIDW  
180 µV  
300 µV  
800 µV  
LT1014AMFK  
LT1014MFK  
LT1014AMJ  
LT1014MJ  
–55°C to 125°C  
LT1014MN  
LT1014DMN  
LT1014DMDW  
The DW package is available taped and reeled. Add the suffix R to the device type (e.g., LT1014DDWR).  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
schematic (each amplifier)  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (see Note 1): V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –22 V  
CC+  
CC–  
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Input voltage range, V (any input) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V – 5 V to V  
I
CC–  
CC+  
Duration of short-circuit current at (or below) T = 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
A
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : LT1014C, LT1014DC . . . . . . . . . . . . . . . . . . . . . . . . . . –0°C to 70°C  
A
LT1014I, LT1014DI . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 105°C  
LT1014M, LT1014AM, LT1014DM . . . . . . . . . . . . . –55°C to 125°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package . . . . . . . . . . . . . . . . . . . . . 300°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package . . . . . . . . . . . . . . . 260°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
2. Differential voltages are at the noninverting input with respect to the inverting input.  
3. The output may be shorted to either supply.  
and V  
CC–.  
CC+  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 105°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
DW  
FK  
J
1025 mV  
8.2 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
9.2 mW/°C  
656 mW  
880 mW  
880 mW  
736 mW  
369 mW  
495 mW  
495 mW  
414 mW  
205 mW  
275 mW  
275 mW  
230 mW  
1375 mV  
1375 mV  
N
1150 mV  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
electrical characteristics at specified free-air temperature, V  
noted)  
= ±15 V, V = 0 (unless otherwise  
IC  
CC±  
LT1014C  
LT1014DC  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
TYP  
TYP  
MIN  
MAX  
300  
MIN  
MAX  
800  
25°C  
60  
200  
V
IO  
Input offset voltage  
R
= 50 Ω  
µV  
S
Full range  
550  
1000  
Temperature coeficient  
of input offset voltage  
V
Full range  
0.4  
0.5  
2.5  
0.7  
5
µV/°C  
IO  
Long-term drift  
of input offset voltage  
25°C  
0.5  
µV/mo  
25°C  
Full range  
25°C  
0.15  
–12  
1.5  
2.8  
0.15  
1.5  
2.8  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
–30  
–38  
–12  
–30  
–38  
IB  
Full range  
–15 –15.3  
–15 –15.3  
25°C  
to  
13.5  
to  
13.8  
to  
13.5  
to  
13.8  
Common-mode  
input voltage range  
V
V
V
ICR  
OM  
–15  
to 13  
–15  
to 13  
Full range  
25°C  
Full range  
25°C  
±12.5  
±12  
0.5  
1.2  
0.7  
97  
±14  
±12.5  
±12  
0.5  
1.2  
0.7  
97  
±14  
Maximum peak output  
voltage swing  
R
= 2 kΩ  
V
L
V
O
V
O
= ±10 V,  
= ±10 V,  
R
R
= 600 Ω  
= 2 kΩ  
2
8
2
8
L
L
Large-signal differential  
voltage amplification  
A
VD  
25°C  
V/µV  
Full range  
25°C  
V
V
= –15 V to 13.5 V  
= –15 V to 13 V  
117  
117  
117  
117  
Common-mode  
rejection ratio  
IC  
CMRR  
dB  
dB  
Full range  
94  
94  
IC  
Supply-voltage  
rejection ratio  
25°C  
100  
100  
k
V = ±2 V to ±18 V  
CC±  
SVR  
Full range  
97  
97  
(V /V  
)
CC IO  
Channel separation  
V
O
= ±10 V,  
R
= 2 kΩ  
L
25°C  
120  
137  
300  
120  
137  
300  
dB  
Differential  
input resistance  
r
r
25°C  
25°C  
70  
70  
MΩ  
id  
ic  
Common-mode  
input resistance  
4
4
GΩ  
25°C  
0.35  
0.55  
0.6  
0.35  
0.55  
0.6  
Supply current  
per amplifier  
I
mA  
CC  
Full range  
Full range is 0°C to 70°C.  
All typical values are at T = 25°C.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 5 V, V  
= 0, V = 1.4 V, V = 0  
CC±  
CC–  
O
IC  
LT1014C  
LT1014DC  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
µV  
T
A
MIN  
TYP  
MAX  
MIN  
MAX  
950  
1200  
2
25°C  
Full range  
25°C  
90  
450  
570  
2
250  
V
IO  
Input offset voltage  
Input offset current  
Input bias current  
R
= 50 Ω  
S
0.2  
–15  
0.2  
–15  
I
I
nA  
IO  
Full range  
25°C  
6
6
–50  
–90  
–50  
–90  
nA  
IB  
Full range  
0
–0.3  
0
–0.3  
25°C  
Common-mode  
input voltage range  
to 3.5 to 3.8  
to 3.5 to 3.8  
V
V
V
ICR  
Full range 0 to 3  
25°C  
0 to 3  
Output low,  
Output low,  
No load  
15  
5
25  
10  
15  
25  
10  
25°C  
5
mV  
R
= 600 to GND  
Full range  
25°C  
13  
13  
L
Maximum peak output  
voltage swing  
Output low,  
Output high,  
I
= 1 mA  
220  
4.4  
4
350  
220  
350  
OM  
sink  
No load  
25°C  
25°C  
4
3.4  
3.2  
4
3.4  
3.2  
4.4  
4
V
Output high,  
R
= 600 to GND  
Full range  
L
Large-signal differential  
voltage amplification  
V
R
= 5 mV to 4 V,  
= 500 Ω  
O
L
A
VD  
25°C  
1
1
V/µV  
25°C  
0.3  
0.5  
0.3  
0.5  
Supply current  
per amplifier  
I
mA  
CC  
Full range  
0.55  
0.55  
Full range is 0°C to 70°C.  
operating characteristics, V ± = ±15 V, V = 0, T = 25°C  
CC  
IC  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.4  
MAX  
UNIT  
SR  
Slew rate  
0.2  
V/µs  
f = 10 Hz  
24  
V
n
Equivalent input noise voltage  
nV/Hz  
f = 1 kHz  
22  
V
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.55  
0.07  
µV  
N(PP)  
I
n
pA/Hz  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
electrical characteristics at specified free-air temperature, V  
noted)  
= ±15 V, V = 0 (unless otherwise  
IC  
CC±  
LT1014I  
LT1014DI  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
TYP  
TYP  
MIN  
MAX  
300  
MIN  
MAX  
800  
25°C  
60  
200  
V
IO  
Input offset voltage  
R
= 50 Ω  
µV  
S
Full range  
550  
1000  
Temperature coeficient  
of input offset voltage  
V
Full range  
0.4  
0.5  
2.5  
0.7  
5
µV/°C  
IO  
Long-term drift  
of input offset voltage  
25°C  
0.5  
µV/mo  
25°C  
Full range  
25°C  
0.15  
–12  
1.5  
2.8  
0.15  
1.5  
2.8  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
–30  
–38  
–12  
–30  
–38  
IB  
Full range  
–15 –15.3  
–15 –15.3  
25°C  
to  
13.5  
to  
13.8  
to  
13.5  
to  
13.8  
Common-mode  
input voltage range  
V
V
V
ICR  
OM  
–15  
to 13  
–15  
to 13  
Full range  
25°C  
Full range  
25°C  
±12.5  
±12  
0.5  
1.2  
0.7  
97  
±14  
±12.5  
±12  
0.5  
1.2  
0.7  
97  
±14  
Maximum peak  
output voltage swing  
R
= 2 kΩ  
V
L
V
O
V
O
= ±10 V,  
= ±10 V,  
R
R
= 600 Ω  
= 2 kΩ  
2
8
2
8
L
L
Large-signal differential  
voltage amplification  
A
VD  
25°C  
V/µV  
Full range  
25°C  
117  
117  
117  
117  
Common-mode  
rejection ratio  
CMRR  
V
IC  
= –15 V to 13.5 V  
dB  
dB  
Full range  
94  
94  
Supply-voltage  
rejection ratio  
25°C  
100  
100  
k
V = ±2 V to ±18 V  
CC±  
SVR  
Full range  
97  
97  
(V /V  
)
CC IO  
Channel separation  
V
O
= ±10 V,  
R
= 2 kΩ  
L
25°C  
120  
137  
300  
120  
137  
300  
dB  
Differential  
input resistance  
r
r
25°C  
25°C  
70  
70  
MΩ  
id  
ic  
Common-mode  
input resistance  
4
4
GΩ  
25°C  
0.35  
0.55  
0.6  
0.35  
0.55  
0.6  
Supply current  
per amplifier  
I
mA  
CC  
Full range  
Full range is –40°C to 105°C.  
All typical values are at T = 25°C.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 5 V, V  
= 0, V = 1.4 V, V = 0  
CC+  
CC–  
O
IC  
LT1014I  
LT1014DI  
TYP  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
µV  
MIN  
MAX  
450  
570  
2
MIN  
MAX  
950  
1200  
2
TYP  
25°C  
Full range  
25°C  
90  
250  
V
IO  
Input offset voltage  
Input offset current  
Input bias current  
R
= 50 Ω  
S
0.2  
0.2  
–15  
I
I
nA  
IO  
Full range  
25°C  
6
6
–15  
–0.3  
–50  
–90  
–50  
–90  
nA  
IB  
Full range  
0
0
–0.3  
to 3.5 to 3.8  
25°C  
Common-mode  
input voltage range  
to 3.5 to 3.8  
V
V
V
ICR  
Full range 0 to 3  
25°C  
0 to 3  
Output low,  
Output low,  
No load  
15  
5
25  
10  
15  
25  
10  
25°C  
5
mV  
R
= 600 to GND  
Full range  
25°C  
13  
13  
L
Maximum peak  
output voltage swing  
Output low,  
Output high,  
I
= 1 mA  
220  
4.4  
4
350  
220  
350  
OM  
sink  
No load  
25°C  
25°C  
4
3.4  
3.2  
4
3.4  
3.2  
4.4  
4
V
Output high,  
R
= 600 to GND  
Full range  
L
Large-signal differential  
voltage amplification  
V
R
= 5 mV to 4 V,  
= 500 Ω  
O
L
A
VD  
25°C  
1
1
V/µV  
25°C  
0.3  
0.5  
0.3  
0.5  
Supply current  
per amplifier  
I
mA  
CC  
Full range  
0.55  
0.55  
Full range is –40°C to 105°C.  
operating characteristics, V + = ±15 V, V = 0, T = 25°C  
CC  
IC  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.4  
MAX  
UNIT  
SR  
Slew rate  
0.2  
V/µs  
f = 10 Hz  
24  
V
n
Equivalent input noise voltage  
nV/Hz  
f = 1 kHz  
22  
V
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.55  
0.07  
µV  
N(PP)  
I
n
pA/Hz  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
electrical characteristics at specified free-air temperature, V  
noted)  
= ±15 V, V = 0 (unless otherwise  
IC  
CC±  
LT1014M  
LT1014AM  
LT1014DM  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
T
A
MIN TYP  
MAX  
300  
MIN TYP  
MAX  
180  
MIN TYP  
MAX  
800  
25°C  
60  
60  
200  
Input offset  
voltage  
V
IO  
R
= 50 Ω  
µV  
S
Full range  
550  
350  
1000  
Temperature  
coefficient of  
input offset  
voltage  
V
Full range  
0.5  
2.5  
0.5  
2
0.5  
2.5 µV/°C  
IO  
Long-term drift  
of input offset  
voltage  
25°C  
0.5  
0.5  
0.5  
µV/mo  
25°C  
Full range  
25°C  
0.15  
1.5  
5
0.15  
0.8  
2.8  
0.15  
1.5  
nA  
5
Input offset  
current  
I
I
IO  
–12  
–30  
–45  
–12  
–20  
–30  
–12  
–30  
nA  
Input bias  
current  
IB  
Full range  
–45  
–15 –15.3  
–15 –15.3  
–15 –15.3  
25°C  
to  
13.5  
to  
13.8  
to  
13.5  
to  
13.8  
to  
13.5  
to  
13.8  
Common-mode  
input voltage  
range  
V
V
V
ICR  
–14.9  
to 13  
–14.9  
to 13  
–14.9  
to 13  
Full range  
Maximum peak  
output voltage  
swing  
25°C  
±12.5  
±14  
±13  
±12  
±14  
±12.5  
±11.5  
±14  
R
= 2 kΩ  
V
OM  
L
Full range ±11.5  
V
R
= ±10 V,  
= 600 Ω  
O
L
Large-signal  
differential  
voltage  
25°C  
0.5  
2
8
0.8  
2.2  
8
0.5  
2
8
A
VD  
V/µV  
25°C  
1.2  
1.5  
0.4  
1.2  
V
R
= ±10 V,  
= 2 kΩ  
O
amplification  
Full range  
0.25  
0.25  
L
V
= –15 V to  
IC  
25°C  
97  
94  
117  
117  
100  
96  
117  
117  
97  
94  
117  
117  
13.5 V  
Common-mode  
rejection ratio  
CMRR  
dB  
dB  
V
= –14.9 V  
IC  
to 13 V  
Full range  
Supply-voltage  
rejection ratio  
25°C  
100  
97  
103  
100  
100  
97  
V
CC±  
±18 V  
= ±2 V to  
k
SVR  
Full range  
(V /V  
)
CC  
IO  
Channel  
separation  
V
= ±10 V,  
O
25°C  
25°C  
25°C  
120  
70  
137  
300  
4
123  
100  
137  
300  
4
120  
70  
137  
300  
4
dB  
MΩ  
GΩ  
R = 2 kΩ  
L
Differential input  
resistance  
r
r
id  
ic  
Common-mode  
input resistance  
25°C  
0.35 0.55  
0.7  
0.35 0.50  
0.6  
0.35 0.55  
0.7  
Supply current  
per amplifier  
I
mA  
CC  
Full range  
Full range is –55°C to 125°C.  
All typical values are at T = 25°C.  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 5 V, V  
= 0, V = 1.4 V, V = 0  
CC+  
CC–  
O
IC  
LT1014M  
TYP MAX  
90 450  
400 1500  
LT1014AM  
MIN TYP MAX  
LT1014DM  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
T
A
MIN  
MIN  
TYP MAX  
250 950  
25°C  
90  
280  
960  
R
R
= 50Ω  
S
Input  
offset voltage  
Full range  
400  
800 2000  
V
µV  
nA  
V
IO  
= 50,  
= 0.1 V  
S
125°C  
200  
0.2  
750  
200  
0.2  
480  
560 1200  
V
IC  
25°C  
Full range  
25°C  
2
10  
1.3  
7
0.2  
–15  
2
10  
Input  
offset current  
I
I
IO  
–15  
–50  
–120  
–15  
–35  
–90  
–50  
–120  
Input  
bias current  
IB  
Full range  
0
–0.3  
to 3.5 to 3.8  
0
–0.3  
0
–0.3  
25°C  
Full range  
25°C  
Common-  
to 3.5 to 3.8  
to 3.5 to 3.8  
V
ICR  
mode input  
voltage range  
0.1  
to 3  
0.1  
to 3  
0.1  
to 3  
Output low,  
No load  
15  
5
25  
15  
5
25  
15  
5
25  
Output low,  
25°C  
10  
18  
10  
15  
10  
18  
mV  
R
GND  
= 600to  
L
Full range  
Maximum  
peak output  
voltage swing  
Output low,  
V
OM  
25°C  
220  
350  
220  
350  
220  
350  
I
= 1 mA  
sink  
Output high,  
No load  
25°C  
25°C  
4
3.4  
3.1  
4.4  
4
4
3.4  
3.2  
4.4  
4
4
3.4  
3.1  
4.4  
4
Output high,  
V
R
GND  
= 600to  
L
Full range  
Large-signal  
differential  
voltage  
V
R
= 5 mV to 4 V,  
= 500Ω  
O
L
A
VD  
25°C  
1
1
1
V/µV  
amplification  
25°C  
0.3  
0.5  
0.3 0.45  
0.55  
0.3  
0.5  
Supply current  
per amplifier  
I
mA  
CC  
Full range  
0.65  
0.65  
Full range is –55°C to 125°C.  
operating characteristics, V  
= ±15 V, V = 0, T = 25°C  
IC A  
CC±  
PARAMETER  
TEST CONDITIONS  
MIN  
0.2  
TYP  
MAX  
UNIT  
SR  
Slew rate  
0.4  
24  
V/µs  
f = 10 Hz  
V
n
Equivalent input noise voltage  
nV/Hz  
f = 1 kHz  
22  
V
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.55  
0.07  
µV  
N(PP)  
I
n
pA/Hz  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
V
Input offset voltage vs Balanced source resistance  
Input offset voltage vs Free-air temperature  
Warm-Up Change in input offset voltage vs Elapsed time  
Input offset current vs Free-air temperature  
1
IO  
2
IO  
V  
IO  
3
I
IO  
I
IB  
4
Input bias current vs Free-air temperature  
5
6
V
IC  
Common-mode input voltage vs Input bias current  
vs Load resistance  
Differential voltage amplification  
vs Frequency  
7, 8  
9, 10  
11  
A
VD  
Channel separation vs Frequency  
Output saturation voltage vs Free-air temperature  
Common-mode rejection ratio vs Frequency  
Supply-voltage rejection ratio vs Frequency  
Supply current vs Free-air temperature  
Short-circuit output current vs Elapsed time  
Equivalent input noise voltage vs Frequency  
Equivalent input noise current vs Frequency  
Peak-to-peak input noise voltage vs Time  
Pulse response (small signal) vs Time  
Pulse response (large signal) vs Time  
Phase shift vs Frequency  
12  
CMRR  
13  
k
14  
SVR  
I
I
15  
CC  
16  
OS  
V
n
17  
I
n
17  
V
18  
N(PP)  
19, 21  
20, 22, 23  
9
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
OF REPRESENTATIVE UNITS  
vs  
LT1014  
INPUT OFFSET VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
BALANCED SOURCE RESISTANCE  
250  
200  
150  
10  
V
CC±  
= ±15 V  
T
A
= 25°C  
100  
50  
1
0
V
CC±  
V
CC–  
= 5 V  
= 0  
–50  
–100  
0.1  
–150  
–200  
–250  
R
R
S
S
+
V
CC±  
= ±15 V  
0.01  
–50  
–25  
0
25  
50  
75  
100  
125  
1 k 3 k 10 k 30 k 100 k 300 k 1 M 3 M 10 M  
T
A
– Free-Air Temperature – °C  
R
– Source Resistance – Ω  
s
Figure 1  
Figure 2  
INPUT OFFSET CURRENT  
vs  
WARM-UP CHANGE IN INPUT OFFSET VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
ELAPSED TIME  
1
5
V
IC  
= 0  
V
T
A
= ±15 V  
= 25°C  
CC±  
0.8  
4
3
2
1
0
0.6  
0.4  
V
CC±  
= ±2.5 V  
V
CC+  
= 5 V, V  
= 0  
N Package  
J Package  
CC–  
0.2  
0
V
CC±  
= ±15 V  
0
1
2
3
4
5
–50  
–25  
0
25  
50  
75  
100  
125  
T
A
– Free-Air Temperature – °C  
t – Time After Power-On – min  
Figure 3  
Figure 4  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
COMMON-MODE INPUT VOLTAGE  
INPUT BIAS CURRENT  
vs  
vs  
INPUT BIAS CURRENT  
FREE-AIR TEMPERATURE  
–30  
5
4
3
2
15  
10  
V
IC  
= 0  
T
= 25°C  
A
–25  
–20  
5
0
V
= ±15 V  
CC±  
(Left Scale)  
V
= 5 V, V  
= 0  
V
CC  
CC–  
V
V
= 5 V  
= 0  
CC+  
CC–  
–15  
–10  
–5  
(Right Scale)  
= ±2.5 V  
CC±  
–5  
1
V
= ±15 V  
CC±  
–10  
0
–1  
–30  
–15  
0
–50  
0
–5  
–10  
–15  
–20  
–25  
–25  
0
25  
50  
75  
100  
125  
I
IB  
– Input Bias Current – nA  
T
A
– Free-Air Temperature – °C  
Figure 5  
Figure 6  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
10  
4
10  
4
V
V
= ±15 V  
V
V
= 5 V, V  
= 0  
CC–  
CC±  
= ±10 V  
CC+  
= 20 mV to 3.5 V  
O
O
T
A
= 25°C  
T
A
= –55°C  
T = –55°C  
A
1
1
T
A
= 25°C  
T
A
= 125°C  
T
A
= 125°C  
0.4  
0.4  
0.1  
100  
0.1  
100  
400  
1 k  
4 k  
10 k  
400  
1 k  
4 k  
10 k  
R
– Load Resistance – Ω  
R
– Load Resistance – Ω  
L
L
Figure 7  
Figure 8  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
AND PHASE SHIFT  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80°  
V
C
T
A
= 0  
= 100 pF  
= 25°C  
C
T
A
= 100 pF  
L
IC  
L
= 25°C  
100°  
20  
10  
V
= ±15 V  
CC±  
120°  
140°  
V
= 5 V  
CC +  
A
V
CC+  
V
CC–  
= 5 V  
= 0  
VD  
V
CC±  
= ±15 V  
V
= 0  
CC –  
80  
60  
40  
20  
0
160°  
180°  
200°  
220°  
240°  
V
CC+  
= 5 V  
= 0  
0
V
CC–  
V
CC  
± = ±15 V  
–10  
–20  
0.01 0.1  
1
10 100 1 k 10 k 100 k 1 M 10 M  
f – Frequency – Hz  
0.01  
0.3  
1
3
10  
f – Frequency – MHz  
Figure 9  
Figure 10  
OUTPUT SATURATION VOLTAGE  
vs  
CHANNEL SEPARATION  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
10  
160  
140  
120  
V
V
R
= ±15 V  
V
CC+  
V
CC–  
= 5 V to 30 V  
= 0  
CC±  
= 20 V to 5 kHz  
= 2 kΩ  
I(PP)  
L
T
A
= 25°C  
I
I
= 10 mA  
= 5 mA  
sink  
Limited by  
Thermal  
Interaction  
1
sink  
R
= 100 Ω  
L
I
= 1 mA  
sink  
sink  
R
= 1 kΩ  
L
100  
80  
I
= 100 µA  
0.1  
Limited by  
Pin-to-Pin  
Capacitance  
I
I
= 10 µA  
sink  
= 0  
sink  
0.01  
60  
–50  
–25  
0
25  
50  
75  
100  
125  
10  
100  
1 k  
10 k  
100 k  
1 M  
T
A
– Free-Air Temperature – °C  
f – Frequency – Hz  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
SUPPLY-VOLTAGE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
120  
100  
V
T
A
= ± 15 V  
= 25°C  
T
A
= 25°C  
CC±  
V
CC±  
= ±15 V  
100  
80  
Positive  
Supply  
V
= 5 V  
80  
CC+  
V
= 0  
CC–  
Negative  
Supply  
60  
40  
20  
0
60  
40  
20  
0
0.1  
1
10  
100  
1 k  
10 k 100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 13  
Figure 14  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
ELAPSED TIME  
460  
420  
40  
30  
T
= –55°C  
= 25°C  
V
CC±  
= ±15 V  
A
T
A
T
A
= 125°C  
20  
10  
380  
340  
300  
260  
0
V
= ±15 V  
CC±  
T
= 125°C  
A
–10  
–20  
T
A
= 25°C  
V
V
= 5 V  
= 0  
CC+  
CC–  
T
A
= –55°C  
–30  
–40  
0
25  
50  
75  
100  
125  
–50  
–25  
0
1
2
3
t – Time – min  
T
A
– Free-Air Temperature – °C  
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
OVER A 10-SECOND PERIOD  
AND EQUIVALENT INPUT NOISE CURRENT  
vs  
vs  
TIME  
FREQUENCY  
1000  
1000  
2000  
1600  
1200  
V
= ±2 V to ±18 V  
V
T
A
= ±2 V to ±18 V  
CC±  
f = 0.1 Hz to 10 Hz  
CC±  
= 25°C  
T
A
= 25°C  
300  
100  
300  
100  
I
n
800  
400  
0
V
n
30  
10  
30  
10  
1/f Corner = 2 Hz  
10  
0
2
4
6
8
10  
1
100  
1 k  
t – Time – s  
f – Frequency – Hz  
Figure 18  
Figure 17  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
vs  
vs  
TIME  
TIME  
6
5
80  
60  
40  
V
= ±15 V  
= 1  
= 25°C  
V
= 5 V  
= 0  
CC±  
CC+  
A
V
V
A
CC–  
T
V = 0 to 4 V  
I
R
A
= 0  
= 1  
= 25°C  
L
4
V
A
T
3
20  
0
2
–20  
–40  
–60  
–80  
1
0
–1  
–2  
0
2
4
6
8
10 12 14  
0
10 20 30 40 50 60 70  
t – Time – µs  
t – Time – µs  
Figure 19  
Figure 20  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
vs  
TIME  
vs  
TIME  
160  
140  
120  
6
5
4
3
2
1
0
V
V
= 5 V  
= 0  
CC+  
CC–  
V
V
= 5 V  
= 0  
CC+  
CC–  
V = 0 to 100 mV  
I
V = 0 to 4 V  
I
R
A
= 600 to GND  
= 1  
= 25°C  
L
R
= 4.7 kto 5 V  
= 1  
= 25°C  
L
V
A
A
V
A
T
T
100  
80  
60  
40  
20  
0
–1  
–2  
–20  
0
20 40 60 80 100 120 140  
0
10 20 30 40 50 60 70  
t – Time – µs  
t – Time – µs  
Figure 21  
Figure 22  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
vs  
TIME  
6
5
V
V
= 5 V  
= 0  
CC+  
CC–  
V = 0 to 4 V  
I
R
= 0  
= 1  
= 25°C  
L
4
A
V
A
T
3
2
1
0
–1  
–2  
0
10 20 30 40 50 60 70  
t – Time – µs  
Figure 23  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
APPLICATION INFORMATION  
single-supply operation  
The LT1014 is fully specified for single-supply operation (V  
includes ground, and the output swings within a few millivolts of ground.  
= 0). The common-mode input voltage range  
CC–  
Furthermore, the LT1014 has specific circuitry that addresses the difficulties of single-supply operation, both  
at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a  
transient basis. If the input is more than a few hundred millivolts below ground, the LT1014 is designed to deal  
with the following two problems that can occur:  
1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited  
current flows from the substrate (V  
the 400-resistors in series with the input (see schematic) protect the device even when the input is 5 V  
terminal) to the input, which can destroy the unit. On the LT1014,  
CC–  
below ground.  
2. When the input is more than 400 mV below ground (at T = 25°C), the input stage of similar type operational  
A
amplifiers saturates, and phase reversal occurs at the output. This can cause lockup in servo systems.  
Because of unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the LT1014 outputs do  
not reverse, even when the inputs are at –1.5 V (see Figure 24).  
However, this phase-reversal protection circuitry does not function when the other operational amplifier on the  
LT1014 is driven hard into negative saturation at the output. Phase-reversal protection does not work on an  
amplifier:  
When 4’s output is in negative saturation (the outputs of 2 and 3 have no effect)  
When 3’s output is in negative saturation (the outputs of 1 and 4 have no effect)  
When 2’s output is in negative saturation (the outputs of 1 and 4 have no effect)  
When 1’s output is in negative saturation (the outputs of 2 and 3 have no effect)  
At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more  
than a few microproamperes while swinging to ground. The all-npn output stage of the LT1014 maintains its low  
outputresistanceandhighgaincharacteristicsuntiltheoutputissaturated. Indual-supplyoperations, theoutput  
stage is free of crossover distortion.  
5
4
3
5
5
4
3
2
4
3
2
2
1
1
0
1
0
0
–1  
–2  
–1  
–1  
(a) V  
= –1.5 V to 4.5 V  
(b) Output Phase Reversal  
Exhibited by LM358  
(c) No Phase Reversal  
Exhibited by LT1014  
I(PP)  
Figure 24. Voltage-Follower Response  
With Input Exceeding the Negative Common-Mode Input Voltage Range  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
APPLICATION INFORMATION  
comparator applications  
The single-supply operation of the LT1014 can be used as a precision comparator with TTL-compatible output.  
In systems using both operational amplifiers and comparators, the LT1014 can perform multiple duties (see  
Figures 25 and 26).  
5
4
5
4
V
V
T
A
= 5 V  
= 0  
= 25°C  
CC+  
CC–  
10 mV  
5 mV  
2 mV  
3
2
3
2
10 mV  
5 mV  
Overdrive  
2 mV  
Overdrive  
1
0
1
0
100 mV  
V
V
T
A
= 5 V  
= 0  
= 25°C  
100 mV  
CC+  
CC–  
0
50 100 150 200 250 300 350 400 450  
0
50 100 150 200 250 300 350 400 450  
t – Time – µs  
t – Time – µs  
Figure 25. Low-to-High-Level Output Response  
for Various Input Overdrives  
Figure 26. High-to-Low-Level Output Response  
for Various Input Overdrives  
low-supply operation  
The minimum supply voltage for proper operation of the LT1014 is 3.4 V (three Ni-Cad batteries). Typical supply  
current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier.  
offset voltage and noise testing  
Figure 30 shows the test circuit for measuring input offset voltage and its temperature coefficient. This circuit  
with supply voltages increased to ±20 V is also used as the burn-in configuration.  
The peak-to-peak equivalent input noise voltage of the LT1014 is measured using the test circuit shown in  
Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one  
zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as  
an additional zero to eliminate noise contribution from the frequency band below 0.1 Hz.  
An input noise-voltage test is recommended when measuring the noise of a large number of units. A 10-Hz input  
noise-voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are  
determined by the white noise and the location of the 1/f corner frequency.  
Noise current is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is  
subtracted.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
APPLICATION INFORMATION  
0.1 µF  
100 kΩ  
10 Ω  
+
2 kΩ  
+
LT1014  
22 µF  
4.3 kΩ  
2.2 µF  
Oscilloscope  
= 1 MΩ  
LT1001  
4.7 µF  
R
in  
A
VD  
= 50,000  
100 kΩ  
0.1 µF  
110 kΩ  
24.3 kΩ  
NOTE A: All capacitor values are for nonpolarized capacitors only.  
Figure 27. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit  
10 kΩ  
10 M10 MΩ  
1 2  
+
Vno  
(820 nV)2  
40 M 100  
2
100 Ω  
V
n
LT1014  
In  
10 M10 MΩ  
Metal-film resistor  
Figure 28. Noise-Current Test Circuit and Formula  
50 Ω  
(see Note A)  
15 V  
+
100 Ω  
(see Note A)  
V
O
= 1000 V  
IO  
LT1014  
50 Ω  
(see Note A)  
–15 V  
NOTE A: Resistors must have low thermoelectric potential.  
Figure 29. Test Circuit for V and αV  
IO  
IO  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
APPLICATION INFORMATION  
5 V  
Q3  
2N2905  
820 Ω  
Q1  
2N2905  
T1  
1N4002 (4)  
10 µF  
+
10 µF  
+
68 Ω  
SN74HC04 (6)  
0.002 µF  
Q2  
10 kΩ  
820 Ω  
2N2905  
10 k10 kΩ  
0.33 µF  
100 kΩ  
Q4  
2N2222  
5 V  
10 Ω  
±
2 kΩ  
1/4  
10 kΩ  
100 Ω  
4 kΩ  
LT1014  
+
20-mA  
Trim  
1 kΩ  
4-mA  
Trim  
100 pF  
10 kΩ  
80 Ω  
4-mA to 20-mA OUT  
To Load  
2.2 kMax  
±
4.3 kΩ  
1/4  
5 V  
LT1014  
+
LT1004  
1.2 V  
IN  
0 to 4 V  
1% film resistor. Match 10-kresistors 0.05%.  
T1 = PICO-31080  
Figure 30. 5-V Powered, 4-mA to 20-mA Current-Loop Transmitter With 12-Bit Accuracy  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
APPLICATION INFORMATION  
1N4002 (4)  
T1  
0.1 Ω  
10 µF  
+
5 V  
1/4  
LT1014  
+
+
100 kΩ  
1/4  
To  
Inverter  
Driver  
LT1014  
68 kΩ  
4-mA to 20-mA OUT  
Fully Floating  
10 kΩ  
4 kΩ  
4.3 kΩ  
301 Ω  
5 V  
2 kΩ  
4-mA  
Trim  
1 kΩ  
20-mA  
Trim  
LT1004  
1.2 V  
IN  
0 to 4 V  
1% film resistor  
Figure 31. Fully Floating Modification to 4-mA to 20-mA Current-Loop Transmitter With 8-Bit Accuracy  
5 V  
1/2 LTC1043  
5
5
6
6
8
+
IN+  
IN–  
1/4  
7
2
3
OUT A  
1 µF  
LT1014  
1 µF  
4
R2  
R1  
18  
15  
1/2 LTC1043  
8
3
2
7
+
IN+  
IN–  
1/4  
1
11  
1 µF  
12  
OUT B  
1 µF  
LT1014  
R2  
R1  
13  
14  
0.01 µF  
NOTE A: V = 150 µV, A  
IO VD  
= (R1/R2) + 1, CMRR = 120 dB, V  
= 0 to 5 V  
ICR  
Figure 32. 5-V Single-Supply Dual Instrumentation Amplifier  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
LT1014, LT1014A, LT1014D  
QUAD PRECISION OPERATIONAL AMPLIFIERS  
SLOS039C – JULY 1989 – REVISED SEPTEMBER 1999  
APPLICATION INFORMATION  
10  
9
+
8
To Input  
Cable Shields  
200 kΩ  
LT1014  
5 V  
2
3
10 kΩ  
1
LT1014  
20 kΩ  
10 kΩ  
+
IN–  
5 V  
10 kΩ  
13  
12  
4
RG (2 kTyp)  
200 kΩ  
14  
OUT  
LT1014  
+
1 µF  
11  
10 kΩ  
10 kΩ  
6
7
LT1014  
5
+
20 kΩ  
10 kΩ  
IN+  
5 V  
† †  
1% film resistor. Match 10-kresistors 0.05%.  
For high source impedances, use 2N2222 as diodes (with collector connected to base).  
NOTE A: A = (400,000/RG) + 1  
VD  
Figure 33. 5-V Powered Precision Instrumentation Amplifier  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jun-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
LCCC  
CDIP  
LCCC  
CDIP  
CDIP  
PDIP  
Drawing  
5962-89677012A  
5962-8967701CA  
5962-89677022A  
5962-8967702CA  
LT1014AMFKB  
LT1014AMJ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FK  
J
20  
14  
20  
14  
20  
14  
14  
14  
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB Level-NC-NC-NC  
POST-PLATE Level-NC-NC-NC  
A42 SNPB Level-NC-NC-NC  
POST-PLATE Level-NC-NC-NC  
FK  
J
1
1
FK  
J
1
1
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
LT1014AMJB  
J
1
LT1014CN  
N
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
LT1014CNE4  
LT1014DDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
N
14  
16  
16  
16  
16  
16  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
DW  
DW  
DW  
DW  
DW  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
LT1014DDWE4  
LT1014DDWR  
LT1014DDWRE4  
LT1014DIDW  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
LT1014DIDWR  
LT1014DIN  
OBSOLETE  
ACTIVE  
SOIC  
PDIP  
DW  
N
16  
14  
TBD  
Call TI  
Call TI  
25  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
LT1014DINE4  
ACTIVE  
PDIP  
N
14  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
LT1014DMDW  
LT1014DN  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
DW  
N
16  
14  
40  
25  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-NC-NC-NC  
Pb-Free  
(RoHS)  
LT1014DNE4  
ACTIVE  
PDIP  
N
14  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
LT1014IN  
LT1014MFKB  
LT1014MJ  
OBSOLETE  
ACTIVE  
PDIP  
LCCC  
CDIP  
CDIP  
N
FK  
J
14  
20  
14  
14  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
1
1
1
POST-PLATE Level-NC-NC-NC  
ACTIVE  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
LT1014MJB  
ACTIVE  
J
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jun-2005  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

LT1014A

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014ACJ

Quad Precision Op Amp
Linear

LT1014ACJ#PBF

IC QUAD OP-AMP, 270 uV OFFSET-MAX, CDIP14, 0.300 INCH, LEAD FREE, HERMETIC SEALED, CERAMIC, DIP-14, Operational Amplifier
Linear

LT1014ACJ#TRPBF

IC QUAD OP-AMP, 270 uV OFFSET-MAX, CDIP14, 0.300 INCH, LEAD FREE, HERMETIC SEALED, CERAMIC, DIP-14, Operational Amplifier
Linear

LT1014ACN

Quad Precision Op Amp
Linear

LT1014ACN#PBF

暂无描述
Linear

LT1014ACN#TRPBF

IC QUAD OP-AMP, 270 uV OFFSET-MAX, PDIP14, 0.300 INCH, LEAD FREE, PLASTIC, DIP-14, Operational Amplifier
Linear

LT1014ADW

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014AFK

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014AJ

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014AMFK

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI

LT1014AMFKB

QUAD PRECISION OPERATIONAL AMPLIFIERS
TI