LT1789CS8-1-TR [Linear]

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers; 微功耗,单电源轨至轨输出仪表放大器
LT1789CS8-1-TR
型号: LT1789CS8-1-TR
厂家: Linear    Linear
描述:

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
微功耗,单电源轨至轨输出仪表放大器

仪表放大器
文件: 总24页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1789-1/LT1789-10  
Micropower,  
Single Supply Rail-to-Rail  
Output Instrumentation Amplifiers  
FEATURES  
DESCRIPTION  
The LT®1789-1/LT1789-10 are micropower, precision  
instrumentation amplifiers that are optimized for single  
n
Micropower: 95μA Supply Current Max  
n
Low Input Offset Voltage: 100μV Max  
n
Low Input Offset Voltage Drift: 0.5μV/°C Max  
Single Gain Set Resistor:  
supply operation from 2.2V to 36V. The quiescent current  
is 95μA max, the inputs common mode to ground and the  
output swings within 110mV of ground. The gain is set  
with a single external resistor for a gain range of 1 to 1000  
for the LT1789-1 and 10 to 1000 for the LT1789-10.  
n
G = 1 to 1000 (LT1789-1)  
G = 10 to 1000 (LT1789-10)  
n
n
n
n
n
n
n
n
n
Inputs Common Mode to V  
Wide Supply Range: 2.2V to 36V Total Supply  
CMRR at G = 10: 96dB Min  
The high accuracy of the LT1789-1 (40ppm maximum non-  
linearity and 0.25% max gain error) is unmatched by other  
micropower instrumentation amplifiers. The LT1789-10  
maximizesboththeinputcommonmoderangeanddynamic  
outputrangewhenanamplificationof10orgreaterisrequired,  
allowingprecisesignalprocessingwhereotherinstrumenta-  
tion amplifiers fail to operate. The LT1789-1/LT1789-10 are  
laser trimmed for very low input offset voltage, low input  
offset voltage drift, high CMRR and high PSRR. The output  
canhandlecapacitiveloadsupto400pF(LT1789-1), 1000pF  
(LT1789-10) in any gain configuration while the inputs are  
ESD protected up to 10kV (human body).  
Gain Error: G = 10, 0.25% Max  
Gain Nonlinearity: G = 10, 40ppm Max  
Input Bias Current: 40nA Max  
PSRR at G = 10: 100dB Min  
1kHz Voltage Noise: 48nV/√Hz  
0.1Hz to 10Hz Noise: 1.5μV  
P-P  
APPLICATIONS  
n
Portable Instrumentation  
n
Bridge Amplifiers  
n
Strain Gauge Amplifiers  
Thermocouple Amplifiers  
Differential to Single-Ended Converters  
Medical Instrumentation  
The LT1789-1/LT1789-10 are offered in the 8-pin SO  
package, requiring significantly less PC board area than  
discrete multi op amp and resistor designs.  
n
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
0.5A to 4A Voltage Controlled Current Source  
C1  
4700pF  
V
S
C3  
V
S
120Ω  
R1  
8k  
0.1μF  
90.9k  
+
2
3
7
R3  
100Ω  
TIP127*  
V
IN  
6
R2  
10k  
LT1636  
*ENSURE ADEQUATE POWER  
DISSIPATION CAPABILITY AT  
HIGHER VOLTAGES,  
V
5
S
4
7
3
8
+
3
4
CURRENTS AND DUTY CYCLES  
R4  
10k  
1
2
6
R
*
I
LT1789-1  
4
SENSE  
0.1Ω  
REF  
5
LOAD  
R
C2  
3300pF  
1
2
V
S
= 3.3V TO 32V  
V
IN  
I
=
LOAD  
R
• 10  
SENSE  
= 1A PER VOLT AS SHOWN  
*
LOAD  
RISE TIME ≈ 250μs, 10% TO 90%,  
1A TO 2A OUTPUT STEP INTO 0.25Ω LOAD  
1789 TA01  
1789fc  
1
LT1789-1/LT1789-10  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
+
TOP VIEW  
Supply Voltage (V to V )..........................................36V  
Input Differential Voltage ..........................................36V  
Input Current (Note 3)......................................... 20mA  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range .................–40°C to 85°C  
Specified Temperature Range (Note 4)  
R
1
2
3
4
8
7
6
5
R
G
G
–IN  
+IN  
+V  
S
OUT  
REF  
–V  
S
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 150°C, θ = 190°C/W  
LT1789C-1, LT1789C-10.......................–40°C to 85°C  
LT1789I-1, LT1789I-10 ........................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1789CS8-1#PBF  
LT1789IS8-1#PBF  
LT1789CS8-10#PBF  
LT1789IS8-10#PBF  
LEAD BASED FINISH  
LT1789CS8-1  
TAPE AND REEL  
PART MARKING  
17891  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
TEMPERATURE RANGE  
LT1789CS8-1#TRPBF  
LT1789IS8-1#TRPBF  
LT1789CS8-10#TRPBF  
LT1789IS8-10#TRPBF  
TAPE AND REEL  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
TEMPERATURE RANGE  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
1789I1  
178910  
789I10  
PART MARKING  
17891  
LT1789CS8-1#TR  
LT1789IS8-1#TR  
LT1789IS8-1  
1789I1  
LT1789CS8-10  
LT1789CS8-10#TR  
LT1789IS8-10#TR  
178910  
LT1789IS8-10  
789I10  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3V AND 5V ELECTRICAL CHARACTERISTICS VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VCM = VREF = half  
supply, TA = 25°C, unless otherwise noted.  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
LT1789-1, G = 1 + (200k/R )  
MIN  
MAX  
MIN  
MAX UNITS  
G
Gain Range  
1
1000  
G
LT1789-10, G = 10 • [1+ (200k/R )]  
10  
1000  
%
G
Gain Error (Note 6)  
G = 1, V = 0.1V to (+V ) – 1V  
0.02  
0.20  
O
S
LT1789-1, V = 0.1V to (+V ) – 0.3V  
O
S
LT1789-10, V = 0.2V to (+V ) – 0.3V  
O
S
G = 10 (Note 2)  
0.06  
0.06  
0.13  
0.25  
0.27  
0.01  
0.09  
0.16  
0.25  
0.30  
%
%
%
G = 100 (Note 2)  
G = 1000 (Note 2)  
Gain Nonlinearity (Note 6)  
G = 1, V = 0.1V to (+V ) – 1V  
35  
100  
ppm  
O
S
LT1789-1, V = 0.1V to (+V ) – 0.3V  
O
S
LT1789-10, V = 0.2V to 4.7V, V = 5V  
O
S
(Note 8)  
G = 10  
G = 100  
G = 1000  
12  
18  
90  
40  
75  
15  
20  
100  
100  
100  
ppm  
ppm  
ppm  
1789fc  
2
LT1789-1/LT1789-10  
3V AND 5V ELECTRICAL CHARACTERISTICS VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VCM = VREF = half  
supply, TA = 25°C, unless otherwise noted.  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
= V + V /G  
MIN  
MAX  
MIN  
MAX UNITS  
V
V
V
Total Input Referred Offset Voltage  
Input Offset Voltage  
V
OST  
OST  
OSI  
OSO  
G = 1000  
15  
150  
0.2  
19  
100  
750  
4
20  
650  
0.2  
19  
160  
3000  
4
μV  
μV  
nA  
nA  
OSI  
Output Offset Voltage  
Input Offset Current  
G = 1 (LT1789-1), G =10 (LT1789-10)  
OSO  
I
I
(Note 6)  
(Note 6)  
OS  
Input Bias Current  
40  
40  
B
e
n
Input Noise Voltage,  
RTI (Referred to Input)  
G = 1, f = 0.1Hz to 10Hz  
5.0  
1.5  
1.0  
μV  
μV  
μV  
O
P-P  
P-P  
P-P  
G = 10  
4.6  
1.1  
G = 100, 1000  
2
2
Total RTI Noise = √e + (e /G)  
ni  
no  
e
e
Input Noise Voltage Density, RTI f = 1kHz (Note 7)  
48  
330  
16  
85  
52  
270  
16  
90  
nV/√Hz  
nV/√Hz  
ni  
O
Output Noise Voltage Density, RTI f = 1kHz (Note 3)  
no  
O
i
n
Input Noise Current  
Input Noise Current Density  
Input Resistance  
f = 0.1Hz to 10Hz  
pA  
P-P  
O
f = 1kHz  
O
62  
62  
fA/√Hz  
R
V
IN  
= 0V to (+V ) – 1V (Note 6)  
0.75  
0
1.6  
0.75  
0
1.6  
GΩ  
IN  
S
C
Input Capacitance  
Differential  
Common Mode  
1.6  
1.6  
1.6  
1.6  
pF  
pF  
IN  
V
Input Voltage Range  
+V – 1  
S
+V – 1.2  
S
V
CM  
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance (Note 6)  
LT1789-1,V = 0V to (+V ) – 1V  
CM  
S
LT1789-10, V = 0V to (+V ) – 1.2V  
CM  
S
79  
96  
100  
100  
88  
dB  
dB  
dB  
dB  
G = 1  
106  
114  
114  
88  
98  
98  
105  
113  
113  
G = 10  
G = 100  
G = 1000  
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 12.5V, V = V = 1V  
S
CM  
REF  
90  
100  
113  
116  
116  
dB  
dB  
dB  
dB  
G = 1  
100  
102  
102  
94  
102  
102  
109  
120  
120  
G = 10  
G = 100  
G = 1000  
Minimum Supply Voltage  
Supply Current  
2.2  
67  
54  
2.5  
95  
2.2  
67  
62  
2.5  
95  
V
μA  
mV  
V
I
(Note 7)  
S
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
Short-Circuit Current  
(Note 7)  
100  
110  
OL  
(Note 7)  
+V – 0.3 +V – 0.19  
+V – 0.3 +V – 0.19  
S S  
OH  
S
S
I
Short to GND  
Short to +V  
2.2  
8.5  
2.2  
8.5  
mA  
mA  
SC  
S
60  
30  
3
kHz  
kHz  
kHz  
kHz  
BW  
Bandwidth  
G = 1  
25  
12  
1.5  
G = 10  
G = 100  
G = 1000  
0.2  
SR  
Slew Rate  
G = 10, V  
4V Step  
= 0.5V to 4.5V  
0.023  
240  
0.062  
190  
V/μs  
μs  
OUT  
Settling Time to 0.01%  
Reference Input Resistance  
Reference Input Current  
Reference Gain to Output  
R
REFIN  
220  
220  
kΩ  
μA  
I
V
REF  
= 0V  
2.7  
2.7  
REFIN  
AV  
REF  
1
0.0001  
1
0.0001  
1789fc  
3
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range of  
0°C ≤ TA ≤ 70°C. VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VREF = half supply, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
Gain Error (Note 6)  
CONDITIONS  
G = 1, V = 0.3V to (+V ) – 1V  
MIN  
MAX  
MIN  
MAX  
UNITS  
l
0.25  
%
O
S
V = 0.3V to (+V ) – 0.5V  
O
S
l
l
G = 10 (Note 2)  
0.53  
0.55  
0.30  
0.53  
%
%
G = 100 (Note 2)  
l
Gain Nonlinearity (Note 6)  
G = 1, V = 0.3V to (+V ) – 1V  
185  
ppm  
O
S
LT1789-1, V = 0.3V to (+V ) – 0.5V  
O
S
LT1789-10, V = 0.3V to 4.7V, V = 5V  
O
S
(Note 8)  
G = 10  
G = 100  
l
l
90  
120  
130  
130  
ppm  
ppm  
l
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
Total Input Referred Offset Voltage V = V + V /G  
OST  
5
3
50  
5
3
50  
ppm/°C  
V
V
V
V
V
V
V
OST  
OSI  
OSO  
l
l
l
l
l
l
l
l
l
l
l
190  
10  
Input Offset Voltage  
G = 1000  
150  
10  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
(Notes 3, 5)  
OSIH  
OSO  
OSOH  
G = 1 (LT1789-1), G = 10 (LT1789-10)  
950  
100  
0.5  
4
3700  
900  
0.7  
µV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
300  
0.3  
7
µV  
/T  
Input Offset Voltage Drift (RTI)  
(Note 3)  
(Note 3)  
(Note 6)  
µV/°C  
µV/°C  
nA  
OSI  
/T Output Offset Voltage Drift  
Input Offset Current  
20  
OSO  
I
I
I
4.5  
4.5  
OS  
/T  
OS  
B
Input Offset Current Drift  
Input Bias Current  
3
3
pA/°C  
nA  
(Note 6)  
45  
45  
pA/°C  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
50  
50  
V
CM  
0.2  
(+V ) – 1  
0.2  
(+V ) – 1.5  
V
S
S
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance (Note 6)  
LT1789-1, V = 0.2V to (+V ) – 1V  
CM  
S
LT1789-10, V = 0.2V to (+V ) – 1.5V  
CM  
S
l
l
l
G = 1  
77  
94  
98  
dB  
dB  
dB  
G = 10  
85  
96  
G = 100, 1000  
V = 2.5V to 12.5V, V = V = 1V  
PSRR  
Power Supply Rejection Ratio  
S
CM  
REF  
l
l
l
G = 1  
88  
98  
100  
dB  
dB  
dB  
G = 10  
G = 100, 1000  
92  
100  
l
l
l
l
Minimum Supply Voltage  
Supply Current  
2.5  
115  
110  
2.5  
115  
120  
V
µA  
mV  
V
(Note 7)  
(Note 7)  
(Note 7)  
I
S
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
OL  
+V – 0.38  
S
+V – 0.38  
S
OH  
1789fc  
4
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range of  
–40°C ≤ TA ≤ 85°C. VS = 3V, 0V; VS = 5V, 0V; RL = 20k, VREF = half supply, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
Gain Error (Note 6)  
CONDITIONS  
G = 1, V = 0.3V to (+V ) – 1V  
MIN  
MAX  
MIN  
MAX  
UNITS  
l
0.30  
%
O
S
V = 0.3V to (+V ) – 0.5V  
O
S
l
l
G = 10 (Note 2)  
0.57  
0.59  
0.35  
0.62  
%
%
G = 100 (Note 2)  
l
Gain Nonlinearity (Note 6)  
G = 1, V = 0.3V to (+V ) – 1V  
250  
ppm  
O
S
LT1789-1, V = 0.3V to (+V ) – 0.5V  
O
S
LT1789-10, V = 0.3V to 4.7V, V = 5V  
O
S
(Note 8)  
G = 10  
G = 100  
l
l
105  
160  
150  
170  
ppm  
ppm  
l
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
Total Input Referred Offset Voltage V = V + V /G  
OST  
5
3
50  
5
3
50  
ppm/°C  
V
V
V
V
V
V
V
OST  
OSI  
OSO  
l
l
l
l
l
l
l
l
l
l
l
205  
10  
Input Offset Voltage  
G = 1000  
175  
10  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
(Notes 3, 5)  
OSIH  
OSO  
OSOH  
G = 1 (LT1789-1), G = 10 (LT1789-10)  
1050  
100  
0.5  
4
4000  
900  
0.7  
20  
µV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
300  
0.3  
7
µV  
/T  
Input Offset Voltage Drift (RTI)  
(Note 3)  
(Note 3)  
(Note 6)  
µV/°C  
µV/°C  
nA  
OSI  
/T Output Offset Voltage Drift  
Input Offset Current  
OSO  
I
I
I
5
5
OS  
/T  
OS  
B
Input Offset Current Drift  
Input Bias Current  
3
3
pA/°C  
nA  
(Note 6)  
50  
50  
pA/°C  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
50  
50  
V
CM  
0.2  
+V – 1  
S
0.2  
+V – 1.5  
S
V
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance (Note 6)  
LT1789-1, V = 0.2V to (+V ) – 1V  
CM  
S
LT1789-10, V = 0.2V to (+V ) – 1.5V  
CM  
S
l
l
l
G = 1  
75  
92  
96  
dB  
dB  
dB  
G = 10  
84  
94  
G = 100, 1000  
V = 2.5V to 12.5V, V = V = 1V  
PSRR  
Power Supply Rejection Ratio  
S
CM  
REF  
l
l
l
G = 1  
86  
96  
98  
dB  
dB  
dB  
G = 10  
G = 100, 1000  
90  
98  
l
l
l
l
Minimum Supply Voltage  
Supply Current  
2.5  
125  
120  
2.5  
125  
130  
V
µA  
mV  
V
(Note 7)  
(Note 7)  
(Note 7)  
I
S
V
V
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
OL  
+V – 0.40  
S
+V – 0.40  
S
OH  
1789fc  
5
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
VS = 15V, RL = 20k, VCM = VOUT = 0V, TA = 25°C, unless otherwise noted.  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
LT1789-1, G = 1 + (200k/R )  
MIN  
MAX  
MIN  
MAX UNITS  
G
Gain Range  
1
1000  
G
LT1789-10, G = 10 • [1+ (200k/R )]  
10  
1000  
G
Gain Error  
V = 10V  
O
G = 1  
0.01  
0.04  
0.04  
0.07  
0.10  
0.15  
0.15  
0.20  
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
0.01  
0.03  
0.03  
0.15  
0.20  
0.25  
%
%
%
Gain Nonlinearity  
V = 10V  
O
G = 1  
8
1
20  
10  
ppm  
ppm  
ppm  
ppm  
G = 10  
G = 100  
G = 1000  
5
5
25  
40  
40  
160  
6
20  
20  
100  
V
V
V
Total Input Referred Offset Voltage  
Input Offset Voltage  
V
= V + V /G  
OST  
OST OSI OSO  
G = 1000  
G = 1 (LT1789-1), G =10 (LT1789-10)  
30  
0.2  
0.2  
17  
235  
1
30  
0.6  
0.2  
17  
295  
3.3  
4
μV  
mV  
nA  
OSI  
Output Offset Voltage  
Input Offset Current  
OSO  
I
I
4
OS  
Input Bias Current  
40  
40  
nA  
B
e
n
Input Noise Voltage, RTI  
f = 0.1Hz to 10Hz  
O
G = 1  
5.0  
1.5  
1.0  
μV  
μV  
μV  
P-P  
P-P  
P-P  
G = 10  
G = 100, 1000  
4.6  
1.1  
2
2
Total RTI Noise = √e + (e /G)  
ni  
no  
e
e
Input Noise Voltage Density, RTI f = 1kHz  
49  
330  
19  
90  
53  
270  
19  
95 nV/√Hz  
nV/√Hz  
ni  
O
Output Noise Voltage Density, RTI f = 1kHz  
no  
O
i
n
Input Noise Current  
Input Noise Current Density  
Input Resistance  
f = 0.1Hz to 10Hz  
pA  
P-P  
O
f = 1kHz  
O
62  
62  
fA/√Hz  
R
2
4.7  
2
4.7  
GΩ  
IN  
C
IN  
Input Capacitance  
Differential  
Common Mode  
20  
17  
20  
17  
pF  
pF  
V
CM  
Input Voltage Range  
–15  
–14  
–15  
–14  
V
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance, V = –15V to 14V  
CM  
80  
98  
102  
89  
108  
117  
dB  
dB  
dB  
G = 1  
93  
102  
108  
123  
G = 10  
G = 100, 1000  
PSRR  
Power Supply Rejection Ratio  
LT1789-1 V = 1.25V to 16V  
S
94  
104  
102  
107  
118  
121  
dB  
dB  
dB  
LT1789-10 V = 1.50V to 16V  
S
100  
106  
115  
123  
G = 1  
G = 10  
G = 100, 1000  
Minimum Supply Voltage  
Supply Current  
1.25  
130  
1.50  
130  
V
μA  
V
I
85  
85  
S
V
Output Voltage Swing  
Short-Circuit Current  
14.5  
14.7  
14.5  
14.7  
O
I
SC  
Short to –V  
Short to +V  
2.2  
8.5  
2.2  
8.5  
mA  
mA  
S
S
1789fc  
6
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS  
VS = 15V, RL = 20k, VCM = VOUT = 0V, TA = 25°C, unless otherwise noted.  
LT1789-1  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX UNITS  
60  
30  
3
kHz  
kHz  
kHz  
kHz  
BW  
Bandwidth  
G = 1  
25  
12  
1.5  
G = 10  
G = 100  
G = 1000  
0.2  
SR  
Slew Rate  
V
=
10V  
0.012  
0.026  
460  
0.028  
0.066  
270  
220  
2.7  
V/μs  
μs  
OUT  
Settling Time to 0.01%  
Reference Input Resistance  
Reference Input Current  
Reference Gain to Output  
10V Step  
R
REFIN  
220  
kΩ  
μA  
I
V
= 0V  
2.7  
REFIN  
REF  
AV  
REF  
1
0.0001  
1 0.0001  
The l denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = 15V, RL = 20k, VCM = VREF = 0V,  
unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
V = 10V  
O
G = 1  
l
l
l
l
0.15  
0.38  
0.38  
0.43  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
0.20  
0.43  
0.48  
Gain Nonlinearity  
V = 10V  
O
G = 1  
l
l
l
l
25  
15  
ppm  
ppm  
ppm  
ppm  
G = 10  
G = 100  
G = 1000  
45  
45  
180  
25  
120  
l
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
5
8
50  
5
8
50  
ppm/°C  
V
V
V
V
V
V
V
Total Input Referred Offset Voltage V  
= V + V /G  
OST OSI OSO  
OST  
l
l
l
l
l
l
l
l
l
l
l
325  
30  
Input Offset Voltage  
G = 1000  
(Notes 3, 5)  
G = 1  
285  
30  
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
OSIH  
OSO  
OSOH  
1.2  
120  
0.7  
5
4
mV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
400  
0.3  
8
1000  
0.8  
22  
µV  
/T  
Input Offset Voltage Drift (RTI)  
(Note 3)  
(Note 3)  
µV/°C  
µV/°C  
nA  
OSI  
/T Output Offset Voltage Drift  
Input Offset Current  
OSO  
I
I
I
4.5  
4.5  
OS  
/T  
OS  
Input Offset Current Drift  
Input Bias Current  
2
2
pA/°C  
nA  
45  
14  
45  
14  
B
pA/°C  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
35  
35  
V
CM  
G = 1, Other Input Grounded  
1k Source Imbalance,  
–14.8  
–14.8  
V
CMRR  
Common Mode Rejection Ratio  
V
= –14.8V to 14V  
CM  
l
l
l
78  
96  
100  
dB  
dB  
dB  
G = 1  
91  
100  
G = 10  
G = 100, 1000  
1789fc  
7
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range of  
0°C ≤ TA ≤ 70°C. VS = 15V, RL = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
LT1789-1, V = 1.25V to 16V  
S
LT1789-10, V = 1.50V to 16V  
S
l
l
l
92  
102  
104  
dB  
dB  
dB  
G = 1  
G = 10  
G = 100, 1000  
98  
104  
l
l
l
l
Minimum Supply Voltage  
Supply Current  
1.25  
150  
1.50  
150  
V
µA  
I
S
V
Output Voltage Swing  
Slew Rate  
14.25  
0.010  
14.25  
0.026  
V
O
SR  
V
=
10V  
V/µs  
OUT  
The l denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = 15V, RL = 20k, VCM = VREF = 0V,  
unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Gain Error  
V = 10V  
O
G = 1  
l
l
l
l
0.20  
0.57  
0.57  
0.62  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
0.25  
0.62  
0.67  
Gain Nonlinearity  
V = 10V  
O
G = 1  
l
l
l
l
30  
20  
ppm  
ppm  
ppm  
ppm  
G = 10  
G = 100  
G = 1000  
50  
50  
200  
30  
130  
l
G/T  
Gain vs Temperature  
G < 1000 (Notes 2, 3)  
5
8
50  
5
8
50  
ppm/°C  
V
V
V
V
V
V
V
Total Input Referred Offset Voltage V  
= V + V /G  
OST OSI OSO  
OST  
l
l
l
l
l
l
l
l
l
l
l
340  
30  
Input Offset Voltage  
G = 1000  
(Notes 3, 5)  
G = 1  
305  
30  
1.3  
120  
0.7  
5
µV  
µV  
OSI  
Input Offset Voltage Hysteresis  
Output Offset Voltage  
OSIH  
OSO  
OSOH  
4.2  
1000  
0.8  
22  
mV  
Output Offset Voltage Hysteresis (Notes 3, 5)  
50  
0.2  
1.5  
400  
0.3  
8
µV  
/T  
Input Offset Voltage Drift (RTI)  
(Note 3)  
(Note 3)  
µV/°C  
µV/°C  
nA  
OSI  
/T Output Offset Voltage Drift  
OSO  
I
I
I
Input Offset Current  
5
5
OS  
/T  
OS  
B
Input Offset Current Drift  
Input Bias Current  
2
2
pA/°C  
nA  
50  
14  
50  
14  
pA/°C  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
35  
35  
V
CM  
G = 1, Other Input Grounded  
1k Source Imbalance,  
–14.8  
–14.8  
V
CMRR  
Common Mode Rejection Ratio  
V
= –14.8V to 14V  
CM  
l
l
l
76  
94  
98  
dB  
dB  
dB  
G = 1  
89  
98  
G = 10  
G = 100, 1000  
1789fc  
8
LT1789-1/LT1789-10  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the temperature range of  
–40°C ≤ TA ≤ 85°C. VS = 15V, RL = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4)  
LT1789-1  
TYP  
LT1789-10  
TYP  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
LT1789-1, V = 1.25V to 16V  
S
LT1789-10, V = 1.50V to 16V  
S
l
l
l
90  
100  
102  
dB  
dB  
dB  
G = 1  
G = 10  
G = 100, 1000  
96  
102  
l
l
l
l
Minimum Supply Voltage  
Supply Current  
1.25  
160  
1.50  
160  
V
µA  
I
S
V
Output Voltage Swing  
Slew Rate  
14.15  
0.008  
14.15  
0.024  
V
O
SR  
V
=
10V  
V/µs  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Hysteresis in offset voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Offset voltage hysteresis is always measured at 25°C, but  
the IC is cycled to 85°C I-grade (or 70°C C-grade) or 40°C I-grade  
(0°C C-grade) before successive measurement. 60% of the parts will  
pass the typical limit on the data sheet.  
Note 2: Does not include the effect of the external gain resistor R .  
G
Note 3: This parameter is not 100% tested.  
Note 6: V = 5V limits are guaranteed by correlation to V = 3V and  
S
S
Note 4: The LT1789C-1/ LT1789C-10 is guaranteed to meet specified  
performance from 0°C to 70°C and is designed, characterized and  
expected to meet these extended temperature limits, but is not tested at  
–40°C and 85°C. The LT1789I-1/ LT1789I-10 is guaranteed to meet the  
extended temperature limits.  
V = 15V tests.  
S
Note 7: V = 3V limits are guaranteed by correlation to V = 5V and  
S
S
V = 15V tests.  
S
Note 8: This parameter is not tested at V = 3V on the LT1789-10 due  
S
to an increase in sensitivity to test system noise. Actual performance is  
expected to be similar to performance at V = 5V.  
S
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-1, LT1789-10)  
Input Bias Current  
vs Temperature  
Input Bias Current  
Supply Current vs Supply Voltage  
vs Common Mode Input Voltage  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
120  
110  
100  
90  
0
–5  
V
V
= 5V, 0V  
CM  
–55°C  
S
= 2.5V  
125°C  
125°C  
25°C  
85°C  
80  
–10  
–15  
–20  
–25  
25°C  
70  
60  
–55°C  
50  
40  
V
V
= 5V, 0V  
REF  
S
30  
= 2.5V  
20  
–0.5 0 0.5  
2.5 3  
1 4.5 5  
1.5 2 3.5 4  
0
20  
30 35  
–50 –25  
0
25  
50  
75 100 125  
5
10 15  
25  
40  
COMMON MODE INPUT VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1789 G03  
1789 G01  
1789 G02  
1789fc  
9
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-1)  
Output Voltage Swing  
vs Load Current  
Gain vs Frequency  
Slew Rate vs Temperature  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.050  
–55°C  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
REF  
0.045  
0.040  
125°C  
SOURCE  
G = 1000  
G = 100  
G = 10  
G = 1  
= 20k  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
L
25°C  
0.035  
0.030  
0.025  
0.020  
0.015  
RISING  
V
V
= 5V, 0V  
REF  
S
= 2.5V  
125°C  
25°C  
FALLING  
G = 1  
SINK  
–55°C  
–10  
–20  
0.010  
0.001  
0.01  
0.1  
1
10  
–25  
0
50  
75 100 125  
–50  
25  
100  
1k  
10k  
100k  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1789 G04  
1789 G05  
1789 G06  
Common Mode Rejection Ratio  
vs Frequency  
Negative Power Supply Rejection  
Ratio vs Frequency  
Positive Power Supply Rejection  
Ratio vs Frequency  
120  
110  
100  
140  
120  
100  
80  
140  
120  
100  
80  
V
V
= 5V, 0V  
V
V
= 5V, 0V  
V
V
= 5V, 0V  
REF  
S
S
S
= 2.5V  
= 2.5V  
= 2.5V  
REF  
REF  
G = 100, 1000  
G = 10  
INPUT REFERRED  
INPUT REFERRED  
G = 1000  
G = 10  
G = 1  
G = 100  
G = 10  
G = 100, 1000  
G = 1  
90  
80  
G = 1  
60  
60  
70  
60  
40  
40  
20  
20  
50  
40  
0
0
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1879 G07  
1789 G08  
1789 G09  
Settling Time to 0.01% vs  
Output Step  
Output Impedance vs Frequency  
Overshoot vs Capacitive Load  
100  
90  
10  
8
10k  
1k  
V
=
15V  
V
V
= 5V, 0V  
= 2.5V  
V
V
V
= 5V, 0V  
= 2.5V  
OUT  
S
S
REF  
S
REF  
R
= 20k  
L
G = 1  
= 100mV  
P-P  
6
80  
70  
4
2
60  
50  
100  
10  
0
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
A
= 1  
V
A
= 10  
V
A
≥ 100  
V
1
100  
0
100  
200  
300  
400  
500  
1
10  
100  
1000  
1k  
10k  
100k  
FREQUENCY (Hz)  
SETTLING TIME (μs)  
CAPACITIVE LOAD (pF)  
1789 G11  
1789 G12  
1789 G10  
1789fc  
10  
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-1)  
Voltage Noise Density vs  
Frequency  
Current Noise Density vs  
Frequency  
1000  
100  
10  
1000  
100  
10  
V
V
= 5V, 0V  
V
V
= 5V, 0V  
REF  
S
S
= 2.5V  
= 2.5V  
REF  
INPUT REFERRED  
G = 1  
G = 10  
R
S
G = 100, 1000  
LT1789-1  
10  
1
10  
100  
1k  
1
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1789 G13  
1789 G14  
0.1Hz to 10Hz Noise Voltage,  
G = 1  
0.1Hz to 10Hz Noise Voltage,  
RTI, G = 1000  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
REF  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9 10  
TIME (SEC)  
TIME (SEC)  
1789 G16  
1789 G15  
0.1Hz to 10Hz Noise Current  
Turn-On Characteristics  
1.5  
0.5  
V
V
= 5V, 0V  
= 2.5V  
V
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
REF  
CM  
= 2.5V  
G = 1000  
= 25°C  
T
A
–0.5  
–1.5  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
TIME (SEC)  
TIME (ms)  
1789 G17  
1789 G18  
1789fc  
11  
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-10)  
Output Voltage Swing  
vs Load Current  
Gain vs Frequency  
Slew Rate vs Temperature  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
V
V
= 5V, 0V  
= 2.5V  
–55°C  
S
REF  
125°C  
SOURCE  
G = 1000  
G = 100  
G = 10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
RISING  
25°C  
V
V
= 5V, 0V  
REF  
S
= 2.5V  
125°C  
FALLING  
25°C  
SINK  
–55°C  
–10  
–20  
0.001  
0.01  
0.1  
1
10  
–25  
0
25  
50  
75  
125  
100  
1k  
10k  
100k  
–50  
100  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1789 G22  
1789 G21  
1789 G23  
Common Mode Rejection Ratio  
vs Frequency  
Negative Power Supply Rejection  
Ratio vs Frequency  
Positive Power Supply Rejection  
Ratio vs Frequency  
120  
110  
100  
90  
140  
120  
100  
80  
140  
120  
100  
80  
V
V
= 5V, 0V  
REF  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
S
S
REF  
S
REF  
G = 100, 1000  
= 2.5V  
G = 100, 1000  
G = 10  
G = 1000  
INPUT REFERRED  
INPUT REFERRED  
G = 10  
G = 100  
G = 10  
80  
60  
60  
70  
40  
40  
60  
20  
20  
50  
40  
0
0
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
10  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1789 G24  
1789 G25  
1789 G26  
Settling Time to 0.01% vs  
Output Step  
Output Impedance vs Frequency  
Overshoot vs Capacitive Load  
100  
90  
10  
8
10k  
1k  
V
=
15V  
V
V
= 5V, 0V  
= 2.5V  
V
V
V
= 5V, 0V  
= 2.5V  
OUT  
S
S
REF  
S
REF  
R
= 20k  
L
G = 10  
= 100mV  
P-P  
80  
6
70  
4
60  
50  
2
100  
10  
0
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
G = 1000  
G = 100  
G = 10  
1
100  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
0
100  
200  
300  
400  
500  
1789 G29  
1k  
10k  
100k  
FREQUENCY (Hz)  
SETTLING TIME (μs)  
1789 G28  
1789 G27  
1789fc  
12  
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-10)  
Voltage Noise Density vs  
Frequency  
Current Noise Density vs  
Frequency  
1000  
100  
10  
1000  
100  
10  
V
V
= 5V, 0V  
V
V
= 5V, 0V  
REF  
S
S
= 2.5V  
= 2.5V  
REF  
INPUT REFERRED  
G = 10  
G = 100  
G = 1000  
R
S
LT1789-10  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1789 G30  
1789 G31  
0.1Hz to 10Hz Noise Voltage,  
RTI, G = 10  
0.1Hz to 10Hz Noise Voltage,  
RTI, G = 1000  
V
V
= 5V, 0V  
REF  
V
V
= 5V, 0V  
REF  
S
S
= 2.5V  
= 2.5V  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (SEC)  
TIME (SEC)  
1789 G32  
1789 G33  
0.1Hz to 10Hz Noise Current  
Turn-On Characteristics  
1.5  
0.5  
V
V
= 5V, 0V  
= 2.5V  
V
V
V
= 5V, 0V  
= 2.5V  
S
REF  
S
REF  
CM  
= 2.5V  
G = 1000  
= 25°C  
T
A
–0.5  
–1.5  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
TIME (SEC)  
TIME (ms)  
1789 G34  
1789 G59  
1789fc  
13  
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-1)  
Large-Signal Transient Response  
G = 1, 10, 100  
Large-Signal Transient Response  
G = 1000  
5V/DIV  
5V/DIV  
1789 G39  
1789 G38  
V
=
15V  
2ms/DIV  
V
R
C
=
15V  
500μs/DIV  
S
L
S
L
L
R
C
= 20k  
= 20k  
= 50pF  
= 50pF  
L
Small-Signal Transient Response  
G = 1  
Small-Signal Transient Response  
G = 10  
20mV/DIV  
20mV/DIV  
1789 G41  
1789 G40  
V
V
= 5V, 0V  
= 2.5V  
100μs/DIV  
V
V
= 5V, 0V  
= 2.5V  
100μs/DIV  
S
REF  
L
S
REF  
L
R
C
= 20k  
R
C
= 20k  
= 50pF  
= 50pF  
L
L
Small-Signal Transient Response  
G = 100  
Small-Signal Transient Response  
G = 1000  
20mV/DIV  
20mV/DIV  
1789 G43  
1789 G42  
V
V
= 5V, 0V  
= 2.5V  
2ms/DIV  
V
V
= 5V, 0V  
= 2.5V  
200μs/DIV  
S
REF  
L
S
REF  
L
R
C
= 20k  
R
C
= 20k  
= 50pF  
= 50pF  
L
L
1789fc  
14  
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-10)  
Large-Signal Transient Response  
G = 10, 100  
Large-Signal Transient Response  
G = 1000  
Small-Signal Transient Response  
G = 10  
20mV/DIV  
5V/DIV  
5V/DIV  
1789 G46  
1789 G44  
1789 G45  
V
V
= 5V, 0V  
= 2.5V  
100μs/DIV  
V
=
15V  
500μs/DIV  
V
=
15V  
500μs/DIV  
S
REF  
R
S
L
S
L
R
C
= 20k  
R
C
= 20k  
= 20k  
= 50pF  
= 50pF  
L
L
L
L
C
= 50pF  
Small-Signal Transient Response  
G = 100  
Small-Signal Transient Response  
G = 1000  
20mV/DIV  
20mV/DIV  
1789 G47  
1789 G48  
V
V
= 5V, 0V  
= 2.5V  
200μs/DIV  
V
V
= 5V, 0V  
= 2.5V  
2ms/DIV  
S
REF  
L
S
REF  
L
R
C
= 20k  
R
C
= 20k  
= 50pF  
= 50pF  
L
L
1789fc  
15  
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-1)  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 15V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 2.5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 1.5V  
15  
10  
5
3.0  
2.5  
1.5  
1.0  
T
= 25°C  
T
= 25°C  
A
A
T = 25°C  
A
A
V
= 10  
G ≥ 2  
G = 1  
A
= 1  
= 2  
V
2.0  
A
= 1  
V
A
V
A = 10  
V
1.5  
A
= 2  
V
0.5  
1.0  
0.5  
0
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–5  
–10  
–15  
–0.5  
–1.0  
–1.5  
–15  
–5  
0
5
10  
15  
–10  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–1.5  
–0.5  
0
0.5  
1.0  
1.5  
–1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
15V  
2.5V  
1.5V  
+
+
+
+
+
+
V
V
V
V /2  
D
V /2  
D
V /2  
D
V
V
V
LT1789-1  
LT1789-1  
LT1789-1  
OUT  
OUT  
OUT  
V /2  
D
V /2  
D
V /2  
D
REF  
REF  
REF  
20K  
20K  
20K  
V
CM  
V
V
CM  
CM  
V
V
V
1789 G49  
–15V  
–2.5V  
–1.5V  
1789 G50  
1789 G51  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 3V  
3
5
4
3
2
1
0
T
A
= 25°C  
T
= 25°C  
A
2
1
0
G = 1  
G = 1  
G = 2  
G = 2  
G = 10  
G = 10  
1
2
3
4
5
0
0.5  
1.5  
2.0  
2.5  
3.0  
0
1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
5V  
3V  
+
+
+
+
V
V
V /2  
D
V /2  
D
V
V
LT1789-1  
LT1789-1  
OUT  
OUT  
V /2  
D
V /2  
D
REF  
REF  
20K  
20K  
V
CM  
V
CM  
V
V
1789 G52  
1789 G53  
1789fc  
16  
LT1789-1/LT1789-10  
TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-10)  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 15V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 2.5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 1.5V  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
G = 10  
T
= 25°C  
T = 25°C  
A
A
A
= 10  
V
T
= 25°C  
A
A
= 10  
V
G = 100  
A
= 100  
V
1.5  
A
= 100  
V
1.0  
0.5  
0.5  
0
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–5  
–10  
–15  
–0.5  
–1.0  
–1.5  
–15  
–5  
0
5
10  
15  
0
–0.5  
–10  
–2.5  
–1.5  
0.5  
1.5  
2.5  
–1.5  
–0.5  
0
0.5  
1.0  
1.5  
–1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
15V  
2.5V  
1.5V  
+
+
+
+
+
+
V
V
V
V /2  
D
V /2  
D
V /2  
D
V
V
V
LT1789-10  
LT1789-10  
LT1789-10  
OUT  
OUT  
OUT  
V /2  
D
V /2  
D
V /2  
D
REF  
REF  
REF  
20K  
20K  
20K  
V
CM  
V
V
CM  
CM  
V
V
V
–15V  
–2.5V  
–1.5V  
1789 G54  
1789 G55  
1789 G56  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 5V  
Valid Output Voltage vs Input  
Common Mode Voltage  
VS = 3V  
5
4
3
2
1
0
3
2
1
0
T
= 25°C  
A
T = 25°C  
A
G = 10  
G = 10  
G = 100  
G = 100  
1
2
3
4
5
0
0.5  
1.5  
2.0  
2.5  
3.0  
0
1.0  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
3V  
5V  
+
+
+
+
V
V
V /2  
D
V /2  
D
V
V
LT1789-10  
LT1789-10  
OUT  
OUT  
V /2  
D
V /2  
D
REF  
REF  
20K  
20K  
V
CM  
V
CM  
V
V
1789 G57  
1789 G58  
1789fc  
17  
LT1789-1/LT1789-10  
BLOCK DIAGRAM  
+
+
V
V
100k  
+
V
5.7k  
+IN  
3
+
R1  
R2  
R
1
8
G
110k/10k* 110k/100k*  
A1  
5
REF  
+
+
V
V
V
V
V
B
V
+
A3  
R
G
100k  
+
V
5.7k  
–IN  
2
+
R3  
R4  
110k/10k* 110k/100k*  
A2  
6
7
OUT  
V
V
+
V
V
B
V
*LT1789-1/LT1789-10  
4
V
1789 F01  
Figure 1. Block Diagram  
APPLICATIONS INFORMATION  
Setting the Gain  
Input and Output Offset Voltage  
The gain of the LT1789-1 and LT1789-10 is set by the  
The offset voltage of the LT1789-1/LT1789-10 has two  
components: the output offset and the input offset. The  
total offset voltage referred to the input (RTI) is found by  
dividingtheoutputoffsetbytheprogrammedgain(G)and  
adding it to the input offset. At high gains the input offset  
voltage dominates, whereas at low gains the output offset  
voltage dominates. The total offset voltage is:  
value of resistor R , applied across pins 1 and 8. For the  
G
LT1789-1, the gain G will be:  
G = 1+ 200k/R  
G
and R can be calculated from the desired gain by  
G
R = 200k/(G – 1)  
G
To t a l i n p u t o f f s e t v o l t a g e ( R T I )  
= input offset + (output offset/G)  
For the LT1789-10, the gain G will be  
G =10 • (1 + 200k/R )  
G
To t a l o u t p u t o f f s e t v o l t a g e ( RT O )  
= (input offset • G) + output offset  
and R can be calculated from the desired gain by  
G
R = 200k/(0.1 • G – 1)  
G
For the lowest achievable gain, R may be set to infinity  
G
by leaving Pins 1 and 8 open.  
1789fc  
18  
LT1789-1/LT1789-10  
APPLICATIONS INFORMATION  
Reference Terminal  
Input Bias Current Return Path  
The low input bias current of the LT1789-1/LT1789-10  
(19nA) and the high input impedance (1.6GΩ) allow the  
use of high impedance sources without introducing sig-  
nificant offset voltage errors, even when the full common  
mode range is required. However, a path must be provided  
for the input bias currents of both inputs when a purely  
differential signal is being amplified. Without this path the  
inputs will float high and exceed the input common mode  
range of the LT1789-1/LT1789-10, resulting in a saturated  
inputstage.Figure3showsthreeexamplesofaninputbias  
current path. The first example is of a purely differential  
signal source with a 10kΩ input current path to ground.  
Since the impedance of the signal source is low, only one  
resistor is needed. Two matching resistors are needed for  
higher impedance signal sources as shown in the second  
example. Balancing the input impedance improves both  
common mode rejection and DC offset. The need for input  
resistors is eliminated if a center tap is present as shown  
in the third example.  
The output voltage of the LT1789-1/LT1789-10 (Pin 6)  
is referenced to the voltage on the reference terminal  
(Pin 5). Resistance in series with the REF pin must be  
minimized for best common mode rejection. For example,  
a 22Ω resistance from the REF pin to ground will not  
only increase the gain error by 0.02% but will lower the  
CMRR to 80dB.  
Output Offset Trimming  
The LT1789-1/LT1789-10 is laser trimmed for low offset  
voltage so that no external offset trimming is required for  
most applications. In the event that the offset needs to be  
adjusted,thecircuitinFigure2isanexampleofanoptional  
offset adjust circuit. The op amp buffer provides a low  
impedance to the REF pin where resistance must be kept  
to a minimum for best CMRR and lowest gain error.  
2
+
V
OUTPUT  
6
–IN  
1
8
3
R
G
LT1789-1/-10  
REF  
2
3
10mV  
+
+IN  
5
1
100Ω  
10k  
LT1880  
+
10mV  
ADJUSTMENT RANGE  
100Ω  
–10mV  
V
1789 F02  
Figure 2. Optional Trimming of Output Offset Voltage  
+
+
MICROPHONE,  
LT1789-1/  
LT1789-1/  
LT1789-10  
LT1789-1/  
LT1789-10  
R
HYDROPHONE,  
ETC  
R
R
G
THERMOCOUPLE  
G
G
LT1789-10  
+
200k  
200k  
10k  
CENTER-TAP PROVIDES  
BIAS CURRENT RETURN  
1789 F03  
Figure 3. Providing an Input Common Mode Current Path  
1789fc  
19  
LT1789-1/LT1789-10  
APPLICATIONS INFORMATION  
Output Voltage vs Input Common Mode Voltage  
The LT1789-10 is less susceptible to this limiting factor  
because the gain is taken in the output stage.  
All instrumentation amplifiers have limiting factors that  
can cause an output to be invalid (the output is not equal  
to the input differential voltage multiplied by the gain)  
even though the output appears to be operating in a linear  
region. Limiting factors such as input voltage range and  
output swing can be easily measured, however, there are  
also internal nodes that can limit. These internal nodes  
cannot be measured externally and can lead to erroneous  
output readings.  
3) The voltage on the inputs to the output amplifier A3  
can be determined by the following formula:  
V A3 = (V  
IN  
A1 – V )(R2/(R1 + R2))  
REF  
OUT  
The input voltage range of A3 has the same input limits as  
the LT1789-1. This limiting factor is more prevalent with  
singlesupplies,whereboththereferencevoltageandinput  
+
common mode voltage are near V . This is also more of  
a concern with the LT1789-10 because the ratio of R1:R2  
is 1:10 instead of 1:1.  
To ensure a valid output for a given input common mode  
voltage and input differential voltage, the following four  
limiting factors must be taken into consideration (refer to  
the block diagram):  
4) The output voltage swing limits are also found in the  
electrical tables.  
TheOutputVoltagevsInputCommonModeVoltagetypical  
performance curves show the regions of operation for the  
three supply voltages specified.  
1) The input voltage ranges of the input amplifiers A1 and  
A2.  
2) The output swings of the input amplifiers A1 and A2  
(internal nodes).  
Single Supply Operation  
3) The input voltage range of the output amplifier A3  
(internal node).  
There are usually two types of input signals that need  
to be processed; differential signals, like the output of a  
bridge or single ended signals, such as the output from  
a thermistor. Both signals require special consideration  
when operating with a single supply.  
4) The output swing of the output amplifier A3.  
These limits can be determined using the relationships  
below.  
When processing differential signals , REF (Pin 5) must  
be brought above the negative supply (Pin 4) to allow the  
outputtoprocessboththepositiveandnegativegoinginput  
signal. The maximum output operating range is obtained  
by setting the voltage on the REF pin to half supply. This  
must be done with a low impedance source to minimize  
CMRR and gain errors.  
1) The input voltage range limits can be found in the  
electrical tables.  
2) The output voltages of the input amplifiers A1 and A2  
can be found by the following formulas:  
V
V
A1 = (V /2)(G)(R1/R2) + V + 0.6V  
D CM  
OUT  
OUT  
A2 = (–V /2)(G)(R1/R2) + V + 0.6V  
D
CM  
For single ended input signals, the REF pin can be at the  
same potential as the negative supply provided the output  
oftheinstrumentationamplifierremainsinsidethespecified  
operatingrange.Thismaximizestheoutputrange,however  
the smallest input signal that can be processed is limited  
by the output swing to the negative supply.  
Where V is the input differential voltage and V is the  
D
CM  
input common mode voltage.  
The typical output swing limits for A1 and A2 can be found  
in the Output Swing vs Load Current typical performance  
curve, using R1 + R2 as the load resistance.  
This limitation usually becomes dominant when gain is  
taken in the input stage and the common mode input  
voltage is close to either supply rail.  
1789fc  
20  
LT1789-1/LT1789-10  
TYPICAL APPLICATIONS  
Single Supply Positive Integrator  
V
S
3
V
+
IN  
7
V
S
R1  
10k  
8
6
3
2
LT1789-1  
REF  
+
1
2
1
+
V
LT1636  
4
5
OUT  
C1  
100μF  
R2  
10Ω  
4
RESET  
1789 TA02  
V
= 2.7V TO 32V  
S
TIME CONSTANT = (R1)(C1) = 1 SECOND AS SHOWN  
Avalanche Photo Diode Module Bias Current Monitor  
FOR OPTIONAL “ZERO CURRENT” FEEDBACK TO  
APD BIAS REGULATOR, SEE APPENDIX A, APPLICATION NOTE 92  
1k*  
1%  
APD  
HIGH VOLTAGE  
BIAS INPUT  
V
= 20V TO 90V  
OUT  
TO APD  
1μF  
100V  
1μF  
100V  
100k*  
100k*  
Q1  
1N4690  
5.6V  
1M*  
0.2μF  
5V  
5V  
6
1μF  
+
20k  
2
A1  
OUTPUT  
0V TO 1V =  
0mA TO 1mA  
S2  
A2  
LT1006  
LT1789-1  
+
10k  
1μF  
30k  
5
0.2μF  
Q2  
MPSA42  
20k*  
–3.5V  
1M*  
–3.5V  
20k  
13  
200k*  
18  
12  
14  
S1  
–3.5V TO  
AMPLIFIERS  
5V  
22μF  
5V  
3
S3  
15  
* = 0.1% METAL FILM RESISTOR  
22μF  
+
1μF 100V = TECATE CMC100105MX1825  
CIRCLED NUMBERS = LTC1043 PIN NUMBER  
#
= 1N4148  
16  
17  
4
= TP0610L  
0.056μF  
5V  
FOR MORE INFORMATION REFER TO APPLICATION NOTE 92  
1789 TA05  
1789fc  
21  
LT1789-1/LT1789-10  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1789fc  
22  
LT1789-1/LT1789-10  
REVISION HISTORY (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
5/10  
Updated Input Noise Current Density Spec  
6
1789fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT1789-1/LT1789-10  
TYPICAL APPLICATION  
Voltage Controlled Current Source  
3V TO 32V  
3
V
IN  
+
7
8
6
L
LT1789-1  
R
G
REF  
1
2
R1  
1k  
5
4
I
LOAD  
I
L
= A • V /R1  
V
IN  
1789 TA03  
200k  
G
A
V
= 1 +  
R
10°C to 40°C Thermometer  
29.4k  
1%  
+
V
S
4
6
3
8
+
LT1790  
–1.25  
V
S
+
7
1
2
6
36.5k  
0.5%  
LT1789-10  
4
1
2
V
= 2.5V AT 25°C + 50mV/°C  
5
OUT  
OVER 10°C TO 40°C  
LINEARITY = 0.3°C  
THERMISTOR  
THERMOMETRICS  
DC95G104V  
100k  
@ 25°C  
866k  
1%  
ACCURACY = 1°C WORST CASE  
TOLERANCE STACK-UP  
56.2k  
1%  
+
V
= 4V TO 18V  
S
1789 TA04  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1100  
LT1101  
LT1102  
LT1167  
Precision Chopper-Stabilized Instrumentation Amplifier  
Best DC Accuracy  
Precision, Micropower, Single Supply Instrumentation Amplifier  
High Speed, JFET Instrumentation Amplifier  
Fixed Gain of 10 or 100, I <105μA  
S
Fixed Gain of 10 or 100, 30V/μs Slew Rate  
Single Resistor Gain Programmable, Precision Instrumentation Amplifier Gain Error: 0.08% Max, Gain Nonlinearity: 10ppm Max,  
60μV Max Input Offset Voltage, 90dB Min CMRR  
LT1168  
LTC®1418  
Low Power, Single Resistor Programmable Instrumentation Amplifier  
14-Bit, Low Power, 200ksps ADC with Serial and Parallel I/O  
I
= 530μA Max  
SUPPLY  
Single Supply 5V or 5V Operation, 1.5LSB INL and  
1LSB DNL Max  
LT1460  
LT1468  
Precision Series Reference  
Micropower; 2.5V, 5V, 10V Versions; High Precision  
16-Bit Accurate Op Amp, Low Noise Fast Settling  
16-Bit Accuracy at Low and High Frequencies, 90MHz GBW,  
22V/μs, 900ns Settling  
LTC1562  
LTC1605  
Active RC Filter  
Lowpass, Bandpass, Highpass Responses; Low Noise,  
Low Distortion, Four 2nd Order Filter Sections  
16-Bit, 100ksps, Sampling ADC  
Single 5V Supply, Bipolar Input Range: 10V,  
Power Dissipation: 55mW Typ  
1789fc  
LT 0510 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1789CS8-1-TRPBF

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-10

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-10#PBF

暂无描述
Linear

LT1789CS8-10#TR

LT1789 - Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1789CS8-10-PBF

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-10-TR

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789CS8-10-TRPBF

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789IS8-1

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789IS8-1#TR

LT1789 - Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1789IS8-1-PBF

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789IS8-1-TR

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear

LT1789IS8-1-TRPBF

Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers
Linear