LCL8052CDD [INTERSIL]

Precision 4 1/2 Digit, A/D Converter; 精密4 1/2位, A / D转换器
LCL8052CDD
型号: LCL8052CDD
厂家: Intersil    Intersil
描述:

Precision 4 1/2 Digit, A/D Converter
精密4 1/2位, A / D转换器

转换器
文件: 总19页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICL8052/ICL71C03,  
ICL8068/ICL71C03  
1
August 1997  
Precision 4 / Digit, A/D Converter  
2
Features  
Description  
• Typically Less Than 2µV  
Scale, lCL8068)  
Noise (200.00mV Full  
The ICL8052 or ICL8068/lCL71C03 chip pairs with their  
multiplexed BCD output and digit drivers are ideally suited  
P-P  
for the visual display DVM/DPM market. The outstanding  
4 / digit accuracy, 200.00mV to 2.0000V full scale capabil-  
2
ity, auto-zero and auto-polarity combine with true ratiometric  
operation, almost ideal differential linearity and time-proven  
dual slope conversion. Use of these chip pairs eliminates  
clock feedthrough problems, and avoids the critical board  
layout usually required to minimize charge injection.  
• Accuracy Guaranteed to ±1 Count Over Entire ±20,000  
Counts (2.0000V Full Scale)  
1
• Guaranteed Zero Reading for 0V Input  
• True Polarity at Zero Count for Precise Null Detection  
• Single Reference Voltage Required  
When only 2000 counts of resolution are required, the 71C03  
1
• Over-Range and Under-Range Signals Available for  
Auto-Ranging Capability  
can be wired for 3 / digits and give up to 30 readings/sec.,  
2
making it ideally suited for a wide variety of applications.  
• All Outputs TTL Compatible  
The ICL71C03 is an improved CMOS plug-in replacement for  
the lCL7103 and should be used in all new designs.  
• Medium Quality Reference, 40ppm (Typ) on Board  
• Blinking Display Gives Visual Indication of Over  
Range  
Ordering Information  
TEMP.  
PKG.  
NO.  
• Six Auxiliary Inputs/Outputs are Available for  
Interfacing to UARTs, Microprocessors or Other  
Complex Circuitry  
o
PART NUMBER RANGE ( C)  
PACKAGE  
14 Ld PDIP  
ICL8052CPD  
lCL8052CDD  
lCL8052ACPD  
ICL8052ACDD  
ICL8068CDD  
ICL8068ACDD  
lCL8068ACJD  
ICL71C03CPl  
lCL71C03ACPl  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
E14.3  
14 Ld CERDIP  
14 Ld PDIP  
F14.3  
E14.3  
F14.3  
F14.3  
F14.3  
F14.3  
E28.6  
E28.6  
• 5pA Input Current (Typ) (8052A)  
14 Ld CERDIP  
14 Ld CERDIP  
14 Ld CERDIP  
14 Ld CERDIP  
28 Ld PDIP  
28 Ld PDIP  
Pinouts  
ICL8052/ICL8068  
(CERDIP, PDIP)  
TOP VIEW  
ICL71C03 (PDIP)  
TOP VIEW  
V+  
1
2
3
4
5
6
7
8
9
28 BUSY  
1
1
2
4 / / 3 /  
27 D (LSD)  
1
V-  
COMP OUT  
REF CAP  
1
2
3
4
5
6
7
14 INT OUT  
13 +BUFF IN  
12 +INT IN  
11 -INT IN  
2
-1.2V  
26 D  
2
POL  
25 D  
3
RUN/HOLD  
COMP IN  
24 D  
4
REF BYPASS  
GND  
V-  
23 B (MSB)  
8
V
10 -BUFF IN  
REFERENCE  
REF. CAP. 1  
REF. CAP. 2  
22 B  
4
REF  
21 B  
2
1
REF OUT  
9
8
BUFF OUT  
V++  
20  
B
(LSB)  
ICL8052/  
ICL8068  
REF SUPPLY  
ANALOG IN 10  
ANALOG GND 11  
CLOCK IN 12  
19 D (MSD)  
5
18 STROBE  
17 A-Z IN  
UNDER-RANGE 13  
OVER-RANGE 14  
16 A-Z OUT  
15 DIGITAL GND  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
File Number 3081.1  
3-34  
ICL8052/ICL71C03, ICL8068/ICL71C03  
Functional Block Diagram  
0.22µF  
10kΩ  
90kΩ  
100kΩ  
+15V -15V  
SEVEN-  
SEGMENT  
DECODER  
-BUF IN BUF OUT -INT IN INT OUT  
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
COMP.  
6
3
INT.  
REF.  
-
-
A1  
+
A2  
-
300pF  
D
D
D
D
D
1
5
4
3
2
+
A3  
10kΩ  
ICL8052/8068  
3
19  
24  
25  
26  
27  
+
B
1
20  
21  
22  
-1.2V  
5
+INT IN 12  
2
MSD  
LSD  
1kΩ  
+BUF IN 13  
B
2
COMP  
OUT  
B
10µF  
MULTIPLEXER  
3
4
10µF (TYP)  
REF  
1µF (TYP)  
23  
B
REF  
CAP 1  
AZ OUT  
AZ IN  
COMP IN  
CAP 2  
16  
17  
5
8
9
LATCH  
LATCH  
LATCH  
LATCH  
LATCH  
REF  
7
4
ZERO  
ANALOG  
INPUT  
2
5
CROSSING  
DETECTOR  
SW3  
COUNTERS  
10kΩ  
0.1µF  
10  
11  
1
6
CONTROL LOGIC  
ICL71C03  
ANALOG  
GND  
1
15  
6
4
12  
2
14  
13  
18  
28  
RUN/  
HOLD  
CLOCK 4 1/2 DIGIT/ OVER UNDER STROBE BUSY  
IN RANGE RANGE  
3 1/2 DIGIT  
+5V  
-15V  
FIGURE 1.  
3-35  
ICL8052/ICL71C03, ICL8068/ICL71C03  
Absolute Maximum Ratings  
Thermal Information  
o
o
ICL8052, ICL8068  
Thermal Resistance (Typical, Note 5)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18V  
Differential Input Voltage  
(8068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30V  
(8052) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6V Maximum Storage Temperature . . . . . . . . . . . . . . . .-65 C to 150 C  
Input Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15V Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300 C  
CERDIP Package . . . . . . . . . . . . . . . .  
14 Ld PDIP Package . . . . . . . . . . . . . .  
28 Ld PDIP Package . . . . . . . . . . . . . .  
75  
100  
65  
20  
N/A  
N/A  
o
o
o
Output Short Circuit Duration All Outputs (Note 2). . . . . . . Indefinite  
ICL71C03  
Power Supply Voltage (GND to V+) . . . . . . . . . . . . . . . . . . . . . 6.5V  
Negative Supply Voltage (GND to V-). . . . . . . . . . . . . . . . . . . . .-17V  
Analog Input Voltage (Note 3) . . . . . . . . . . . . . . . . . . . . . . . V+ to V-  
Digital Input Voltage (Note 4) . . . . . . . . (GND - 0.3V) to (V+ + 0.3V)  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 C to 70 C  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.  
o
2. Short circuit may be to ground or either supply. Rating applies to 70 C ambient temperature.  
3. Input voltages may exceed the supply voltages provided the input current is limited to ±100µA.  
4. Connecting any digital inputs or outputs to voltages greater then V+ or less than GND may cause destructive device latchup. For this  
reason it is recommended that the power supply to the ICL71C03 be established before any inputs from sources not on that supply are  
applied.  
5. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
TEST  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.2  
0.1  
0.1  
0.1  
2.5  
0.25  
4.2  
4.99  
400  
1200  
2
MAX  
UNITS  
mA  
µA  
µA  
µA  
V
Clock In, Run/Hold, 4 1/2 / 3 1/2  
I
V
V
V
V
= 0  
-
0.6  
INL  
IN  
IN  
IN  
IN  
I
= +5V  
= 0  
-
10  
INH  
Comp. In Current  
I
-
10  
INL  
I
= +5V  
-
10  
INH  
Threshold Voltage  
All Outputs  
V
-
-
-
INTH  
V
I
I
I
= 1.6mA  
= -1mA  
= -10µA  
0.40  
V
OL  
OL  
OH  
OH  
B , B , B , B , D , D , D , D , D  
V
OH  
2.4  
4.9  
-
-
V
1
2
4
8
1
2
3
4
5
Busy, Strobe, Over-Range, Under-Range Polarity  
Switches 1, 3, 4, 5, 6  
Switch 2  
V
-
V
OH  
r
r
-
DS(ON)  
-
-
DS(ON)  
Switch Leakage (All)  
+5V Supply Range  
I
-
-
6
pA  
V
D(OFF)  
V+  
4
5
-15V Supply Range  
V-  
I+  
I-  
-5  
-
-15  
1.1  
0.8  
40  
-18  
3
V
+5V Supply Current  
f
f
= 0  
= 0  
mA  
mA  
pF  
kHz  
CLK  
-15V Supply Current  
Power Dissipation Capacitance  
Clock Frequency (Note 6)  
NOTE:  
-
3
CLK  
C
vs Clock Frequency  
-
-
PD  
DC  
2000  
1200  
6. This specification relates to the clock frequency range over which the ICL71C03(A) will correctly perform its various functions. See the  
“Max Clock Frequency” section under Component Value Selection for limitations on the clock frequency range in a system.  
3-36  
ICL8052/ICL71C03, ICL8068/ICL71C03  
o
ICL8068 Electrical Specifications V  
= ±15V, T = 25 C, Unless Otherwise Specified  
SUPPLY  
A
ICL8068  
TEST  
ICL8068A  
TYP  
PARAMETER  
SYMBOL CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
EACH OPERATIONAL AMPLIFIER  
Input Offset Voltage  
V
V
V
V
V
= 0V  
-
-
20  
175  
90  
65  
-
-
20  
80  
65  
mV  
pA  
dB  
dB  
OS  
CM  
CM  
CM  
CM  
Input Current (Either Input) (Note 7)  
Common-Mode Rejection Ratio  
I
= 0V  
250  
150  
IN  
CMRR  
= ±10V  
= ±2V  
70  
-
-
-
70  
-
90  
-
-
Non-Linear Component of Common-  
Mode Rejection Ratio (Note 8)  
110  
110  
Large Signal Voltage Gain  
Slew Rate  
A
R
= 50kΩ  
L
20,000  
-
-
-
-
-
20,000  
-
-
-
-
-
V/V  
V/µs  
MHz  
mA  
V
SR  
-
-
-
6
2
5
-
-
-
6
2
5
Unity Gain Bandwidth  
Output Short-Circuit Current  
COMPARATOR AMPLIFIER  
Small-Signal Voltage Gain  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
VOLTAGE REFERENCE  
Output Voltage  
GBW  
I
SC  
A
R
= 30kΩ  
L
-
-
4000  
-
-
-
-
-
V/V  
V
VOL  
+V  
12  
13  
-
-
12  
13  
O
O
-V  
-2.0  
-2.6  
-2.0  
-2.6  
V
V
1.5  
1.75  
2.0  
-
1.60  
1.75  
5
1.90  
-
V
O
Output Resistance  
R
-
5
50  
-
-
O
o
Temperature Coefficient  
Supply Voltage (V++ -V-)  
Supply Current Total  
TC  
-
±10  
-
-
-
±10  
-
40  
-
-
ppm/ C  
V
±16  
14  
±16  
14  
V
SUPPLY  
I
-
8
mA  
SUPPLY  
o
ICL8052 Electrical Specifications V  
= ±15V, T = 25 C, Unless Otherwise Specified  
SUPPLY  
A
ICL8052  
TEST  
ICL8052A  
TYP  
PARAMETER  
SYMBOL CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
EACH OPERATIONAL AMPLIFIER  
Input Offset Voltage  
V
V
V
V
V
= 0V  
-
-
20  
5
75  
50  
-
-
-
20  
2
75  
10  
-
mV  
pA  
dB  
dB  
OS  
CM  
CM  
CM  
CM  
Input Current (Either Input) (Note 7)  
Common-Mode Rejection Ratio  
I
= 0V  
IN  
CMRR  
= ±10V  
= ±2V  
70  
-
90  
110  
70  
-
90  
110  
Non-Linear Component of Common-  
Mode Rejection Ratio (Note 8)  
-
-
Large Signal Voltage Gain  
Slew Rate  
A
R
= 50kΩ  
L
20,000  
-
6
-
-
-
-
20,000  
-
6
-
-
-
-
V/V  
V/µs  
MHz  
mA  
V
SR  
-
-
-
-
-
-
Unity Gain Bandwidth  
Output Short-Circuit Current  
GBW  
1
1
I
20  
20  
SC  
3-37  
ICL8052/ICL71C03, ICL8068/ICL71C03  
o
ICL8052 Electrical Specifications V  
= ±15V, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
A
ICL8052  
TYP  
ICL8052A  
TYP  
TEST  
SYMBOL CONDITIONS  
PARAMETER  
COMPARATOR AMPLIFIER  
Small-Signal Voltage Gain  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
VOLTAGE REFERENCE  
Output Voltage  
MIN  
MAX  
MIN  
MAX  
UNITS  
A
R
= 30kΩ  
L
-
4000  
13  
-
-
-
-
-
-
-
-
V/V  
V
VOL  
+V  
12  
12  
13  
O
O
-V  
-2.0  
-2.6  
-2.0  
-2.6  
V
V
1.5  
1.75  
5
2.0  
-
1.60  
1.75  
5
1.90  
-
V
O
Output Resistance  
R
-
-
O
o
Temperature Coefficient  
Supply Voltage (V++ -V-)  
Supply Current Total  
TC  
-
±10  
-
50  
-
-
-
±10  
-
40  
-
-
ppm/ C  
V
±16  
12  
±16  
14  
V
SUPPLY  
I
6
6
mA  
SUPPLY  
NOTES:  
o
7. The input bias currents are junction leakage currents which approximately double for every 10 C increase in the junction temperature,  
T . Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal  
J
operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P .  
D
T = T + R  
P , where R  
θJA  
is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.  
J
A
D
θJA  
8. This is the only component that causes error in dual-slope converter.  
System Electrical Specifications: ICL8068/ICL71C03  
o
V++ = +15V, V+ = +5V, V- = -15V, T = 25 C, f  
Set for 3 Readings/Sec.  
A
CLK  
ICL8068A/ICL71C03  
ICL8068A/ICL71C03  
(NOTE 9)  
(NOTE 10)  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
-000.0  
TYP  
MAX  
000.0  
UNITS  
Zero Input Reading  
V
= 0V,  
-000.0  
±000.0 +000.0  
±000.0  
Digital  
IN  
Full Scale = 200mV  
Reading  
Ratiometric Error (Note 11)  
V
= V  
0.999  
1.000  
0.2  
1.001  
0.9999 1.0000 1.0001  
Digital  
Reading  
IN  
REF  
Full Scale = 2V  
Linearity Over ± Full Scale (Error of  
Reading from Best Straight Line)  
-2V V +2V  
IN  
-
-
1
-
-
-
0.5  
1
-
Counts  
Differential Linearity (Difference  
between Worst Case Step of Adjacent  
Counts and Ideal Step)  
-2V V +2V  
IN  
0.01  
0.01  
Counts  
Rollover Error (Difference in Reading  
for Equal Positive & Negative Voltage  
Near Full Scale)  
-V  
+V 2V  
IN  
-
-
0.2  
3
1
-
-
-
0.5  
2
1
-
Counts  
IN  
Noise (P-P Value Not Exceeded 95%  
of Time)  
V
= 0V,  
µV  
IN  
Full Scale = 200mV  
Leakage Current at Input  
V
V
= 0V  
-
-
200  
1
300  
5
-
-
100  
0.5  
200  
2
pA  
IN  
IN  
o
Zero Reading Drift (Note 12)  
= 0V,  
µV/ C  
o
o
0 C T 50 C  
A
o
Scale Factor Temperature Coefficient  
(Note 12)  
V
= 2V,  
-
3
15  
-
2
5
ppm/ C  
IN  
o
o
0 C T 50 C  
Ext. Ref. 0ppm/ C  
A
o
3-38  
ICL8052/ICL71C03, ICL8068/ICL71C03  
System Electrical Specifications: ICL8052/ICL71C03  
o
V++ = +15V, V+ = +5V, V- = -15V, T = 25 C, f  
Set for 3 Reading/Sec.  
A
CLK  
ICL8068A/ICL71C03  
ICL8068A/ICL71C03  
(NOTE 9)  
(NOTE 10)  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
-0.000  
TYP  
MAX  
0.000  
UNITS  
Zero Input Reading  
V
= 0V,  
-0.000  
±0.000 +0.000  
±0.000  
Digital  
IN  
Full Scale = 2V  
Reading  
Ratiometric Error (Note 11)  
V
= V  
0.999  
1.000  
0.2  
1.001  
0.9999 1.0000 1.0001  
Digital  
Reading  
IN  
REF  
Full Scale = 2V  
Linearity Over ± Full Scale (Error of  
Reading from Best Straight Line)  
-2V V +2V  
IN  
-
-
1
-
-
-
0.5  
1
-
Counts  
Differential Linearity (Difference  
between Worst Case Step of Adjacent  
Counts and Ideal Step)  
-2V V +2V  
IN  
0.01  
0.01  
Counts  
Rollover Error (Difference in Reading  
for Equal Positive & Negative Voltage  
Near Full Scale)  
-V  
+V 2V  
IN  
-
0.2  
1
-
0.5  
1
Counts  
IN  
Noise (Peak-To-Peak Value Not  
Exceeded 95% of Time)  
V
= 0V,  
IN  
Full Scale = 200mV,  
Full Scale = 2V  
-
20  
50  
-
-
-
-
-
-
µV  
30  
3
Leakage Current at Input  
Zero Reading Drift  
V
V
= 0V  
-
-
5
1
30  
5
-
-
10  
2
pA  
IN  
IN  
o
= 0V,  
0.5  
µV/ C  
o
o
0 C To 70 C  
o
Scale Factor Temperature Coefficient  
V
= 2V,  
-
3
15  
-
2
5
ppm/ C  
IN  
o
o
0 C To 70 C,  
Ext. Ref. 0ppm/ C  
o
NOTES:  
1
9. Tested in 3 / digit (2,000 count) circuit shown in Figure 5, clock frequency 12kHz. Pin 2 71C03 connected to GND.  
2
1
10. Tested in 4 / digit (20,000 count) circuit shown in Figure 5, clock frequency 120kHz. Pin 2 71C03A open.  
2
11. Tested with a low dielectric absorption integrating capacitor. See Component Selection Section.  
o
12. The temperature range can be extended to 70 C and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high  
temperature leakage of the 8068.  
that existed in the previous state (Auto-Zero). Thus, the  
integrator output will not change but will remain stationary  
Detailed Description  
ANALOG SECTION  
during the entire Input Integrate cycle. If V is not equal to  
IN  
zero, and unbalanced condition exists compared to the Auto  
Zero phase, and the integrator will generate a ramp whose  
Figure 2 shows the equivalent Circuit of the Analog Section  
of both the ICL71C03/8052 and the ICL71C03/8068 in the 3  
different phases of operation. IF the RUN/HOLD pin is left  
slope is proportional to V . At the end of this phase, the  
IN  
sign of the ramp is latched into the polarity F/F.  
open or tied to V+, the system will perform conversions at a  
1
rate determined by the clock frequency: 40,0002 at 4 / digit  
2
Deintegrate Phase II (Figures 2C and 2D)  
1
and 4002 at 3 / digit clock periods per cycle (see Figure 3  
2
During the Deintegrate phase, the switch drive logic uses the  
output of the polarity F/F in determining whether to close  
switch 6 or 5. If the input signal is positive, switch 6 is closed  
for details of conversion timing).  
Auto-zero Phase I (Figure 2A)  
and a voltage which is V  
more negative than during  
During the Auto-Zero, the input of the buffer is connected to  
REF  
Auto-Zero is impressed on the BUFFER INPUT. Negative  
Inputs will cause +2(V ) to be applied to the BUFFER  
V
through switch 2, and switch 3 closes a loop around  
REF  
the integrator and comparator, the purpose of which is to  
charge the auto-zero capacitor until the integrator output  
does not change with time. Also, switches 1 and 2 recharge  
REF  
INPUT via switch 5. Thus, the reference capacitor generates  
the equivalent of a (+) or (-) reference from the single  
reference voltage with negligible error. The reference voltage  
returns the output of the integrator to the zero-crossing point  
established in Phase I. The time, or number of counts,  
required to do this is proportional to the input voltage. Since  
the Deintegrate phase can be twice as long as the Input  
Integrate Phase, the input voltage required to give a full  
the reference capacitor to V  
.
REF  
Input Integrate Phase II (Figure 2B)  
During Input Integrate the auto-zero loop is opened and the  
ANALOG INPUT is connected to the BUFFER INPUT  
through switch 4 and C . If the input signal is zero, the  
buffer, integrator and comparator will see the same voltage  
REF  
scale reading is 2V  
.
REF  
3-39  
ICL8052/ICL71C03, ICL8068/ICL71C03  
C
R
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
A1  
+
A2  
+
-
CROSSING  
DETECTOR  
A3  
+
C
REF  
V
1
IN  
6
C
STRAY  
C
AZ  
3
FIGURE 2A. PHASE I AUTO-ZERO  
R
C
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
A1  
+
A2  
+
-
CROSSING  
DETECTOR  
A3  
+
C
REF  
V
1
IN  
6
C
STRAY  
C
AZ  
POLARITY  
FF  
3
FIGURE 2B. PHASE II INTEGRATE INPUT  
R
C
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
A1  
+
A2  
+
-
CROSSING  
DETECTOR  
A3  
+
C
REF  
V
1
IN  
6
C
STRAY  
C
AZ  
POLARITY  
FF  
3
FIGURE 2C. PHASE III + DEINTEGRATE  
R
C
INT  
INT  
V
(+1.000V)  
2
REF  
BUFFER  
INTEGRATOR  
COMPARATOR  
-
-
5
4
1µF  
ZERO  
A1  
+
A2  
+
-
CROSSING  
DETECTOR  
A3  
+
C
REF  
V
1
IN  
6
C
STRAY  
C
AZ  
POLARITY  
FF  
3
FIGURE 2D. PHASE III - DEINTEGRATE  
FIGURE 2. ANALOG SECTION OF EITHER ICL8052 OR ICL8068 WITH ICL71C03  
3-40  
ICL8052/ICL71C03, ICL8068/ICL71C03  
COUNTS  
PHASE I  
10,001  
1,001  
PHASE II  
10,000  
1,000  
PHASE III  
20,001  
1
4 / DIGIT  
2
1
3 / DIGIT  
2,001  
2
POLARITY  
DETECTED  
ZERO CROSSING  
OCCURS  
INTEGRATOR  
OUTPUT  
ZERO CROSSING  
DETECTED  
AZ PHASE I  
INT PHASE II  
DEINT PHASE III  
AZ  
CLOCK  
INTERNAL LATCH  
BUSY OUTPUT  
AFTER ZERO CROSSING,  
ANALOG SECTION WILL  
BE IN AUTOZERO  
NUMBER OF COUNTS TO ZERO CROSSING  
PROPORTIONAL TO V  
IN  
CONFIGURATION  
FIGURE 3. CONVERSION TIMING  
Zero-Crossing Flip-Flop  
Detailed Description  
Figure 4 shows the problem that the zero-crossing F/F is  
designated to solve.  
DIGITAL SECTION  
The 71C03 includes several pins which allow it to operate  
The integrator output is approaching the zero-crossing point conveniently in more sophisticated systems. These include:  
where the count will be latched and the reading displayed.  
For a 20,000 count instrument, the ramp is changing  
4-1/2 / 3-1/2 (Pin 2)  
When high (or open) the internal counter operates as a full  
1
approximately 0.50mV per clock pulse (10V Max integrator  
output divided by 20,000 counts). The clock pulse  
feedthrough superimposed upon this ramp would have to be  
less than 100mV peak to avoid causing significant errors.  
4 / decade counter, with a complete measurement cycle  
2
requiring 40,002 counts. When held low, the least significant  
decade is cleared and the clock is fed directly into the next  
decade. A measurement cycle now requires only 4,0002  
The flip-flop interrogates the data once every clock pulse  
after the transients of the previous clock pulse and half-clock  
pulse have died down. False zero-crossings caused by clock  
pulses are not recognized. Of course, the flip-flop delays the  
true zero-crossing by one count in every instance, and if a  
correction were not made, the display would always be one  
count too high. Therefore, the counter is disabled for one  
clock pulse at the beginning of phase 3. This one count  
delay compensates for the delay of the zero crossing flip-  
flop, and allows the correct number to be latched into the  
display. Similarly, a one count delay at the beginning of  
phase 1 gives an overload display of 0000 instead of 0001.  
No delay occurs during phase 2, so that true ratiometric  
readings result.  
clock pulses. All 5 digit drivers are active in either case, with  
1
each digit lasting 200 counts with Pin 2 high (4 / digit) and  
2
1
20 counts for Pin 2 low (3 / digit).  
2
RUN/HOLD (Pin 4)  
When high (or open) the A/D will free-run with equally  
spaced measurement cycles every 40,0002/4,002 clock  
pulses. If taken low, the converter will continue the full mea-  
surement cycle that it is doing and then hold this reading as  
long as Pin 4 is held low. A short positive pulse (greater then  
300ns) will now initiate a new measurement cycle beginning  
with up to 10,001/1,001 counts of auto zero. Of course if the  
pulse occurs before the full measurement cycle  
(40,002/4,002 counts) is completed, it will not be recognized  
and the converter will simply complete the measurement it is  
doing. An external indication that full measurement cycle  
has been completed is that the first STROBE pulse (see  
below) will occur 101/11 counts after the end of this cycle.  
Thus, if RUN/HOLD is low and has been low for at least  
101/11 counts, converter is holding and ready to start a new  
measurement when pulsed high.  
CLOCK  
PULSE  
FEEDTHROUGH  
TRUE ZERO  
CROSSING  
FALSE ZERO  
CROSSING  
STROBE (Pin 18)  
This is a negative-going output pulse that aids in transferring  
the BCD data to external latches, UARTs or microproces-  
sors. There are 5 negative-going STROBE pulses that occur  
FIGURE 4. INTEGRATOR OUTPUT NEAR ZERO-CROSSING  
3-41  
ICL8052/ICL71C03, ICL8068/ICL71C03  
once and only once for each measurement cycle starting at the end of BUSY and is reset to zero at the beginning of  
101/11 pulses after the end of the full measurement cycle. Reference Integrate in the next measurement cycle.  
Digit 5 (MSD) goes high at the end of the measurement  
cycle and stays on for 201/21 counts. In the center of this  
Under-Range (Pin 13)  
This pin goes positive when the reading is 9% of range or  
less. The output F-F is set at the end of BUSY (if the new  
reading is 1800/180 or less) and is reset a the beginning of  
Signal Integrate of the next reading.  
digit pulse (to avoid race conditions between changing BCD  
and digit drives) the first STROBE pulse goes negative for  
1
/
clock pulse width. Similarly, after Digit 5, Digit 4 goes  
2
high (for 200/20 clock pulses) and 100/10 pulses later the  
STROBE goes negative for the second time. This continues  
through Digit 1 (LSD) when the fifth and last STROBE pulse  
is sent. The digit drive will continue to scan (unless the  
previous signal was over-range) but no additional STROBE  
pulses will be sent until a new measurement is available.  
Polarity (Pin 3)  
This pin is positive for a positive input signal. It is valid even for a  
zero reading. In other words, +0000 means the signal is posi-  
tive but less than the least significant bit. The converter can be  
used as null detector by forcing equal (+) and (-) readings. The  
null at this point should be less than 0.1 LSB. This output  
becomes valid at the beginning of Reference Integrate and  
remains correct until it is revalidated for the next measurement.  
Busy (Pin 28)  
BUSY goes high at the beginning of signal integrate and  
stays high until the first clock pulse after zero-crossing (or  
after end of measurement in the case of an OVER-RANGE).  
The internal latches are enabled (i.e., loaded) during the first  
clock pulse after BUSY and are latched at the end of this  
clock pulse. The circuit automatically reverts to auto-zero  
when not BUSY so it may also be considered an A-Z signal.  
A very simple means for transmitting the data down a single  
wire pair from a remote location would be to AND BUSY with  
clock and subtract 10,001/1,001 counts from the number of  
pulses received - as mentioned previously there is one “NO-  
count” pulse in each Reference Integrate cycle.  
Digit Drives (Pins 19, 24, 25, 26, and 27)  
Each digit drive is a positive-going signal which lasts for  
200/20 clock pulses. The scan sequence is D (MSD), D ,  
5
4
D , D , and D (LSD). All five digits are scanned even when  
3
2
1
1
operating in the 3 / digit mode, and this scan is continuous  
2
unless and OVER-RANGE occurs. Then all Digit drives are  
blanked from the end of the STROBE sequence until the  
beginning of Reference Integrate, at which time D will start  
5
the scan again. This gives a blinking display as a visual  
indication of OVER-RANGE.  
Over-Range (Pin 4)  
BCD (Pins 20, 21, 22 and 23)  
This pin goes positive when the input signal exceeds the  
range (20,000/2,000) of the converter. The output F-F is set  
The Binary coded decimal bit B , B , B , and B are positive  
logic signals that go on simultaneously with the Digit driver.  
8
4
2
1
INTEGRATOR  
OUTPUT  
AUTO  
ZERO  
10,001  
/ 1,001  
COUNTS  
SIGNAL  
INTEG.  
10,000  
REFERENCE  
INTEGRATE  
20,001 / 2,001  
/ 1,000  
COUNTS  
COUNTS MAX  
FULL MEASUREMENT CYCLE  
40,002/4,002 COUNTS  
BUSY  
OVER-RANGE  
WHEN APPLICABLE  
UNDER-RANGE  
WHEN APPLICABLE  
EXPANDED SCALE BELOW  
DIGIT SCAN  
D
5
4
3
FOR OVER-RANGE  
D
D
D
D
2
FIRST D OF AZ AND REF INT  
5
1
ONE COUNT LONGER  
1000/100 COUNTS  
STROBE  
SIGNAL  
REFERENCE  
INTEGRATE  
INTEGRATE  
AUTO ZERO  
DIGIT SCAN  
FOR OVER-RANGE  
D
5
D
4
D
3
D
2
D
1
FIGURE 5. TIMING DIAGRAM FOR OUTPUTS  
3-42  
ICL8052/ICL71C03, ICL8068/ICL71C03  
Auto-Zero and Reference Capacitor  
Component Value Selection  
The size of the auto-zero capacitor has some influence on  
the noise of the system, with a larger value capacitor giving  
less noise. The reference capacitor should be large enough  
such that stray capacitance to ground from its nodes is  
negligible.  
For optimum performance of the analog section, care must  
be taken in the selection of values for the integrator capacitor  
and resistor, auto-zero capacitor, reference voltage, and  
conversion rate. These values must be chosen to suit the  
particular application.  
When gain is used in the buffer amplifier the reference  
capacitor should be substantially larger than the auto-zero  
capacitor. As a rule of thumb, the reference capacitor should  
be approximately the gain times the value of the auto-zero  
capacitor. The dielectric absorption of the reference cap and  
auto-zero cap are only important at power-on or when the  
circuit is recovering from an overload. Thus, smaller or  
cheaper caps can be used here if accurate readings are not  
required for the first few seconds of recovery.  
Integrating Resistor  
The integrating resistor is determined by the full scale input  
voltage and the output current of the buffer used to charge  
the integrator capacitor. This current should be small  
compared to the output short circuit current such that  
thermal effects are kept to a minimum and linearity is not  
affected. Values of 5µA to 40µA give good results with a  
nominal of 20µA. The exact value may be chosen by:  
Full Scale Voltage (See Note)  
R
= ------------------------------------------------------------------------------  
Reference Voltage  
INT  
20µA  
The analog input required to generate a full scale output is:  
NOTE: If gain is used in the buffer amplifier, then:  
V
= 2V  
.
IN  
REF  
(BufferGain) (Full Scale Voltage)  
The stability of the reference voltage is a major factor in the  
overall absolute accuracy of the converter. For this reason, it  
is recommended that an external high quality reference be  
used where ambient temperature is not controlled or where  
high-accuracy absolute measurements are being made.  
R
= -------------------------------------------------------------------------------------------  
INT  
20µA  
Integrating Capacitor  
The product of integrating resistor and capacitor is selected  
to give 9V swing for full scale inputs. This is a compromise  
between possibly saturating the integrator (at +14V) due to  
tolerance buildup between the resistor, capacitor and clock  
and the errors a lower voltage swing could induce due to  
offsets referred to the output of the comparator. In general,  
Buffer Gain  
At the end of the auto-zero interval, the instantaneous noise  
voltage on the auto-zero capacitor is stored and subtracted  
from the input voltage while adding to the reference voltage  
during the next cycle. The result of this is that the noise  
voltage is effectively somewhat greater than the input noise  
voltage of the buffer itself during integration. By introducing  
some voltage gain into the buffer, the effect of the auto-zero  
noise (referred to the input) can be reduced to the level of  
the inherent buffer noise. This generally occurs with a buffer  
gain of between 3 and 10. Further increase in buffer gain  
merely increases the total offset to be handled by the auto-  
zero loop, and reduces the available buffer and integrator  
swings, without improving the noise performance of the  
system. The circuit recommended for doing this with the  
ICL8068/ICL71C03 is shown in Figure 6.  
the value of C  
is given by:  
INT  
10,000(4-1/2 Digit)  
× Clock Period × (20µA)  
1000(3-1/2 Digit)  
C
= ------------------------------------------------------------------------------------------------------------------------  
INT  
Integrator Output Voltage Swing  
A very important characteristic of the integrating capacitor is  
that it has low dielectric absorption to prevent roll-over or  
ratiometric errors. A good test for dielectric absorption is to  
use the capacitor with the input tied to the reference.  
This ratiometric condition should be read half scale 1.0000,  
and any deviation is probably due to dielectric absorption.  
Polypropylene capacitors give undetectable errors at reason-  
able cost. Polystyrene and polycarbonate capacitors may be  
used in less critical applications.  
10-50K  
+15V -15V  
100kΩ  
-BUF IN BUF OUT -INT IN INT OUT  
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
COMP.  
6
3
INT.  
REF.  
300pF  
-
-
COMP  
OUT  
A1  
+
A2  
-
+
A3  
10kΩ  
ICL8068  
2
+
-1.2V  
5
+BUF IN 13  
-15V  
+INT IN 12  
1kΩ  
TO ICL7104  
FIGURE 6. ADDING BUFFER GAIN TO ICL8068  
3-43  
ICL8052/ICL71C03, ICL8068/ICL71C03  
ICL8052 vs ICL8068  
LED is driven from the 7-segment decoder, with a zero  
reading blanked by connecting a D signal to RBI input of  
the decoder.  
5
The ICL8052 offers significantly lower input leakage currents  
than the ICL8068, and may be found preferable in systems  
with high input impedances. However, the ICL8068 has A voltage translation network is connected between the com-  
substantially lower noise voltage, and is the device of choice parator output of the 8068/52 and the auto-zero input of the  
for systems where noise is a limiting factor, particularly in low 71C03. The purpose of this network is to assure that, during  
signal level conditions.  
auto-zero, the output of the comparator is at or near the  
threshold of the 71C03 logic (+2.5V) while the auto-zero  
Max Clock Frequency  
capacitor is being charged to V  
(+100mV for a 200mV  
REF  
instrument). Otherwise, even with 0V in, some reference inte-  
grate period would be required to drive the comparator output  
to the threshold level. This would show up as an equivalent  
offset error. Once the divider network has been selected, the  
unit-to-unit variation should contribute less than a tenth of a  
count error. A second feature is the back-to-back diodes, used  
to lower the noise. In the normal operating mode they offer a  
high impedance and long integrating time constant to any  
noise pulses charging the auto-zero cap. At startup or recov-  
ery from an overload, their impedance is low to large signals  
so that the cap can be charged up in one auto-zero cycle. The  
buffer gain does not have to be set precisely at 10 since the  
gain is used in both the integrate and deintegrate phase. For  
scale factors other then 200mV the gain of the buffer should  
be changed to give a ±2V buffer output. For 2.0000V full scale  
this means unity gain and for 20,000mV (1µV resolution) a  
gain of 100 is necessary. Not all 8068As can operate properly  
at a gain of 100 since their offset should be less than 10mV in  
order to accommodate the auto-zero circuitry. However, for  
devices selected with less than 10mV offset, the noise perfor-  
mance is reasonable with approximately 1.5µV near full scale.  
On all scales less than 200mV, the voltage translation network  
should be made adjustable as an offset trim.  
The maximum conversion rate of most dual-slope A/D  
converters is limited by frequency response of the compara-  
tor. The comparator in this circuit is no exception, even  
though it is entirely NPN with an open-loop, gain-bandwidth  
product of 300MHz. The comparator output follows the inte-  
grator ramp with a 3µs delay, and at a clock frequency of  
160kHz (6µs period) half of the first reference integrate clock  
period is lost in delay. This means that the meter reading will  
change from 0 to 1 with 50µV input, 1 to 2 with 150µV, 2 to 3  
at 250µV, etc. This transition at midpoint is considered  
desirable by most users. However, if the clock frequency is  
increased appreciably above 160kHz, the instrument will  
flash “1” on noise peaks even when the input is shorted.  
For many dedicated applications where the input signal is  
always on one polarity, the dealy of the comparator need not  
be limitation. Since the non-linearity and noise do not  
increase substantially with frequency, clock rates of up to  
approximately 1MHz may be used. For a fixed clock  
frequency, the extra count or counts caused by comparator  
delay will be a constant and can be subtracted out digitally.  
The minimum clock frequency is established by leakage on  
the auto-zero and reference caps. With most devices,  
measurement cycles as long as 10 seconds give no measur-  
able leakage error.  
The auto-zero cap should be 1µF for all scales and the refer-  
ence capacitor should be 1µF times the gain of the buffer  
amplifier. At this value if the input leakages of the 8052/8068  
are equal, the droop effects will cancel giving zero offset.  
To achieve maximum rejection of 60Hz pickup, the signal  
integrate cycle should be a multiple of 60Hz. Oscillator  
This is especially important at high temperature. Some  
frequencies of 300kHz, 200kHz, 150kHz, 120kHz, 100kHz,  
1
typical component values are shown in Table 1. For 3 / digit  
2
1
40kHz, 33 / kHz, etc, should be selected. For 50Hz  
3
conversion, use 12kHz clock.  
2
rejection, oscillator frequencies of 250kHz, 166 / kHz,  
3
V++ = +15V, V+ = 5V, V- = -15V  
125kHz, 100kHz, etc. would be suitable. Note that 100kHz  
(2.5 readings/second) will reject both 50Hz and 60Hz.  
1
1
Clock Freq. = 120kHz (4 / Digit) or 12kHz (3 / Digit)  
2
2
TABLE 1.  
The clock used should be free from significant phase or  
frequency jitter. A simple two-gate oscillator and one based  
on CMOS 7555 timer are shown in the Applications section.  
The multiplexed output means that if the display takes  
significant current from the logic supply, the clock should  
have good PSRR.  
SPECIFICATION  
Full Scale V  
VALVE  
UNITS  
mV  
20  
200  
10  
2000  
IN  
Buffer Gain  
100  
(See  
Note)  
1
V/V  
(RB1 + RB2)  
-----------------------------------  
RB2  
Applications  
R
C
C
C
V
100  
0.22  
1.0  
10  
100  
0.22  
1.0  
10  
100  
0.22  
1.0  
kΩ  
µF  
µF  
µF  
mV  
µV  
INT  
INT  
AZ  
Specific Circuits Using the 8068/71C03 8052/71C03  
1
Figure 7 shows the complete circuit for a ±4 / digit  
2
(±200mV full scale) A/D converter with LED readout using  
the internal reference of the 8068/52. If an external  
reference is used, the reference supply (pin 7) should be  
connected to ground and the 300pF reference cap deleted.  
The circuit also shows a typical RC input filter. Depending on  
1.0  
REF  
10  
100  
10  
1000  
100  
REF  
1
Resolution (4 / Digit)  
1
2
NOTE: Comment on offset limitations above. Buffer gain does not  
improve ICL8052 noise performance adequately.  
the application, the time-constant of this filter can be made  
faster, slower, or the filter deleted completely. The  
1
/ digit  
2
3-44  
ICL8052/ICL71C03, ICL8068/ICL71C03  
+5V  
150Ω  
5
4
3
2
1
7447  
150Ω  
150Ω  
a
b
c
d
e
f
4.7kΩ  
B
1
2
3
B
B
B
4
g
RBI  
ICL71C03  
+5V  
V+  
1
1
2
3
4
5
6
7
BUSY 28  
47kΩ  
1
4 / / 3 /  
(LSD) D 27  
1
2
2
POLARITY  
RUN/HOLD  
COMP IN  
D
D
D
26  
25  
24  
2
3
4
1.0µF  
-15V  
V-  
(MSB) B 23  
8
ICL8068  
INT OUT 14  
2 COMP OUT +BUFF IN 13  
0.22µF  
REFERENCE  
REF. CAP. 1  
REF. CAP. 2  
ANALOG IN  
ANALOG GND  
CLOCK IN  
B
22  
21  
20  
4
2
1
10µF  
-15V  
1 V-  
8
B
10kΩ  
SIGNAL  
INPUT  
9
(LSB) B  
300µF  
36  
kΩ  
10  
11  
12  
13  
14  
(MSD) D 19  
5
3 REF CAP  
+INT IN 12  
0.1µF  
STROBE 18  
A-Z IN 17  
4 REF BYPASS -INT IN 11  
10  
kΩ  
100  
kΩ  
5 GND  
-BUFF IN 10  
UNDER-RANGE  
OVER-RANGE  
A-Z OUT 16  
10µF  
1kΩ  
6 REF OUT  
BUFF OUT  
V++  
9
8
300  
kΩ  
DIGITAL GND 15  
90kΩ  
10kΩ  
CLOCK  
IN  
7 REF SUPPLY  
-15V  
120kHz = 3  
READINGS/SEC  
+15V  
1
NOTE: For 3 / digit, tie pin 2 low and change clock to 12kHz.  
2
1
FIGURE 7. ICL8052A (8068A)/71C03A 4 / DIGIT A/D CONVERTER  
2
a
a
+5V  
V+  
POL  
3kΩ  
DM8880  
PROG  
A
g
g
0V  
RBI BI D  
+5V  
HI VOLTAGE BUFFER DI 505  
47kΩ  
5kΩ  
0.02µF  
0.02  
µF  
2.5kΩ  
0.02  
µF  
GATES  
ARE  
7409  
0.02  
µF  
0.02  
µF  
POL  
D
D
D
D
D
B
B
B
B
5
4
3
2
1
8
4
2
1
8052A/  
8068A  
71C03A  
FIGURE 8. ICL8052-8068/71C03A PLASMA DISPLAY CIRCUIT  
3-45  
ICL8052/ICL71C03, ICL8068/ICL71C03  
A suitable circuit for driving a plasma-type display is shown driver circuit could be ganged to the one shown if required.  
in Figure 8. The high voltage anode driver buffer is made by This would be useful if additional annunciators were needed.  
Dionics. The 3 AND gates and caps driving “Bl” are needed  
for interdigit blanking of multiple-digit display elements, and  
can be omitted if not needed. The 2K and 3K resistors set  
the current levels in the display. A similar arrangement can  
be used with “Nixie ” tubes.  
1
Figure 10 shows the complete circuit for a 4 /2 digit  
(±2.000V) A/D, again using the internal reference of the  
8052A/8068A.  
Figure 11 shows a more complicated circuit for driving LCD  
displays. Here the data is latched into the ICM7211 by the  
STROBE signal and “Overrange” is indicated by blanking the  
4 digits. A clock oscillator circuit using the ICM7555 CMOS  
timer is shown. Some other suitable clock circuits are sug-  
gested in Figures 12 and 13. The 2-gate circuit should use  
CMOS gates to maintain good power supply rejection.  
Nixie is a registered trademark of Burroughs Corporation.  
Analog and Digital Grounds  
Extreme care must be taken to avoid ground loops in the  
layout of 8068 or 8052/71C03A circuits, especially in high  
sensitivity circuits. It is most important that return currents  
from digital loads are not fed into the analog ground line. Both  
of the above circuits have considerable current flowing in the  
digital ground returns from drivers, etc. A recommended con-  
nection sequence for the ground lines is shown in Figure 9.  
A problem sometimes encountered with the 8052/68/71C03  
A/D is that of gross over-voltage applied in the input. Voltage  
in excess of ±2.000V may cause the integrator output to  
saturate. When this occurs, the integrator can no longer  
source (or sink) the current required to hold the summing  
junction (Pin 11) at the voltage stored on the auto zero  
capacitor. As a result, the voltage across the integrator  
capacitor decreases sufficiently to give a false voltage  
reading. This problem can also show up as large-signal  
instability on overrange conditions. A simple solution to this  
problem is to use junction FET transistors across the  
integrator capacitor to source (or sink) current into the  
summing junction and prevent the integrator amplifier from  
saturating, as shown in Figure 14.  
Other Circuits for Display Applications  
Popular LCD displays can be interfaced to the Output of the  
ICL71C03 with suitable display drivers, such as the  
ICM7211A as shown in Figure 10. A standard CMOS 4000  
1
series LCD driver circuit is used for displaying the / digit,  
2
the polarity, and the “over-range” flag. A similar circuit can be  
used with the ICM7212A LED driver. Of course, another full  
REF  
VOLTAGE  
BUFF  
OUT  
EXTERNAL  
REFERENCE  
(IF USED)  
ANALOG SUPPLY  
BYPASS CAPACITORS  
+15V  
-15V  
BUFF  
-IN  
(IF USED)  
V
PIN 11  
ICL71C03  
AN GND  
PIN 5  
REF  
I/P  
FILTER  
CAP  
+
ICL8052/68  
AN GND  
V
C
IN  
-
AZ  
ANALOG  
SUPPLY  
RETURN  
8068 PIN 2  
COMPARATOR  
BOARD  
EDGE  
DIGITAL  
SUPPLY  
RETURN  
DIGITAL  
LOGIC  
DIG GND  
ICL7104  
PIN 2  
DEVICE PIN  
+5V SUPPLY BYPASS CAPACITOR(S)  
FIGURE 9. GROUNDING SEQUENCE  
3-46  
ICL8052/ICL71C03, ICL8068/ICL71C03  
1
4 / DIGIT LCD DISPLAY  
2
28 SEGMENTS  
- D  
D
1
4
+5V  
116 151412 5 3 4  
CD4054A  
7 8 131110 9 2 6  
BACKPLANE  
0V  
ICM7211A  
5 BP  
ICL71C03  
+5V  
V+  
1
2
BUSY 28  
31 D  
1
41/2 / 31/2  
POL  
D
D
D
D
B
B
B
B
D
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
8
4
2
1
5
32 D  
2
3
33 D  
34 D  
R/H  
3
4
4
2, 3, 4  
6 - 26  
37 - 40  
COMP IN  
V-  
5
30 B  
29 B  
28 B  
27 B  
-15V  
6
3
2
1
0
OPTIONAL  
CAPACITOR  
REF  
7
+5V  
OSC 36  
V+ 1  
REF. CAP. 1  
REF. CAP. 2  
INPUT  
8
1µF  
100kΩ  
22-100pF  
9
10  
11  
12  
13  
14  
INPUT  
35 V-  
0.1µF  
ANALOG GND  
CLOCK  
UR  
STROBE 18  
A-Z IN 17  
+5V  
0V  
A-Z OUT 16  
DIG GND 15  
OR  
0V  
CLOCK IN (120kHz = 3 READINGS/SEC)  
1.0µF  
-15V  
1
2
3
4
5
6
7
14  
13  
0.22µF  
300µF  
36kΩ  
12  
11  
10  
9
ICL8052 (A)  
8068 (A)  
300kΩ  
100kΩ  
-15V  
5kΩ  
10kΩ  
+15V  
8
10µF  
ANALOG GND  
FIGURE 10. DRIVING LCD DISPLAYS  
3-47  
ICL8052/ICL71C03, ICL8068/ICL71C03  
+5V  
1
4 / DIGIT LCD DISPLAY  
2
28 SEGMENTS  
- D  
D
1
4
1
/
CD4030  
2
BACKPLANE  
ICM7211A  
5 BP  
+5V  
ICL71C03(A)  
2
V+  
1
1
2
BUSY 28  
1
1
CD4081  
CD4071  
/ CD4030  
4
4 / / 3 /  
2
D
D
D
D
B
B
B
B
D
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
8
4
2
1
5
31 D  
32 D  
1
POL  
R/H  
3
2
4
33 D  
34 D  
3
2, 3, 4  
6 - 26  
37 - 40  
COMP IN  
V-  
4
5
-15V  
6
30 B  
29 B  
28 B  
27 B  
3
2
1
OPTIONAL  
REF  
7
CAPACITOR  
+5V  
OSC 36  
V+ 1  
REF. CAP. 1  
REF. CAP. 2  
INPUT  
8
1µF  
100kΩ  
0.1µF  
22-100pF  
9
0
CD4071  
10  
11  
12  
13  
14  
INPUT  
35 V-  
ANALOG GND  
CLOCK  
UR  
STROBE 18  
A-Z IN 17  
0V  
+5V  
A-Z OUT 16  
DIG GND 15  
+5V  
1
+5V  
/
CD4030  
4
OR  
4.7kΩ  
0V  
0V  
1
2
3
4
V-  
V+  
8
7
6
5
ICM7555  
OUT  
1.0µF  
10 TO 15kΩ  
ADJUST TO  
= 120kHz  
+5V  
RESET  
-15V  
300µF  
F
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CL  
0.22µF  
100kΩ  
300pF  
36kΩ  
ICL8052 (A)  
8068 (A)  
0V  
300kΩ  
-15V  
+15V  
5kΩ  
10kΩ  
8
10µF  
ANALOG GND  
1
FIGURE 11. 4 / DIGIT LCD DPM WITH DIGIT BLANKING ON OVERRANGE  
2
3-48  
ICL8052/ICL71C03, ICL8068/ICL71C03  
+5V  
16kΩ  
1kΩ  
56kΩ  
2
3
8
+
7
0.22µF  
LM311  
1
-
30kΩ  
4
f
= 0.45/RC  
R
OSC  
16kΩ  
37.5kΩ  
390pF  
C
100pF  
FIGURE 12. CMOS OSCILLATOR  
FIGURE 13. LM311 OSCILLATOR  
D
D
S
S
2N5461  
2N5458  
0.22µF  
100K  
+15V -15V  
-BUF IN BUF OUT -INT IN INT OUT  
REF  
OUT  
8
7
1
10  
BUFFER  
9
11  
INTEG.  
14  
COMP.  
6
3
INT.  
REF.  
300pF  
-
-
COMP  
OUT  
A1  
+
A2  
-
REF  
COMP  
+
A3  
8052A/  
8068A  
2
+
-1.2V  
5
+BUF IN 13  
+INT IN 12  
TO ICL71C03  
FIGURE 14. GROSS OVERVOLTAGE PROTECTION CIRCUIT  
12-bit word capability can accept polarity, over-range, under-  
range, 4 bits of BCD and 5 digits simultaneously where the  
8080/8048 and the MC6800 groups with 8-bit words need to  
have polarity, over-range and under-range multiplexed onto  
the Digit 5 word - as in the UART circuits. In each case the  
microprocessor can instruct the A/D when to begin a mea-  
surement and when to hold this measurement.  
Interfacing with UARTs and  
Microprocessors  
Figure 15 shows a very simple interface between a free-run-  
ning 8068/8052/71C03A and a UART. The five STROBE  
pulses start the transmission of the five data words. The digit  
5 word is 0000XXXX, digit 4 is 1000XXXX, digit 3 is  
0100XXXX, etc. Also, the polarity is transmitted indirectly by  
using it to drive the Even Parity Enable Pin (EPE). If EPE of  
the receiver is held low, a parity flag at the receiver can be  
decoded as a positive signal, no flag as negative. A complex  
arrangement is shown in Figure 14. Here the UART can  
instruct the A/D to begin a measurement sequence by a  
word on RRI. The Busy signal resets the Data Ready Reset  
(DRR). Again STROBE starts the transmit sequence. A  
quad 2 input multiplexer is used to superimpose polarity,  
Application Notes  
AnswerFAX  
NOTE #  
DESCRIPTION  
DOC. #  
AN016 “Selecting A/D Converters”  
9016  
AN017 “The Integrating A/D Converter”  
9017  
over-range, and under-range onto the D word since in this  
5
AN018 “Do’s and Don’ts of Applying A/D  
Converters”  
9018  
instance it is known that B = B = B = 0.  
2
4
8
For correct operation it is important that the UART clock be  
fast enough that each word is transmitted before the next  
STROBE pulse arrives. Parity is locked into the UART at  
load time but does not change in this connection during an  
output stream.  
AN023 “Low Cost Digital Panel Meter Designs”  
9023  
9028  
AN028 “Build an Auto-Ranging DMM Using the  
8052A/7103A A/D Converter Pair,” by  
Larry Goff  
Circuits to interface the 71C03(A) directly with three popular  
microprocessors are shown in Figures 17, 18 and 19. The  
main differences in the circuits are that the IM6100 with its  
3-49  
ICL8052/ICL71C03, ICL8068/ICL71C03  
SERIAL OUTPUT  
TO RECEIVING UART  
TRO  
UART  
IM6402/3  
EPE  
1
TBRL  
TBR  
2
3
4
5
6
7
8
D
D
D
D
B
B
B
B
8
4
3
2
1
1
2
4
NC  
D
STROBE  
5
71C03/A  
POL  
RUN/HOLD  
+5V  
FIGURE 15. SIMPLE ICL71C03/71C03A TO UART INTERFACE  
TRO  
RRI  
DRR  
UART  
IM6402/3  
DR  
EPE  
1
TBRL  
TBR  
2
3
4
5
6
7
8
1Y  
2Y  
2A  
3Y  
ENABLE  
3B  
74C157  
1A  
3A SELECT 1B  
2B  
D
D
D
D
B
B
B
B
8
POL OVER UNDER  
4
3
2
1
1
2
4
D
5
71C03/A  
STROBE  
RUN/HOLD  
BUSY  
+5V  
10kΩ  
100pF  
FIGURE 16. COMPLEX ICL71C03/7103A TO UART INTERFACE  
3-50  
ICL8052/ICL71C03, ICL8068/ICL71C03  
12  
12  
12  
1
1
80C95  
80C95  
15  
15  
READ 1  
IM6101  
IM6100  
D
D
D
D
D
B
B
B
B POL OVER  
1
2
3
4
5
1
2
4 8  
STROBE  
RUN/HOLD  
SENSE 1  
WRITE 1  
71C03/A  
7
FIGURE 17. IM6100 TO ICL71C03A/71C03A INTERFACE  
EN  
1Y  
2Y  
PA0  
EN  
1Y  
2Y  
PA0  
PA1  
PA2  
PA3  
74C157  
74C157  
PA1  
3Y  
PA2  
3Y  
1B 2B 3BSEL1A 2A 3A  
1B 2B 3BSEL1A 2A 3A  
MC680X  
OR  
MCS650X  
8080,  
8085,  
ETC.  
PA3  
8255  
(MODE 1)  
MC6820  
D
B
B
B
B
D
D
B
B
B
B
D
5
8
4
2
1
5
8
4
2
1
PA4  
PA5  
PA6  
PA7  
PA4  
PA5  
PA6  
PA7  
1
2
1
2
71C03  
71C03  
D
D
D
D
D
D
RUN/  
HOLD STROBE  
RUN/  
HOLD STROBE  
3
4
3
4
STB PB0  
A
CA1 CA2  
FIGURE 18. ICL71C03 TO MC6800, MCS650X INTERFACE  
FIGURE 19. ICL71C03 TO MCS-48, -80, -85 INTERFACE  
3-51  
ICL8052/ICL71C03, ICL8068/ICL71C03  
ICL71C03 with ICL8052/8068 Integrating A/D Converter Equations  
The ICL71C03 does not have an internal crystal or RC Integrator Output Voltage  
oscillator. It has a clock input only.  
(t  
)(I  
)
INT INT  
C
V
= -------------------------------  
INT  
INT  
Integration Period  
10, 000  
V
(Typ) = 9V  
---------------------  
t
=
(4-1/2 Digit)  
INT  
INT  
f
CLOCK  
Output Count  
1, 000  
---------------------  
t
=
(3-1/2 Digit)  
V
INT  
f
IN  
CLOCK  
--------------  
Count = 10, 000 ×  
(4-1/2 Digit)  
V
REF  
Integration Clock Period  
= 1/f  
V
IN  
--------------  
Count = 1, 000 ×  
(3-1/2 Digit)  
V
t
CLOCK  
CLOCK  
REF  
1
1
NOTE: The 4 / digit mode’s LSD will be output as a zero in the 3 /  
2
60/50Hz Rejection Criterion  
/t or t /t = Integer  
2
digit mode.  
t
INT 60Hz INT 50Hz  
Output Type:  
Optimum Integration Current  
= 20µA  
4 Nibbles BCD with Polarity and Over-range.  
I
INT  
Power Supply: ±15V, +5V  
Full Scale Analog Input Voltage  
(Typ) = 200mV to 2.0V = 2V  
V++ = +15V  
V- = -15V  
V+ = +5V  
V
INFS  
REF  
Integrate Resistor  
V
1.75V  
REF  
If V  
(BufferGain) × V  
not used, float output pin.  
INFS  
REF  
R
= -------------------------------------------------------------  
INT  
I
INT  
Auto Zero Capacitor Values  
Integrate Capacitor  
0.01µF < C < 1µF  
AZ  
(t  
)(I  
)
INT INT  
V
C
= -------------------------------  
Reference Capacitor Value  
INT  
INT  
C
= (Buffer Gain) x C  
REF  
AZ  
AUTO ZERO  
(COUNTS)  
INTEGRATE  
DEINTEGRATE  
(FIXED COUNT)  
(COUNTS)  
1
(4 / DIGIT)  
2
30,001 - 10,001  
3,001 - 1,001  
10,000  
1,000  
1 - 20,001  
1 - 2,001  
1
(3 / DIGIT)  
2
TOTAL CONVERSION TIME (t  
)
CONV  
(IN CONTINUOUS MODE)  
1
t
= 40,002 * t  
(4 / DIGIT MODE)  
2
CONV  
CLOCK  
CLOCK  
1
t
= 4,002 * t  
(3 / DIGIT MODE)  
CONV  
2
FIGURE 20. INTEGRATOR OUTPUT  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
3-52  

相关型号:

LCL8068ACJD

Precision 4 1/2 Digit, A/D Converter
INTERSIL

LCL9R

Electric Fuse, Medium Blow, 200A, 5500VAC, 760A (IR), Inline/holder
LITTELFUSE

LCL9RS

Electric Fuse, Medium Blow, 200A, 5500VAC, 760A (IR), Inline/holder
LITTELFUSE

LCL9RW

Electric Fuse, Medium Blow, 200A, 5500VAC, 760A (IR), Inline/holder
LITTELFUSE

LCLDM-TTL-100

Tapped Delay Line
ETC

LCLDM-TTL-175

Tapped Delay Line
ETC

LCLDM-TTL-200

Tapped Delay Line
ETC

LCLDM-TTL-25

Tapped Delay Line
ETC

LCLDM-TTL-40

Tapped Delay Line
ETC

LCLDM-TTL-45

Tapped Delay Line
ETC

LCLDM-TTL-450

Tapped Delay Line
ETC

LCLDM-TTL-50

Tapped Delay Line
ETC