LCL8052ACPD [INTERSIL]

Precision 4 1/2 Digit, A/D Converter; 精密4 1/2位, A / D转换器
LCL8052ACPD
型号: LCL8052ACPD
厂家: Intersil    Intersil
描述:

Precision 4 1/2 Digit, A/D Converter
精密4 1/2位, A / D转换器

转换器
文件: 总23页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICL8052A/ICL71C03,  
ICL8068A/ICL71C03  
TM  
heet  
May 2001  
File Number 3081.2  
1
Precision 4 / Digit, A/D Converter  
2
Features  
itle  
L80  
AA/  
L71  
3,  
L80  
A/IC  
1C0  
The ICL8052A or ICL8068A/lCL71C03 chip pairs with their  
multiplexed BCD output and digit drivers are ideally suited  
for the visual display DVM/DPM market. The outstanding  
• Typically Less Than 2µV  
Noise (200.00mV Full Scale,  
P-P  
lCL8068A  
• Accuracy Guaranteed to 1 Count Over Entire 20,000  
Counts (2.0000V Full Scale)  
1
4 / digit accuracy, 200.00mV to 2.0000V full scale  
2
capability, auto-zero and auto-polarity combine with true  
ratiometric operation, almost ideal differential linearity and  
time-proven dual slope conversion. Use of these chip pairs  
eliminates clock feedthrough problems, and avoids the  
critical board layout usually required to minimize charge  
injection.  
• Guaranteed Zero Reading for 0V Input  
• True Polarity at Zero Count for Precise Null Detection  
• Single Reference Voltage Required  
• Over-Range and Under-Range Signals Available for Auto-  
Ranging Capability  
bjec  
ecis  
When only 2000 counts of resolution are required, the 71C03  
1
• All Outputs TTL Compatible  
can be wired for 3 / digits and give up to 30 readings/sec.,  
2
making it ideally suited for a wide variety of applications.  
• Medium Quality Reference, 40ppm (Typ) on Board  
• Blinking Display Gives Visual Indication of Over Range  
The ICL71C03 is an improved CMOS plug-in replacement for  
the lCL7103 and should be used in all new designs.  
/2  
git,  
D
nver  
)
utho  
)
• Six Auxiliary Inputs/Outputs are Available for Interfacing to  
UARTs, Microprocessors or Other Complex Circuitry  
Part Number Information  
• 5pA Input Current (Typ) (8052A)  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
14 Ld PDIP  
lCL8052ACPD  
ICL8068ACDD  
lCL8068ACJD  
lCL71C03ACPl  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
E14.3  
14 Ld CERDIP  
14 Ld CERDIP  
28 Ld PDIP  
F14.3  
F14.3  
E28.6  
eyw  
s
tersi  
Pinouts  
rpor  
on,  
ICL8052A/ICL8068A  
(CERDIP, PDIP)  
TOP VIEW  
ICL71C03 (PDIP)  
TOP VIEW  
alog  
V+  
1
1
2
3
4
5
6
7
8
9
28 BUSY  
1
4 / / 3 /  
27  
26  
25  
24  
23  
22  
21  
20  
19  
D
D
D
D
B
B
B
B
D
(LSD)  
gital  
nver  
,
D,  
crop  
esso  
2
2
1
2
3
4
8
4
2
1
5
POL  
RUN/HOLD  
COMP IN  
V-  
COMP OUT  
1
2
3
4
5
6
7
14 INT OUT  
-1.2V  
13 +BUFF IN  
12 +INT IN  
11 -INT IN  
V-  
(MSB)  
REF CAP  
REF BYPASS  
GND  
REFERENCE  
REF. CAP. 1  
REF. CAP. 2  
V
10 -BUFF IN  
(LSB)  
(MSD)  
REF  
erfa  
ANALOG IN 10  
ANALOG GND 11  
CLOCK IN 12  
REF OUT  
9
8
BUFF OUT  
V+  
18 STROBE  
17 A-Z IN  
ICL8052A/  
ICL8068A  
REF SUPPLY  
ta  
quis  
16  
UNDER-RANGE 13  
OVER-RANGE 14  
A-Z OUT  
15 DIGITAL GND  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Americas Inc. | Copyright © Intersil Americas Inc. 2001  
1
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
Functional Block Diagram  
0.22µF  
10kΩ  
90kΩ  
100kΩ  
+15V -15V  
SEVEN-  
SEGMENT  
DECODER  
-BUF IN BUF OUT -INT IN INT OUT  
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
COMP.  
6
3
INT.  
REF.  
-
-
A1  
+
A2  
-
300pF  
D
D
D
D
D
1
5
4
3
2
+
A3  
10kΩ  
3
19  
24  
25  
26  
27  
ICL8052A/8068A  
+
B
1
20  
21  
22  
-1.2V  
5
+INT IN 12  
2
MSD  
LSD  
1kΩ  
+BUF IN 13  
B
2
COMP  
OUT  
B
B
MULTIPLEXER  
10µF  
3
4
10µF (TYP)  
REF  
1µF (TYP)  
23  
REF  
CAP 1  
AZ OUT  
AZ IN  
CAP 2  
COMP IN  
16  
17  
5
8
9
LATCH  
LATCH  
LATCH  
LATCH  
LATCH  
REF  
7
4
ZERO  
ANALOG  
INPUT  
2
5
CROSSING  
DETECTOR  
SW3  
COUNTERS  
10kΩ  
0.1µF  
10  
11  
1
6
CONTROL LOGIC  
ICL71C03  
ANALOG  
GND  
1
15  
6
4
12  
2
14  
13  
18  
28  
RUN/  
HOLD  
CLOCK 4 1/2 DIGIT/ OVER UNDER STROBE BUSY  
IN RANGE RANGE  
3 1/2 DIGIT  
+5V  
-15V  
FIGURE 1.  
2
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
Absolute Maximum Ratings  
Thermal Information  
o
o
ICL8052A, ICL8068A  
Thermal Resistance (Typical, Note 5)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18V  
Differential Input Voltage  
CERDIP Package. . . . . . . . . . . . . . . . .  
14 Ld PDIP Package . . . . . . . . . . . . . .  
28 Ld PDIP Package . . . . . . . . . . . . . .  
Maximum Storage Temperature. . . . . . . . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering, 10s). . . . . . . . . . . . .300 C  
75  
100  
65  
20  
N/A  
N/A  
o
(8068A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30V  
(8052A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V  
Input Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V  
Output Short Circuit Duration All Outputs (Note 2) . . . . . . Indefinite  
ICL71C03  
o
o
Power Supply Voltage (GND to V+). . . . . . . . . . . . . . . . . . . . . . 6.5V  
Negative Supply Voltage (GND to V-) . . . . . . . . . . . . . . . . . . . . -17V  
Analog Input Voltage (Note 3) . . . . . . . . . . . . . . . . . . . . . . . V+ to V-  
Digital Input Voltage (Note 4) . . . . . . . . .(GND - 0.3V) to (V+ + 0.3V)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
2. For supply voltages less than 15V, the absolute maximum input voltage is equal to the supply voltage.  
o
3. Short circuit may be to ground or either supply. Rating applies to 70 C ambient temperature.  
4. Input voltages may exceed the supply voltages provided the input current is limited to 100µA.  
5. Connecting any digital inputs or outputs to voltages greater then V+ or less than GND may cause destructive device latchup. For this reason it  
is recommended that the power supply to the ICL71C03 be established before any inputs from sources not on that supply are applied.  
6. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
TEST  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.2  
0.1  
0.1  
0.1  
2.5  
0.25  
4.2  
4.99  
400  
1200  
2
MAX  
UNITS  
mA  
µA  
µA  
µA  
V
Clock In, Run/Hold, 4 1/2 / 3 1/2  
I
V
V
V
V
= 0  
-
0.6  
INL  
IN  
IN  
IN  
IN  
I
= +5V  
= 0  
-
10  
INH  
Comp. In Current  
I
-
10  
INL  
I
= +5V  
-
10  
INH  
Threshold Voltage  
All Outputs  
V
-
-
-
INTH  
V
I
I
I
= 1.6mA  
= -1mA  
= -10µA  
0.40  
V
OL  
OH  
OH  
OL  
OH  
OH  
B , B , B , B , D , D , D , D , D  
5
V
2.4  
4.9  
-
-
V
1
2
4
8
1
2
3
4
Busy, Strobe, Over-Range, Under-Range Polarity  
Switches 1, 3, 4, 5, 6  
Switch 2  
V
-
V
r
r
-
DS(ON)  
DS(ON)  
-
-
Switch Leakage (All)  
+5V Supply Range  
I
-
-
6
pA  
V
D(OFF)  
V+  
4
5
-15V Supply Range  
V-  
I+  
I-  
-5  
-
-15  
1.1  
0.8  
40  
-18  
3
V
+5V Supply Current  
f
f
= 0  
= 0  
mA  
mA  
pF  
kHz  
CLK  
CLK  
-15V Supply Current  
Power Dissipation Capacitance  
Clock Frequency (Note 6)  
NOTE:  
-
3
C
vs Clock Frequency  
-
-
PD  
DC  
2000  
1200  
7. This specification relates to the clock frequency range over which the ICL71C03A will correctly perform its various functions. See the “Max Clock  
Frequency” section under Component Value Selection for limitations on the clock frequency range in a system.  
3
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
o
ICL8068A Electrical Specifications V  
=
15V, T = 25 C, Unless Otherwise Specified  
A
SUPPLY  
TEST  
PARAMETER  
EACH OPERATIONAL AMPLIFIER  
Input Offset Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
I
V
V
V
V
= 0V  
= 0V  
-
-
20  
80  
65  
mV  
pA  
dB  
dB  
OS  
CM  
CM  
CM  
CM  
Input Current (Either Input) (Note 7)  
Common-Mode Rejection Ratio  
150  
IN  
CMRR  
=
=
10V  
2V  
70  
-
90  
-
-
Non-Linear Component of Common-Mode Rejection  
Ratio (Note 8)  
110  
Large Signal Voltage Gain  
Slew Rate  
A
R
= 50kΩ  
L
20,000  
-
-
-
-
-
V/V  
V/µs  
MHz  
mA  
V
SR  
-
-
-
6
2
5
Unity Gain Bandwidth  
Output Short-Circuit Current  
COMPARATOR AMPLIFIER  
Small-Signal Voltage Gain  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
VOLTAGE REFERENCE  
Output Voltage  
GBW  
I
SC  
A
R
= 30kΩ  
L
-
-
-
-
-
V/V  
V
VOL  
+V  
12  
13  
O
O
-V  
-2.0  
-2.6  
V
V
R
1.60  
1.75  
5
1.90  
-
V
O
Output Resistance  
-
O
o
Temperature Coefficient  
Supply Voltage (V++ -V-)  
Supply Current Total  
TC  
-
40  
-
-
ppm/ C  
V
10  
-
16  
14  
V
SUPPLY  
I
8
mA  
SUPPLY  
o
ICL8052A Electrical Specifications V  
=
15V, T = 25 C, Unless Otherwise Specified  
A
SUPPLY  
TEST  
PARAMETER  
EACH OPERATIONAL AMPLIFIER  
Input Offset Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
I
V
V
V
V
= 0V  
= 0V  
-
-
20  
2
75  
10  
-
mV  
pA  
dB  
dB  
OS  
CM  
CM  
CM  
CM  
Input Current (Either Input) (Note 7)  
Common-Mode Rejection Ratio  
IN  
CMRR  
=
=
10V  
2V  
70  
-
90  
110  
Non-Linear Component of Common-Mode Rejection  
Ratio (Note 8)  
-
Large Signal Voltage Gain  
Slew Rate  
A
R
= 50kΩ  
L
20,000  
-
6
-
-
-
-
V/V  
V/µs  
MHz  
mA  
V
SR  
-
-
-
Unity Gain Bandwidth  
GBW  
1
Output Short-Circuit Current  
COMPARATOR AMPLIFIER  
Small-Signal Voltage Gain  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
VOLTAGE REFERENCE  
Output Voltage  
I
20  
SC  
A
R
= 30kΩ  
L
-
-
-
-
-
V/V  
V
VOL  
+V  
12  
13  
O
O
-V  
-2.0  
-2.6  
V
V
R
1.60  
-
1.75  
5
1.90  
-
V
O
Output Resistance  
O
4
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
o
ICL8052A Electrical Specifications V  
=
15V, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
A
TEST  
PARAMETER  
Temperature Coefficient  
Supply Voltage (V++ -V-)  
Supply Current Total  
NOTES:  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40  
-
MAX  
-
UNITS  
o
TC  
-
ppm/ C  
V
10  
-
16  
14  
V
SUPPLY  
I
6
mA  
SUPPLY  
o
8. The input bias currents are junction leakage currents which approximately double for every 10 C increase in the junction temperature, T . Due  
J
to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction  
temperature rises above the ambient temperature as a result of internal power dissipation, P . T = T + R  
resistance from junction to ambient. A heat sink can be used to reduce temperature rise.  
P , where R is the thermal  
θJA θJA  
D
J
A
D
9. This is the only component that causes error in dual-slope converter.  
System Electrical Specifications: ICL8068A/ICL71C03  
o
V++ = +15V, V+ = +5V, V- = -15V, T = 25 C, f  
Set for 3 Readings/Sec.  
A
CLK  
ICL8068A/ICL71C03  
ICL8068A/ICL71C03  
(NOTE 9)  
(NOTE 10)  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
-000.0  
TYP  
MAX  
000.0  
UNITS  
Zero Input Reading  
V
= 0V,  
-000.0  
000.0  
+000.0  
000.0  
Digital  
IN  
Full Scale = 200mV  
Reading  
Ratiometric Error (Note 11)  
V
= V  
0.999  
1.000  
0.2  
1.001  
0.9999  
1.0000  
0.5  
1.0001  
Digital  
Reading  
IN  
REF  
Full Scale = 2V  
Linearity Over Full Scale (Error of  
Reading from Best Straight Line)  
-2V V +2V  
IN  
-
-
1
-
-
-
1
-
Counts  
Differential Linearity (Difference between -2V V +2V  
0.01  
0.01  
Counts  
IN  
Worst Case Step of Adjacent Counts and  
Ideal Step)  
Rollover Error (Difference in Reading for -V +V 2V  
IN IN  
Equal Positive & Negative Voltage Near  
Full Scale)  
-
-
0.2  
3
1
-
-
-
0.5  
2
1
-
Counts  
Noise (P-P Value Not Exceeded 95% of  
Time)  
V
= 0V,  
µV  
IN  
Full Scale = 200mV  
Leakage Current at Input  
V
= 0V  
-
-
200  
1
300  
5
-
-
100  
0.5  
200  
2
pA  
IN  
IN  
o
Zero Reading Drift (Note 12)  
V
= 0V,  
µV/ C  
o
o
0 C T 50 C  
A
o
Scale Factor Temperature Coefficient  
(Note 12)  
V
= 2V,  
-
3
15  
-
2
5
ppm/ C  
IN  
o
o
0 C T 50 C  
Ext. Ref. 0ppm/ C  
A
o
System Electrical Specifications: ICL8052A/ICL71C03  
o
V++ = +15V, V+ = +5V, V- = -15V, T = 25 C, f  
Set for 3 Reading/Sec.  
A
CLK  
ICL8052A/ICL71C03  
ICL8052A/A/ICL71C03  
(NOTE 9)  
(NOTE 10)  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Zero Input Reading  
V
= 0V,  
-0.000  
0.999  
-
0.000  
+0.000  
1.001  
1
-0.000  
0.000  
0.000  
Digital  
Reading  
IN  
Full Scale = 2V  
Ratiometric Error (Note 11)  
V
= V  
1.000  
0.2  
0.9999  
-
1.0000  
0.5  
1.0001  
1
Digital  
Reading  
IN  
REF  
Full Scale = 2V  
Linearity Over Full Scale (Error of  
Reading from Best Straight Line)  
-2V V +2V  
IN  
Counts  
5
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
System Electrical Specifications: ICL8052A/ICL71C03  
o
V++ = +15V, V+ = +5V, V- = -15V, T = 25 C, f  
Set for 3 Reading/Sec. (Continued)  
A
CLK  
ICL8052A/ICL71C03  
ICL8052A/A/ICL71C03  
(NOTE 9)  
(NOTE 10)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Differential Linearity (Difference between -2V V +2V  
-
0.01  
-
-
0.01  
-
Counts  
IN  
Worst Case Step of Adjacent Counts and  
Ideal Step)  
Rollover Error (Difference in Reading for -V +V 2V  
IN IN  
-
0.2  
1
-
0.5  
1
Counts  
Equal Positive & Negative Voltage Near  
Full Scale)  
Noise (Peak-To-Peak Value Not  
Exceeded 95% of Time)  
V
= 0V,  
IN  
Full Scale = 200mV,  
Full Scale = 2V  
-
20  
50  
-
-
-
-
-
-
µV  
30  
3
Leakage Current at Input  
Zero Reading Drift  
V
= 0V  
-
-
5
1
30  
5
-
-
10  
2
pA  
IN  
IN  
o
V
= 0V,  
0.5  
µV/ C  
o
o
0 C To 70 C  
o
Scale Factor Temperature Coefficient  
V
= 2V,  
-
3
15  
-
2
5
ppm/ C  
IN  
o
o
0 C To 70 C,  
Ext. Ref. 0ppm/ C  
o
NOTES:  
1
10. Tested in 3 / digit (2,000 count) circuit shown in Figure 5, clock frequency 12kHz. Pin 2 71C03 connected to GND.  
2
1
11. Tested in 4 / digit (20,000 count) circuit shown in Figure 5, clock frequency 120kHz. Pin 2 71C03A open.  
2
12. Tested with a low dielectric absorption integrating capacitor. See Component Selection Section.  
o
13. The temperature range can be extended to 70 C and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high  
temperature leakage of the 8068A.  
Zero phase, and the integrator will generate a ramp whose  
Detailed Description  
slope is proportional to V . At the end of this phase, the  
IN  
Analog Section  
sign of the ramp is latched into the polarity F/F.  
Figure 2 shows the equivalent Circuit of the Analog Section  
of both the ICL71C03/8052A and the ICL71C03/8068A in  
the 3 different phases of operation. IF the RUN/HOLD pin is  
Deintegrate Phase II (Figures 2C and 2D)  
During the Deintegrate phase, the switch drive logic uses the  
output of the polarity F/F in determining whether to close  
switch 6 or 5. If the input signal is positive, switch 6 is closed  
left open or tied to V+, the system will perform conversions  
1
at a rate determined by the clock frequency: 40,0002 at 4 /  
1
2
and a voltage which is V  
more negative than during  
digit and 4002 at 3 / digit clock periods per cycle (see  
2
REF  
Auto-Zero is impressed on the BUFFER INPUT. Negative  
Inputs will cause +2(V ) to be applied to the BUFFER  
Figure 3 for details of conversion timing).  
REF  
Auto-Zero Phase I (Figure 2A)  
INPUT via switch 5. Thus, the reference capacitor generates  
the equivalent of a (+) or (-) reference from the single  
reference voltage with negligible error. The reference voltage  
returns the output of the integrator to the zero-crossing point  
established in Phase I. The time, or number of counts,  
required to do this is proportional to the input voltage. Since  
the Deintegrate phase can be twice as long as the Input  
Integrate Phase, the input voltage required to give a full  
During the Auto-Zero, the input of the buffer is connected to  
through switch 2, and switch 3 closes a loop around  
V
REF  
the integrator and comparator, the purpose of which is to  
charge the auto-zero capacitor until the integrator output  
does not change with time. Also, switches 1 and 2 recharge  
the reference capacitor to V  
.
REF  
Input Integrate Phase II (Figure 2B)  
scale reading is 2V  
.
REF  
During Input Integrate the auto-zero loop is opened and the  
ANALOG INPUT is connected to the BUFFER INPUT  
through switch 4 and C  
. If the input signal is zero, the  
REF  
buffer, integrator and comparator will see the same voltage  
that existed in the previous state (Auto-Zero). Thus, the  
integrator output will not change but will remain stationary  
during the entire Input Integrate cycle. If V is not equal to  
IN  
zero, and unbalanced condition exists compared to the Auto  
6
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
C
R
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
CROSSING  
DETECTOR  
A1  
+
A2  
+
-
A3  
+
C
REF  
V
IN  
1
6
C
STRAY  
C
AZ  
3
FIGURE 2A. PHASE I AUTO-ZERO  
R
C
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
CROSSING  
DETECTOR  
A1  
+
A2  
+
-
A3  
+
C
REF  
V
1
IN  
6
C
STRAY  
C
AZ  
POLARITY  
FF  
3
FIGURE 2B. PHASE II INTEGRATE INPUT  
R
C
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
CROSSING  
DETECTOR  
A1  
+
A2  
+
-
A3  
+
C
REF  
V
1
IN  
6
C
STRAY  
C
AZ  
POLARITY  
FF  
3
FIGURE 2C. PHASE III + DEINTEGRATE  
R
C
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
CROSSING  
DETECTOR  
A1  
+
A2  
+
-
A3  
+
C
REF  
V
1
IN  
6
C
STRAY  
C
AZ  
POLARITY  
FF  
3
FIGURE 2D. PHASE III - DEINTEGRATE  
FIGURE 2. ANALOG SECTION OF EITHER ICL8052A OR ICL8068A WITH ICL71C03  
7
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
COUNTS  
PHASE I  
10,001  
1,001  
PHASE II  
10,000  
1,000  
PHASE III  
20,001  
1
4 / DIGIT  
2
1
3 / DIGIT  
2,001  
2
POLARITY  
DETECTED  
ZERO CROSSING  
OCCURS  
INTEGRATOR  
OUTPUT  
ZERO CROSSING  
DETECTED  
AZ PHASE I  
INT PHASE II  
DEINT PHASE III  
AZ  
CLOCK  
INTERNAL LATCH  
BUSY OUTPUT  
AFTER ZERO CROSSING,  
ANALOG SECTION WILL  
BE IN AUTOZERO  
NUMBER OF COUNTS TO ZERO CROSSING  
PROPORTIONAL TO V  
IN  
CONFIGURATION  
FIGURE 3. CONVERSION TIMING  
Zero-Crossing Flip-Flop  
Figure 4 shows the problem that the zero-crossing F/F is  
designated to solve.  
CLOCK  
PULSE  
FEEDTHROUGH  
The integrator output is approaching the zero-crossing point  
where the count will be latched and the reading displayed.  
For a 20,000 count instrument, the ramp is changing  
approximately 0.50mV per clock pulse (10V Max integrator  
output divided by 20,000 counts). The clock pulse  
TRUE ZERO  
CROSSING  
FALSE ZERO  
CROSSING  
feedthrough superimposed upon this ramp would have to be  
less than 100mV peak to avoid causing significant errors.  
FIGURE 4. INTEGRATOR OUTPUT NEAR ZERO-CROSSING  
The flip-flop interrogates the data once every clock pulse  
after the transients of the previous clock pulse and half-clock  
pulse have died down. False zero-crossings caused by clock  
pulses are not recognized. Of course, the flip-flop delays the  
true zero-crossing by one count in every instance, and if a  
correction were not made, the display would always be one  
count too high. Therefore, the counter is disabled for one  
clock pulse at the beginning of phase 3. This one count  
delay compensates for the delay of the zero crossing flip-  
flop, and allows the correct number to be latched into the  
display. Similarly, a one count delay at the beginning of  
phase 1 gives an overload display of 0000 instead of 0001.  
No delay occurs during phase 2, so that true ratiometric  
readings result.  
Detailed Description  
Digital Section  
The 71C03 includes several pins which allow it to operate  
conveniently in more sophisticated systems. These include:  
4-1/2 / 3-1/2 (PIN 2)  
When high (or open) the internal counter operates as a full  
1
4 / decade counter, with a complete measurement cycle  
2
requiring 40,002 counts. When held low, the least significant  
decade is cleared and the clock is fed directly into the next  
decade. A measurement cycle now requires only 4,0002  
clock pulses. All 5 digit drivers are active in either case, with  
1
each digit lasting 200 counts with Pin 2 high (4 / digit) and  
2
1
20 counts for Pin 2 low (3 / digit).  
2
8
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
RUN/HOLD (PIN 4)  
BUSY (PIN 28)  
When high (or open) the A/D will free-run with equally  
spaced measurement cycles every 40,0002/4,002 clock  
pulses. If taken low, the converter will continue the full  
measurement cycle that it is doing and then hold this reading  
as long as Pin 4 is held low. A short positive pulse (greater  
then 300ns) will now initiate a new measurement cycle  
beginning with up to 10,001/1,001 counts of auto zero. Of  
course if the pulse occurs before the full measurement cycle  
(40,002/4,002 counts) is completed, it will not be recognized  
and the converter will simply complete the measurement it is  
doing. An external indication that full measurement cycle  
has been completed is that the first STROBE pulse (see  
below) will occur 101/11 counts after the end of this cycle.  
Thus, if RUN/HOLD is low and has been low for at least  
101/11 counts, converter is holding and ready to start a new  
measurement when pulsed high.  
BUSY goes high at the beginning of signal integrate and  
stays high until the first clock pulse after zero-crossing (or  
after end of measurement in the case of an OVER-RANGE).  
The internal latches are enabled (i.e., loaded) during the first  
clock pulse after BUSY and are latched at the end of this  
clock pulse. The circuit automatically reverts to auto-zero  
when not BUSY so it may also be considered an A-Z signal.  
A very simple means for transmitting the data down a single  
wire pair from a remote location would be to AND BUSY with  
clock and subtract 10,001/1,001 counts from the number of  
pulses received - as mentioned previously there is one “NO-  
count” pulse in each Reference Integrate cycle.  
OVER-RANGE (PIN 4)  
This pin goes positive when the input signal exceeds the  
range (20,000/2,000) of the converter. The output F-F is set  
at the end of BUSY and is reset to zero at the beginning of  
Reference Integrate in the next measurement cycle.  
STROBE (PIN 18)  
This is a negative-going output pulse that aids in transferring  
the BCD data to external latches, UARTs or  
UNDER-RANGE (PIN 13)  
This pin goes positive when the reading is 9% of range or  
less. The output F-F is set at the end of BUSY (if the new  
reading is 1800/180 or less) and is reset a the beginning of  
Signal Integrate of the next reading.  
microprocessors. There are 5 negative-going STROBE  
pulses that occur once and only once for each measurement  
cycle starting 101/11 pulses after the end of the full  
measurement cycle. Digit 5 (MSD) goes high at the end of  
the measurement cycle and stays on for 201/21 counts. In  
the center of this digit pulse (to avoid race conditions  
POLARITY (PIN 3)  
This pin is positive for a positive input signal. It is valid even for a  
zero reading. In other words, +0000 means the signal is  
positive but less than the least significant bit. The converter can  
be used as null detector by forcing equal (+) and (-) readings.  
The null at this point should be less than 0.1 LSB. This output  
becomes valid at the beginning of Reference Integrate and  
remains correct until it is revalidated for the next measurement.  
between changing BCD and digit drives) the first STROBE  
1
pulse goes negative for / clock pulse width. Similarly, after  
2
Digit 5, Digit 4 goes high (for 200/20 clock pulses) and  
100/10 pulses later the STROBE goes negative for the  
second time. This continues through Digit 1 (LSD) when the  
fifth and last STROBE pulse is sent. The digit drive will  
continue to scan (unless the previous signal was over-range)  
but no additional STROBE pulses will be sent until a new  
measurement is available.  
DIGIT DRIVES (PINS 19, 24, 25, 26, AND 27)  
Each digit drive is a positive-going signal which lasts for  
200/20 clock pulses. The scan sequence is D (MSD), D ,  
5
4
D , D , and D (LSD). All five digits are scanned even when  
3
2
1
1
operating in the 3 / digit mode, and this scan is continuous  
2
unless and OVER-RANGE occurs. Then all Digit drives are  
blanked from the end of the STROBE sequence until the  
beginning of Reference Integrate, at which time D will start  
5
the scan again. This gives a blinking display as a visual  
indication of OVER-RANGE.  
BCD (PINS 20, 21, 22 AND 23)  
The Binary coded decimal bit B , B , B , and B are positive  
8
4
2
1
logic signals that go on simultaneously with the Digit driver.  
9
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
INTEGRATOR  
OUTPUT  
AUTO  
ZERO  
10,001  
/ 1,001  
COUNTS  
SIGNAL  
INTEG.  
10,000  
REFERENCE  
INTEGRATE  
20,001 / 2,001  
/ 1,000  
COUNTS  
COUNTS MAX  
FULL MEASUREMENT CYCLE  
40,002/4,002 COUNTS  
BUSY  
OVER-RANGE  
WHEN APPLICABLE  
UNDER-RANGE  
WHEN APPLICABLE  
EXPANDED SCALE BELOW  
DIGIT SCAN  
D
5
4
3
FOR OVER-RANGE  
D
D
D
D
2
1
FIRST D OF AZ AND REF INT  
5
ONE COUNT LONGER  
1000/100 COUNTS  
STROBE  
SIGNAL  
REFERENCE  
INTEGRATE  
INTEGRATE  
AUTO ZERO  
DIGIT SCAN  
FOR OVER-RANGE  
D
5
D
4
D
3
D
2
D
1
FIGURE 5. TIMING DIAGRAM FOR OUTPUTS  
Component Value Selection  
10,000(4-1/2 Digit)  
1000(3-1/2 Digit)  
× Clock Period × (20µA)  
= -------------------------------------------------------------------------------------------------------------------------  
For optimum performance of the analog section, care must  
be taken in the selection of values for the integrator capacitor  
and resistor, auto-zero capacitor, reference voltage, and  
conversion rate. These values must be chosen to suit the  
particular application.  
C
INT  
Integrator Output Voltage Swing  
A very important characteristic of the integrating capacitor is  
that it has low dielectric absorption to prevent roll-over or  
ratiometric errors. A good test for dielectric absorption is to  
use the capacitor with the input tied to the reference.  
Integrating Resistor  
This ratiometric condition should be read half scale 1.0000,  
and any deviation is probably due to dielectric absorption.  
Polypropylene capacitors give undetectable errors at  
reasonable cost. Polystyrene and polycarbonate capacitors  
may be used in less critical applications.  
The integrating resistor is determined by the full scale input  
voltage and the output current of the buffer used to charge  
the integrator capacitor. This current should be small  
compared to the output short circuit current such that  
thermal effects are kept to a minimum and linearity is not  
affected. Values of 5µA to 40µA give good results with a  
nominal of 20µA. The exact value may be chosen by:  
Auto-Zero and Reference Capacitor  
The size of the auto-zero capacitor has some influence on  
the noise of the system, with a larger value capacitor giving  
less noise. The reference capacitor should be large enough  
such that stray capacitance to ground from its nodes is  
negligible.  
Full Scale Voltage (See Note)  
R
= ------------------------------------------------------------------------------  
INT  
20µA  
NOTE: If gain is used in the buffer amplifier, then:  
(BufferGain) (Full Scale Voltage)  
R
= -------------------------------------------------------------------------------------------  
INT  
When gain is used in the buffer amplifier the reference  
capacitor should be substantially larger than the auto-zero  
capacitor. As a rule of thumb, the reference capacitor should  
be approximately the gain times the value of the auto-zero  
capacitor. The dielectric absorption of the reference cap and  
auto-zero cap are only important at power-on or when the  
circuit is recovering from an overload. Thus, smaller or  
cheaper caps can be used here if accurate readings are not  
required for the first few seconds of recovery.  
20µA  
Integrating Capacitor  
The product of integrating resistor and capacitor is selected  
to give 9V swing for full scale inputs. This is a compromise  
between possibly saturating the integrator (at +14V) due to  
tolerance buildup between the resistor, capacitor and clock  
and the errors a lower voltage swing could induce due to  
offsets referred to the output of the comparator. In general,  
the value of C  
is given by:  
INT  
10  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
10-50K  
+15V -15V  
100kΩ  
-BUF IN BUF OUT -INT IN INT OUT  
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
COMP.  
6
3
INT.  
REF.  
300pF  
-
-
COMP  
OUT  
A1  
+
A2  
-
+
A3  
10kΩ  
ICL8068A  
2
+
-1.2V  
5
+BUF IN 13  
-15V  
+INT IN 12  
1kΩ  
TO ICL7104  
FIGURE 6. ADDING BUFFER GAIN TO ICL8068A  
bandwidth product of 300MHz. The comparator output  
follows the integrator ramp with a 3µs delay, and at a clock  
frequency of 160kHz (6µs period) half of the first reference  
integrate clock period is lost in delay. This means that the  
meter reading will change from 0 to 1 with 50µV input, 1 to 2  
with 150µV, 2 to 3 at 250µV, etc. This transition at midpoint is  
considered desirable by most users. However, if the clock  
frequency is increased appreciably above 160kHz, the  
instrument will flash “1” on noise peaks even when the input  
is shorted.  
Reference Voltage  
The analog input required to generate a full scale output is:  
= 2V  
V
.
REF  
IN  
The stability of the reference voltage is a major factor in the  
overall absolute accuracy of the converter. For this reason, it  
is recommended that an external high quality reference be  
used where ambient temperature is not controlled or where  
high-accuracy absolute measurements are being made.  
Buffer Gain  
At the end of the auto-zero interval, the instantaneous noise  
voltage on the auto-zero capacitor is stored and subtracted  
from the input voltage while adding to the reference voltage  
during the next cycle. The result of this is that the noise  
voltage is effectively somewhat greater than the input noise  
voltage of the buffer itself during integration. By introducing  
some voltage gain into the buffer, the effect of the auto-zero  
noise (referred to the input) can be reduced to the level of  
the inherent buffer noise. This generally occurs with a buffer  
gain of between 3 and 10. Further increase in buffer gain  
merely increases the total offset to be handled by the auto-  
zero loop, and reduces the available buffer and integrator  
swings, without improving the noise performance of the  
system. The circuit recommended for doing this with the  
ICL8068A/ICL71C03 is shown in Figure 6.  
For many dedicated applications where the input signal is  
always on one polarity, the dealy of the comparator need not  
be limitation. Since the non-linearity and noise do not  
increase substantially with frequency, clock rates of up to  
approximately 1MHz may be used. For a fixed clock  
frequency, the extra count or counts caused by comparator  
delay will be a constant and can be subtracted out digitally.  
The minimum clock frequency is established by leakage on  
the auto-zero and reference caps. With most devices,  
measurement cycles as long as 10 seconds give no  
measurable leakage error.  
To achieve maximum rejection of 60Hz pickup, the signal  
integrate cycle should be a multiple of 60Hz. Oscillator  
frequencies of 300kHz, 200kHz, 150kHz, 120kHz, 100kHz,  
1
40kHz, 33 / kHz, etc, should be selected. For 50Hz  
3
2
rejection, oscillator frequencies of 250kHz, 166 / kHz,  
ICL8052A vs ICL8068A  
3
125kHz, 100kHz, etc. would be suitable. Note that 100kHz  
(2.5 readings/second) will reject both 50Hz and 60Hz.  
The ICL8052A offers significantly lower input leakage  
currents than the ICL8068A, and may be found preferable in  
systems with high input impedances. However, the  
ICL8068A has substantially lower noise voltage, and is the  
device of choice for systems where noise is a limiting factor,  
particularly in low signal level conditions.  
The clock used should be free from significant phase or  
frequency jitter. A simple two-gate oscillator and one based  
on CMOS 7555 timer are shown in the Applications section.  
The multiplexed output means that if the display takes  
significant current from the logic supply, the clock should  
have good PSRR.  
Max Clock Frequency  
The maximum conversion rate of most dual-slope A/D  
converters is limited by frequency response of the  
comparator. The comparator in this circuit is no exception,  
even though it is entirely NPN with an open-loop, gain-  
11  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
The auto-zero cap should be 1µF for all scales and the  
Applications  
reference capacitor should be 1µF times the gain of the  
buffer amplifier. At this value if the input leakages of the  
8052A/8068A are equal, the droop effects will cancel giving  
zero offset. This is especially important at high temperature.  
Specific Circuits Using the 8068A/71C03  
8052A/A71C03  
1
Figure 7 shows the complete circuit for a 4 / digit  
2
( 200mV full scale) A/D converter with LED readout using  
the internal reference of the 8068A/52A. If an external  
reference is used, the reference supply (pin 7) should be  
connected to ground and the 300pF reference cap deleted.  
The circuit also shows a typical RC input filter. Depending on  
Some typical component values are shown in Table 1. For  
1
3 / digit conversion, use 12kHz clock.  
2
V++ = +15V, V+ = 5V, V- = -15V  
1
1
Clock Freq. = 120kHz (4 / Digit) or 12kHz (3 / Digit)  
2
2
TABLE 1.  
the application, the time-constant of this filter can be made  
1
faster, slower, or the filter deleted completely. The / digit  
2
SPECIFICATION  
Full Scale V  
VALUE  
UNITS  
mV  
LED is driven from the 7-segment decoder, with a zero  
20  
200  
10  
2000  
IN  
reading blanked by connecting a D signal to RBI input of  
5
Buffer Gain  
(RB1 + RB2)  
-----------------------------------  
RB2  
100  
(See  
Note)  
1
V/V  
the decoder.  
A voltage translation network is connected between the  
comparator output of the 8068A/52A and the auto-zero input  
of the 71C03. The purpose of this network is to assure that,  
during auto-zero, the output of the comparator is at or near the  
threshold of the 71C03 logic (+2.5V) while the auto-zero  
R
C
C
C
V
100  
0.22  
1.0  
10  
100  
0.22  
1.0  
100  
0.22  
1.0  
kΩ  
µF  
µF  
µF  
mV  
µV  
INT  
INT  
AZ  
capacitor is being charged to V  
(+100mV for a 200mV  
REF  
10  
1.0  
REF  
REF  
instrument). Otherwise, even with 0V in, some reference  
integrate period would be required to drive the comparator  
output to the threshold level. This would show up as an  
equivalent offset error. Once the divider network has been  
selected, the unit-to-unit variation should contribute less than  
a tenth of a count error. A second feature is the back-to-back  
diodes, used to lower the noise. In the normal operating mode  
they offer a high impedance and long integrating time  
constant to any noise pulses charging the auto-zero cap. At  
startup or recovery from an overload, their impedance is low  
to large signals so that the cap can be charged up in one  
auto-zero cycle. The buffer gain does not have to be set  
precisely at 10 since the gain is used in both the integrate and  
deintegrate phase. For scale factors other then 200mV the  
gain of the buffer should be changed to give a 2V buffer  
output. For 2.0000V full scale this means unity gain and for  
20,000mV (1µV resolution) a gain of 100 is necessary. Not all  
8068As can operate properly at a gain of 100 since their offset  
should be less than 10mV in order to accommodate the auto-  
zero circuitry. However, for devices selected with less than  
10mV offset, the noise performance is reasonable with  
approximately 1.5µV near full scale. On all scales less than  
200mV, the voltage translation network should be made  
adjustable as an offset trim.  
10  
100  
10  
1000  
100  
1
Resolution (4 / Digit)  
1
2
NOTE: Comment on offset limitations above. Buffer gain does not  
improve ICL8052A noise performance adequately.  
12  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
+5V  
150Ω  
5
4
3
2
1
7447  
150Ω  
150Ω  
a
b
c
d
e
f
4.7kΩ  
B
1
2
3
B
B
B
4
g
RBI  
ICL71C03  
+5V  
V+  
1
BUSY 28  
1
2
3
4
5
6
7
47kΩ  
1
4 / / 3 /  
(LSD) D 27  
1
2
2
POLARITY  
RUN/HOLD  
COMP IN  
D
D
D
26  
25  
24  
2
3
4
1.0µF  
-15V  
V-  
(MSB) B 23  
8
ICL8068A  
INT OUT 14  
2 COMP OUT +BUFF IN 13  
0.22µF  
REFERENCE  
REF. CAP. 1  
REF. CAP. 2  
ANALOG IN  
ANALOG GND  
CLOCK IN  
B
B
22  
21  
20  
4
2
1
10µF  
-15V  
1 V-  
8
10kΩ  
SIGNAL  
INPUT  
9
(LSB) B  
300µF  
36  
kΩ  
10  
11  
12  
13  
14  
(MSD) D 19  
5
3 REF CAP  
+INT IN 12  
0.1µF  
STROBE 18  
A-Z IN 17  
4 REF BYPASS -INT IN 11  
10  
kΩ  
100  
kΩ  
5 GND  
-BUFF IN 10  
UNDER-RANGE  
OVER-RANGE  
16  
A-Z OUT  
10µF  
1kΩ  
6 REF OUT  
BUFF OUT  
V++  
9
8
300  
kΩ  
DIGITAL GND 15  
90kΩ  
10kΩ  
CLOCK  
IN  
7 REF SUPPLY  
-15V  
120kHz = 3  
READINGS/SEC  
+15V  
1
NOTE: For 3 / digit, tie pin 2 low and change clock to 12kHz.  
2
1
FIGURE 7. ICL8052A (8068A)/71C03A 4 / DIGIT A/D CONVERTER  
2
a
a
V+  
+5V  
POL  
3kΩ  
DM8880  
PROG  
A
g
g
0V  
RBI BI D  
+5V  
HI VOLTAGE BUFFER DI 505  
47kΩ  
5kΩ  
0.02µF  
0.02  
µF  
2.5kΩ  
0.02  
µF  
GATES  
ARE  
7409  
0.02  
µF  
0.02  
µF  
POL  
D
D
D
D
D
B
B
B
B
5
4
3
2
1
8
4
2
1
8052A/  
8068A  
71C03A  
FIGURE 8. ICL8052A-8068A/71C03A PLASMA DISPLAY CIRCUIT  
13  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
A suitable circuit for driving a plasma-type display is shown  
driver circuit could be ganged to the one shown if required.  
This would be useful if additional annunciators were needed.  
in Figure 8. The high voltage anode driver buffer is made by  
Dionics. The 3 AND gates and caps driving “Bl” are needed  
for interdigit blanking of multiple-digit display elements, and  
can be omitted if not needed. The 2K and 3K resistors set  
the current levels in the display. A similar arrangement can  
be used with “Nixie” tubes.  
1
Figure 10 shows the complete circuit for a 4 /2 digit  
( 2.000V) A/D, again using the internal reference of the  
8052A/8068A.  
Figure 11 shows a more complicated circuit for driving LCD  
displays. Here the data is latched into the ICM7211 by the  
STROBE signal and “Overrange” is indicated by blanking the  
4 digits. A clock oscillator circuit using the ICM7555 CMOS  
timer is shown. Some other suitable clock circuits are  
suggested in Figures 12 and 13. The 2-gate circuit should  
use CMOS gates to maintain good power supply rejection.  
Nixieis a registered trademark of Burroughs Corporation.  
Analog and Digital Grounds  
Extreme care must be taken to avoid ground loops in the  
layout of 8068A or 8052A/71C03A circuits, especially in high  
sensitivity circuits. It is most important that return currents  
from digital loads are not fed into the analog ground line.  
Both of the above circuits have considerable current flowing  
in the digital ground returns from drivers, etc. A  
A problem sometimes encountered with the  
8052A/68A/71C03 A/D is that of gross over-voltage applied  
in the input. Voltage in excess of 2.000V may cause the  
integrator output to saturate. When this occurs, the integrator  
can no longer source (or sink) the current required to hold  
the summing junction (Pin 11) at the voltage stored on the  
auto zero capacitor. As a result, the voltage across the  
integrator capacitor decreases sufficiently to give a false  
voltage reading. This problem can also show up as large-  
signal instability on overrange conditions. A simple solution  
to this problem is to use junction FET transistors across the  
integrator capacitor to source (or sink) current into the  
summing junction and prevent the integrator amplifier from  
saturating, as shown in Figure 14.  
recommended connection sequence for the ground lines is  
shown in Figure 9.  
Other Circuits for Display Applications  
Popular LCD displays can be interfaced to the Output of the  
ICL71C03 with suitable display drivers, such as the  
ICM7211A as shown in Figure 10. A standard CMOS 4000  
1
series LCD driver circuit is used for displaying the / digit,  
2
the polarity, and the “over-range” flag. A similar circuit can be  
used with the ICM7212A LED driver. Of course, another full  
REF  
VOLTAGE  
BUFF  
OUT  
EXTERNAL  
REFERENCE  
(IF USED)  
ANALOG SUPPLY  
BYPASS CAPACITORS  
+15V  
-15V  
BUFF  
-IN  
(IF USED)  
V
PIN 11  
ICL71C03  
AN GND  
PIN 5  
REF  
I/P  
FILTER  
CAP  
+
ICL8052A/68A  
AN GND  
V
C
IN  
-
AZ  
ANALOG  
SUPPLY  
RETURN  
8068A PIN 2  
COMPARATOR  
BOARD  
EDGE  
DIGITAL  
SUPPLY  
RETURN  
DIGITAL  
LOGIC  
DIG GND  
ICL7104  
PIN 2  
DEVICE PIN  
+5V SUPPLY BYPASS CAPACITOR(S)  
FIGURE 9. GROUNDING SEQUENCE  
14  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
1
4 / DIGIT LCD DISPLAY  
2
28 SEGMENTS  
- D  
D
1
4
+5V  
116 151412 5  
CD4054A  
3
2
4
6
BACKPLANE  
7
8 1311 10 9  
0V  
ICM7211A  
5 BP  
ICL71C03  
+5V  
V+  
1
2
BUSY 28  
31 D  
1
41/2 / 31/2  
POL  
D
D
D
D
B
B
B
B
D
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
8
4
2
1
5
32 D  
2
3
33 D  
34 D  
3
4
R/H  
4
2, 3, 4  
6 - 26  
37 - 40  
COMP IN  
V-  
5
30 B  
29 B  
28 B  
27 B  
-15V  
6
3
2
1
0
OPTIONAL  
CAPACITOR  
REF  
7
+5V  
OSC 36  
V+ 1  
REF. CAP. 1  
REF. CAP. 2  
INPUT  
8
1µF  
100kΩ  
22-100pF  
9
10  
11  
12  
13  
14  
INPUT  
35 V-  
0.1µF  
ANALOG GND  
CLOCK  
UR  
STROBE 18  
A-Z IN 17  
+5V  
0V  
A-Z OUT 16  
DIG GND 15  
OR  
0V  
CLOCK IN (120kHz = 3 READINGS/SEC)  
1.0µF  
-15V  
1
2
3
4
5
6
7
14  
13  
0.22µF  
300µF  
36kΩ  
12  
11  
10  
9
ICL8052A  
8068A  
300kΩ  
100kΩ  
-15V  
5kΩ  
10kΩ  
+15V  
8
10µF  
ANALOG GND  
FIGURE 10. DRIVING LCD DISPLAYS  
15  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
+5V  
1
4 / DIGIT LCD DISPLAY  
2
28 SEGMENTS  
- D  
D
1
4
1
/
CD4030  
2
BACKPLANE  
ICM7211A  
5 BP  
+5V  
ICL71C03(A)  
2
V+  
1
1
2
BUSY 28  
1
1
CD4081  
CD4071  
/ CD4030  
4
4 / / 3 /  
2
D
D
D
D
B
B
B
B
D
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
8
4
2
1
5
31 D  
32 D  
1
2
POL  
R/H  
3
4
33 D  
34 D  
3
4
2, 3, 4  
6 - 26  
37 - 40  
COMP IN  
V-  
5
-15V  
6
30 B  
29 B  
28 B  
27 B  
3
2
1
OPTIONAL  
REF  
7
CAPACITOR  
+5V  
OSC 36  
V+ 1  
REF. CAP. 1  
REF. CAP. 2  
INPUT  
8
1µF  
100kΩ  
22-100pF  
9
0
CD4071  
10  
11  
12  
13  
14  
INPUT  
0.1µF  
35 V-  
ANALOG GND  
CLOCK  
UR  
STROBE 18  
A-Z IN 17  
0V  
+5V  
A-Z OUT 16  
DIG GND 15  
+5V  
1
+5V  
/
CD4030  
4
OR  
4.7kΩ  
0V  
0V  
1
2
3
4
V-  
V+  
8
7
6
5
ICM7555  
OUT  
1.0µF  
10 TO 15kΩ  
ADJUST TO  
= 120kHz  
+5V  
RESET  
-15V  
300µF  
F
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CL  
0.22µF  
100kΩ  
300pF  
36kΩ  
ICL8052A  
8068A  
0V  
300kΩ  
-15V  
+15V  
5kΩ  
10kΩ  
8
10µF  
ANALOG GND  
1
FIGURE 11. 4 / DIGIT LCD DPM WITH DIGIT BLANKING ON OVERRANGE  
2
16  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
+5V  
16kΩ  
1kΩ  
56kΩ  
2
3
8
+
7
0.22µF  
LM311  
1
-
30kΩ  
4
f
= 0.45/RC  
R
OSC  
16kΩ  
37.5kΩ  
390pF  
C
100pF  
FIGURE 12. CMOS OSCILLATOR  
FIGURE 13. LM311 OSCILLATOR  
D
D
S
S
2N5461  
2N5458  
0.22µF  
100K  
+15V -15V  
-BUF IN BUF OUT -INT IN INT OUT  
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
COMP.  
6
3
INT.  
REF.  
300pF  
-
-
COMP  
OUT  
A1  
+
A2  
-
REF  
COMP  
+
A3  
8052A/  
8068A  
2
+
-1.2V  
5
+BUF IN 13  
+INT IN 12  
TO ICL71C03  
FIGURE 14. GROSS OVERVOLTAGE PROTECTION CIRCUIT  
Circuits to interface the 71C03(A) directly with three popular  
microprocessors are shown in Figures 17, 18 and 19. The  
main differences in the circuits are that the IM6100 with its  
12-bit word capability can accept polarity, over-range, under-  
range, 4 bits of BCD and 5 digits simultaneously where the  
8080/8048 and the MC6800 groups with 8-bit words need to  
have polarity, over-range and under-range multiplexed onto  
the Digit 5 word - as in the UART circuits. In each case the  
microprocessor can instruct the A/D when to begin a  
measurement and when to hold this measurement.  
Interfacing with UARTs and  
Microprocessors  
Figure 15 shows a very simple interface between a free-  
running 8068A/8052A/71C03A and a UART. The five  
STROBE pulses start the transmission of the five data words.  
The digit 5 word is 0000XXXX, digit 4 is 1000XXXX, digit 3 is  
0100XXXX, etc. Also, the polarity is transmitted indirectly by  
using it to drive the Even Parity Enable Pin (EPE). If EPE of  
the receiver is held low, a parity flag at the receiver can be  
decoded as a positive signal, no flag as negative. A complex  
arrangement is shown in Figure 14. Here the UART can  
instruct the A/D to begin a measurement sequence by a word  
on RRI. The Busy signal resets the Data Ready Reset (DRR).  
Again STROBE starts the transmit sequence. A quad 2 input  
multiplexer is used to superimpose polarity, over-range, and  
Application Notes  
NOTE #  
DESCRIPTION  
AN016 “Selecting A/D Converters”  
AN017 “The Integrating A/D Converter”  
AN018 “Do’s and Don’ts of Applying A/D Converters”  
AN023 “Low Cost Digital Panel Meter Designs”  
under-range onto the D word since in this instance it is  
5
known that B = B = B = 0.  
2
4
8
For correct operation it is important that the UART clock be  
fast enough that each word is transmitted before the next  
STROBE pulse arrives. Parity is locked into the UART at  
load time but does not change in this connection during an  
output stream.  
AN028 “Build an Auto-Ranging DMM Using the 8052A/7103A  
A/D Converter Pair,” by Larry Goff  
17  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
SERIAL OUTPUT  
TO RECEIVING UART  
TRO  
UART  
IM6402/3  
EPE  
1
TBRL  
TBR  
2
3
4
5
6
7
8
D
D
D
D
B
B
B
B
8
4
3
2
1
1
2
4
NC  
D
STROBE  
5
71C03/A  
POL  
RUN/HOLD  
+5V  
FIGURE 15. SIMPLE ICL71C03/71C03A TO UART INTERFACE  
TRO  
RRI  
DRR  
UART  
IM6402/3  
DR  
EPE  
1
TBRL  
TBR  
2
3
4
5
6
7
8
1Y  
2Y  
2A  
3Y  
ENABLE  
3B  
74C157  
1A  
3A SELECT 1B  
2B  
D
D
D
D
B
B
B
B
8
POL OVER UNDER  
4
3
2
1
1
2
4
D
5
71C03/A  
STROBE  
RUN/HOLD  
BUSY  
+5V  
10kΩ  
100pF  
FIGURE 16. COMPLEX ICL71C03/7103A TO UART INTERFACE  
18  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
12  
12  
12  
1
1
80C95  
80C95  
15  
15  
READ 1  
IM6101  
IM6100  
D
D
D
D
D
B
B
B
B POL OVER  
4 8  
1
2
3
4
5
1
2
STROBE  
RUN/HOLD  
SENSE 1  
WRITE 1  
71C03/A  
7
FIGURE 17. IM6100 TO ICL71C03A/71C03A INTERFACE  
EN  
1Y  
2Y  
PA0  
PA1  
PA2  
PA3  
74C157  
EN  
1Y  
2Y  
PA0  
PA1  
PA2  
PA3  
3Y  
74C157  
1B 2B 3BSEL1A 2A 3A  
8080,  
8085,  
ETC.  
3Y  
1B 2B 3BSEL1A 2A 3A  
8255  
MC680X  
OR  
MCS650X  
D
B
B
B
B
(MODE 1)  
5
8
4
2
1
1
D
D
PA4  
PA5  
PA6  
PA7  
MC6820  
71C03  
D
B
B
B
B
D
D
2
3
4
5
8
4
2
1
D
D
RUN/  
HOLD STROBE  
PA4  
PA5  
1
2
71C03  
D
D
PA6  
PA7  
STB PB0  
A
RUN/  
HOLD STROBE  
3
4
CA1 CA2  
FIGURE 18. ICL71C03 TO MC6800, MCS650X INTERFACE  
FIGURE 19. ICL71C03 TO MCS-48, -80, -85 INTERFACE  
19  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
ICL71C03 with ICL8052A/8068A Integrating A/D Converter Equations  
The ICL71C03 does not have an internal crystal or RC  
oscillator. It has a clock input only.  
Integrator Output Voltage  
(t  
)(I  
)
INT INT  
V
= -------------------------------  
INT  
C
INT  
Integration Period  
10, 000  
V
(Typ) = 9V  
INT  
t
= -------------------- (4-1/2 Digit)  
INT  
f
CLOCK  
Output Count  
1, 000  
V
t
= -------------------- (3-1/2 Digit)  
IN  
INT  
f
Count = 10, 000 × -------------- (4-1/2 Digit)  
CLOCK  
V
REF  
Integration Clock Period  
= 1/f  
V
IN  
Count = 1, 000 × -------------- (3-1/2 Digit)  
t
V
CLOCK  
CLOCK  
REF  
1
1
NOTE: The 4 / digit mode’s LSD will be output as a zero in the 3 /  
2
60/50Hz Rejection Criterion  
/t or t /t = Integer  
2
digit mode.  
t
INT 60Hz INT 50Hz  
Output Type:  
Optimum Integration Current  
= 20µA  
4 Nibbles BCD with Polarity and Over-range.  
I
INT  
Power Supply: 15V, +5V  
Full Scale Analog Input Voltage  
V++ = +15V  
V- = -15V  
V+ = +5V  
V
(Typ) = 200mV to 2.0V = 2V  
REF  
INFS  
Integrate Resistor  
V
1.75V  
REF  
REF  
If V  
(BufferGain) × V  
INFS  
= ------------------------------------------------------------  
not used, float output pin.  
R
INT  
I
INT  
Auto Zero Capacitor Values  
Integrate Capacitor  
0.01µF < C < 1µF  
AZ  
(t  
)(I  
)
INT INT  
C
= -------------------------------  
Reference Capacitor Value  
INT  
V
INT  
C
= (Buffer Gain) x C  
AZ  
REF  
AUTO ZERO  
(COUNTS)  
INTEGRATE  
DEINTEGRATE  
(COUNTS)  
(FIXED COUNT)  
1
(4 / DIGIT)  
2
30,001 - 10,001  
3,001 - 1,001  
10,000  
1,000  
1 - 20,001  
1 - 2,001  
1
(3 / DIGIT)  
2
TOTAL CONVERSION TIME (t  
)
CONV  
(IN CONTINUOUS MODE)  
1
t
= 40,002 * t  
(4 / DIGIT MODE)  
2
CONV  
CLOCK  
1
t
= 4,002 * t  
(3 / DIGIT MODE)  
CONV  
CLOCK  
2
FIGURE 20. INTEGRATOR OUTPUT  
20  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
Dual-In-Line Plastic Packages (PDIP)  
E14.3 (JEDEC MS-001-AA ISSUE D)  
14 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
N
E1  
INDEX  
AREA  
INCHES  
MILLIMETERS  
1
2
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.115  
0.014  
0.045  
0.008  
0.735  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
18.66  
0.13  
7.62  
6.10  
4
D
E
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
0.775  
-
4.95  
0.558  
1.77  
0.355  
19.68  
-
-
A2  
A
-C-  
-
SEATING  
PLANE  
L
C
L
B1  
C
8
D1  
B1  
-
eA  
A1  
A
D1  
e
D
5
eC  
B S  
C
B
eB  
D1  
E
5
0.010 (0.25) M  
C
0.325  
0.280  
8.25  
7.11  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between English  
and Metric dimensions, the inch dimensions control.  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
e
A
6
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
e
-
0.430  
0.150  
-
10.92  
3.81  
7
B
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated in  
N
14  
14  
JEDEC seating plane gauge GS-3.  
Rev. 0 12/93  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
e
6. E and  
dicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be perpen-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 -  
1.14mm).  
21  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
Dual-In-Line Plastic Packages (PDIP)  
E28.6 (JEDEC MS-011-AB ISSUE B)  
N
28 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
E1  
INCHES  
MILLIMETERS  
INDEX  
AREA  
1
2
3
N/2  
SYMBOL  
MIN  
MAX  
0.250  
-
MIN  
-
MAX  
6.35  
-
NOTES  
-B-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.125  
0.014  
0.030  
0.008  
1.380  
0.005  
0.600  
0.485  
0.39  
3.18  
0.356  
0.77  
0.204  
4
D
E
0.195  
0.022  
0.070  
0.015  
1.565  
-
4.95  
0.558  
1.77  
0.381  
39.7  
-
-
BASE  
PLANE  
A2  
A
-C-  
-
SEATING  
PLANE  
B1  
C
8
L
C
L
-
D1  
B1  
eA  
A1  
A
D1  
e
D
35.1  
5
eC  
B S  
C
B
D1  
E
0.13  
15.24  
12.32  
5
eB  
0.010 (0.25) M  
C
0.625  
0.580  
15.87  
14.73  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between English and  
Metric dimensions, the inch dimensions control.  
0.100 BSC  
0.600 BSC  
2.54 BSC  
15.24 BSC  
-
e
e
6
A
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
-
0.700  
0.200  
-
17.78  
5.08  
7
B
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated in  
N
28  
28  
JEDEC seating plane gauge GS-3.  
Rev. 1 12/00  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
e
6. E and  
are measured with the leads constrained to be perpendic-  
A
-C-  
ular to datum  
.
7. e and e are measured at the lead tips with the leads unconstrained.  
B
C
e
must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).  
22  
ICL8052A/ICL71C03, ICL8068A/ICL71C03  
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)  
c1 LEAD FINISH  
F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A)  
14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE  
-D-  
E
-A-  
INCHES  
MIN  
MILLIMETERS  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.785  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
19.94  
7.87  
NOTES  
b1  
A
b
-
-
M
M
(b)  
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
2
-B-  
b1  
b2  
b3  
c
3
SECTION A-A  
bbb  
C
D
A - B  
D
S
S
S
-
4
BASE  
PLANE  
Q
2
A
-C-  
SEATING  
PLANE  
c1  
D
3
L
α
5
S1  
b2  
eA  
A A  
E
0.220  
5.59  
5
e
S
b
eA/2  
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
ccc  
C
A - B  
D
aaa  
C
A - B  
D
S
M
S
M
S
-
NOTES:  
0.125  
0.200  
0.060  
-
3.18  
5.08  
1.52  
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.005  
0.38  
0.13  
6
S1  
7
o
o
o
o
90  
105  
90  
105  
-
α
aaa  
bbb  
ccc  
M
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
-
-
-
-
0.015  
0.030  
0.010  
0.0015  
-
-
-
-
0.38  
0.76  
0.25  
0.038  
-
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
-
2, 3  
8
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
N
14  
14  
Rev. 0 4/94  
5. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at website www.intersil.com/design/quality/iso.asp.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.  
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. How-  
ever, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use.  
No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
Intersil Corporation  
2401 Palm Bay Rd.  
Palm Bay, FL 32905  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
EUROPE  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
ASIA  
Intersil Ltd.  
8F-2, 96, Sec. 1, Chien-kuo North,  
Taipei, Taiwan 104  
Republic of China  
TEL: 886-2-2515-8508  
FAX: 886-2-2515-8369  
23  

相关型号:

LCL8052CDD

Precision 4 1/2 Digit, A/D Converter
INTERSIL

LCL8068ACJD

Precision 4 1/2 Digit, A/D Converter
INTERSIL

LCL9R

Electric Fuse, Medium Blow, 200A, 5500VAC, 760A (IR), Inline/holder
LITTELFUSE

LCL9RS

Electric Fuse, Medium Blow, 200A, 5500VAC, 760A (IR), Inline/holder
LITTELFUSE

LCL9RW

Electric Fuse, Medium Blow, 200A, 5500VAC, 760A (IR), Inline/holder
LITTELFUSE

LCLDM-TTL-100

Tapped Delay Line
ETC

LCLDM-TTL-175

Tapped Delay Line
ETC

LCLDM-TTL-200

Tapped Delay Line
ETC

LCLDM-TTL-25

Tapped Delay Line
ETC

LCLDM-TTL-40

Tapped Delay Line
ETC

LCLDM-TTL-45

Tapped Delay Line
ETC

LCLDM-TTL-450

Tapped Delay Line
ETC