LT1789-1 [Linear]

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers; 微功耗,单电源轨至轨输出仪表放大器
LT1789-1
型号: LT1789-1
厂家: Linear    Linear
描述:

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
微功耗,单电源轨至轨输出仪表放大器

仪表放大器
文件: 总24页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1789-1/LT1789-10  
Micropower,  
Single Supply Rail-to-Rail  
Output Instrumentation Amplifiers  
U
FEATURES  
DESCRIPTIO  
The LT®1789-1/LT1789-10 are micropower, precision in-  
strumentation amplifiers that are optimized for single supply  
operation from 2.2V to 36V. The quiescent current is 95µA  
max, the inputs common mode to ground and the output  
swings within 110mV of ground. The gain is set with a single  
external resistor for a gain range of 1 to 1000 for the LT1789-  
1 and 10 to 1000 for the LT1789-10.  
Micropower: 95µA Supply Current Max  
Low Input Offset Voltage: 100µV Max  
Low Input Offset Voltage Drift: 0.5µV/°C Max  
Single Gain Set Resistor:  
G = 1 to 1000 (LT1789-1)  
G = 10 to 1000 (LT1789-10)  
Inputs Common Mode to V–  
Wide Supply Range: 2.2V to 36V Total Supply  
CMRR at G = 10: 96dB Min  
The high accuracy of the LT1789-1 (40ppm maximum  
nonlinearity and 0.25% max gain error) is unmatched by  
othermicropowerinstrumentationamplifiers.TheLT1789-10  
maximizesboththeinputcommonmoderangeanddynamic  
output range when an amplification of 10 or greater is  
required, allowing precise signal processing where other  
instrumentation amplifiers fail to operate. The LT1789-1/  
LT1789-10 are laser trimmed for very low input offset  
voltage, low input offset voltage drift, high CMRR and high  
PSRR. The output can handle capacitive loads up to 400pF  
(LT1789-1), 1000pF (LT1789-10) in any gain configuration  
whiletheinputsareESDprotectedupto10kV(humanbody).  
Gain Error: G = 10, 0.25% Max  
Gain Nonlinearity: G = 10, 40ppm Max  
Input Bias Current: 40nA Max  
PSRR at G = 10: 100dB Min  
1kHz Voltage Noise: 48nV/Hz  
0.1Hz to 10Hz Noise: 1.5µVP-P  
U
APPLICATIO S  
Portable Instrumentation  
Bridge Amplifiers  
Strain Gauge Amplifiers  
The LT1789-1/LT1789-10 are offered in the 8-pin SO pack-  
age, requiring significantly less PC board area than discrete  
multi op amp and resistor designs.  
Thermocouple Amplifiers  
Differential to Single-Ended Converters  
Medical Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
0.5A to 4A Voltage Controlled Current Source  
C1  
4700pF  
V
S
C3  
V
S
120  
R1  
8k  
0.1µF  
90.9k  
+
7
2
3
R3  
100Ω  
TIP127*  
V
IN  
6
R2  
10k  
LT1636  
*ENSURE ADEQUATE POWER  
DISSIPATION CAPABILITY AT  
HIGHER VOLTAGES,  
V
S
5
4
7
3
8
+
3
4
CURRENTS AND DUTY CYCLES  
R4  
10k  
1
2
6
R
*
I
LT1789-1  
4
SENSE  
0.1Ω  
REF  
5
LOAD  
C2  
3300pF  
1
2
V
S
= 3.3V TO 32V  
V
IN  
I
=
LOAD  
R
• 10  
SENSE  
= 1A PER VOLT AS SHOWN  
R
LOAD  
*
RISE TIME 250µs, 10% TO 90%,  
1A TO 2A OUTPUT STEP INTO 0.25LOAD  
1789 TA01  
1789f  
1
LT1789-1/LT1789-10  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Supply Voltage (V+ to V) ........................................ 36V  
Input Differential Voltage ......................................... 36V  
Input Current (Note 3) ........................................ ±20mA  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range ................ 40°C to 85°C  
Specified Temperature Range (Note 4)  
LT1789C-1, LT1789C-10 .................... 40°C to 85°C  
LT1789I-1, LT1789I-10 ...................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
LT1789CS8-1  
LT1789IS8-1  
LT1789CS8-10  
LT1789IS8-10  
R
1
2
3
4
8
7
6
5
R
G
G
–IN  
+IN  
+V  
S
OUT  
REF  
–V  
S
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
17891  
1789I1  
178910  
789I10  
TJMAX = 150°C, θJA = 190°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
3V and 5V ELECTRICAL CHARACTERISTICS  
VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VCM = VREF = half supply, TA = 25°C, unless otherwise noted.  
LT1789-1  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
G
Gain Range  
LT1789-1, G = 1 + (200k/R )  
1
1000  
G
LT1789-10, G = 10 • [1+ (200k/R )]  
10  
1000  
G
Gain Error (Note 6)  
G = 1, V = 0.1V to (+V ) – 1V  
0.02  
0.20  
%
O
S
LT1789-1, V = 0.1V to (+V ) – 0.3V  
O
S
LT1789-10, V = 0.2V to (+V ) – 0.3V  
O
S
G = 10, (Note 2)  
0.06  
0.06  
0.13  
0.25  
0.27  
0.01  
0.09  
0.16  
0.25  
0.30  
%
%
%
G = 100, (Note 2)  
G = 1000, (Note 2)  
Gain Nonlinearity (Note 6)  
G = 1, V = 0.1V to (+V ) – 1V  
35  
100  
ppm  
O
S
LT1789-1, V = 0.1V to (+V ) – 0.3V  
O
S
LT1789-10, V = 0.2V to 4.7V, V = 5V  
O
S
(Note 8)  
G = 10  
12  
18  
90  
40  
75  
15  
20  
100  
100  
100  
ppm  
ppm  
ppm  
G = 100  
G = 1000  
V
V
V
Total Input Referred Offset Voltage  
Input Offset Voltage  
V
= V + V /G  
OST  
OST OSI OSO  
G = 1000  
15  
150  
0.2  
19  
100  
750  
4
20  
650  
0.2  
19  
160  
3000  
4
µV  
µV  
nA  
nA  
OSI  
Output Offset Voltage  
Input Offset Current  
G = 1 (LT1789-1), G =10 (LT1789-10)  
OSO  
I
I
(Note 6)  
(Note 6)  
OS  
Input Bias Current  
40  
40  
B
e
n
Input Noise Voltage,  
RTI (Referred to Input)  
G = 1, f = 0.1Hz to 10Hz  
5.0  
1.5  
1.0  
µV  
P-P  
µV  
P-P  
µV  
P-P  
O
G = 10  
4.6  
1.1  
G = 100, 1000  
1789f  
2
LT1789-1/LT1789-10  
3V and 5V ELECTRICAL CHARACTERISTICS  
VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VCM = VREF = half supply, TA = 25°C, unless otherwise noted.  
LT1789-1  
TYP  
LT1789-10  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
2
2
Total RTI Noise = e + (e /G)  
ni  
no  
e
Input Noise Voltage Density,  
RTI  
f = 1kHz (Note 7)  
48  
85  
52  
90  
nV/Hz  
nV/Hz  
ni  
O
e
Output Noise Voltage Density, f = 1kHz (Note 3)  
RTI  
330  
270  
no  
O
i
Input Noise Current  
Input Noise Current Density  
Input Resistance  
f = 0.1Hz to 10Hz  
16  
62  
16  
62  
pA  
P-P  
n
O
f = 1kHz  
O
fA/Hz  
GΩ  
R
V
= 0V to (+V ) – 1V (Note 6)  
0.75  
0
1.6  
0.75  
0
1.6  
IN  
IN  
S
C
Input Capacitance  
Differential  
Common Mode  
1.6  
1.6  
1.6  
1.6  
pF  
pF  
IN  
V
Input Voltage Range  
+V – 1  
S
+V – 1.2  
S
V
CM  
CMRR  
Common Mode Rejection Ratio 1k Source Imbalance, (Note 6)  
LT1789-1,V = 0V to (+V )–1V  
CM  
S
LT1789-10, V = 0V to (+V )–1.2V  
CM  
S
G = 1  
79  
96  
100  
100  
88  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
106  
114  
114  
88  
98  
98  
105  
113  
113  
PSRR  
Power Supply Rejection Ratio V = 2.5V to 12.5V, V = V = 1V  
S
CM  
REF  
G = 1  
G = 10  
G = 100  
G = 1000  
90  
100  
113  
116  
116  
dB  
dB  
dB  
dB  
100  
102  
102  
94  
102  
102  
109  
120  
120  
Minimum Supply Voltage  
Supply Current  
2.2  
67  
54  
2.5  
95  
2.2  
67  
62  
2.5  
95  
V
µA  
mV  
V
I
(Note 7)  
S
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
Short-Circuit Current  
(Note 7)  
100  
110  
OL  
OH  
(Note 7)  
+V – 0.3 +V – 0.19  
+V – 0.3 +V – 0.19  
S S  
S
S
I
Short to GND  
Short to +V  
2.2  
8.5  
2.2  
8.5  
mA  
mA  
SC  
S
BW  
SR  
Bandwidth  
G = 1  
60  
30  
3
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
25  
12  
1.5  
0.2  
Slew Rate  
G = 10, V  
4V Step  
= 0.5V to 4.5V  
0.023  
240  
0.062  
190  
V/µs  
µs  
OUT  
Settling Time to 0.01%  
Reference Input Resistance  
Reference Input Current  
Reference Gain to Output  
R
REFIN  
220  
220  
kΩ  
µA  
I
V
= 0V  
2.7  
2.7  
REFIN  
REF  
AV  
REF  
1 ±0.0001  
1 ±0.0001  
1789f  
3
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range of  
0°C TA 70°C. VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VREF = half supply, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
Gain Error (Note 6)  
CONDITIONS  
G = 1, V = 0.3V to (+V ) – 1V  
MIN  
MAX  
MIN  
MAX  
UNITS  
0.25  
%
O
S
V = 0.3V to (+V ) – 0.5V  
O
S
G = 10 (Note 2)  
0.53  
0.55  
0.30  
0.53  
%
%
G = 100 (Note 2)  
Gain Nonlinearity (Note 6)  
G = 1, V = 0.3V to (+V ) – 1V  
185  
ppm  
O
S
LT1789-1, V = 0.3V to (+V ) – 0.5V  
O
S
LT1789-10, V = 0.3V to 4.7V, V = 5V  
O
S
(Note 8)  
G = 10  
G = 100  
90  
120  
130  
130  
ppm  
ppm  
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
Total Input Referred Offset Voltage V = V + V /G  
OST  
5
3
50  
5
3
50  
ppm/°C  
V
V
V
V
V
V
V
OST  
OSI  
OSO  
Input Offset Voltage  
G = 1000  
150  
10  
190  
10  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
(Notes 3, 5)  
OSIH  
OSO  
OSOH  
G = 1 (LT1789-1), G = 10 (LT1789-10)  
950  
100  
0.5  
4
3700  
900  
0.7  
µV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
300  
0.3  
7
µV  
/T  
Input Offset Voltage Drift (RTI)  
Output Offset Voltage Drift  
Input Offset Current  
(Note 3)  
(Note 3)  
(Note 6)  
µV/°C  
µV/°C  
nA  
OSI  
/T  
20  
OSO  
I
I
I
4.5  
4.5  
OS  
/T  
Input Offset Current Drift  
Input Bias Current  
3
3
pA/°C  
nA  
OS  
B
(Note 6)  
45  
45  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
50  
50  
pA/°C  
V
V
0.2  
(+V ) – 1  
0.2  
(+V ) – 1.5  
CM  
S
S
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance, (Note 6)  
LT1789-1, V = 0.2V to (+V ) – 1V  
CM  
S
LT1789-10, V = 0.2V to (+V ) – 1.5V  
CM  
S
G = 1  
77  
94  
98  
dB  
dB  
dB  
G = 10  
85  
96  
G = 100, 1000  
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 12.5V, V = V = 1V  
S
CM  
REF  
G = 1  
88  
98  
100  
dB  
dB  
dB  
G = 10  
G = 100, 1000  
92  
100  
Minimum Supply Voltage  
Supply Current  
2.5  
115  
110  
2.5  
115  
120  
V
µA  
mV  
V
I
(Note 7)  
(Note 7)  
(Note 7)  
S
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
OL  
OH  
+V – 0.38  
S
+V – 0.38  
S
1789f  
4
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range  
of –40°C TA 85°C. VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VREF = half supply, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
Gain Error (Note 6)  
CONDITIONS  
G = 1, V = + 0.3V to (+V ) – 1V  
MIN  
MAX  
MIN  
MAX  
UNITS  
0.30  
%
O
S
V = 0.3V to (+V ) – 0.5V  
O
S
G = 10 (Note 2)  
0.57  
0.59  
0.35  
0.62  
%
%
G = 100 (Note 2)  
Gain Nonlinearity (Note 6)  
G = 1, V = 0.3V to (+V ) – 1V  
250  
ppm  
O
S
LT1789-1, V = 0.3V to (+V ) – 0.5V  
O
S
LT1789-10, V = 0.3V to 4.7V, V = 5V  
O
S
(Note 8)  
G = 10  
G = 100  
105  
160  
150  
170  
ppm  
ppm  
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
Total Input Referred Offset Voltage V = V + V /G  
OST  
5
3
50  
5
3
50  
ppm/°C  
V
V
V
V
V
V
V
OST  
OSI  
OSO  
Input Offset Voltage  
G = 1000  
175  
10  
205  
10  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
(Notes 3, 5)  
OSIH  
OSO  
OSOH  
G = 1 (LT1789-1), G = 10 (LT1789-10)  
1050  
100  
0.5  
4
4000  
900  
0.7  
20  
µV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
300  
0.3  
7
µV  
/T  
Input Offset Voltage Drift (RTI)  
Output Offset Voltage Drift  
Input Offset Current  
(Note 3)  
(Note 3)  
(Note 6)  
µV/°C  
µV/°C  
nA  
OSI  
/T  
OSO  
I
I
I
5
5
OS  
/T  
Input Offset Current Drift  
Input Bias Current  
3
3
pA/°C  
nA  
OS  
B
(Note 6)  
50  
50  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
50  
50  
pA/°C  
V
V
0.2  
+V – 1 0.2  
S
+V – 1.5  
CM  
S
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance, (Note 6)  
LT1789-1 V = 0.2V to (+V ) – 1V  
CM  
S
LT1789-10 V = 0.2V to (+V ) – 1.5V  
CM  
S
G = 1  
75  
92  
96  
dB  
dB  
dB  
G = 10  
84  
94  
G = 100, 1000  
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 12.5V, V = V = 1V  
S
CM  
REF  
G = 1  
86  
96  
98  
dB  
dB  
dB  
G = 10  
G = 100, 1000  
90  
98  
Minimum Supply Voltage  
Supply Current  
2.5  
125  
120  
2.5  
125  
130  
V
µA  
mV  
V
I
(Note 7)  
(Note 7)  
(Note 7)  
S
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
OL  
OH  
+V – 0.40  
S
+V – 0.40  
S
1789f  
5
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, RL = 20k, VCM = VOUT = 0V, TA = 25°C, unless otherwise noted.  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
LT1789-1, G = 1 + (200k/R )  
MIN  
MAX  
MIN  
MAX  
UNITS  
G
Gain Range  
1
1000  
G
LT1789-10, G = 10 • [1 + (200k/R )]  
10  
1000  
G
Gain Error  
V = ±10V  
G = 1  
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
O
0.01  
0.04  
0.04  
0.07  
0.10  
0.15  
0.15  
0.20  
%
%
%
%
0.01  
0.03  
0.03  
0.15  
0.20  
0.25  
Gain Nonlinearity  
V = ±10V  
G = 1  
G = 10  
G = 100  
G = 1000  
O
8
1
6
20  
10  
20  
ppm  
ppm  
ppm  
ppm  
5
5
25  
40  
40  
160  
20  
100  
V
V
V
Total Input Referred Offset Voltage V  
= V + V /G  
OST  
OST OSI OSO  
Input Offset Voltage  
Output Offset Voltage  
Input Offset Current  
Input Bias Current  
G = 1000  
G = 1 (LT1789-1), G = 10 (LT1789-10)  
30  
200  
0.2  
17  
235  
1
30  
0.6  
0.2  
17  
295  
3.3  
4
µV  
mV  
nA  
OSI  
OSO  
I
I
4
OS  
40  
40  
nA  
B
e
n
Input Noise Voltage, RTI  
f = 0.1Hz to 10Hz  
G = 1  
G = 10  
G = 100, 1000  
O
5.0  
1.5  
1.0  
µV  
µV  
µV  
P-P  
P-P  
P-P  
4.6  
1.1  
2
2
Total RTI Noise = e + (e /G)  
ni  
no  
e
e
Input Noise Voltage Density, RTI f = 1kHz  
49  
330  
19  
90  
14  
53  
270  
19  
95  
14  
nV/Hz  
nV/Hz  
ni  
O
Output Noise Voltage Density, RTI f = 1kHz  
no  
O
i
Input Noise Current  
Input Noise Current Density  
Input Resistance  
f = 0.1Hz to 10Hz  
pA  
P-P  
n
O
f = 1kHz  
O
100  
4.7  
62  
pA/Hz  
GΩ  
R
2
2
4.7  
IN  
C
Input Capacitance  
Differential  
Common Mode  
20  
17  
20  
17  
pF  
pF  
IN  
V
Input Voltage Range  
–15  
–15  
V
CM  
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance, V = –15V to 14V  
G = 1  
G = 10  
G = 100, 1000  
CM  
80  
98  
102  
89  
108  
117  
dB  
dB  
dB  
93  
102  
108  
123  
PSRR  
Power Supply Rejection Ratio  
LT1789-1, V = ±1.25V to ±16V  
S
LT1789-10, V = ±1.50V to ±16V  
S
G = 1  
G = 10  
G = 100, 1000  
94  
104  
106  
107  
118  
121  
dB  
dB  
dB  
100  
106  
115  
129  
Minimum Supply Voltage  
Supply Current  
±1.25  
±1.50  
V
µA  
V
I
85  
130  
85  
130  
S
V
Output Voltage Swing  
Short-Circuit Current  
±14.5 ±14.7  
±14.5 ±14.7  
O
I
Short to V  
Short to +V  
2.2  
8.5  
2.2  
8.5  
mA  
mA  
SC  
S
S
1789f  
6
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
VS = ±15V, RL = 20k, VCM = VOUT = 0V, TA = 25°C, unless otherwise noted.  
LT1789-1  
TYP  
LT1789-10  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
BW  
SR  
Bandwidth  
G = 1  
60  
30  
3
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
25  
12  
1.5  
0.2  
Slew Rate  
V
OUT  
= ±10V  
0.012 0.026  
460  
0.028 0.066  
270  
V/µs  
µs  
Settling Time to 0.01%  
Reference Input Resistance  
Reference Input Current  
Reference Gain to Output  
10V Step  
R
REFIN  
220  
220  
kΩ  
µA  
I
V
REF  
= 0  
2.7  
2.7  
REFIN  
AV  
REF  
1 ±0.0001  
1 ±0.0001  
The denotes the specifications which apply over the temperature range of 0°C TA 70°C. VS = ±15V, RL = 20k, VCM = VREF = 0V,  
unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
= ±10V  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
V
O
G = 1  
0.15  
0.38  
0.38  
0.43  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
0.20  
0.43  
0.48  
Gain Nonlinearity  
V = ±10V  
O
G = 1  
G = 10  
G = 100  
G = 1000  
25  
15  
25  
ppm  
ppm  
ppm  
ppm  
45  
45  
180  
120  
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
5
8
50  
5
8
50  
ppm/°C  
V
V
V
V
V
V
V
Total Input Referred Offset Voltage V  
= V + V /G  
OST OSI OSO  
OST  
Input Offset Voltage  
G = 1000  
(Notes 3, 5)  
G = 1  
285  
30  
325  
30  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
OSIH  
OSO  
OSOH  
1.2  
120  
0.7  
5
4
mV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
400  
0.3  
8
1000  
0.8  
22  
µV  
/T  
Input Offset Voltage Drift (RTI)  
Output Offset Voltage Drift  
Input Offset Current  
(Note 3)  
(Note 3)  
µV/°C  
µV/°C  
nA  
OSI  
/T  
OSO  
I
I
I
4.5  
4.5  
OS  
/T  
Input Offset Current Drift  
Input Bias Current  
2
2
pA/°C  
nA  
OS  
B
45  
14  
45  
14  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
35  
35  
pA/°C  
V
V
G = 1, Other Input Grounded  
1k Source Imbalance,  
–14.8  
–14.8  
CM  
CMRR  
Common Mode Rejection Ratio  
V
G = 1  
G = 10  
G = 100, 1000  
= –14.8V to 14V  
CM  
78  
96  
100  
dB  
dB  
dB  
91  
100  
1789f  
7
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range of  
0°C TA 70°C. VS = ±15V, RL = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
LT1789-1, V = ±1.25V to ±16V  
S
LT1789-10, V = ±1.50V to ±16V  
S
G = 1  
G = 10  
G = 100, 1000  
92  
102  
104  
dB  
dB  
dB  
98  
104  
Minimum Supply Voltage  
Supply Current  
±1.25  
±1.50  
V
µA  
I
150  
150  
S
V
Output Voltage Swing  
Slew Rate  
±14.25  
±14.25  
V
O
SR  
V
= ±10V  
0.010  
0.026  
V/µs  
OUT  
The denotes the specifications which apply over the temperature range of –40°C TA 85°C. VS = ±15V, RL = 20k, VCM = VREF = 0V,  
unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
V = ±10V  
O
G = 1  
0.20  
0.57  
0.57  
0.62  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
0.25  
0.62  
0.67  
Gain Nonlinearity  
V = ±10V  
O
G = 1  
30  
20  
ppm  
ppm  
ppm  
ppm  
G = 10  
G = 100  
G = 1000  
50  
50  
200  
30  
130  
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
5
8
50  
5
8
50  
ppm/°C  
V
V
V
V
V
V
V
Total Input Referred Offset Voltage V  
= V + V /G  
OST OSI OSO  
OST  
Input Offset Voltage  
G = 1000  
(Notes 3, 5)  
G = 1  
305  
30  
1.3  
120  
0.7  
5
340  
30  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
OSIH  
OSO  
OSOH  
4.2  
1000  
0.8  
22  
mV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
400  
0.3  
8
µV  
/T  
Input Offset Voltage Drift (RTI)  
Output Offset Voltage Drift  
Input Offset Current  
(Note 3)  
(Note 3)  
µV/°C  
µV/°C  
nA  
OSI  
/T  
OSO  
I
I
I
5
5
OS  
/T  
OS  
Input Offset Current Drift  
Input Bias Current  
2
2
pA/°C  
nA  
50  
14  
50  
14  
B
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
35  
35  
pA/°C  
V
V
CM  
G = 1, Other Input Grounded  
1k Source Imbalance,  
–14.8  
–14.8  
CMRR  
Common Mode Rejection Ratio  
V
= –14.8V to 14V  
CM  
G = 1  
76  
94  
98  
dB  
dB  
dB  
G = 10  
G = 100, 1000  
89  
98  
1789f  
8
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the temperature range of  
–40°C TA 85°C. VS = ±15V, RL = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
LT1789-1, V = ±1.25V to ±16V  
MIN  
MAX  
MIN  
MAX  
UNITS  
S
LT1789-10, V = ±1.50V to ±16V  
S
G = 1  
90  
100  
102  
dB  
dB  
dB  
G = 10  
G = 100, 1000  
96  
102  
Minimum Supply Voltage  
Supply Current  
±1.25  
±1.50  
V
µA  
I
160  
160  
S
V
Output Voltage Swing  
Slew Rate  
±14.15  
±14.15  
V
O
SR  
V
= ±10V  
0.008  
0.024  
V/µs  
OUT  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 5: Hysteresis in offset voltage is created by package stress that  
of a device may be impaired.  
differs depending on whether the IC was previously at a higher or lower  
temperature. Offset voltage hysteresis is always measured at 25°C, but  
the IC is cycled to 85°C I-grade (or 70°C C-grade) or 40°C I-grade  
(0°C C-grade) before successive measurement. 60% of the parts will  
pass the typical limit on the data sheet.  
Note 2: Does not include the effect of the external gain resistor R .  
G
Note 3: This parameter is not 100% tested.  
Note 4: The LT1789C-1/ LT1789C-10 is guaranteed to meet specified  
performance from 0°C to 70°C and is designed, characterized and  
expected to meet these extended temperature limits, but is not tested at  
–40°C and 85°C. The LT1789I-1/ LT1789I-10 is guaranteed to meet the  
extended temperature limits.  
Note 6: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
V = ±15V tests.  
S
Note 7: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
V = ±15V tests.  
S
Note 8: This parameter is not tested at V = 3V on the LT1789-10 due to  
S
an increase in sensitivity to test system noise. Actual performance is  
expected to be similar to performance at V = 5V.  
S
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-1, LT1789-10)  
Input Bias Current  
vs Temperature  
Input Bias Current  
vs Common Mode Input Voltage  
Supply Current vs Supply Voltage  
120  
110  
100  
90  
0
–5  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
V
V
= 5V, 0V  
CM  
–55°C  
S
= 2.5V  
125°C  
125°C  
80  
25°C  
85°C  
–10  
–15  
–20  
–25  
25°C  
70  
60  
–55°C  
50  
40  
V
V
= 5V, 0V  
REF  
30  
S
= 2.5V  
20  
0
20  
30 35  
5
10 15  
25  
40  
–50 –25  
0
25  
50  
75 100 125  
–0.5 0 0.5  
2.5 3  
1 4.5 5  
1.5 2 3.5 4  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
COMMON MODE INPUT VOLTAGE (V)  
1789 G01  
1789 G02  
1789 G03  
1789f  
9
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-1)  
Output Voltage Swing  
vs Load Current  
Slew Rate vs Temperature  
Gain vs Frequency  
80  
70  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
0.050  
V
V
= 5V, 0V  
S
REF  
V
V
= 5V, 0V  
= 2.5V  
–55°C  
S
REF  
= 2.5V  
0.045  
0.040  
G = 1000  
G = 100  
G = 10  
125°C  
SOURCE  
G = 1  
= 20k  
60  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
L
25°C  
50  
0.035  
0.030  
0.025  
0.020  
0.015  
40  
RISING  
V
V
= 5V, 0V  
= 2.5V  
S
REF  
30  
125°C  
20  
25°C  
FALLING  
10  
G = 1  
0
SINK  
–55°C  
–10  
–20  
0.010  
100  
1k  
10k  
100k  
25  
0
50  
75 100 125  
50  
25  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
1789 G05  
1789 G04  
1789 G06  
Negative Power Supply Rejection  
Ratio vs Frequency  
Positive Power Supply Rejection  
Ratio vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
120  
110  
100  
140  
120  
100  
80  
140  
120  
100  
80  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
REF  
V
V
= 5V, 0V  
= 2.5V  
REF  
S
REF  
S
S
= 2.5V  
G = 100, 1000  
G = 10  
INPUT REFERRED  
INPUT REFERRED  
G = 1000  
G =10  
G = 1  
G = 100  
G = 10  
G = 100, 1000  
G = 1  
90  
80  
G = 1  
60  
60  
70  
60  
40  
40  
20  
20  
50  
40  
0
0
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1879 G07  
1789 G08  
1789 G09  
Settling Time to 0.01% vs Output  
Step  
Output Impedance vs Frequency  
Overshoot vs Capacitive Load  
100  
90  
10  
8
10k  
1k  
V
S
= ±15V  
= 20k  
V
V
= 5V, 0V  
= 2.5V  
V
V
V
= 5V, 0V  
= 2.5V  
OUT  
S
REF  
S
REF  
R
L
G = 1  
= 100mV  
P-P  
80  
6
70  
4
60  
50  
2
100  
10  
0
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
A
= 1  
V
A
= 10  
V
A
100  
V
1
100  
1
10  
100  
1000  
0
100  
300  
SETTLING TIME (µs)  
400  
500  
200  
1k  
10k  
100k  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
1789 G11  
1789 G10  
1789 G12  
1789f  
10  
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-1)  
Voltage Noise Density vs  
Frequency  
Current Noise Density vs  
Frequency  
1000  
100  
10  
1000  
100  
10  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
REF  
INPUT REFERRED  
G = 1  
G = 10  
R
S
G = 100, 1000  
LT1789-1  
10  
1
10  
100  
1k  
1
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1789 G13  
1789 G14  
0.1Hz to 10Hz Noise Voltage,  
RTI, G = 1000  
0.1Hz to 10Hz Noise Voltage,  
G = 1  
0.1Hz to 10Hz Noise Current  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
V
= 5V, 0V  
= 2.5V  
REF  
S
REF  
S
REF  
S
V
0
1
2
3
4
5
6
7
8
9
10  
1
3
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
5
6
7
8
9 10  
TIME (SEC)  
TIME (SEC)  
TIME (SEC)  
1789 G16  
1789 G15  
1789 G17  
Turn-On Characteristics  
1.5  
0.5  
V
V
V
= 5V, 0V  
S
= 2.5V  
= 2.5V  
REF  
CM  
G = 1000  
T
= 25°C  
A
–0.5  
–1.5  
20  
0
10  
30  
40  
TIME (ms)  
1789 G18  
1789f  
11  
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-10)  
Output Voltage Swing  
vs Load Current  
Gain vs Frequency  
Slew Rate vs Temperature  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
V
V
= 5V, 0V  
REF  
–55°C  
S
= 2.5V  
125°C  
SOURCE  
G = 1000  
G = 100  
G = 10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
RISING  
25°C  
V
V
= 5V, 0V  
REF  
S
= 2.5V  
125°C  
FALLING  
25°C  
SINK  
–55°C  
–10  
–20  
0.001  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
–25  
0
25  
50  
75  
125  
–50  
100  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1789 G22  
1789 G21  
1789 G23  
Common Mode Rejection Ratio  
vs Frequency  
Negative Power Supply Rejection  
Ratio vs Frequency  
Positive Power Supply Rejection  
Ratio vs Frequency  
140  
120  
100  
80  
120  
110  
100  
90  
140  
120  
100  
80  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
REF  
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
S
REF  
G = 100, 1000  
G = 100, 1000  
G = 10  
= 2.5V  
G = 1000  
INPUT REFERRED  
INPUT REFERRED  
G = 10  
G = 100  
G = 10  
80  
60  
60  
70  
40  
40  
60  
20  
20  
50  
40  
0
0
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1789 G26  
1789 G24  
1789 G25  
Settling Time to 0.01% vs  
Output Step  
Output Impedance vs Frequency  
Overshoot vs Capacitive Load  
10k  
1k  
100  
90  
10  
8
V
V
= 5V, 0V  
= 2.5V  
V
S
= ±15V  
V
V
V
= 5V, 0V  
= 2.5V  
OUT  
S
REF  
S
REF  
R
= 20k  
L
G = 10  
= 100mV  
P-P  
6
80  
70  
4
2
60  
50  
100  
10  
0
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
G = 1000  
G = 100  
G = 10  
1
100  
1k  
10k  
100k  
0
100  
300  
SETTLING TIME (µs)  
400  
500  
200  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
FREQUENCY (Hz)  
1789 G28  
1789 G27  
1789 G29  
1789f  
12  
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-10)  
Current Noise Density vs  
Frequency  
Voltage Noise Density vs  
Frequency  
1000  
100  
10  
1000  
100  
10  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
REF  
INPUT REFERRED  
G = 10  
G = 100  
G = 1000  
R
S
LT1789-10  
10  
1
100  
1k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1789 G31  
1789 G30  
0.1Hz to 10Hz Noise Voltage,  
RTI, G = 1000  
0.1Hz to 10Hz Noise Voltage,  
RTI, G = 10  
0.1Hz to 10Hz Noise Current  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
REF  
S
REF  
0
1
2
3
4
5
6
7
8
9 10  
0
1
2
3
4
5
6
7
8
9 10  
0
1
2
3
4
5
6
7
8
9 10  
TIME (SEC)  
TIME (SEC)  
TIME (SEC)  
1789 G34  
1789 G33  
1789 G32  
Turn-On Characteristics  
1.5  
0.5  
V
V
V
= 5V, 0V  
S
= 2.5V  
= 2.5V  
REF  
CM  
G = 1000  
T
= 25°C  
A
–0.5  
–1.5  
20  
0
10  
30  
40  
TIME (ms)  
1789 G18  
1789f  
13  
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-1)  
Large-Signal Transient Response  
G = 1, 10, 100  
Large-Signal Transient Response  
G = 1000  
1789-1 G38  
1789-1 G39  
500µs/DIV  
VS = ±15V  
L = 20k  
CL = 50pF  
2ms/DIV  
VS = ±15V  
RL = 20k  
CL = 50pF  
R
Small-Signal Transient Response  
G = 1  
Small-Signal Transient Response  
G = 10  
1789-1 G40  
1789-1 G41  
100µs/DIV  
VS = 5V, 0V  
VREF = 2.5V  
100µs/DIV  
V
V
S = 5V, 0V  
REF = 2.5V  
R
L = 20k  
RL = 20k  
CL = 50pF  
CL = 50pF  
Small-Signal Transient Response  
G = 1000  
Small-Signal Transient Response  
G = 100  
1789-1 G43  
1789-1 G42  
2ms/DIV  
VS = 5V, 0V  
VREF = 2.5V  
RL = 20k  
200µs/DIV  
VS = 5V, 0V  
VREF = 2.5V  
RL = 20k  
C
L = 50pF  
C
L = 50pF  
1789f  
14  
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-10)  
Large-Signal Transient Response  
G = 10, 100  
Large-Signal Transient Response  
G = 1000  
1789-10 G44  
1789-1 0 G45  
500µs/DIV  
VS = ±15V  
500µs/DIV  
VS = ±15V  
RL = 20k  
CL = 50pF  
R
L = 20k  
CL = 50pF  
Small-Signal Transient Response  
G = 10  
1789-10 G46  
100µs/DIV  
VS = 5V, 0V  
VREF = 2.5V  
RL = 20k  
C
L = 50pF  
Small-Signal Transient Response  
G = 100  
Small-Signal Transient Response  
G = 1000  
1789-10 G47  
1789-10 G48  
200µs/DIV  
2ms/DIV  
V
V
S = 5V, 0V  
REF = 2.5V  
V
V
S = 5V, 0V  
REF = 2.5V  
RL = 20k  
RL = 20k  
CL = 50pF  
CL = 50pF  
1789f  
15  
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-1)  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = ±15V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = ±2.5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = ±1.5V  
15  
10  
5
3.0  
2.5  
1.5  
1.0  
T
= 25°C  
T
= 25°C  
A
A
T = 25°C  
A
A
V
= 10  
G 2  
G = 1  
A
= 1  
= 2  
V
2.0  
A
= 1  
V
A
V
A = 10  
1.5  
A
= 2  
V
V
0.5  
1.0  
0.5  
0
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–5  
–10  
–15  
–0.5  
–1.0  
–1.5  
–15  
–5  
0
5
10  
15  
–10  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–1.5  
–0.5  
0
0.5  
1.0  
1.5  
–1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
15V  
2.5V  
1.5V  
+
+
+
+
+
+
V
V
V
V /2  
D
V /2  
D
V /2  
D
V
V
V
LT1789-1  
LT1789-1  
LT1789-1  
OUT  
OUT  
OUT  
V /2  
D
V /2  
D
V /2  
D
REF  
REF  
REF  
20K  
20K  
20K  
V
CM  
V
CM  
V
CM  
V
V
V
1789 G49  
–15V  
–2.5V  
–1.5V  
1789 G50  
1789 G51  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 3V  
5
4
3
2
1
0
3
T
= 25°C  
T = 25°C  
A
A
2
1
0
G = 1  
G = 1  
G = 2  
G = 10  
G = 2  
G = 10  
0
1
2
3
4
5
2.0  
3.0  
0
0.5  
1.5  
2.5  
1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
5V  
3V  
+
+
+
+
V
V
V /2  
D
V /2  
D
V
V
LT1789-1  
LT1789-1  
OUT  
OUT  
V /2  
D
V /2  
D
REF  
REF  
20K  
20K  
V
V
CM  
CM  
V
V
1789 G52  
1789 G53  
1789f  
16  
LT1789-1/LT1789-10  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LT1789-10)  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = ±15V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = ±2.5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = ±1.5V  
15  
10  
5
2.5  
2.0  
1.5  
G = 10  
T
= 25°C  
T = 25°C  
A
A
A
V
= 10  
T
= 25°C  
A
A
V
= 10  
G = 100  
1.0  
0.5  
A
V
= 100  
1.5  
A
V
= 100  
1.0  
0.5  
0
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–5  
–10  
–15  
–0.5  
–1.0  
–1.5  
–15  
–5  
0
5
10  
15  
0
–0.5  
–10  
–2.5  
–1.5  
0.5  
1.5  
2.5  
–1.5  
0.5  
0
0.5  
1.0  
1.5  
–1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
15V  
2.5V  
1.5V  
+
+
+
+
+
+
V
V
V
V /2  
D
V /2  
D
V /2  
D
V
V
V
LT1789-10  
LT1789-10  
LT1789-10  
OUT  
OUT  
OUT  
V /2  
D
V /2  
D
V /2  
D
REF  
REF  
REF  
20K  
20K  
20K  
V
CM  
V
CM  
V
CM  
V
V
V
–15V  
–2.5V  
–1.5V  
1789 G54  
1789 G55  
1789 G56  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 3V  
5
4
3
2
1
0
3
2
1
0
T
= 25°C  
A
T
= 25°C  
A
G = 10  
G = 10  
G = 100  
G = 100  
0
1
2
3
4
5
2.0  
3.0  
0
0.5  
1.5  
2.5  
1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
5V  
3V  
+
+
+
+
V
V
V /2  
D
V /2  
D
V
V
LT1789-10  
LT1789-10  
OUT  
OUT  
V /2  
D
V /2  
D
REF  
REF  
20K  
20K  
V
V
CM  
CM  
V
V
1789 G57  
1789 G58  
1789f  
17  
LT1789-1/LT1789-10  
W
BLOCK DIAGRA  
+
+
V
V
100k  
+
V
5.7k  
+IN  
3
+
R1  
R2  
R
1
8
G
110k/10k* 110k/100k*  
A1  
5
REF  
+
+
V
V
V
V
V
B
V
+
A3  
R
G
100k  
+
V
5.7k  
–IN  
2
+
R3  
R4  
110k/10k* 110k/100k*  
A2  
6
7
OUT  
V
V
+
V
V
B
V
*LT1789-1/LT1789-10  
4
V
1789 BD  
Figure 1. Block Diagram  
1789f  
18  
LT1789-1/LT1789-10  
W U U  
APPLICATIO S I FOR ATIO  
U
Setting the Gain  
voltage dominates, whereas at low gains the output offset  
voltage dominates. The total offset voltage is:  
The gain of the LT1789-1 and LT1789-10 is set by the  
value of resistor RG, applied across pins 1 and 8. For the  
LT1789-1, the gain G will be:  
Total input offset voltage (RTI)  
= input offset + (output offset/G)  
G = 1+ 200k/RG  
Total output offset voltage (RTO)  
= (input offset • G) + output offset  
and RG can be calculated from the desired gain by  
RG = 200k/(G – 1)  
Reference Terminal  
For the LT1789-10, the gain G will be  
G =10 • (1 + 200k/RG)  
The output voltage of the LT1789-1/LT1789-10 (Pin 6) is  
referenced to the voltage on the reference terminal (Pin  
5). Resistance in series with the REF pin must be mini-  
mized for best common mode rejection. For example, a  
22resistance from the REF pin to ground will not only  
increase the gain error by 0.02% but will lower the CMRR  
to 80dB.  
and RG can be calculated from the desired gain by  
RG = 200k/(0.1 • G – 1)  
For the lowest achievable gain, RG may be set to infinity by  
leaving Pins 1 and 8 open.  
Output Offset Trimming  
Input and Output Offset Voltage  
The LT1789-1/LT1789-10 is laser trimmed for low offset  
voltage so that no external offset trimming is required for  
most applications. In the event that the offset needs to be  
adjusted,thecircuitinFigure2isanexampleofanoptional  
offset adjust circuit. The op amp buffer provides a low  
impedance to the REF pin where resistance must be kept  
to a minimum for best CMRR and lowest gain error.  
The offset voltage of the LT1789-1/LT1789-10 has two  
components: the output offset and the input offset. The  
total offset voltage referred to the input (RTI) is found by  
dividingtheoutputoffsetbytheprogrammedgain(G)and  
adding it to the input offset. At high gains the input offset  
2
+
V
OUTPUT  
6
–IN  
1
8
3
R
G
LT1789-1/-10  
REF  
2
3
10mV  
+
+IN  
5
1
100Ω  
10k  
LT1880  
+
±10mV  
ADJUSTMENT RANGE  
100Ω  
–10mV  
V
1789 F02  
Figure 2. Optional Trimming of Output Offset Voltage  
1789f  
19  
LT1789-1/LT1789-10  
W U U  
U
APPLICATIO S I FOR ATIO  
Input Bias Current Return Path  
Output Voltage vs Input Common Mode Voltage  
The low input bias current of the LT1789-1/LT1789-10  
(19nA) and the high input impedance (1.6G) allow the  
use of high impedance sources without introducing sig-  
nificant offset voltage errors, even when the full common  
moderangeisrequired.However,apathmustbeprovided  
for the input bias currents of both inputs when a purely  
differential signal is being amplified. Without this path the  
inputs will float high and exceed the input common mode  
rangeoftheLT1789-1/LT1789-10,resultinginasaturated  
input stage. Figure 3 shows three examples of an input  
bias current path. The first example is of a purely differen-  
tial signal source with a 10kinput current path to  
ground. Since the impedance of the signal source is low,  
only one resistor is needed. Two matching resistors are  
needed for higher impedance signal sources as shown in  
the second example. Balancing the input impedance im-  
proves both common mode rejection and DC offset. The  
need for input resistors is eliminated if a center tap is  
present as shown in the third example.  
All instrumentation amplifiers have limiting factors that  
can cause an output to be invalid (the output is not equal  
totheinputdifferentialvoltagemultipliedbythegain)even  
though the output appears to be operating in a linear  
region. Limiting factors such as input voltage range and  
output swing can be easily measured, however, there are  
also internal nodes that can limit. These internal nodes  
cannot be measured externally and can lead to erroneous  
output readings.  
To ensure a valid output for a given input common mode  
voltage and input differential voltage, the following four  
limiting factors must be taken into consideration (refer to  
the block diagram):  
1) The input voltage ranges of the input amplifiers A1 and  
A2.  
2) The output swings of the input amplifiers A1 and A2  
(internal nodes).  
+
+
MICROPHONE,  
LT1789-1/  
LT1789-1/  
LT1789-10  
LT1789-1/  
LT1789-10  
R
HYDROPHONE,  
ETC  
R
G
R
G
THERMOCOUPLE  
G
LT1789-10  
+
200k  
200k  
10k  
CENTER-TAP PROVIDES  
BIAS CURRENT RETURN  
1789 F03  
Figure 3. Providing an Input Common Mode Current Path  
1789f  
20  
LT1789-1/LT1789-10  
W
U U  
U
APPLICATIO S I FOR ATIO  
single supplies, where both the reference voltage and  
inputcommonmodevoltagearenearV+. Thisisalsomore  
of a concern with the LT1789-10 because the ratio of  
R1:R2 is 1:10 instead of 1:1.  
3) The input voltage range of the output amplifier A3  
(internal node).  
4) The output swing of the output amplifier A3.  
These limits can be determined using the relationships  
below.  
4)The output voltage swing limits are also found in the  
electrical tables.  
1)The input voltage range limits can be found in the  
electrical tables.  
The Output Voltage vs Input Common Mode Voltage  
typical performance curves show the regions of operation  
for the three supply voltages specified.  
2)The output voltages of the input amplifiers A1 and A2  
can be found by the following formulas:  
Single Supply Operation  
V
OUT A1 = (VD/2)(G)(R1/R2) + VCM + 0.6V  
There are usually two types of input signals that need to be  
processed; differential signals, like the output of a bridge  
or single ended signals, such as the output from a ther-  
mistor. Both signals require special consideration when  
operating with a single supply.  
VOUT A2 = (–VD/2)(G)(R1/R2) + VCM + 0.6V  
Where VD is the input differential voltage and VCM is the  
input common mode voltage.  
The typical output swing limits for A1 and A2 can be found  
in the Output Swing vs Load Current typical performance  
curve, using R1 + R2 as the load resistance.  
When processing differential signals , REF (Pin 5) must be  
brought above the negative supply (Pin 4) to allow the  
output to process both the positive and negative going  
input signal. The maximum output operating range is  
obtained by setting the voltage on the REF pin to half  
supply. Thismustbedonewithalowimpedancesourceto  
minimize CMRR and gain errors.  
This limitation usually becomes dominant when gain is  
taken in the input stage and the common mode input  
voltage is close to either supply rail.  
The LT1789-10 is less susceptible to this limiting factor  
because the gain is taken in the output stage.  
For single ended input signals, the REF pin can be at the  
same potential as the negative supply provided the output  
of the instrumentation amplifier remains inside the speci-  
fied operating range. This maximizes the output range,  
however the smallest input signal that can be processed is  
limited by the output swing to the negative supply.  
3)The voltage on the inputs to the output amplifier A3 can  
be determined by the following formula:  
VIN A3 = (VOUT A1 – VREF)(R2/(R1 + R2))  
The input voltage range of A3 has the same input limits as  
the LT1789-1. This limiting factor is more prevalent with  
1789f  
21  
LT1789-1/LT1789-10  
U
TYPICAL APPLICATIO S  
Single Supply Positive Integrator  
V
S
3
V
+
IN  
7
V
S
R1  
10k  
8
6
3
4
LT1789-1  
REF  
+
1
2
1
+
V
OUT  
LT1636  
2
5
C1  
R2  
100µF 10Ω  
4
RESET  
1789 TA02  
V
S
= 2.7V TO 32V  
TIME CONSTANT = (R1)(C1) = 1 SECOND AS SHOWN  
Avalanche Photo Diode Module Bias Current Monitor  
FOR OPTIONAL “ZERO CURRENT” FEEDBACK TO  
APD BIAS REGULATOR, SEE APPENDIX A, APPLICATION NOTE 92  
1k*  
1%  
APD  
HIGH VOLTAGE  
BIAS INPUT  
V
= 20V TO 90V  
OUT  
TO APD  
1µF  
100V  
1µF  
100V  
100k*  
100k*  
Q1  
1N4690  
5.6V  
1M*  
0.2µF  
5V  
5V  
6
1µF  
+
20k  
2
A1  
OUTPUT  
0V TO 1V =  
0mA TO 1mA  
S2  
A2  
LT1006  
LT1789-1  
+
10k  
1µF  
30k  
5
0.2µF  
Q2  
MPSA42  
20k*  
–3.5V  
1M*  
–3.5V  
20k  
13  
200k*  
18  
12  
14  
S1  
–3.5V TO  
AMPLIFIERS  
5V  
22µF  
5V  
3
S3  
15  
* = 0.1% METAL FILM RESISTOR  
22µF  
+
1µF 100V = TECATE CMC100105MX1825  
CIRCLED NUMBERS = LTC1043 PIN NUMBER  
#
= 1N4148  
16  
17  
4
= TP0610L  
0.056µF  
5V  
FOR MORE INFORMATION REFER TO APPLICATION NOTE 92  
AN92 F04  
1789f  
22  
LT1789-1/LT1789-10  
U
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1789f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1789-1/LT1789-10  
U
TYPICAL APPLICATIO S  
Voltage Controlled Current Source  
3V TO 32V  
3
V
+
IN  
7
8
6
L
LT1789-1  
R
G
REF  
1
2
R1  
1k  
5
4
I
LOAD  
I
= A • V /R1  
L
V
IN  
1789 TA03  
200k  
G
A
V
= 1 +  
R
10°C to 40°C Thermometer  
29.4k  
1%  
+
V
S
4
6
3
8
+
LT1790  
–1.25  
V
S
+
7
1
2
6
36.5k  
0.5%  
LT1789-10  
4
1
2
V
= 2.5V AT 25°C + 50mV/°C  
OUT  
5
OVER 10°C TO 40°C  
LINEARITY = 0.3°C  
THERMISTOR  
THERMOMETRICS  
DC95G104V  
100k  
@ 25°C  
866k  
1%  
ACCURACY = 1°C WORST CASE  
TOLERANCE STACK-UP  
56.2k  
1%  
+
V
S
= 4V TO 18V  
1789 TA04  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1100  
LT1101  
LT1102  
LT1167  
Precision Chopper-Stabilized Instrumentation Amplifier  
Best DC Accuracy  
Precision, Micropower, Single Supply Instrumentation Amplifier  
High Speed, JFET Instrumentation Amplifier  
Fixed Gain of 10 or 100, I < 105µA  
S
Fixed Gain of 10 or 100, 30V/µs Slew Rate  
Single Resistor Gain Programmable,  
Precision Instrumentation Amplifier  
Gain Error: 0.08% Max, Gain Nonlinearity: 10ppm Max,  
60µV Max Input Offset Voltage, 90dB Min CMRR  
LT1168  
LTC®1418  
Low Power, Single Resistor Programmable Instrumentation Amplifier  
14-Bit, Low Power, 200ksps ADC with Serial and Parallel I/O  
I
= 530µA Max  
SUPPLY  
Single Supply 5V or ±5V Operation, ±1.5LSB INL  
and ±1LSB DNL Max  
LT1460  
LT1468  
Precision Series Reference  
Micropower; 2.5V, 5V, 10V Versions; High Precision  
16-Bit Accurate Op Amp, Low Noise Fast Settling  
16-Bit Accuracy at Low and High Frequencies, 90MHz GBW,  
22V/µs, 900ns Settling  
LTC1562  
LTC1605  
Active RC Filter  
Lowpass, Bandpass, Highpass Responses; Low Noise,  
Low Distortion, Four 2nd Order Filter Sections  
16-Bit, 100ksps, Sampling ADC  
Single 5V Supply, Bipolar Input Range: ±10V,  
Power Dissipation: 55mW Typ  
1789f  
LT/TP 0403 2K • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT1789-10

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789-10_15

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789-1_1

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789-1_15

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-1

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-1#PBF

LT1789 - Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1789CS8-1#TR

暂无描述
Linear

LT1789CS8-1#TRPBF

LT1789 - Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1789CS8-1-PBF

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-1-TR

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-1-TRPBF

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-10

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear