ISL6267EVAL1Z [INTERSIL]

Multiphase PWM Regulator for AMD Fusion Mobile CPUs; 多相PWM稳压的AMD Fusion移动处理器
ISL6267EVAL1Z
型号: ISL6267EVAL1Z
厂家: Intersil    Intersil
描述:

Multiphase PWM Regulator for AMD Fusion Mobile CPUs
多相PWM稳压的AMD Fusion移动处理器

文件: 总33页 (文件大小:1156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiphase PWM Regulator for AMD Fusion™ Mobile  
CPUs  
ISL6267  
Features  
The ISL6267 is designed to be completely compliant with AMD  
Fusion™ specifications. The ISL6267 controls two Voltage  
Regulators (VRs) with three integrated gate drivers. The first VR  
can be configured as 3-, 2-, or 1-phase VR, while the second  
output can be configured as 2- or 1-phase VR, providing  
maximum flexibility. The two VRs share the serial control bus to  
communicate with the CPU and achieve lower cost and smaller  
board area compared with two-chip solutions.  
• Supports AMD SVI 1.0 Serial Data Bus Interface  
• Dual Output Controller with Integrated Drivers  
- Core VR Configurable 3-, 2-, 1-Phase with Two Integrated  
Drivers  
- Northbridge VR Configurable 2- or 1-Phase with One  
Integrated Driver  
• Precision Voltage Regulation  
- 0.5% System Accuracy Over-Temperature  
- 0V to 1.55V in 12.5mV Steps  
The PWM modulator of ISL6267 is based on Intersil’s R3 (Robust  
Ripple Regulator) Technology™. Compared with the traditional  
multi-phase buck regulator, the R3 modulator commands  
variable switching frequency during load transients, achieving  
faster transient response. With the same modulator, it naturally  
goes into pulse frequency modulation in light load conditions,  
which achieves higher light load efficiency and extends battery  
life.  
- Enhanced Load Line Accuracy  
• Supports Multiple Current Sensing Methods  
- Lossless Inductor DCR Current Sensing  
- Precision Resistor Current Sensing  
• Programmable 1-, 2- or 3-Phase for the Core Output and 1-  
or 2-Phase for the Northbridge Output  
The ISL6267 has several other key features. Both outputs  
support DCR current sensing with a single NTC thermistor for  
DCR temperature compensation or accurate resistor current  
sensing. Both outputs come with remote voltage sense,  
adjustable switching frequency, current monitor, OC  
protection, independent power-good indicators, temperature  
monitors, and a common thermal alert.  
• Adaptive Body Diode Conduction Time Reduction  
• Superior Noise Immunity and Transient Response  
• Output Current Monitor and Thermal Monitor  
• Differential Remote Voltage Sensing  
• High Efficiency Across Entire Load Range  
• Programmable +VID Offset for Both Core and NB  
• Programmable Switching Frequency for Both Outputs  
• Excellent Dynamic Current Balance Between Phases  
• OCP/WOC, OVP, PGOOD, and Thermal Monitor  
• Small Footprint 48 Ld 6x6 TQFN Package  
• Pb-Free (RoHS Compliant)  
Applications  
• AMD Fusion CPU/GPU Core Power  
• Notebook Computers  
Core Performance on ISL6267EVAL1Z  
100  
90  
1.12  
1.10  
1.08  
1.06  
80  
V
= 8V  
IN  
70  
60  
50  
40  
30  
20  
10  
0
V
= 12V  
IN  
V
= 8V  
IN  
V
= 19V  
IN  
1.04  
1.02  
1.00  
0.98  
0.96  
V
= 12V  
IN  
V
= 19V  
IN  
V
CORE = 1.1V  
OUT  
V
CORE = 1.1V  
OUT  
5
0
5
10 15 20 25 30 35 40 45 50 55  
(A)  
0
10 15 20 25 30 35 40 45 50 55  
I
OUT  
I
(A)  
OUT  
FIGURE 2. V  
vs LOAD  
FIGURE 1. EFFICIENCY vs LOAD  
OUT  
FN7801.0  
January 31, 2011  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL6267  
Simplified Application Circuit For High Power CPU Core  
VIN  
BOOT_NB  
UG1_NB  
VNB  
ISEN1_NB  
PH1_NB  
ISEN2_NB  
LG1_NB  
NB_PH1  
VNB1  
VNB1  
VNB2  
ISUMN_NB  
ISUMP_NB  
VW_NB  
PWM2_NB  
NTC_NB  
NB_PH2  
VNB2  
COMP_NB  
FB_NB  
FB2_NB  
PROG1  
PROG2  
VSEN_NB  
RTN_NB  
Thermal Indicator  
VR_HOT  
NTC  
VNB_SENSE  
ISL6267  
VIN  
PWROK  
SVD  
µP  
SVC  
PWM3  
VW  
VO3  
PH3  
COMP  
VIN  
BOOT2  
FB  
UG2  
PH2  
VSEN  
VCORE  
VCORE_SENSE  
RTN  
LG2  
PH2  
VO2  
VIN  
ISEN3  
ISEN2  
BOOT1  
UG1  
ISEN1  
ISUMN  
VO1  
VO2  
VO3  
PH1  
LG1  
PH1  
VO1  
ISUMP  
FIGURE 3. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING  
January 31, 2011  
FN7801.0  
2
ISL6267  
Simplified Application Circuit For AMD Torpedo Platform  
NTC_NB  
ISEN1_NB  
VIN  
BOOT_NB  
UG1_NB  
ISEN2_NB  
ISUMN_NB  
VNB1  
VNB2  
VNB  
PH1_NB  
LG1_NB  
ISUMP_NB  
NB_PH1  
VIN  
VNB1  
VW_NB  
COMP_NB  
PWM2_NB  
FB_NB  
NB_PH2  
VNB2  
FB2_NB  
VSEN_NB  
RTN_NB  
NTC  
VNB_SENSE  
Thermal Indicator  
VR_HOT  
ISL6267  
PROG1  
PROG2  
PWROK  
SVD  
µP  
SVC  
PWM3  
+5V  
VW  
VIN  
BOOT2  
COMP  
UG2  
PH2  
VCORE  
FB  
ISEN3/FB2  
LG2  
PH2  
VO2  
VSEN  
RTN  
VCORE_SENSE  
VIN  
BOOT1  
UG1  
PH1  
LG1  
ISEN2  
ISEN1  
PH1  
VO1  
VO1  
ISUMN  
ISUMP  
VO2  
FIGURE 4. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING  
January 31, 2011  
FN7801.0  
3
ISL6267  
Simplified Application Circuit For Low Power CPU Core And NB  
+5V  
ISEN2_NB  
OPEN  
ISEN1_NB  
ISUMN_NB  
VIN  
BOOT_NB  
UG1_NB  
VNB1  
VNB  
PH1_NB  
LG1_NB  
ISUMP_NB  
NB_PH1  
VNB1  
NTC_NB  
VW_NB  
optional  
OPEN  
PWM2_NB  
COMP_NB  
FB_NB  
PROG1  
PROG2  
VSEN_NB  
RTN_NB  
VNB_SENSE  
NTC  
Thermal Indicator  
VR_HOT  
PWROK  
SVD  
µP  
ISL6267  
SVC  
PWM3  
+5V  
BOOT2  
OPEN  
OPEN  
OPEN  
ISEN1  
ISEN2  
UG2  
PH2  
OPEN  
OPEN  
+5V  
ISEN3  
VW  
LG2  
OPEN  
OPEN  
optional  
PGND2  
BOOT1  
UG1  
COMP  
VIN  
FB  
VCORE  
VSEN  
PH1  
LG1  
VCORE_SENSE  
VO1  
RTN  
PH1  
VO1  
ISUMN  
ISUMP  
FIGURE 5. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING  
January 31, 2011  
FN7801.0  
4
ISL6267  
Simplified Application Circuit Showing Resistor Sensing  
+5V  
ISEN2_NB  
OPEN  
ISEN1_NB  
ISUMN_NB  
VIN  
BOOT_NB  
UG1_NB  
NB_N  
VNB  
PH1_NB  
LG1_NB  
ISUMP_NB  
NB_N  
NB_P  
NTC_NB  
VW_NB  
optional  
OPEN  
PWM2_NB  
COMP_NB  
FB_NB  
PROG1  
PROG2  
VSEN_NB  
RTN_NB  
VNB_SENSE  
NTC  
Thermal Indicator  
VR_HOT  
PWROK  
SVD  
µP  
ISL6267  
SVC  
PWM3  
+5V  
BOOT2  
OPEN  
OPEN  
OPEN  
ISEN1  
ISEN2  
UG2  
PH2  
OPEN  
OPEN  
+5V  
ISEN3  
VW  
OPEN  
OPEN  
LG2  
optional  
PGND2  
BOOT1  
UG1  
COMP  
VIN  
FB  
VCORE  
VSEN  
PH1  
LG1  
VCORE_SENSE  
VON  
RTN  
VON  
VOP  
ISUMN  
ISUMP  
FIGURE 6. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING  
January 31, 2011  
FN7801.0  
5
ISL6267  
Block Diagram  
SVD  
SERIAL  
PROG1  
PROG2  
VCORE  
VNB  
SVC  
VID  
A/D  
INTERFACE  
BOOT_NB  
UG_NB  
PWROK  
NORTHBRIDGE  
CONTROLLER AND DRIVER  
DAC1  
DAC2  
(SIMILAR ARCHITECTURE TO  
CORE SECTION)  
PH_NB  
SLEEP  
MODE  
(PSI_L)  
LG_NB  
D/A  
PWM2_NB  
VDD  
ISEN1  
PHASE  
IBAL  
PROG1  
PROG2  
OFFSET  
VOLTAGE  
CURRENT  
ISEN2  
BALANCE  
ISEN3/FB2  
PWM3  
NTC_NB  
NTC  
T_MONITOR  
BOOT2  
UG2  
TEMP  
MONITOR  
DRIVER  
VR_HOT  
PH2  
VW  
DAC1  
DRIVER  
DRIVER  
+
LG2  
RTN  
S
+
+
MODULATOR  
BOOT1  
UG1  
E/A  
FB  
-
PH1  
COMP  
VCCP  
LG1  
DRIVER  
+
ISUMP  
ISUMN  
OC AND WOC  
CURRENT  
SENSE  
PROTECTION  
-
PGOOD  
OV  
PROTECTION  
VSEN  
January 31, 2011  
FN7801.0  
6
ISL6267  
Pin Configuration  
ISL6267  
(48 LD QFN)  
TOP VIEW  
43  
48 47 46 45 44  
42 41 40 39 38 37  
PWM2_NB  
BOOT2  
UG2  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
FB2_NB  
FB_NB  
COMP_NB  
VW_NB  
2
3
4
5
6
7
8
9
PH2  
LG2  
PGOOD_NB  
SVD  
GND PAD  
(BOTTOM)  
VCCP  
PWM3  
LG1  
PWROK  
SVC  
PH1  
ENABLE  
PGOOD 10  
UG1  
BOOT1  
PROG1  
11  
12  
VR_HOT  
NTC  
3 7  
Pin Descriptions  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
1
FB2_NB  
The components connecting to FB2_NB are used to adjust the compensation in 1-phase mode to achieve  
optimum performance.  
2
3
4
FB_NB  
COMP_NB  
VW_NB  
Output voltage feedback to the inverting input of the Northbridge controller error amplifier.  
Northbridge VR error amplifier output.  
Window voltage set pin used to set the switching frequency for the Northbridge controller. A resistor from  
this pin to COMP_NB programs the switching frequency (8kΩ gives approximately 300kHz).  
5
PGOOD_NB  
Open-drain output to indicate the Northbridge portion of the IC is ready to supply regulated voltage. Pull-  
up externally to VCCP or 3.3V.  
6
7
SVD  
Serial VID data bi-directional signal from the CPU processor master device to the VR.  
2
PWROK  
System power good input. When this pin is high, the SVI interface is active and the I C protocol is running.  
While this pin is low, the SVC and SVD input states determine the pre-PWROK metal VID. This pin must  
be low prior to the ISL6267 PGOOD output going high per the AMD SVI Controller Guidelines.  
8
9
SVC  
Serial VID clock input from the CPU processor master device.  
Enable input. A high level logic on this pin enables both VRs.  
ENABLE  
PGOOD  
10  
Open-drain output to indicate the Core portion of the IC is ready to supply regulated voltage. Pull up  
externally to VCCP or 3.3V.  
11  
12  
13  
VR_HOT  
NTC  
Thermal overload open drain output indicator active LOW.  
Thermistor input to VR_HOT circuit to monitor Core VR temperature.  
VW  
Window voltage set pin used to set the switching frequency for the Core controller. A resistor from this  
pin to COMP programs the switching frequency (8kΩ gives approximately 300kHz).  
14  
15  
COMP  
FB  
Error amplifier output.  
Output voltage feedback to the inverting input of the Core controller error amplifier.  
January 31, 2011  
FN7801.0  
7
ISL6267  
Pin Descriptions(Continued)  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
16  
ISEN3/FB2  
When the Core VR of ISL6267 is configured in 3-phase mode, this pin is ISEN3. ISEN3 is the individual  
current sensing for Channel 3. When the Core VR of ISL6267 is configured in 2-phase mode, this pin is  
FB2. There is a switch between the FB2 pin and the FB pin. The switch is on in 2-phase mode and is off  
in 1-phase mode. The components connecting to FB2 are used to adjust the compensation in 1-phase  
mode to achieve optimum performance.  
17  
ISEN2  
Individual current sensing for Channel 2 of the Core VR. When ISEN2 is pulled to 5V VDD, the controller  
disables Channel 2, and the Core VR runs in single-phase mode.  
18  
19  
20  
ISEN1  
VSEN  
RTN  
Individual current sensing for Channel 1 of the Core output.  
Output voltage sense pin for the Core controller. Connect to the +sense pin of the microprocessor die.  
Output voltage sense return pin for the Core controller. Connect to the -sense pin of the microprocessor  
die.  
21  
22  
23  
24  
25  
26  
ISUMN  
ISUMP  
VDD  
Inverting input of the transconductance amplifier for current monitor and load line of Core output.  
Non-inverting input of the transconductance amplifier for current monitor and load line of Core output.  
5V bias power.  
VIN  
Battery supply voltage, used for feed-forward.  
PROG1  
BOOT1  
Program pin for setting output voltage offset for Core VR.  
Connect an MLCC capacitor across the BOOT1 and the phase (PH1) pin. The boot capacitor is charged  
through an internal boot diode connected from the VCCP pin to the BOOT1 pin, each time the PH1 pin  
drops below VCCP minus the voltage dropped across the internal boot diode.  
27  
28  
UG1  
PH1  
Output of the Phase 1 high-side MOSFET gate driver of the Core VR. Connect the UG1 pin to the gate of  
the Phase 1 high-side MOSFET.  
Current return path for the Phase 1 high-side MOSFET gate driver of VR1. Connect the PH1 pin to the node  
consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of  
Phase 1.  
29  
30  
31  
32  
33  
LG1  
PWM3  
VCCP  
LG2  
Output of the Phase 1 low-side MOSFET gate driver of the Core VR. Connect the LG1 pin to the gate of the  
Phase 1 low-side MOSFET.  
PWM output for Channel 3 of the Core VR. When PWM3 is pulled to 5V VDD, the controller disables Phase  
3 and runs in 2-phase mode.  
Input voltage bias for the internal gate drivers. Connect +5V to the VCCP pin. Decouple with at least 1µF  
of capacitance to GND. A high quality, X7R dielectric MLCC capacitor is recommended.  
Output of the Phase 2 low-side MOSFET gate driver of VR1. Connect the LG2 pin to the gate of the  
Phase 2 low-side MOSFET.  
PH2  
Current return path for the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the PH2 pin to  
the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor  
of Phase 2.  
34  
35  
UG2  
Output of the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the UG2 pin to the gate of  
the Phase 2 high-side MOSFET.  
BOOT2  
Connect an MLCC capacitor across the BOOT2 and PH2 pins. The boot capacitor is charged through an  
internal boot diode connected from the VCCP pin to the BOOT2 pin, each time the PH2 pin drops below  
VCCP minus the voltage dropped across the internal boot diode.  
36  
37  
PWM2_NB  
LG1_NB  
PWM output for Channel 2 of the Northbridge VR.  
Output of the low-side MOSFET gate driver of the Northbridge VR. Connect the LG1_NB pin to the gate of  
the low-side MOSFET of VR2.  
38  
39  
PH1_NB  
UG1_NB  
Current return path for the high-side MOSFET gate driver of the Northbridge VR. Connect the PH1_NB pin  
to the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output  
inductor of the Northbridge VR.  
Output of the high-side MOSFET gate driver of the Northbridge VR. Connect the UG1_NB pin to the gate  
of the high-side MOSFET.  
January 31, 2011  
FN7801.0  
8
ISL6267  
Pin Descriptions(Continued)  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
40  
BOOT1_NB  
Connect an MLCC capacitor across the BOOT1_NB and the PH1_NB pins. The boot capacitor is charged  
through an internal boot diode connected from the VCCP pin to the BOOT1_NB pin, each time the  
PH1_NB pin drops below VCCP minus the voltage dropped across the internal boot diode.  
41  
42  
43  
44  
PROG2  
NTC_NB  
Program pin for setting output voltage offset for Northbridge VR.  
Thermistor input to VR_HOT circuit to monitor Northbridge VR temperature.  
Inverting input of the transconductance amplifier for current monitor and load line of the Northbridge VR.  
ISUMN_NB  
ISUMP_NB  
Non-inverting input of the transconductance amplifier for current monitor and load line of the  
Northbridge VR.  
45  
46  
47  
48  
RTN_NB  
VSEN_NB  
ISEN2_NB  
Output voltage sense return pin for the Northbridge controller. Connect to the -sense pin of the  
microprocessor die.  
Output voltage sense pin for the Northbridge controller. Connect to the +sense pin of the microprocessor  
die.  
Individual current sensing for Channel 2 of the Northbridge VR. When ISEN2 is pulled to 5V VDD, the  
controller will disable Channel 2 and the Northbridge VR will run single-phase.  
ISEN1_NB  
Individual current sensing for Channel 1 of the Northbridge VR.  
GND (Bottom Pad)  
Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin.  
Ordering Information  
PART NUMBER  
PART  
TEMP.  
RANGE (°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(Notes 1, 2, 3)  
MARKING  
ISL6267HRZ  
ISL6267 HRZ  
Evaluation Board  
-10 to +100  
48 Ld 6x6 QFN  
L48.6x6B  
ISL6267EVAL1Z  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL6267. For more information on MSL please see tech brief TB363.  
January 31, 2011  
9
FN7801.0  
ISL6267  
Table of Contents  
Core Performance On ISL6267EVAL1Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Application Circuit For High Power CPU Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Simplified Application Circuit For AMD Torpedo Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Simplified Application Circuit For Low Power CPU Core And NB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Simplified Application Circuit Showing Resistor Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Gate Driver Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Multiphase R3™ Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Diode Emulation and Period Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Start-up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Serial VID Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pre-PWROK Metal VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
VFIX Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SVI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
VID-on-the-Fly Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SVI WIRE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SVI Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
VR Offset Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Voltage Regulation and Load Line Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Differential Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Phase Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
CCM Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Dynamic Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
FB2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Adaptive Body Diode Conduction Time Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Key Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Inductor DCR Current-Sensing Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Resistor Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Load Line Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
NTC Thermal Monitors and VR_HOT Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
January 31, 2011  
10  
FN7801.0  
ISL6267  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V  
Battery Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +28V  
IN  
Thermal Resistance (Typical)  
48 Ld QFN Package (Notes 4, 5) . . . . . . . .  
θ
JA (°C/W)  
28  
θ
JC (°C/W)  
DD  
1
Boot Voltage (BOOT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +33V  
Boot to Phase Voltage (BOOT-PHASE) . . . . . . . . . . . . . . . . -0.3V to +7V(DC)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +9V(<10ns)  
Phase Voltage (PHASE) . . . . . . . . . . . . . . . . -7V (<20ns Pulse Width, 10µJ)  
UGATE Voltage (UGATE) . . . . . . . . . .PHASE - 0.3V (DC) to BOOTPHASE - 5V  
. . . . . . . . . . . . . . . . . (<20ns Pulse Width, 10µJ) to BOOT LGATE Voltage  
. . . . . . . . . . . . . . . . . . . . . -2.5V (<20ns Pulse Width, 5µJ) to VDD + 0.3V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VDD + 0.3V)  
Open Drain Outputs, PGOOD, VR_HOT. . . . . . . . . . . . . . . . . . . -0.3V to +7V  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions  
Supply Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+5V ±5%  
DD  
Battery Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4.5V to 25V  
IN  
Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +100°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Operating Conditions: V = 5V, T = -10°C to +100°C, f = 300kHz, unless otherwise noted.  
DD  
A
SW  
Boldface limits apply over the operating temperature range, -10°C to +100°C.  
MIN  
MAX  
PARAMETER  
INPUT POWER SUPPLY  
+5V Supply Current  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
9
(Note 6)  
UNITS  
I
ENABLE = 1V  
ENABLE = 0V  
ENABLE = 0V  
ENABLE = 1V  
10.5  
1
mA  
µA  
µA  
kΩ  
VDD  
Battery Supply Current  
I
1
VIN  
V
Input Resistance  
R
550  
IN  
VIN  
POWER-ON-RESET THRESHOLDS  
VDD POR Threshold  
VDD_POR  
VDD_POR  
V
V
V
V
rising  
4.35  
4.15  
4.00  
3.30  
4.5  
V
V
V
V
r
DD  
DD  
falling  
4.00  
2.8  
f
VIN POR Threshold  
VIN_POR  
rising  
4.35  
r
IN  
IN  
VIN_POR  
falling  
f
SYSTEM AND REFERENCES  
System Accuracy  
HRZ %Error  
(V  
No load; closed loop, active mode range  
VID = 0.75V to 1.55V  
)
-0.5  
-8  
+0.5  
+8  
%
mV  
mV  
V
CC_CORE  
VID = 0.50V to 0.7375V  
VID = 0.25V to 0.4875V  
VID = [0000000]  
-15  
+15  
Maximum Output Voltage  
Minimum Output Voltage  
CHANNEL FREQUENCY  
Nominal Channel Frequency  
Adjustment Range  
V
1.55  
0.0  
CC_CORE(max)  
V
VID = [1111111]  
V
CC_CORE(min)  
f
280  
200  
300  
320  
500  
kHz  
kHz  
SW(nom)  
AMPLIFIERS  
Current-Sense Amplifier Input Offset  
Error Amp DC Gain  
I
= 0A  
-0.15  
+0.15  
mV  
dB  
FB  
A
90  
18  
v0  
GBW  
Error Amp Gain-Bandwidth Product  
C = 20pF  
MHz  
L
January 31, 2011  
FN7801.0  
11  
ISL6267  
Electrical Specifications Operating Conditions: V = 5V, T = -10°C to +100°C, f = 300kHz, unless otherwise noted.  
DD  
A
SW  
Boldface limits apply over the operating temperature range, -10°C to +100°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
ISEN  
Imbalance Voltage  
Input Bias Current  
Maximum of ISENs - Minimum of ISENs  
1
mV  
nA  
20  
POWER-GOOD AND PROTECTION MONITORS  
PGOOD Low Voltage  
V
I
= 4mA  
PGOOD  
0.26  
460  
0.4  
1
V
OL  
PGOOD Leakage Current  
PGOOD Delay  
I
PGOOD = 3.3V  
-1  
µA  
µs  
OH  
t
PGD  
GATE DRIVER  
UGATE Pull-Up Resistance  
UGATE Source Current  
UGATE Sink Resistance  
UGATE Sink Current  
R
200mA Source Current  
UGATE - PHASE = 2.5V  
1.0  
2.0  
1.0  
2.0  
1.0  
2.0  
0.5  
4.0  
23  
1.5  
1.5  
1.5  
0.9  
Ω
A
UGPU  
I
UGSRC  
R
250mA Sink Current  
Ω
A
UGPD  
I
UGATE - PHASE = 2.5V  
UGSNK  
LGATE Pull-Up Resistance  
LGATE Source Current  
LGATE Sink Resistance  
LGATE Sink Current  
R
250mA Source Current  
LGATE - VSSP = 2.5V  
Ω
A
LGPU  
I
LGSRC  
R
250mA Sink Current  
Ω
A
LGPD  
I
LGATE - VSSP = 2.5V  
LGSNK  
UGATE to LGATE Deadtime  
LGATE to UGATE Deadtime  
BOOTSTRAP DIODE  
t
UGATE falling to LGATE rising, no load  
LGATE falling to UGATE rising, no load  
ns  
ns  
UGFLGR  
LGFUGR  
t
28  
Forward Voltage  
V
PVCC = 5V, I = 2mA  
F
0.58  
0.2  
V
F
Reverse Leakage  
I
V
= 25V  
R
µA  
R
PROTECTION  
Overvoltage Threshold  
Severe Overvoltage Threshold  
Undervoltage Threshold  
Current Imbalance Threshold  
Core OCP Current Threshold  
OV  
VSEN rising above setpoint for >1ms  
V rising above threshold > 0.5µs  
O
200  
260  
270  
1.800  
330  
9
330  
400  
mV  
V
H
OV  
HS  
OV  
VSEN falls below setpoint for >1ms  
One ISEN above another ISEN for >1.2ms  
3-Phase CCM, 2-Phase CCM, 1-Phase  
3-Phase DE  
mV  
mV  
μA  
μA  
μA  
μA  
μA  
H
50  
16  
24  
50  
24  
60  
70  
24  
36  
70  
36  
20  
2-Phase DE  
30  
Northbridge OCP Current Threshold  
2-Phase CCM, 1-Phase  
2-Phase DE  
60  
30  
LOGIC THRESHOLDS  
ENABLE Input Low  
V
0.3  
1.0  
V
V
IL  
ENABLE Input High  
PWM  
V
0.7  
3.5  
IH  
PWM Output Low  
V
Sinking 5mA  
Sourcing 5mA  
PWM = 2.5V  
V
V
0L  
PWM Output High  
V
0H  
PWM Tri-State Leakage  
THERMAL MONITOR  
NTC Source Current  
NTC_NB Source Current  
Thermal Monitor Trip Voltage  
Thermal Monitor Reset Voltage  
2
µA  
NTC = 1.3V  
57  
57  
67  
67  
µA  
µA  
V
NTC_NB = 1.3V  
Falling Threshold  
Rising Threshold  
0.87  
0.91  
0.88  
0.92  
0.89  
0.93  
V
January 31, 2011  
FN7801.0  
12  
ISL6267  
Electrical Specifications Operating Conditions: V = 5V, T = -10°C to +100°C, f = 300kHz, unless otherwise noted.  
DD  
A
SW  
Boldface limits apply over the operating temperature range, -10°C to +100°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
INPUTS  
ENABLE Leakage Current  
I
EN = 0V  
EN = 1V  
-1  
0
18  
µA  
ENABLE  
36  
10  
µA  
Slew Rate (for VID Change)  
Soft-Start Slew Rate  
SR  
5
7.5  
mV/µs  
mV/µs  
SSR  
1.25  
1.875  
2.5  
SVI INTERFACE  
PWROK, SVC, SVD Input Logic High  
PWROK, SVC, SVD Input Logic Low  
SVC, SVD Leakage  
V
0.798  
-
-
-
-
V
V
IH  
V
-
-
-
0.57  
1
IL  
EN = 0V, SVC and SVD = 0V  
EN = 5V, SVC and SVD = 1.8V  
µA  
µA  
1
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
Gate Driver Timing Diagram  
PWM  
t
LGFUGR  
t
FU  
t
RU  
1V  
UGATE  
LGATE  
1V  
t
RL  
t
FL  
t
UGFLGR  
January 31, 2011  
FN7801.0  
13  
ISL6267  
phase. If VR1 is in 1-phase mode, the master clock signal will be  
distributed to Phase 1 only and be the Clock1 signal.  
Theory of Operation  
Multiphase R ™ Modulator  
3
VW  
The ISL6267 is a multiphase regulator implementing two voltage  
regulators, VDD and VDDNB, on one chip controlled by AMD’s™  
SVI1™ protocol. VDD can be programmed for 1-, 2- or 3-phase  
operation. VDDNB can be configured for 1- or 2-phase operation.  
HYSTERETIC  
VCRM  
WINDOW  
COMP  
3
Both regulators use the Intersil patented R ™ (Robust Ripple  
MASTER  
CLOCK  
3
Regulator) modulator. The R ™ modulator combines the best  
features of fixed frequency PWM and hysteretic PWM while  
eliminating many of their shortcomings. Figure 7 conceptually  
shows the multiphase R ™ modulator circuit, and Figure 8 shows  
CLOCK1  
PWM1  
3
the operation principles.  
MASTER CLOCK CIRCUIT  
MASTER  
VW  
CLOCK2  
PWM2  
CLOCK  
CLOCK1  
CLOCK2  
CLOCK3  
COMP  
VCRM  
MASTER  
CLOCK  
PHASE  
SEQUENCER  
GMVO  
CRM  
CLOCK3  
SLAVE CIRCUIT 1  
PWM3  
L1  
IL1  
PHASE1  
CLOCK1  
PWM1  
VO  
S
R
VW  
Q
VW  
CO  
VCRS1  
GM  
CRS1  
VCRS2  
VCRS3 VCRS1  
SLAVE CIRCUIT 2  
L2  
IL2  
3
PHASE2  
CLOCK2  
PWM2  
S
FIGURE 8. R MODULATOR OPERATION PRINCIPLES IN  
STEADY STATE  
VW  
Q
R
Each slave circuit has its own ripple capacitor C , whose voltage  
rs  
VCRS2  
GM  
mimics the inductor ripple current. A g amplifier converts the  
m
CRS2  
inductor voltage into a current source to charge and discharge  
C . The slave circuit turns on its PWM pulse upon receiving the  
SLAVE CIRCUIT 3  
rs  
L3  
IL3  
PHASE3  
clock signal, and the current source charges C . When C  
CLOCK3  
PWM3  
S
rs  
rs  
VW  
Q
R
voltage V hits VW, the slave circuit turns off the PWM pulse,  
Crs  
and the current source discharges C .  
rs  
VCRS3  
GM  
Since the controller works with V , which are large amplitude  
crs  
CRS3  
and noise-free synthesized signals, it achieves lower phase jitter  
than conventional hysteretic mode and fixed PWM mode  
controllers. Unlike conventional hysteretic mode converters, the  
error amplifier allows the ISL6267 to maintain a 0.5% output  
voltage accuracy.  
3
FIGURE 7. R MODULATOR CIRCUIT  
A current source flows from the VW pin to the COMP pin, creating  
a voltage window set by the resistor between the two pins. This  
voltage window is called “VW window” in the following  
discussion.  
Figure 9 shows the operation principles during load insertion  
response. The COMP voltage rises during load insertion,  
generating the master clock signal more quickly, so the PWM  
pulses turn on earlier, increasing the effective switching  
frequency. This allows for higher control loop bandwidth than  
conventional fixed frequency PWM controllers. The VW voltage  
rises as the COMP voltage rises, making the PWM pulses wider.  
During load release response, the COMP voltage falls. It takes  
the master clock circuit longer to generate the next master clock  
signal so the PWM pulse is held off until needed. The VW voltage  
falls as the COMP voltage falls, reducing the current PWM pulse  
width. This kind of behavior gives the ISL6267 excellent response  
speed.  
Inside the IC, the modulator uses the master clock circuit to  
generate the clocks for the slave circuits. The modulator  
discharges the ripple capacitor C with a current source equal  
rm  
to g V , where g is a gain factor. C voltage V  
m o rm CRM  
is a  
m
sawtooth waveform traversing between the VW and COMP  
voltages. It resets to VW when it hits COMP, and generates a  
one-shot master clock signal. A phase sequencer distributes the  
master clock signal to the slave circuits. If V is in 3-phase  
DD  
mode, the master clock signal is distributed to the three phases,  
and the Clock 1~3 signals will be 120° out-of-phase. If VR1 is in  
2-phase mode, the master clock signal is distributed to Phases 1  
and 2, and the Clock1 and Clock2 signals will be 180° out-of-  
The fact that all the phases share the same VW window voltage  
also ensures excellent dynamic current balance among phases.  
January 31, 2011  
FN7801.0  
14  
ISL6267  
VW  
P H A S E  
COMP  
VCRM  
U G A TE  
LG A TE  
MASTER  
CLOCK  
CLOCK1  
PWM1  
IL  
CLOCK2  
PWM2  
FIGURE 10. DIODE EMULATION  
CLOCK3  
PWM3  
CCM/DCM  
BOUNDARY  
VW  
VCRS  
VW  
IL  
VCRS1  
VCRS3  
VCRS2  
LIGHT DCM  
VW  
VCRS  
3
FIGURE 9. R MODULATOR OPERATION PRINCIPLES IN LOAD  
INSERTION RESPONSE  
IL  
Diode Emulation and Period Stretching  
DEEP DCM  
VW  
The ISL6267 can operate in diode emulation (DE) mode to  
improve light-load efficiency. In DE mode, the low-side MOSFET  
conducts when the current is flowing from source to drain and  
does not allow reverse current, thus emulating a diode. As Figure  
10 shows, when LGATE is on, the low-side MOSFET carries current,  
creating negative voltage on the phase node due to the voltage  
drop across the ON-resistance. The ISL6267 monitors the current  
by monitoring the phase node voltage. It turns off LGATE when the  
phase node voltage reaches zero to prevent the inductor current  
from reversing the direction and creating unnecessary power loss.  
VCRS  
IL  
FIGURE 11. PERIOD STRETCHING  
Start-up Timing  
With the controller's V and V voltages above their POR  
DD IN  
If the load current is light enough, as Figure 10 shows, the  
inductor current reaches and stays at zero before the next phase  
node pulse, and the regulator is in discontinuous conduction  
mode (DCM). If the load current is heavy enough, the inductor  
current will never reaches 0A, and the regulator is in CCM,  
although the controller is in DE mode.  
threshold, the start-up sequence begins when ENABLE exceeds the  
logic high threshold. Figure 12 shows the typical start-up timing of  
VR1 and VR2. The ISL6267 uses digital soft-start to ramp-up DAC  
to the voltage programmed by the Metal VID. PGOOD is asserted  
high and low at the end of the ramp up. Similar results occur if  
ENABLE is tied to V , with the soft-start sequence starting  
DD  
Figure 11 shows the operation principle in diode emulation mode  
at light load. The load gets incrementally lighter in the three cases  
from top to bottom. The PWM on-time is determined by the VW  
window size and therefore is the same, making the inductor  
current triangle the same in the three cases. The ISL6267 clamps  
800µs after V crosses the POR threshold.  
DD  
the ripple capacitor voltage V  
in DE mode to make it mimic the  
CRS  
inductor current. It takes the COMP voltage longer to hit V  
,
CRS  
naturally stretching the switching period. The inductor current  
triangles move farther apart such that the inductor current  
average value is equal to the load current. The reduced switching  
frequency helps increase light-load efficiency.  
January 31, 2011  
FN7801.0  
15  
ISL6267  
Hysteresis between the rising and the falling thresholds assure  
VDD  
the ISL6267 does not inadvertently turn off unless the bias  
voltage drops substantially (see “Electrical Specifications” on  
page 11).  
SLEW RATE  
1.875mV/µs  
ENABLE  
MetalVID  
VID COMMAND  
VOLTAGE  
800µs  
Serial VID Interface  
DAC  
The on-board Serial VID Interface (SVI) circuitry allows the  
processor to directly control the Core and Northbridge voltage  
reference levels within the ISL6267. The SVC and SVD states are  
decoded according to the PWROK inputs as described in the  
following sections. The ISL6267 uses a digital-to-analog  
converter (DAC) to generate a reference voltage based on the  
decoded SVI value. See Figure 13 for a simple SVI interface  
timing diagram.  
PGOOD  
PWROK  
VIN  
FIGURE 12. TYPICAL SOFT-START WAVEFORMS  
Power-On Reset  
Before the controller has sufficient bias to guarantee proper  
operation, the ISL6267 requires both a +5V input supply tied to  
Pre-PWROK Metal VID  
Typical motherboard start-up begins with the controller decoding  
the SVC and SVD inputs to determine the pre-PWROK Metal VID  
setting (see Table 1). Once the ENABLE input exceeds the rising  
threshold, the ISL6267 decodes and locks the decoded value in  
an on-board hold register.  
V
V
and PV , as well as a battery or other input supply tied to  
CC  
, to exceed their respective rising power-on reset (POR)  
CC  
IN  
thresholds. Once these thresholds are reached or exceeded, the  
ISL6267 has enough bias to begin checking SVI inputs.  
1
4
5
6
2
3
7
8
9
10  
11  
12  
VCC  
SVC  
SVD  
ENABLE  
PWROK  
V_SVI  
V_SVI  
METAL_VID  
METAL_VID  
V
/ V  
CORE NB  
PGOOD  
Interval 1 to 2: ISL6267 waits to POR.  
Interval 2 to 3: SVC and SVD are externally set to pre-Metal VID code.  
Interval 3 to 4: ENABLE locks pre-Metal VID code. All outputs soft-start to this level.  
Interval 4 to 5: PGOOD signal goes HIGH, indicating proper operation.  
Interval 5 to 6: CPU detects PGOOD high, and drives PWROK high, to allow ISL6267 to prepare for SVI commands.  
Interval 6 to 7: SVC and SVD data lines communicate change in VID code.  
Interval 7 to 8: ISL6267 responds to VID-ON-THE-FLY code change.  
Interval 8 to 9: PWROK is driven low, and ISL6267 returns all outputs to pre-PWROK Metal VID level.  
Interval 9 to 10: PWROK driven high once again by CPU, and ISL6267 prepares for SVI commands.  
Interval 10 to 11: SVC and SVD data lines communicate new VID code.  
Interval 11 to 12: ISL6267 drives outputs to new VID code level.  
Post 12: Enable falls, all internal drivers are tri-stated, and PGOOD is driven low.  
FIGURE 13. SVI INTERFACE TIMING DIAGRAM: TYPICAL PRE-PWROK METAL VID START-UP  
January 31, 2011  
FN7801.0  
16  
ISL6267  
If the PWROK input is de-asserted, then the controller steps both  
TABLE 1. PRE-PWROK METAL VID CODES  
the Core and the Northbridge VRs back to the stored pre-PWROK  
metal VID level in the holding register from initial soft-start. No  
attempt is made to read the SVC and SVD inputs during this time.  
If PWROK is re-asserted, then the on-board SVI interface waits for  
a set VID command.  
SVC  
SVD  
OUTPUT VOLTAGE (V)  
0
0
1
1
0
1
0
1
1.1  
1.0  
0.9  
0.8  
If ENABLE goes low during normal operation, all internal drivers  
are tri-stated and PGOOD is pulled low. This event clears the  
pre-PWROK metal VID code and forces the controller to check  
SVC and SVD upon restart.  
The internal DAC circuitry begins to ramp Core and Northbridge  
VRs to the decoded pre-PWROK Metal VID output level. The  
digital soft-start circuitry ramps the internal reference to the  
target gradually at a fixed rate of approximately 2mV/µs. The  
controlled ramp of all output voltage planes reduces in-rush  
current during the soft-start interval. At the end of the soft-start  
interval, the PGOOD output transitions high, indicating all output  
planes are within regulation limits.  
A POR event on either VCC or VIN during normal operation shuts  
down both regulators, and both PGOOD outputs are pulled low.  
The pre-PWROK metal VID code is not retained.  
VID-on-the-Fly Transition  
Once PWROK is high, the ISL6267 detects this flag and begins  
monitoring the SVC and SVD pins for SVI instructions. The  
microprocessor follows the protocol outlined in the following  
sections to send instructions for VID-on-the-fly transitions. The  
ISL6267 decodes the instruction and acknowledges the new VID  
code. For VID codes higher than the current VID level, the  
ISL6267 begins stepping the commanded VR outputs to the new  
VID target with a typical slew rate of 7.5mV/µs, which meets the  
AMD requirements.  
If the ENABLE input falls below the enable falling threshold, the  
ISL6267 tri-states both outputs. PGOOD is pulled low with the  
loss of ENABLE. The Core and Northbridge planes decay, based  
on output capacitance and load leakage resistance. If bias to  
VCC falls below the POR level, the ISL6267 responds in the  
manner previously described. Once VCC and ENABLE rise above  
their respective rising thresholds, the internal DAC circuitry re-  
acquires a pre-PWROK metal VID code, and the controller  
soft-starts.  
When the VID codes are lower than the current VID level, the  
ISL6267 checks the state of PSI_L. If PSI_L is high, the controller  
begins stepping the regulator output to the new VID target with a  
typical slew rate of -7.5mV/µs. If PSI_L is low, the controller  
allows the output voltage to decay and slowly steps the DAC  
down with the natural decay of the output. This allows the  
controller to quickly recover and move to a high VID code if  
commanded. AMD requirements under these conditions do not  
require the regulator to meet the minimum slew rate  
specification of -5mV/µs. In either case, the slew rate is not  
allowed to exceed 10mV/µs. The ISL6267 does not change the  
state of PGOOD (VCCPWRGD in AMD specifications) when a  
VID-on-the-fly transition occurs.  
VFIX Mode  
The ISL6267 does not support VFIX Mode. In the event a CPU is  
not present on a motherboard and the ISL6267 is powered on,  
the state of SVC and SVD sets the pre-PWROK metal VID as the  
“Pre-PWROK Metal VID” on page 16 and begins soft-starting.  
SVI Mode  
Once the controller has successfully soft-starts and PGOOD and  
PGOOD_NB transition high, the processor can assert PWROK to  
signal the ISL6267 to prepare for SVI commands. The controller  
actively monitors the SVI interface for set VID commands to  
move the plane voltages to start-up VID values. Details of the SVI  
Bus protocol are provided in the “AMD Design Guide for Voltage  
Regulator Controllers Accepting Serial VID Codes” specification.  
SVI WIRE Protocol  
The SVI WIRE protocol is based on the I C bus concept. Two wires  
2
[serial clock (SVC) and serial data (SVD)], carry information  
between the AMD processor (master) and VR controller (slave) on  
the bus. The master initiates and terminates SVI transactions  
and drives the clock, SVC, during a transaction. The AMD  
processor is always the master, and the voltage regulators are  
the slaves. The slave receives the SVI transactions and acts  
accordingly. Mobile SVI WIRE protocol timing is based on  
Once a set VID command is received, the ISL6267 decodes the  
information to determine which VR is affected and which VID  
target is required (see Table 2). The internal DAC circuitry steps  
the output voltage of the VR commanded to the new VID level.  
During this time, one or more of the VR outputs could be  
targeted. In the event either VR is commanded to power-off by  
serial VID commands, the PGOOD signal remains asserted.  
2
high-speed mode I C. See AMD publication #40182 for  
additional details.  
January 31, 2011  
FN7801.0  
17  
ISL6267  
.
TABLE 2. SERIAL VID CODES  
SVID[6:0]  
000_0000b  
000_0001b  
000_0010b  
000_0011b  
000_0100b  
000_0101b  
000_0110b  
000_0111b  
000_1000b  
000_1001b  
000_1010b  
000_1011b  
000_1100b  
000_1101b  
000_1110b  
000_1111b  
001_0000b  
001_0001b  
001_0010b  
001_0011b  
001_0100b  
001_0101b  
001_0110b  
001_0111b  
001_1000b  
001_1001b  
001_1010b  
001_1011b  
001_1100b  
001_1101b  
001_1110b  
001_1111b  
VOLTAGE (V)  
1.5500  
1.5375  
1.5250  
1.5125  
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
SVID[6:0]  
010_0000b  
010_0001b  
010_0010b  
010_0011b  
010_0100b  
010_0101b  
010_0110b  
010_0111b  
010_1000b  
010_1001b  
010_1010b  
010_1011b  
010_1100b  
010_1101b  
010_1110b  
010_1111b  
011_0000b  
011_0001b  
011_0010b  
011_0011b  
011_0100b  
011_0101b  
011_0110b  
011_0111b  
011_1000b  
011_1001b  
011_1010b  
011_1011b  
011_1100b  
011_1101b  
011_1110b  
011_1111b  
VOLTAGE (V)  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
SVID[6:0]  
100_0000b  
100_0001b  
100_0010b  
100_0011b  
100_0100b  
100_0101b  
100_0110b  
100_0111b  
100_1000b  
100_1001b  
100_1010b  
100_1011b  
100_1100b  
100_1101b  
100_1110b  
100_1111b  
101_0000b  
101_0001b  
101_0010b  
101_0011b  
101_0100b  
101_0101b  
101_0110b  
101_0111b  
101_1000b  
101_1001b  
101_1010b  
101_1011b  
101_1100b  
101_1101b  
101_1110b  
101_1111b  
VOLTAGE (V)  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875*  
0.4750*  
0.4625*  
0.4500*  
0.4375*  
0.4250*  
0.4125*  
0.4000*  
0.3875*  
0.3750*  
0.3625*  
SVID[6:0]  
110_0000b  
110_0001b  
110_0010b  
110_0011b  
110_0100b  
110_0101b  
110_0110b  
110_0111b  
110_1000b  
110_1001b  
110_1010b  
110_1011b  
110_1100b  
110_1101b  
110_1110b  
110_1111b  
111_0000b  
111_0001b  
111_0010b  
111_0011b  
111_0100b  
111_0101b  
111_0110b  
111_0111b  
111_1000b  
111_1001b  
111_1010b  
111_1011b  
111_1100b  
111_1101b  
111_1110b  
111_1111b  
VOLTAGE (V)  
0.3500*  
0.3375*  
0.3250*  
0.3125*  
0.3000*  
0.2875*  
0.2750*  
0.2625*  
0.2500*  
0.2375*  
0.2250*  
0.2125*  
0.2000*  
0.1875*  
0.1750*  
0.1625*  
0.1500*  
0.1375*  
0.1250*  
0.1125*  
0.1000*  
0.0875*  
0.0750*  
0.0625*  
0.0500*  
0.0375*  
0.0250*  
0.0125*  
OFF  
OFF  
OFF  
OFF  
NOTE: *Indicates a VID not required for AMD Family 10h processors.  
January 31, 2011  
FN7801.0  
18  
ISL6267  
See Table 3  
SVID  
5
4
3
2
1
0
7
5
4
2
1
6
6
3
0
SVC  
SVD  
SLAVE ADDRESS PHASE  
DATA PHASE  
FIGURE 14. SEND BYTE EXAMPLE  
SVI Bus Protocol  
VR Offset Programming  
The AMD processor bus protocol is compliant with SMBus send  
byte protocol for VID transactions (see Figure 14). During a send  
byte transaction, the processor sends the start sequence  
followed by the slave address of the VR for which the VID  
command applies. The address byte must be configured  
according to Table 3. The processor then sends the write bit. After  
the write bit, if the ISL6267 receives a valid address byte, it  
sends the acknowledge bit. The processor then sends the PSI-L  
bit and VID bits during the data phase. The Serial VID 8-bit data  
field encoding is outlined in Table 4. If ISL6267 receives a valid  
8-bit code during the data phase, it sends the acknowledge bit.  
Finally, the processor sends the stop sequence. After the  
ISL6267 has detected the stop, it can then proceed with the  
VID-on-the-fly transition.  
A positive or negative offset is programmed for the Core VR using  
a resistor to ground from the PROG1 pin and the Northbridge in a  
similar manner from the PROG2 pin. Table 5 provides the resistor  
value to select the desired output voltage offset  
TABLE 5. PROGx PIN RESISTOR VALUE  
PROG1  
RESISTOR VALUE  
PROG1  
VNB  
[Ω]  
V
[mV]  
OFFSET [mV]  
CORE OFFSET  
0
50  
50  
590  
43.75  
37.50  
31.25  
25.00  
18.75  
12.50  
6.25  
43.75  
37.50  
31.25  
25.00  
18.75  
12.50  
6.25  
1100  
1690  
2260  
3160  
4320  
5620  
6650  
7870  
9530  
11500  
14000  
16500  
18700  
OPEN  
TABLE 3. SVI SEND BYTE ADDRESS DESCRIPTION  
BITS  
DESCRIPTION  
6:4 Always 110b  
3
2
Reserved by AMD for future use  
VDD1; if set, then the following data byte contains the VID for  
VDD1 [Note: The ISL6267 does not support VDD1]  
0.00  
0.00  
-6.25  
-6.25  
1
0
VDD0; if set, then the following data byte contains the VID for  
VID0  
-12.50  
-18.75  
-25.00  
-31.25  
-37.50  
-43.75  
-12.50  
-18.75  
-25.00  
-31.25  
-37.50  
-43.75  
VDDNB; if set then the following data byte contains the VID for  
VIDNB  
TABLE 4. SERIAL VID 8-BIT DATA FIELD ENCODING  
DESCRIPTION  
BITS  
7
PSI_L:  
=0 means the processor is at an optimal load for the regulators  
to enter power-saving mode  
=1 means the processor is not at an optimal load for the  
regulators to enter power-saving mode  
Voltage Regulation and Load Line  
Implementation  
After the start sequence, the ISL6267 regulates the output voltage  
to the value set by the VID information, per Table 2. The ISL6267  
controls the no-load output voltage to an accuracy of ±0.5% over  
the range of 0.75V to 1.55V. A differential amplifier allows  
voltage sensing for precise voltage regulation at the  
microprocessor die.  
6:0 SVID[6:0] as defined in Table 2.  
Operation  
After the start-up sequence, the ISL6267 begins regulating the  
Core and Northbridge output voltages to the pre-PWROK metal  
VID programmed. The controller monitors SVI commands to  
determine when to enter power-saving mode, implement  
dynamic VID changes, and shut down individual outputs.  
January 31, 2011  
FN7801.0  
19  
ISL6267  
amplifier regulates the inverting and non-inverting input voltages  
to be equal as shown in Equation 3:  
Rdroop  
VCCSENSE  
+
-
VCC  
+ V  
= V  
+ VSS  
SENSE  
(EQ. 3)  
SENSE  
DAC  
Vdroop  
droop  
FB  
VR LOCAL VO  
“CATCH” RESISTOR  
Idroop  
Rewriting Equation 3 and substituting Equation 2 gives  
Equation 4 is the exact equation required for load-line  
implementation.  
+
-
E/A  
VIDs  
COMP  
VID<0:7>  
VSSSENSE  
DAC  
X 1  
Σ
VDAC  
+
RTN  
VSS  
VCC  
VSS  
= V  
R  
× I  
droop droop  
(EQ. 4)  
+
-
SENSE  
SENSE  
DAC  
INTERNAL TO IC  
The VCC  
SENSE  
and VSS  
signals come from the processor die.  
“CATCH” RESISTOR  
SENSE  
The feedback is, open circuit in the absence of the processor. As  
Figure 15 shows, it is recommended to add a “catch” resistor to feed  
the VR local output voltage back to the compensator, and to add  
another “catch” resistor to connect the VR local output ground to the  
RTN pin. These resistors, typically 10Ω~100Ω, provide voltage  
feedback if the system is powered up without a processor installed.  
FIGURE 15. DIFFERENTIAL SENSING AND LOAD LINE  
IMPLEMENTATION  
As the load current increases from zero, the output voltage  
droops from the VID table value by an amount proportional to the  
load current, to achieve the load line. The ISL6267 can sense the  
inductor current through the intrinsic DC Resistance (DCR) of the  
inductors, as shown in Figures 15 and 16, or through resistors in  
series with the inductors as shown in Figure 17. In both methods,  
Phase Current Balancing  
Rdcr3  
Rdcr2  
Rdcr1  
L3  
L2  
L1  
Rpcb3  
capacitor C voltage represents the inductor total currents. A  
n
PHASE3  
Risen  
droop amplifier converts C voltage into an internal current  
n
IL3  
IL2  
IL1  
ISEN3  
INTERNAL  
source with the gain set by resistor R . The current source is used  
i
Cisen  
for load line implementation, current monitoring and overcurrent  
protection.  
Rpcb2  
VO  
INTERNAL  
TO IC  
PHASE2  
Risen  
ISEN2  
Figure 15 shows the load-line implementation. The ISL6267  
Cisen  
drives a current source (I  
Equation 1.  
) out of the FB pin, as described by  
droop  
Rpcb1  
PHASE1  
Risen  
2xV  
Cn  
R
i
ISEN1  
----------------  
I
=
(EQ. 1)  
droop  
Cisen  
FIGURE 16. CURRENT BALANCING CIRCUIT  
When using inductor DCR current sensing, a single NTC element  
is used to compensate the positive temperature coefficient of the  
copper winding, thus sustaining the load-line accuracy with  
reduced cost.  
The ISL6267 monitors individual phase average current by  
monitoring the ISEN1, ISEN2, and ISEN3 voltages. Figure 16  
shows the current balancing circuit recommended for ISL6267.  
Each phase node voltage is averaged by a low-pass filter  
I
flows through resistor R  
droop  
and creates a voltage drop as  
consisting of R  
corresponding ISEN pin. R  
and C  
, and is presented to the  
should be routed to the inductor  
droop  
shown in Equation 2.  
isen  
isen  
isen  
phase-node pad in order to eliminate the effect of phase node  
parasitic PCB DCR. Equations 5 through 7 give the ISEN pin  
voltages:  
V
= R  
× I  
droop droop  
(EQ. 2)  
droop  
V
= (R  
+ R  
) × I  
V
is the droop voltage required to implement load line.  
(EQ. 5)  
droop  
ISEN1  
dcr1  
pcb1  
L1  
Changing R  
or scaling I  
can change the load line slope.  
droop  
also sets the overcurrent protection level, it is  
droop  
Since I  
droop  
V
= (R  
+ R  
) × I  
recommended to first scale I  
then select an appropriate R  
load line slope.  
based on OCP requirement,  
value to obtain the desired  
(EQ. 6)  
(EQ. 7)  
ISEN2  
dcr2  
pcb2  
L2  
droop  
droop  
V
= (R  
+ R  
) × I  
ISEN3  
dcr3  
pcb3  
L3  
Differential Sensing  
Figure 15 also shows the differential voltage sensing scheme.  
VCC and VSS are the remote voltage sensing signals  
from the processor die. A unity gain differential amplifier senses  
where R  
, R  
and R  
are inductor DCR; R  
, R  
dcr1 dcr2  
dcr3  
pcb1 pcb2  
SENSE SENSE  
and R  
are parasitic PCB DCR between the inductor output  
pcb3  
side pad and the output voltage rail; and I , I and I are  
inductor average currents.  
L1 L2  
L3  
the VSS  
voltage and adds it to the DAC output. The error  
SENSE  
January 31, 2011  
FN7801.0  
20  
ISL6267  
The ISL6267 will adjusts the phase pulse-width relative to the  
Rewriting Equation 11 gives Equation 13:  
V
V  
= V V  
other phases to make V  
= V  
= V  
, thus to achieve  
(EQ. 13)  
(EQ. 14)  
(EQ. 15)  
ISEN1  
= R  
ISEN2  
= R  
ISEN3  
and  
1p  
1n 2p 2n  
I
= I = I , when R  
L1 L2 L3 dcr1  
dcr2  
dcr3  
Rewriting Equation 12 gives Equation 14:  
V
R
= R  
pcb2  
= R  
.
pcb3  
pcb1  
V  
= V V  
2p  
2n 3p 3n  
Using the same components for L1, L2 and L3 provides a good  
match of R , R and R . Board layout determines R  
,
dcr1 dcr2 dcr3 pcb1  
Combining Equations 13 and 14 gives:  
V
R
and R  
. It is recommended to have symmetrical layout  
pcb2  
pcb3  
V  
= V V  
= V V  
3n  
1p  
1n  
2p  
2n  
3p  
for the power delivery path between each inductor and the output  
voltage rail, such that R  
= R  
pcb2  
= R  
.
pcb1  
pcb3  
Therefore:  
Rdcr3  
L3  
Rpcb3  
V3p  
R
× I  
= R  
× I  
= R  
× I  
dcr3 L3  
PHASE3  
(EQ. 16)  
dcr1  
L1  
dcr2  
L2  
Risen  
Risen  
Risen  
IL3  
IL2  
IL1  
ISEN3  
Cisen  
V3n  
Current balancing (I = I = I ) is achieved when  
L1 L2 L3  
R
= R  
= R  
. R , R  
and R do not have any  
INTERNAL  
TO IC  
dcr1  
effect.  
dcr2 dcr3 pcb1 pcb2  
pcb3  
Rdcr2  
L2  
L1  
Rpcb2  
V
o
V2p  
Risen  
PHASE2  
Since the slave ripple capacitor voltages mimic the inductor  
currents, the R ™ modulator can naturally achieve excellent  
ISEN2  
V2n  
3
Risen  
Risen  
Cisen  
current balancing during steady state and dynamic operations.  
Figure 18 shows the current balancing performance of the  
evaluation board with load transient of 12A/51A at different rep  
rates. The inductor currents follow the load current dynamic  
change with the output capacitors supplying the difference. The  
inductor currents can track the load current well at a low  
repetition rate, but cannot keep up when the repetition rate gets  
into the hundred-kHz range, where it is out of the control loop  
bandwidth. The controller achieves excellent current balancing in  
all cases installed.  
Rdcr1  
Rpcb1  
V1p  
PHASE1  
Risen  
Risen  
Risen  
ISEN1  
Cisen  
V1n  
FIGURE 17. DIFFERENTIAL-SENSING CURRENT BALANCING  
CIRCUIT  
Sometimes, it is difficult to implement symmetrical layout. For  
the circuit shown in Figure 16, asymmetric layout causes  
CCM Switching Frequency  
The R  
resistor between the COMP and the VW pins sets the  
fset  
different R  
, R  
and R values, thus creating a current  
pcb1 pcb2  
pcb3  
VW windows size and therefore sets the switching frequency.  
When the ISL6267 is in continuous conduction mode (CCM), the  
switching frequency is not absolutely constant due to the nature  
imbalance. Figure 17 shows a differential sensing current  
balancing circuit recommended for ISL6267. The current sensing  
traces should be routed to the inductor pads so they only pick up  
the inductor DCR voltage. Each ISEN pin sees the average voltage  
of three sources: its own, phase inductor phase-node pad, and  
the other two phases inductor output side pads. Equations 8  
through 10 give the ISEN pin voltages:  
3
of the R ™ modulator. As explained in the “Multiphase R3™  
Modulator” on page 14, the effective switching frequency  
increases during load insertion and decreases during load  
release to achieve fast response. Thus, the switching frequency is  
relatively constant at steady state. Variation is expected when  
the power stage condition, such as input voltage, output voltage,  
load, etc. changes. The variation is usually less than 15% and  
does not have any significant effect on output voltage ripple  
magnitude. Equation 17 gives an estimate of the frequency-  
V
= V + V + V  
1p 2n 3n  
(EQ. 8)  
ISEN1  
V
V
= V + V + V  
1n 2p  
(EQ. 9)  
ISEN2  
ISEN3  
3n  
3p  
= V + V + V  
(EQ. 10)  
1n  
2n  
setting resistor (R ) value. A value of 8kΩ R  
approximately 300kHz switching frequency. Lower resistance  
gives higher switching frequency.  
gives  
fset fset  
The ISL6267 will make V  
Equations 11 and 12:  
= V  
= V as shown in  
ISEN3  
ISEN1  
ISEN2  
V
+ V + V  
= V + V + V  
(EQ. 11)  
(EQ. 12)  
1p  
2n  
3n  
1n 2p  
3n  
3p  
(EQ. 17)  
R
(kΩ) = (Periods) 0.29) × 2.65  
fset  
V
+ V + V  
= V + V + V  
1n 2n  
1n  
2p  
3n  
January 31, 2011  
FN7801.0  
21  
ISL6267  
Modes of Operation  
REP RATE = 10kHz  
TABLE 6. CORE VR MODES OF OPERATION  
OCP  
Threshold  
(µA)  
PWM3  
To  
External Stage  
Driver  
ISEN2  
CONFIG. PSL_L  
MODE  
3-phase CCM  
1-phase DE  
To Power 3-phase  
1
0
60  
20  
CPU VR  
Config.  
Tied to 5V  
2-phase  
CPU VR  
Config.  
1
0
2-phase CCM  
1-phase DE  
60  
30  
Tied to  
5V  
1-phase  
CPU VR  
Config.  
X
1-phase DE  
60  
REP RATE = 25kHz  
The Core VR can be configured for 3, 2- or 1-phase operation.  
Table 6 shows Core VR configurations and operational modes,  
programmed by the PWM3 and ISEN2 pin status and the PS  
command. For 2-phase configuration, tie the PWM3 pin to 5V. In  
this configuration, phases 1 and 2 are active. For 1-phase  
configuration, tie the PWM3 pin and the ISEN2 pin to 5V. In this  
configuration, only phase-1 is active and the controller operates  
in DE mode and the PSI_L input is ignored.  
In 3-phase configuration, Core VR operates in 3-phase CCM, with  
PSI_L high. It enters 1-phase DE mode when PSI_L is low,  
dropping phases 3 and 2, and reduces the overcurrent and the  
way-overcurrent protection levels to one-third of the initial values.  
REP RATE = 50kHz  
In 2-phase configuration, Core VR operates in 2-phase CCM with  
PSI_L high. It enters 1-phase DE mode with PSI_L low, by  
dropping phase 2 and reduces the overcurrent and the  
way-overcurrent protection levels to one-half of the initial values.  
In 1-phase configuration, the Core VR operates in 1-phase DE and  
ignores the PSI_L input. If a resistor is placed from COMP pin to  
GND with a value less than 150kΩ, then the Core VR operates in  
1-phase CCM with PSI_L high and enters 1-phase DE mode when  
PSI_L is low. A resistor value of 100kΩ is recommended.  
REP RATE = 100kHz  
TABLE 7. NORTHBRIDGE VR MODES OF OPERATION  
OCP  
ISEN2_NB  
To Power  
CONFIG.  
PSL_L  
MODE  
2-phase CCM  
1-phase DE  
1-phase DE  
Threshold  
60uA  
2-phase NB  
VR Config.  
1
0
X
Stage  
30uA  
Tied to 5V  
1-phase NB  
VR Config.  
60uA  
REP RATE = 200kHz  
ISL6267 Northbridge (NB) VR can be configured for 2- or 1-phase  
operation. Table 7 shows the Northbridge VR configurations and  
operational modes, which are programmed by the ISEN2 pin  
status and the PSI_L command. For 1-phase configuration, tie  
the ISEN2_NB pin to 5V.  
In 1-phase configuration, the Northbridge VR operates in 1-phase  
DE and ignores the PSI_L input. If a resistor is placed from  
COMP_NB pin to GND with a value less than 150kΩ, then the  
Northbridge VR operates in 1-phase CCM with PSI_L high and  
enters 1-phase DE mode when PSI_L is low. A resistor value of  
100kΩ is recommended.  
FIGURE 18. CURRENT BALANCING DURING DYNAMIC  
OPERATION. CH1: I , CH2: I  
, CH3: I , CH4:  
L1  
LOAD  
L2  
I
L3  
The Northbridge VR can be disabled completely by tying  
ISUMN_NB to 5V.  
January 31, 2011  
FN7801.0  
22  
ISL6267  
threshold. When ENABLE and V return to their high operating  
DD  
levels, a soft-start occurs.  
Dynamic Operation  
Core VR and Northbridge VR behave the same during dynamic  
operation. The controller responds to VID-on-the-fly changes by  
slewing to the new voltage at the fixed 7.5mV/µs slew rate.  
During negative VID transitions, the output voltage decays to the  
lower VID value at the slew rate determined by the load.  
Table 8 summarizes the fault protections.  
TABLE 8. FAULT PROTECTION SUMMARY  
FAULT DURATION  
BEFORE  
PROTECTION  
PROTECTION  
ACTION  
FAULT  
RESET  
SVI_L low command prompts the controller to enter DE mode.  
Overvoltage protection is blanked during VID down transition in  
DE mode until the output voltage is within 60mV of the VID value.  
FAULT TYPE  
Overcurrent  
120µs  
1ms  
PWM tri-state,  
PGOOD latched toggle or  
low  
ENABLE  
Phase Current  
Unbalance  
During load insertion response, the Fast Clock function increases  
the PWM pulse response speed. The controller monitors the  
VSEN pin voltage and compares it to 100ns-filtered version.  
When the unfiltered version is 20mV below the filtered version,  
the controller knows there is a fast voltage dip due to load  
insertion, and it issues an additional master clock signal to  
deliver a PWM pulse immediately.  
VDD toggle  
Way-Overcurrent  
(1.5xOC)  
Immediately  
Overvoltage +200mV  
PGOOD latched  
low. Actively pulls  
the output  
voltage to below  
VID value, then  
tri-state.  
3
The R ™ modulator intrinsically has voltage feed-forward. The  
output voltage is insensitive to a fast slew rate input voltage  
change.  
Over-Temperature  
400µs  
N/A  
Protections  
Core VR and Northbridge VR both provide overcurrent,  
current-balance and overvoltage fault protections. The controller  
also provides over-temperature protection. The following  
discussion is based on Core VR and also applies to Northbridge VR.  
FB2 Function  
The FB2 function is only available for Core VR or Northbridge VR  
in 2-phase configuration.  
C1  
C1  
R2  
C3.1  
C3.2  
R2  
C3.1  
C3.2  
CONTROLLER  
IN  
2-PHASE MODE  
CONTROLLER  
IN  
1-PHASE MODE  
The controller determines overcurrent protection (OCP) by  
comparing the average value of the droop current (I  
C2  
R3  
C2  
R3  
FB2  
FB2  
) with an  
droop  
internal current source threshold as Table 6 shows. It declares OCP  
when I is above the threshold for 120µs.  
R1  
R1  
VSEN  
droop  
VSEN  
COMP  
E/A  
E/A  
FB  
FB  
COMP  
For overcurrent conditions above 1.5x the OCP level, the PWM  
outputs immediately shuts off and PGOOD goes low to maximize  
protection. This protection is also referred to as way-overcurrent  
protection or fast overcurrent protection for short-circuit  
protections.  
VREF  
VREF  
FIGURE 19. FB2 FUNCTION  
Figure 19 shows the FB2 function. A switch (called FB2 switch)  
turns on to short the FB and the FB2 pins when the controller is in  
2-phase mode. Capacitors C3.1 and C3.2 are in parallel, serving  
as part of the compensator. When the controller enters 1-phase  
mode, the FB2 switch turns off, removing C3.2 and leaving only  
C3.1 in the compensator. The compensator gain increases with  
the removal of C3.2. By properly sizing C3.1 and C3.2, the  
compensator can be optimal for both 2-phase mode and 1-phase  
mode.  
The controller monitors the ISEN pin voltages to determine  
current-balance protection. If the ISEN pin voltage difference is  
greater than 9mV for 1ms, the controller will declare a fault and  
latch off.  
The controller takes the same actions for all of the previously  
describe fault protections: de-assertion of PGOOD and turn-off of  
the high-side and low-side power MOSFETs. Any residual inductor  
current decays through the MOSFET body diodes.  
When the FB2 switch is off, C3.2 is disconnected from the FB pin.  
However, the controller still actively drives the FB2 pin voltage to  
follow the FB pin voltage such that C3.2 voltage always follows  
C3.1 voltage. When the controller turns on the FB2 switch, C3.2  
is reconnected to the compensator smoothly.  
The controller declares an overvoltage fault and de-asserts PGOOD if  
the output voltage exceeds the VID set value by +250mV. The  
ISL6267 immediately declares an OV fault, de-asserts PGOOD,  
and turn on the low-side power MOSFETs. The low-side power  
MOSFETs remain on until the output voltage is pulled down below  
the VID set value when all power MOSFETs are turned off. If the  
output voltage rises above the VID set value +250mV again, the  
protection process is repeated. This behavior provides the  
maximum amount of protection against shorted high-side power  
MOSFETs while preventing output ringing below ground.  
The FB2 function ensures excellent transient response in both  
2-phase and 1-phase mode. If the FB2 function is not used,  
populate C3.1 only.  
Adaptive Body Diode Conduction Time  
Reduction  
In DCM, the controller turns off the low-side MOSFET when the  
inductor current approaches zero. During on-time of the low-side  
MOSFET, phase voltage is negative, and the amount is the  
All of the previously described fault conditions can be reset by  
bringing ENABLE low or by bringing V below the POR  
DD  
January 31, 2011  
FN7801.0  
23  
ISL6267  
MOSFET r  
voltage drop, which is proportional to the  
domain relationship between inductor total current I (s) and C  
o
DS(ON)  
n
inductor current. A phase comparator inside the controller  
monitors the phase voltage during on-time of the low-side  
MOSFET and compares it with a threshold to determine the zero  
crossing point of the inductor current. If the inductor current has  
not reached zero when the low-side MOSFET turns off, it will flow  
through the low-side MOSFET body diode, causing the phase  
node to have a larger voltage drop until it decays to zero. If the  
inductor current has crossed zero and reversed the direction  
when the low-side MOSFET turns off, it will flow through the  
high-side MOSFET body diode, causing the phase node to have a  
spike until it decays to zero. The controller continues monitoring  
the phase voltage after turning off the low-side MOSFET. To  
minimize the body diode-related loss, the controller also adjusts  
the phase comparator threshold voltage accordingly in iterative  
steps such that the low-side MOSFET body diode conducts for  
approximately 40ns.  
voltage V (s):  
Cn  
R
DCR  
----------------------------------------- -----------  
ntcnet  
V
(s) =  
×
× I (s) × A (s)  
(EQ. 18)  
Cn  
o
cs  
R
N
sum  
--------------  
+
R
ntcnet  
N
(R  
+ R ) × R  
ntc p  
ntcs  
--------------------------------------------------  
R
=
(EQ. 19)  
(EQ. 20)  
ntcnet  
R
+ R  
+ R  
ntc p  
ntcs  
s
------  
1 +  
ω
L
s
----------------------  
A
ω
ω
(s) =  
cs  
L
------------  
1 +  
ω
sns  
DCR  
-----------  
=
(EQ. 21)  
(EQ. 22)  
L
Key Component Selection  
Inductor DCR Current-Sensing Network  
1
------------------------------------------------------  
PHASE1 PHASE2 PHASE3  
=
sns  
R
sum  
N
--------------  
R
×
RSUM  
ntcnet  
-----------------------------------------  
× C  
n
R
RSUM  
sum  
N
--------------  
R
+
ntcnet  
ISUM+  
RSUM  
where N is the number of phases.  
RNTCS  
Transfer function A (s) always has unity gain at DC. The inductor  
cs  
DCR value increases as the winding temperature increases,  
L
L
L
+
CNVCN  
RP  
giving higher reading of the inductor DC current. The NTC R  
ntc  
-
RNTC  
RO  
DCR  
DCR  
DCR  
value decrease as its temperature decreases. Proper selection of  
, R , R and R parameters ensures that V  
ISUM-  
RI  
R
sum ntcs ntc Cn  
p
represents the inductor total DC current over the temperature  
range of interest.  
RO  
RO  
There are many sets of parameters that can properly temperature-  
compensate the DCR change. Since the NTC network and the R  
resistors form a voltage divider, V is always a fraction of the  
cn  
sum  
IO  
inductor DCR voltage. It is recommended to have a higher ratio of  
to the inductor DCR voltage so the droop circuit has a higher  
FIGURE 20. DCR CURRENT-SENSING NETWORK  
V
cn  
signal level to work with.  
Figure 20 shows the inductor DCR current-sensing network for a  
3-phase solution. An inductor current flows through the DCR and  
A typical set of parameters that provide good temperature  
creates a voltage drop. Each inductor has two resistors in R  
sum  
compensation are: R  
= 3.65kΩ, R = 11kΩ, R = 2.61kΩ  
sum  
p
ntcs  
and R connected to the pads to accurately sense the inductor  
o
and R = 10kΩ (ERT-J1VR103J). The NTC network parameters  
ntc  
current by sensing the DCR voltage drop. The R  
and R  
sum  
o
may need to be fine tuned on actual boards. One can apply full  
load DC current and record the output voltage reading  
immediately; then record the output voltage reading again when  
the board has reached the thermal steady state. A good NTC  
network can limit the output voltage drift to within 2mV. It is  
recommended to follow the Intersil evaluation board layout and  
current sensing network parameters to minimize engineering  
time.  
resistors are connected in a summing network as shown, and feed  
the total current information to the NTC network (consisting of  
R
, R and R ) and capacitor C . R is a negative  
ntcs ntc ntc  
p
n
temperature coefficient (NTC) thermistor, used to temperature  
compensate the inductor DCR change.  
The inductor output side pads are electrically shorted in the  
schematic but have some parasitic impedance in actual board  
layout, which is why one cannot simply short them together for the  
current-sensing summing network. It is recommended to use  
V
(s) also needs to represent real-time I (s) for the controller to  
Cn  
o
achieve good transient response. Transfer function A (s) has a  
cs  
1Ω~10Ω R to create quality signals. Since R value is much  
o
o
pole w  
sns  
and a zero w . One needs to match w and w so  
sns  
L
L
smaller than the rest of the current sensing circuit, the following  
analysis ignores it.  
A
(s) is unity gain at all frequencies. By forcing w equal to w  
cs sns  
L
and solving for the solution, Equation 23 gives Cn value.  
The summed inductor current information is presented to the  
capacitor C . Equations 18 thru 22 describe the frequency  
n
January 31, 2011  
FN7801.0  
24  
ISL6267  
L
-----------------------------------------------------------  
(EQ. 23)  
C
=
n
R
i
o
sum  
i
--------------  
R
×
L
ntcnet  
N
-----------------------------------------  
× DCR  
R
sum  
--------------  
R
+
ntcnet  
N
For example, given N = 3, R  
sum  
= 3.65kΩ, R = 11kΩ,  
p
V
o
R
= 2.61kΩ, R = 10kΩ, DCR = 0.88mΩ and L = 0.36µH,  
ntcs  
ntc  
Equation 23 gives C = 0.406µF.  
RING  
BACK  
n
Assuming the compensator design is correct, Figure 21 shows the  
expected load transient response waveforms if C is correctly  
n
FIGURE 24. OUTPUT VOLTAGE RING-BACK PROBLEM  
selected. When the load current I  
has a square change, the  
also has a square response.  
core  
output voltage V  
core  
ISUM+  
If C value is too large or too small, V (s) does not accurately  
Cn  
n
represent real-time I (s) and worsens the transient response.  
o
Figure 22 shows the load transient response when C is too  
n
small. V  
sags excessively upon load insertion and may create  
core  
Rntcs  
Cn.1  
a system failure. Figure 23 shows the transient response when  
C is too large. V is sluggish in drooping to its final value.  
Vcn  
Cn.2  
Rp  
n
core  
There is excessive overshoot if load insertion occurs during this  
time, which may negatively affect the CPU reliability.  
Rn  
Rntc  
ISUM-  
Ri  
OPTIONAL  
i
o
Cip  
Rip  
OPTIONAL  
V
o
FIGURE 25. OPTIONAL CIRCUITS FOR RING-BACK REDUCTION  
FIGURE 21. DESIRED LOAD TRANSIENT RESPONSE  
WAVEFORMS  
Figure 24 shows the output voltage ring-back problem during  
load transient response. The load current i has a fast step  
o
change, but the inductor current i cannot accurately follow.  
i
L
o
Instead, i responds in first-order system fashion due to the  
L
nature of the current loop. The ESR and ESL effect of the output  
capacitors makes the output voltage V dip quickly upon load  
o
current change. However, the controller regulates V according to  
o
the droop current i  
, which is a real-time representation of i ;  
droop  
L
V
o
therefore, it pulls V back to the level dictated by i , causing the  
o
L
ring-back problem. This phenomenon is not observed when the  
output capacitor has very low ESR and ESL, as is the case with all  
ceramic capacitors.  
FIGURE 22. LOAD TRANSIENT RESPONSE WHEN C IS TOO  
n
SMALL  
Figure 25 shows two optional circuits for reduction of the  
ring-back. C is the capacitor used to match the inductor time  
n
constant. It usually takes the parallel of two (or more) capacitors  
to get the desired value. Figure 25 shows that two capacitors  
i
o
(C and C ) are in parallel. Resistor R is an optional  
n.1 n.2  
n
component to reduce the V ring-back. At steady state, C  
+
o
n.1  
C
provides the desired C capacitance. At the beginning of i  
n.2  
n o  
change, the effective capacitance is less because R increases  
n
V
the impedance of the C branch. As Figure 22 shows, V tends  
o
n.1  
o
to dip when C is too small, and this effect reduces the V  
n
o
ring-back. This effect is more pronounced when C is much  
n.1  
FIGURE 23. LOAD TRANSIENT RESPONSE WHEN C IS TOO  
n
larger than C . It is also more pronounced when R is bigger.  
n.2  
n
LARGE  
However, the presence of R increases the ripple of the V signal  
n
n
if C is too small. It is recommended to keep C greater than  
n.2 n.2  
2200pF. R value usually is a few ohms. C , C and R values  
n
n.1 n.2  
n
January 31, 2011  
FN7801.0  
25  
ISL6267  
should be determined through tuning the load transient response  
waveforms on an actual board.  
Overcurrent Protection  
Refer to Equation 1 on page 20 and Figures 20, 24 and 26;  
R
and C form an R-C branch in parallel with R , providing a  
ip  
resistor R sets the droop current, I . Tables 6 and 7 show the  
ip  
i
i
droop  
lower impedance path than R at the beginning of i change. R  
internal OCP threshold. It is recommended to design I  
i
o
ip  
droop  
and C do not have any effect at steady state. Through proper  
without using the R  
resistor.  
ip  
comp  
For example, the OCP threshold is 60µA for 3-phase solution.  
is designed to be 40.9µA at full load, so the OCP trip level  
selection of R and C values, i  
ip ip  
can resemble i rather than  
o
droop  
i , and V will not ring back. The recommended value for R is  
L
o
ip  
I
droop  
100Ω. C should be determined through tuning the load  
ip  
is 1.5x of the full load current.  
transient response waveforms on an actual board. The  
recommended range for C is 100pF~2000pF. However, it  
For inductor DCR sensing, Equation 27 gives the DC relationship  
of V (s) and I (s):  
ip  
should be noted that the R -C branch may distort the i  
ip ip  
droop  
cn  
o
waveform. Instead of being triangular as the real inductor  
R
current, i  
affect i  
may have sharp spikes, which may adversely  
DCR  
N
droop  
average value detection and therefore may affect  
ntcnet  
----------------------------------------- -----------  
V
=
×
× I  
Cn  
o
(EQ. 27)  
R
droop  
sum  
--------------  
+
R
OCP accuracy. User discretion is advised.  
ntcnet  
N
Substitution of Equation 27 into Equation 1 gives Equation 28:  
R
Resistor Current-Sensing Network  
2
DCR  
ntcnet  
PHASE1 PHASE2 PHASE3  
---- ----------------------------------------- -----------  
× I  
o
I
=
×
×
(EQ. 28)  
droop  
R
R
N
i
sum  
N
--------------  
+
R
ntcnet  
L
L
L
Therefore:  
2R  
× DCR × I  
o
ntcnet  
-------------------------------------------------------------------------------  
R
=
(EQ. 29)  
DCR  
DCR  
DCR  
i
R
sum  
N
RSUM  
RSUM  
RSUM  
--------------  
N × R  
+
× I  
ntcnet  
droop  
Substitution of Equation 19 and application of the OCP condition  
in Equation 29 gives Equation 30:  
ISUM+  
+
(R  
+ R ) × R  
ntc p  
RSEN  
RSEN  
ntcs  
RSEN  
VCN  
CN  
RI  
--------------------------------------------------  
2 ×  
× DCR × I  
omax  
ISUM-  
R
+ R  
+ R  
ntc p  
RO  
RO  
RO  
ntcs  
-
-------------------------------------------------------------------------------------------------------------------------  
=
R
(EQ. 30)  
i
(R  
+ R ) × R  
R
ntcs  
ntc  
p
sum  
N
-------------------------------------------------- --------------  
N ×  
+
× I  
droopmax  
R
+ R  
+ R  
p
ntcs  
ntc  
where I  
is the full load current and I  
is the  
omax  
droopmax  
corresponding droop current. For example, given N = 3,  
IO  
R
= 3.65kΩ, R = 11kΩ, R  
= 2.61kΩ, R = 10kΩ,  
sum  
DCR = 0.88mΩ, I  
p
ntcs ntc  
= 51A and I  
= 40.9µA.  
FIGURE 26. RESISTOR CURRENT-SENSING NETWORK  
omax  
droopmax  
Equation 30 gives R = 606Ω.  
i
Figure 26 shows the resistor current-sensing network for a  
2-phase solution. Each inductor has a series current sensing  
For resistor sensing, Equation 31 gives the DC relationship of  
V
(s) and I (s).  
resistor, R . R  
accurately capture the inductor current information. The R  
and R are connected to the R  
pads to  
cn  
o
sen sum  
o
sen  
R
sum  
and C  
n
sen  
------------  
(EQ. 31)  
V
=
× I  
Cn  
o
and R resistors are connected to capacitor C . R  
N
o
n
sum  
form a filter for noise attenuation. Equations 24 thru 26 give the  
Substitution of Equation 31 into Equation 1 gives Equation 32:  
R
V
(s) expression.  
Cn  
2
sen  
R
---- ------------  
× I  
o
I
=
×
sen  
N
(EQ. 24)  
(EQ. 25)  
(EQ. 32)  
droop  
------------  
V
(s) =  
× I (s) × A  
(s)  
R
N
Cn  
o
Rsen  
i
1
Therefore:  
2R  
----------------------  
1 +  
A
(s) =  
Rsen  
s
× I  
------------  
sen  
o
(EQ. 33)  
---------------------------  
=
R
ω
i
sns  
N × I  
droop  
1
---------------------------  
ω
=
(EQ. 26)  
Rsen  
R
Substitution of Equation 33 and application of the OCP condition  
in Equation 29 gives Equation 34:  
sum  
--------------  
× C  
n
N
2R  
× I  
sen  
omax  
--------------------------------------  
R =  
i
Transfer function A  
(s) always has unity gain at DC. Current-  
Rsen  
(EQ. 34)  
N × I  
droopmax  
sensing resistor R  
value does not have significant variation  
sen  
over-temperature, so there is no need for the NTC network.  
where I  
is the full load current and I  
is the  
omax  
droopmax  
corresponding droop current. For example, given N = 3,  
The recommended values are R = 1kΩ and C = 5600pF.  
sum  
n
R
= 1mΩ, I  
omax  
= 51A and I  
= 40.9µA, Equation 34  
droopmax  
sen  
gives R = 831Ω.  
i
January 31, 2011  
FN7801.0  
26  
ISL6267  
current, multiplies it by a gain of the load-line slope, adds it on top  
of the sensed output voltage, and then feeds it to the  
compensator. T1 is measured after the summing node, and T2 is  
measured in the voltage loop before the summing node. The  
spreadsheet gives both T1(s) and T2(s) plots. However, only T2(s)  
can actually be measured on an ISL6267 regulator.  
Load Line Slope  
See Figure 15 for load-line implementation.  
For inductor DCR sensing, substitution of Equation 28 into  
Equation 2 gives the load-line slope expression:  
V
2R  
R
DCR  
N
droop  
droop  
ntcnet  
-----------------  
---------------------- ----------------------------------------- -----------  
LL =  
=
×
×
(EQ. 35)  
I
R
R
sum  
o
i
VO  
--------------  
+
L
R
ntcnet  
N
Q1  
For resistor sensing, substitution of Equation 32 into Equation 2  
iO  
VIN  
Q2  
GATE  
DRIVER  
COUT  
gives the load line slope expression:  
V
2R  
× R  
droop  
sen droop  
(EQ. 36)  
-----------------  
-----------------------------------------  
=
LL =  
I
N × R  
o
i
LOAD LINE SLOPE  
Substitution of Equation 29 and rewriting Equation 35, or  
+
substitution of Equation 33 and rewriting Equation 36, gives the  
same result as in Equation 37:  
2Ω
+
-
EA  
MOD.  
I
o
COMP  
+
---------------  
R
=
× LL  
(EQ. 37)  
VID  
droop  
I
ISOLATION  
TRANSFORMER  
droop  
CHANNEL B  
CHANNEL A  
One can use the full-load condition to calculate R  
droop  
. For  
LOOP GAIN =  
example, given I  
= 51A, I  
= 40.9µA and  
= 2.37kΩ.  
omax  
LL = 1.9mΩ, Equation 37 gives R  
droopmax  
CHANNEL A  
CHANNEL B  
droop  
NETWORK  
ANALYZER  
EXCITATION OUTPUT  
It is recommended to start with the R  
value calculated by  
droop  
Equation 37 and fine-tune it on the actual board to get accurate  
load-line slope. One should record the output voltage readings at  
no load and at full load for load-line slope calculation. Reading  
the output voltage at lighter load instead of full load will increase  
the measurement error.  
FIGURE 28. LOOP GAIN T1(s) MEASUREMENT SET-UP  
T1(s) is the total loop gain of the voltage loop and the droop loop.  
It always has a higher crossover frequency than T2(s), therefore  
has a higher impact on system stability.  
T2(s) is the voltage loop gain with closed droop loop, thus having  
a higher impact on output voltage response.  
Compensator  
Figure 21 shows the desired load transient response waveforms.  
Figure 27 shows the equivalent circuit of a voltage regulator (VR)  
with the droop function. A VR is equivalent to a voltage source  
(= VID) and output impedance Z (s). If Z (s) is equal to the  
Design the compensator to get stable T1(s) and T2(s) with sufficient  
phase margin and an output impedance equal to or smaller than  
the load-line slope.  
out  
out  
load-line slope LL, i.e., a constant output impedance, then in the  
entire frequency range, V will have a square response when I  
L
o
o
VO  
has a square change.  
Q1  
IO  
V
IN  
GATE  
DRIVER  
Q2  
CO  
i
Zout(s) = LL  
o
LOAD LINE SLOPE  
VR  
V
VID  
LOAD  
o
Ω
+
20  
+
-
EA  
MOD.  
+
COMP  
VID  
ISOLATION  
TRANSFORMER  
FIGURE 27. VOLTAGE REGULATOR EQUIVALENT CIRCUIT  
CHANNEL B  
CHANNEL A  
LOOP GAIN =  
Intersil provides a Microsoft Excel-based spreadsheet to help  
CHANNEL A  
CHANNEL B  
design the compensator and the current sensing network so that  
VR achieves constant output impedance as a stable system.  
Figure 29 shows a screenshot of the spreadsheet.  
NETWORK  
ANALYZER  
EXCITATION OUTPUT  
FIGURE 29. LOOP GAIN T2(s) MEASUREMENT SET-UP  
A VR with active droop function is a dual-loop system consisting of  
a voltage loop and a droop loop, which is a current loop. However,  
neither loop alone is sufficient to describe the entire system. The  
spreadsheet shows two loop gain transfer functions, T1(s) and  
T2(s), that describe the entire system. Figure 28 conceptually  
shows T1(s) measurement set-up, and Figure 29 conceptually  
shows T2(s) measurement set-up. The VR senses the inductor  
Current Balancing  
Refer to Figures 16 through 20 for information on current  
balancing. The ISL6267 achieves current balancing through  
matching the ISEN pin voltages. R  
and C  
form filters to  
isen  
isen  
remove the switching ripple of the phase node voltages. It is  
January 31, 2011  
FN7801.0  
27  
ISL6267  
recommended to use a rather long R  
that the ISEN voltages have minimal ripple and represent the DC  
current flowing through the inductors. Recommended values are  
C
time constant such  
level. The addition of hysteresis to the over-temperature  
threshold prevents nuisance trips. Once both pin voltages exceed  
the over-temperature reset threshold, the pull-down on VR_HOT  
is released. The signal changes state and the CPU resumes  
normal operation. The over-temperature threshold returns to the  
trip level.  
isen isen  
R = 10kΩ and C = 0.22µF.  
s
s
NTC Thermal Monitors and VR_HOT Function  
The ISL6267 features three pins (NTC, NTC_NB, and VR_HOT)  
that allow the IC to monitor board temperature and alert the  
AMD CPU of a thermal issue. Figure 30 shows the thermal  
monitor feature of the ISL6267. An NTC network is connected  
between the NTC and NTC_NB pins and GND. The controller  
drives a 60µA current source out of the NTC pin and the NTC_NB  
pin alternatively at 1kHz frequency with 50% duty cycle. The  
pulsed current flows through the respective NTC resistor network  
on the pins and creates a voltage that is compared to an  
over-temperature trip threshold. If the voltage on both NTC pins is  
higher than the over-temperature trip threshold, then VR_HOT is  
pulled up by an external resistor on the pin.  
Selection of the NTC components can vary depending on how the  
resistor network is configured. The equivalent resistance at the  
typical over-temperature threshold voltage of 0.88V, to change  
the state of VR_HOT, is defined in Equation 38.  
0.88V  
60μA  
(EQ. 38)  
---------------  
= 14.7k  
The equivalent resistance at the typical reset threshold voltage of  
0.92V required to change the state of VR_HOT back low, is  
defined in Equation 39.  
0.92V  
60μA  
(EQ. 39)  
---------------  
= 15.3k  
The NTC thermistor value correlates this resistance change to the  
required temperature hysteresis. A standard 1% resistor is  
typically needed to meet the NTC pin threshold voltage.  
NTC  
+V  
R
p
+
NTC  
60µA  
V
For example, a Panasonic NTC thermistor with B = 4700 has a  
resistance ratio of 0.03322 of its nominal value at +105°C and  
0.03956 of its nominal value at +100°C. The required resistance  
of the NTC is defined in Equation 40.  
R
R
NTC  
VR_HOT  
-
SW1  
SW2  
R
s
MONITOR  
(15.3kΩ 14.7kΩ)  
(0.03956 0.03322)  
(EQ. 40)  
-------------------------------------------------------  
= 94.6kΩ  
SW1 SW2  
NTC_NB  
+
The closest, larger thermistor value for B = 4700 is 100kΩ. The  
NTC thermistor part number is ERTJ1VV104.  
R
p
INTERNAL TO  
ISL6267  
V
R
NTC  
NTC  
-
At +105°C, a 100kΩ NTC resistance drops to  
(0.03322 x 100kΩ) = 3.322kΩ. With a 60µA current flowing out  
of the NTC pin, the voltage drop across the resistor is only  
(3.322kΩ x 60µA) = 0.199V. This value is much lower than the  
threshold voltage of 0.88V. A standard resistor, 1% tolerance,  
added in series with the thermistor is required to raise the  
voltage on the pin. The resistance required to meet the trip  
threshold is calculated in Equation 41.  
R
s
FIGURE 30. CIRCUITRY ASSOCIATED WITH THE THERMAL  
MONITOR FEATURE OF THE ISL6267  
As the board temperature rises, the NTC thermistor resistance  
decreases and the voltage at the NTC pin drops. When the  
voltage on the NTC pin drops below the over-temperature trip  
threshold, then VR_HOT is pulled low. The VR_HOT signal is used  
to change the CPU operation and decrease power consumption.  
With the reduction in power consumption by the CPU, the board  
temperature decreases and the NTC thermistor voltage rises.  
Once the over-temperature threshold is tripped and VR_HOT is  
taken low, the over-temperature threshold changes to the reset  
0.88V  
60μA  
(EQ. 41)  
---------------  
3.322kΩ = 11.34kΩ  
The closest, standard 1% tolerance resistor is 11.3kΩ.  
The NTC thermistor is placed in a hot spot on the board, typically  
near the upper MOSFET of channel 1 of the respective output.  
The standard resistor is placed next to the controller.  
Layout Guidelines  
Table 9 shows layout considerations for the ISL6267 controller. Refer to the reference designators shown in Figure 31.  
TABLE 9. LAYOUT CONSIDERATIONS FOR THE ISL6267 CONTROLLER  
ISL6267  
SYMBOL  
GND  
LAYOUT GUIDELINES  
BOTTOM PAD  
Create analog ground plane underneath the controller and the analog signal processing components. Do not let  
the power ground plane overlap with the analog ground plane. Avoid allowing noisy planes/traces (e.g., phase  
node) to crossover/overlap the analog plane.  
January 31, 2011  
FN7801.0  
28  
ISL6267  
TABLE 9. LAYOUT CONSIDERATIONS FOR THE ISL6267 CONTROLLER (Continued)  
LAYOUT GUIDELINES  
ISL6267  
SYMBOL  
FB2_NB  
1
2
Place the compensator components (R25, R9, R24, C88, C51, C86, and C153) close to the controller.  
FB_NB  
3
COMP_NB  
VW_NB  
4
Place the capacitor (C85) across VW, and place COMP close to the controller.  
No special consideration.  
5
PGOOD_NB  
6, 7, 8  
9
SVD, PWROK, SVC Use good signal integrity practices.  
ENABLE  
PGOOD  
VR_HOT  
NTC  
No special consideration.  
No special consideration.  
No special consideration.  
10  
11  
12  
Place the NTC thermistor (R46) close to the thermal source that is monitored to determine CPU V  
throttling. Usually it is placed close to Core VR phase-1 high-side MOSFET.  
thermal  
CORE  
13  
14  
15  
16  
VW  
COMP  
FB  
Place the capacitor (C4) across VW and COMP close to the controller.  
Place the compensator components (R7, R10, R11, C3, C6, C11 and C5) in general proximity to the controller.  
FB2  
ISEN3  
ISEN2  
ISEN1  
Each ISEN pin has a capacitor (C  
GND. Place Cisen capacitors as close as possible to the controller and keep the following loops small:  
1. Any ISEN pin to another ISEN pin  
) decoupling it to VSUMN and then through another capacitor (C  
) to  
vsumn  
isen  
17  
18  
2. Any ISEN pin to GND  
The red traces in the following drawing show the loops to be minimized.  
Phase1  
L3  
Risen  
Ro  
Ro  
Ro  
ISEN3  
ISEN2  
Cisen  
Cisen  
Cisen  
V
o
Phase2  
Risen  
L2  
L1  
Phase3  
Risen  
ISEN1  
GND  
Vsumn  
Cvsumn  
19  
20  
VSEN  
RTN  
Place the VSEN/RTN filter (C12, C13) close to the controller for good decoupling.  
January 31, 2011  
FN7801.0  
29  
ISL6267  
TABLE 9. LAYOUT CONSIDERATIONS FOR THE ISL6267 CONTROLLER (Continued)  
LAYOUT GUIDELINES  
ISL6267  
21  
SYMBOL  
ISUMN  
ISUMP  
Place the current sensing circuit in general proximity of the controller.  
Place capacitor Cn very close to the controller.  
Place the NTC thermistor next to VR1 phase-1 inductor (L1) so it senses the inductor temperature correctly.  
Each phase of the power stage sends a pair of VSUMP and VSUMN signals to the controller. Run these two  
signals traces in parallel fashion with decent width (>20mil).  
22  
IMPORTANT: Sense the inductor current by routing the sensing circuit to the inductor pads. Route R63 and R71  
to Core VR phase-1 side pad of inductor L1. Route R88 to the output side pad of inductor L1. Route R65 and  
R72 to Core VR phase-2 side pad of inductor L2. Route R90 to the output side pad of inductor L2. If possible,  
route the traces on a different layer from the inductor pad layer and use vias to connect the traces to the center  
of the pads. If no via is allowed on the pad, consider routing the traces into the pads from the inside of the  
inductor. The following drawings show the two preferred ways of routing current sensing traces.  
INDUCTOR  
INDUCTOR  
VIAS  
CURRENT-SENSING TRACES  
CURRENT-SENSING TRACES  
23  
24  
25  
26  
27  
28  
VDD  
VIN  
A capacitor (C16) decouples it to GND. Place it in close proximity to the controller.  
A capacitor (C17) decouples it to GND. Place it in close proximity to the controller.  
No special consideration.  
PROG1  
BOOT1  
UGATE1  
PHASE1  
Use decent wide trace (>30mil). Avoid any sensitive analog signal trace from crossing over or getting close.  
Run these two traces in parallel fashion with decent width (>30mil). Avoid any sensitive analog signal trace from  
crossing over or getting close. Recommend routing PHASE1 trace to VR1 phase-1 high-side MOSFET (Q2 and  
Q8) source pins instead of general copper.  
29  
30  
31  
32  
33  
34  
LGATE1  
PWM3  
VCCP  
Use decent width (>30mil). Avoid any sensitive analog signal trace from crossing over or getting close.  
No special consideration.  
A capacitor (C22) decouples it to GND. Place it in close proximity to the controller.  
Use decent width (>30mil). Avoid any sensitive analog signal trace from crossing over or getting close.  
LGATE2  
PHASE2  
UGATE2  
Run these two traces in parallel fashion with decent width (>30mil). Avoid any sensitive analog signal trace from  
crossing over or getting close. Recommend routing PHASE2 trace to VR1 phase-2 high-side MOSFET (Q4 and  
Q10) source pins instead of general copper.  
35  
36  
37  
38  
39  
BOOT2  
Use decent wide trace (>30mil). Avoid any sensitive analog signal trace from crossing over or getting close.  
No special consideration.  
PWM2_NB  
LGATE1_NB  
PHASE1_NB  
UGATE1_NB  
Use decent width (>30mil). Avoid any sensitive analog signal trace from crossing over or getting close.  
Run these two traces in parallel fashion with decent width (>30mil). Avoid any sensitive analog signal trace from  
crossing over or getting close. Recommend routing PHASE1G trace to VR2 phase-1 high-side MOSFET source  
pins instead of general copper.  
40  
41  
42  
BOOT1_NB  
PROG2  
Use decent wide trace (>30mil). Avoid any sensitive analog signal trace from crossing over or getting close.  
No special consideration.  
NTC_NB  
Place the NTC thermistor close to the thermal source that is monitored to determine GT V  
thermal  
CORE  
throttling. Usually it is placed close to Northbridge VR phase-1 high-side MOSFET.  
43  
44  
ISUMN_NB  
ISUMP_NB  
Place the current sensing circuit in general proximity to the controller.  
Place capacitor Cn very close to the controller.  
Place the NTC thermistor next to Northbridge VR phase-1 inductor (L1) so it senses the inductor temperature  
correctly.  
See ISUMN and ISUMP pins for layout guidelines of current-sensing trace routing.  
January 31, 2011  
FN7801.0  
30  
ISL6267  
TABLE 9. LAYOUT CONSIDERATIONS FOR THE ISL6267 CONTROLLER (Continued)  
LAYOUT GUIDELINES  
ISL6267  
45  
SYMBOL  
RTN_NB  
Place the VSEN/RTN filter (C89, C90) in close proximity to the controller for good decoupling.  
46  
VSEN_NB  
ISEN2_NB  
ISEN1_NB  
47  
See ISEN1, ISEN2 and ISEN3 pins for layout guidelines of current-balancing circuit trace routing.  
48  
FIGURE 31. PORTION OF ISL6267EVAL1Z EVALUATION BOARD SCHEMATIC  
January 31, 2011  
FN7801.0  
31  
ISL6267  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest revision.  
DATE  
REVISION  
FN7801.0  
CHANGE  
1/31/11  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page  
on intersil.com: ISL6267  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
January 31, 2011  
32  
FN7801.0  
ISL6267  
Package Outline Drawing  
L48.6x6B  
48 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 9/09  
4X  
4.4  
6.00  
0.40  
44X  
A
6
B
PIN #1 INDEX AREA  
48  
37  
6
1
36  
PIN 1  
INDEX AREA  
4 .40 ± 0.15  
25  
12  
0.15  
(4X)  
13  
24  
0.10 M C A B  
0.05 M C  
TOP VIEW  
48X 0.45 ± 0.10  
BOTTOM VIEW  
4
48X 0.20  
SEE DETAIL "X"  
C
0.10  
C
MAX 1.00  
BASE PLANE  
SEATING PLANE  
0.08  
( 44 X 0 . 40 )  
( 5. 75 TYP )  
(
C
SIDE VIEW  
4. 40 )  
5
0 . 2 REF  
C
( 48X 0 . 20 )  
0 . 00 MIN.  
0 . 05 MAX.  
( 48X 0 . 65 )  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
6.  
January 31, 2011  
FN7801.0  
33  

相关型号:

ISL6267HRZ

Multiphase PWM Regulator for AMD Fusion Mobile CPUs
INTERSIL

ISL6267HRZ-T

Multiphase PWM Regulator for AMD Fusion&trade; Mobile CPUs; QFN48; Temp Range: -10&deg; to 100&deg;C
RENESAS

ISL6267HRZ-T13

DUAL SWITCHING CONTROLLER
RENESAS

ISL6267HRZ-T7

DUAL SWITCHING CONTROLLER
RENESAS

ISL6268

High-Performance Notebook PWM Controller
INTERSIL

ISL6268CAZ

High-Performance Notebook PWM Controller
INTERSIL

ISL6268CAZ-T

High-Performance Notebook PWM Controller
INTERSIL

ISL6269

Single Phase PWM Controller for Mobile Graphical Processing Unit (GPU)
INTERSIL

ISL6269A

High-Performance Notebook PWM Controller
INTERSIL

ISL6269ACRZ

High-Performance Notebook PWM Controller
INTERSIL

ISL6269ACRZ-T

High-Performance Notebook PWM Controller
INTERSIL

ISL6269ACRZ-T13

SWITCHING CONTROLLER
RENESAS