ISL28108FUZ [INTERSIL]

40V Precision Single Supply Rail-Rail Output Low Power Operational Amplifiers; 40V精密单电源轨对轨输出,低功耗运算放大器
ISL28108FUZ
型号: ISL28108FUZ
厂家: Intersil    Intersil
描述:

40V Precision Single Supply Rail-Rail Output Low Power Operational Amplifiers
40V精密单电源轨对轨输出,低功耗运算放大器

运算放大器 光电二极管
文件: 总25页 (文件大小:1488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
40V Precision Single Supply Rail-Rail Output Low  
Power Operational Amplifiers  
ISL28108, ISL28208  
Features  
The ISL28108 and ISL28208 are single and dual low power  
precision amplifiers optimized for single supply applications.  
These devices feature a common mode input voltage range  
extending to 0.5V below the V- rail, a rail-to-rail differential  
input voltage range for use as a comparator, and rail to rail  
output voltage swing, which make them ideal for single supply  
applications where input operation at ground is important.  
• Single or Dual Supply, Rail-to-Rail Output and Below Ground  
(V-) input capability  
• Rail-to-rail Input Differential Voltage Range for Comparator  
Applications  
• Single Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 40V  
• Low Current Consumption (VS = ±5V) . . . . . . . . . . . . . . 165µA  
• Low Noise Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 15.8nV/Hz  
• Low Noise Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 80fA/Hz  
• Low Input Offset Voltage. . . . . . . . . . . . . . . . . . . . . . . . . 230µV  
• Superb Temperature Drift  
Added features include low offset voltage, and low  
temperature drift making them the ideal choice for  
applications requiring high DC accuracy. The output stage is  
capable of driving large capacitive loads from rail to rail for  
excellent ADC driving performance. The devices can operate  
for single or dual supply from 3V (±1.5V) to 40V (±20V) and are  
fully characterized at ±5V and ±15V. The combination of  
precision, low power, and small footprint provides the user with  
outstanding value and flexibility relative to similar competitive  
parts.  
- Voltage Offset TC . . . . . . . . . . . . . . . . . . . . . . 0.1µV/°C, Typ  
• Low Input Bias Current . . . . . . . . . . . . . . . . . . . . . . . -13nA Typ  
• Operating Temperature Range. . . . . . . . . . .-40°C to +125°C  
• No Phase Reversal  
Applications for these amplifiers include precision  
instrumentation, data acquisition, precision power supply  
control, and industrial control.  
Applications  
• Precision Instruments  
• Medical Instrumentation  
• Data Acquisition  
The ISL28108 single is offered in 8 Ld TDFN, SOIC and MSOP  
packages. The ISL28208 dual amplifier is offered in 8 Ld  
TDFN, MSOP, and SOIC packages. All devices are offered in  
standard pin configurations and operate over the extended  
temperature range to -40°C to +125°C.  
• Power Supply Control  
• Industrial Process Control  
R
F
100k  
LOAD  
500  
+3V  
to 40V  
R
-
IN  
V
= ±15V  
IN-  
S
-
400  
300  
200  
100  
0
V
OUT  
V+  
10kΩ  
R
SENSE  
ISL28108  
+125°C  
+25°C  
R
+
V-  
IN  
IN+  
-40°C  
+
10kΩ  
GAIN = 10  
R
+
REF  
-100  
-200  
-300  
-400  
-500  
100kΩ  
V
REF  
-16  
-15.5 -15 -14.5 -14 13 13.5  
14  
14.5  
15  
INPUT COMMON MODE VOLTAGE (V)  
SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER  
FIGURE 1. TYPICAL APPLICATION CIRCUIT  
FIGURE 2. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±15V  
March 17, 2011  
FN6935.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL28108, ISL28208  
Pin Configurations  
Ordering Information  
ISL28108  
(8 LD TDFN)  
TOP VIEW  
ISL28108  
(8 LD MSOP, SOIC)  
TOP VIEW  
PART NUMBER  
PART  
TEMP. RANGE PACKAGE  
PKG.  
DWG. #  
(Notes 1, 2, 3)  
MARKING  
(°C) (Pb-Free)  
Coming Soon  
ISL28108FBZ  
NC  
NC  
NC  
-IN  
+IN  
V -  
1
2
3
4
8
7
6
5
NC  
V+  
28108 FBZ  
-40 to +125 8 Ld SOIC  
M8.15E  
1
2
3
4
8
7
6
5
-IN  
+IN  
V-  
V
+
Coming Soon  
ISL28108FRTZ 108Z  
- +  
- +  
-40 to +125 8 Ld TDFN L8.3x3A  
V
OUT  
V
OUT  
Coming Soon  
NC  
NC  
ISL28108FUZ  
8108Z  
-40 to +125 8 Ld MSOP M8.118  
ISL28208FBZ  
28208 FBZ  
-40 to +125 8 Ld SOIC  
M8.15E  
ISL28208  
(8 LD TDFN)  
TOP VIEW  
ISL28208  
(8 LD SOIC, MSOP  
TOP VIEW  
ISL28208FRTZ 208Z  
-40 to +125 8 Ld TDFN L8.3x3A  
Coming Soon  
ISL28208FUZ  
8208Z  
-40 to +125 8 Ld MSOP M8.118  
VOUT_A  
V+  
8
V
_A  
1
2
3
4
8
7
6
5
V+  
V
1
2
3
4
OUT  
NOTES:  
-IN_A  
+IN_A  
V-  
VOUT_  
B
-IN_A  
+IN_A  
V-  
_B  
7
6
5
OUT  
- +  
- +  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on  
reel specifications.  
-IN_B  
-IN_B  
+ -  
+ -  
+IN_B  
+IN_B  
2. These Intersil Pb-free plastic packaged products employ special  
Pb-free material sets, molding compounds/die attach materials, and  
100% matte tin plate plus anneal (e3 termination finish, which is  
RoHS compliant and compatible with both SnPb and Pb-free  
soldering operations). Intersil Pb-free products are MSL classified at  
Pb-free peak reflow temperatures that meet or exceed the Pb-free  
requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information  
page for ISL28108, ISL28208. For more information on MSL please  
see techbrief TB363.  
Pin Descriptions  
ISL28108  
ISL28108  
ISL28208  
ISL28208  
PIN  
NAME  
EQUIVALENT  
CIRCUIT  
(8 LD TDFN) (8 LD SOIC, MSOP) (8 LD TDFN) (8 LD SOIC, MSOP)  
DESCRIPTION  
3
2
3
2
+IN  
-IN  
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 3  
-
Amplifier non-inverting input  
Amplifier inverting input  
Amplifier A non-inverting input  
Amplifier A inverting input  
Amplifier A output  
3
2
1
4
5
6
7
8
3
2
1
4
5
6
7
8
+IN_A  
-IN_A  
VOUT_A  
V-  
6
4
6
4
Negative power supply  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
+IN_B  
-IN_B  
VOUT_B  
V+  
7
7
Positive power supply  
1, 5, 8  
1, 5, 8  
NC  
No internal connection  
PD  
PD  
-
Thermal Pad. Pad has no internal  
connections and should be connected to a  
good AC ground.  
V+  
V+  
V+  
OUT  
V-  
CAPACITIVELY  
IN-  
IN+  
TRIGGERED ESD  
V-  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN6935.1  
March 17, 2011  
2
ISL28108, ISL28208  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Differential Input Voltage  
Thermal Resistance (Typical)  
θ
JA (°C/W)  
120  
θ
JC (°C/W)  
55  
8 Ld SOIC Package (108, 208, Notes 4, 6) . .  
8 Ld TDFN Package (208, Notes 5, 6) . . . . . .  
8 Ld MSOP Package (208, Notes 4, 6). . . . . .  
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42V or V- - 0.5V to V+ + 0.5V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . .42V or V- - 0.5V to V+ + 0.5V  
Max/Min Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA  
Output Short-Circuit Duration (1 output at a time) . . . . . . . . . . . Indefinite  
ESD Tolerance  
48  
150  
5.5  
45  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 6kV  
Machine Model (Tested per JESD22-A115-C) . . . . . . . . . . . . . . . . . . 400V  
Charged Device Model (Tested per JESD22-C110D) . . . . . . . . . . . . . 2kV  
Operating Conditions  
Ambient Operating Temperature Range. . . . . . . . . . . . . .-40°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V (±1.5V) to 40V (±20V)  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
5. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
6. For θJC, the “case temp” location is taken at the package top center.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise  
noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA  
Electrical Specifications V ±15V, V = 0, V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply over  
S
CM  
O
L
A
the operating temperature range, -40°C to +125°C. Temperature data established by characterization.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
(Note 7)  
-230  
TYP  
25  
(Note 7)  
UNIT  
µV  
230  
330  
1.1  
-330  
µV  
TCVOS  
Input Offset Voltage Temperature ISL28208 SOIC  
Coefficient  
0.1  
0.2  
5
µV/°C  
-40°C to +125°C  
ISL28208 TDFN  
-40°C to +125°C  
1.4  
µV/°C  
ΔVOS  
Input Offset Voltage Match  
(ISL28208 only)  
-300  
-400  
-43  
300  
400  
µV  
µV  
IB  
Input Bias Current  
-13  
nA  
-63  
nA  
TCIB  
IOS  
Input Bias Current  
Temperature Coefficient  
70  
0
pA/°C  
Input Offset Current  
-3  
3
nA  
nA  
dB  
dB  
dB  
dB  
dB  
V
-4  
4
CMRR  
Common-Mode Rejection Ratio  
V
CM = V- -0.5V to V+ -1.8V  
119  
123  
102  
123  
115  
VCM = V- -0.2V to V+ -1.8V  
V
CM = V- to V+ -1.8V  
105  
102  
V- - 0.5  
V-  
VCMIR  
Common Mode Input Voltage  
Range  
Guaranteed by CMRR test  
V+ - 1.8  
V+ - 1.8  
V
FN6935.1  
March 17, 2011  
3
ISL28108, ISL28208  
Electrical Specifications V ±15V, V = 0, V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply over  
S
CM  
O
L
A
the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
PSRR  
DESCRIPTION  
CONDITIONS  
(Note 7)  
110  
TYP  
128  
124  
126  
(Note 7)  
UNIT  
dB  
Power Supply Rejection Ratio  
VS = 3V to 40V, VCMIR = Valid Input Voltage  
109  
dB  
AVOL  
VOL  
VOH  
IS  
Open-Loop Gain  
VO = -13V to +13V, RL = 10kΩ to ground  
117  
dB  
100  
dB  
Output Voltage Low,  
RL = 10kΩ  
RL = 10kΩ  
RL = Open  
52  
70  
85  
mV  
mV  
mV  
mV  
µA  
VOUT to V-  
145  
110  
150  
250  
350  
Output Voltage High,  
V+ to VOUT  
Supply Current/Amplifier  
185  
270  
19  
µA  
ISC+  
Output Short Circuit Source  
Current  
RL = 10Ω to V-  
mA  
ISC-  
Output Short Circuit Sink Current RL = 10Ω to V+  
Supply Voltage Range Guaranteed by PSRR  
30  
mA  
V
VSUPPLY  
3
40  
AC SPECIFICATIONS  
GBWP  
enp-p  
en  
Gain Bandwidth Product  
ACL = 101, VO = 100mVP-P, RL = 2kΩ  
0.1Hz to 10Hz; VS = +18V  
f = 10Hz; VS = +18V  
1.2  
580  
MHz  
nVP-P  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
%
Noise Voltage  
Noise Voltage Density  
Noise Voltage Density  
Noise Voltage Density  
Noise Voltage Density  
Noise Current Density  
18  
en  
f = 100Hz; VS = +18V  
16  
en  
f = 1kHz; VS = +18V  
15.8  
15.8  
80  
en  
f = 10kHz; VS = +18V  
in  
f = 10kHz; VS = +18V  
THD + N  
Total Harmonic Distortion + Noise 1kHz, AV = 1, VO = 3.5VRMS, RL =10kΩ  
0.00042  
TRANSIENT RESPONSE  
SR  
Slew Rate, VOUT 20% to 80%  
AV = 1, RL = 2kΩ, VO = 10VP-P  
0.45  
264  
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time, VOUT 10% to 90%  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to  
VCM  
Fall Time, VOUT 90% to 10%  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to  
VCM  
254  
27  
ns  
µs  
ts  
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = -1, VOUT = 10VP-P, Rg = Rf =10k, RL = 2kΩ to  
VCM  
FN6935.1  
March 17, 2011  
4
ISL28108, ISL28208  
Electrical Specifications V ±5V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over the  
S
CM  
O
A
operating temperature range, -40°C to +125°C. Temperature data established by characterization.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Offset Voltage  
CONDITIONS  
(Note 7)  
TYP  
25  
(Note 7)  
UNIT  
µV  
-230  
230  
330  
1.1  
-330  
µV  
TCVOS  
Input Offset Voltage Temperature  
Coefficient  
ISL28208 SOIC  
0.1  
0.2  
3
µV/°C  
-40°C to +125°C  
ISL28208 TDFN  
-40°C to +125°C  
1.4  
µV/°C  
ΔVOS  
Input Offset Voltage Match  
(ISL28208 only)  
-300  
-400  
-43  
300  
400  
µV  
µV  
IB  
Input Bias Current  
-15  
nA  
-63  
nA  
TCIB  
IOS  
Input Bias Current  
Temperature Coefficient  
-40°C to +125°C  
-67  
0
pA/°C  
Input Offset Current  
-3  
-4  
3
4
nA  
nA  
dB  
dB  
dB  
dB  
dB  
V
CMRR  
Common-Mode Rejection Ratio  
VCM = V- -0.5V to V+ -1.8V  
101  
123  
89  
VCM = V- -0.2V to V+ -1.8V  
VCM = V- to V+ -1.8V  
105  
100  
V- - 0.5  
V-  
123  
112  
VCMIR  
Common Mode Input Voltage  
Range  
Guaranteed by CMRR test  
V+ - 1.8  
V+ - 1.8  
V
PSRR  
AVOL  
Power Supply Rejection Ratio  
Open-Loop Gain  
VS = 3V to 10V, VCMIR = Valid Input Voltage  
110  
109  
117  
99  
126  
123  
124  
dB  
dB  
dB  
dB  
mV  
mV  
mV  
mV  
µA  
µA  
mA  
mA  
VO = -3V to +3V, RL = 10kΩ to ground  
VOL  
VOH  
IS  
Output Voltage Low,  
RL = 10kΩ  
RL = 10kΩ  
RL = Open  
23  
30  
38  
48  
VOUT to V-  
Output Voltage High,  
V+ to VOUT  
65  
70  
Supply Current/Amplifier  
165  
240  
14  
250  
350  
ISC+  
ISC-  
AC SPECIFICATIONS  
Output Short Circuit Source Current RL = 10Ω to V-  
Output Short Circuit Sink Current  
RL = 10Ω to V+  
22  
GBW  
enp-p  
en  
Gain Bandwidth Product  
ACL = 101, VO = 100mVP-P, RL = 2kΩ  
1.2  
600  
18  
MHz  
Noise Voltage  
0.1Hz to 10Hz  
f = 10Hz  
nVP-P  
Noise Voltage Density  
Noise Voltage Density  
Noise Voltage Density  
Noise Voltage Density  
Noise Current Density  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
en  
f = 100Hz  
f = 1kHz  
16  
en  
15.8  
15.8  
90  
en  
f = 10kHz  
f = 10kHz  
in  
FN6935.1  
March 17, 2011  
5
ISL28108, ISL28208  
Electrical Specifications V ±5V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over the  
S
CM  
O
A
operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 7)  
TYP  
(Note 7)  
UNIT  
TRANSIENT RESPONSE  
SR  
Slew Rate, VOUT 20% to 80%  
Rise Time, VOUT 10% to 90%  
AV = 1, RL = 2kΩ, VO = 4VP-P  
0.4  
V/µs  
ns  
tr, tf, Small  
Signal  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to  
VCM  
264  
Fall Time, VOUT 90% to 10%  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to  
VCM  
254  
ns  
µs  
ts  
Settling Time to 0.01%  
4V Step; 10% to VOUT  
AV = -1, VOUT = 4VP-P, Rg = Rf =10k, RL = 2kΩ to  
VCM  
14.4  
NOTE:  
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified.  
300  
300  
V
= ±15V  
V
= ±5V  
S
S
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
V
(µV)  
V
(µV)  
OS  
OS  
FIGURE 3. ISL28208 INPUT OFFSET VOLTAGE DISTRIBUTION,  
FIGURE 4. ISL28208 INPUT OFFSET VOLTAGE DISTRIBUTION,  
VS = ±5V  
V
S = ±15V  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
V
= ±15V  
V = ±5V  
S
22  
20  
18  
16  
14  
12  
10  
8
S
6
6
4
4
2
2
0
0
TCV (µV/C)  
TCV (µV/C)  
OS  
OS  
FIGURE 5. ISL28208 SOIC TCVOS vs NUMBER OF AMPLIFIERS,  
S = ±15V  
FIGURE 6. ISL28208 SOIC TCVOS vs NUMBER OF AMPLIFIERS,  
S = ±5V  
V
V
FN6935.1  
March 17, 2011  
6
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
V
= ±15V  
V
= ±5V  
22  
20  
18  
16  
14  
12  
10  
8
S
S
6
6
4
4
2
2
0
0
TCV (µV/C)  
TCV (µV/C)  
OS  
OS  
FIGURE 7. ISL28208 TDFN TCVOS vs NUMBER OF AMPLIFIERS,  
FIGURE 8. ISL28208 TDFN TCVOS vs NUMBER OF AMPLIFIERS,  
S = ±5V  
V
S = ±15V  
V
70  
60  
0
-5  
V
= ±21V  
V
S
= ±2.25V  
S
50  
V
= ± 15V  
40  
S
V
= ±5V  
S
30  
V
= ±5V  
S
-10  
-15  
-20  
-25  
20  
10  
0
V
= ±15V  
S
-10  
-20  
-30  
-40  
-50  
V
= ±20V  
S
V
= ±2.25V  
V
= ±1.5V  
80  
S
S
-40  
-20  
0
20  
40  
60  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 10. IBIAS vs TEMPERATURE vs SUPPLY  
FIGURE 9. VOS vs TEMPERATURE  
500  
500  
400  
300  
200  
100  
0
V
= ±5V  
S
V
= ±15V  
S
400  
300  
200  
100  
0
+125°C  
+125°C  
+25°C  
+25°C  
-40°C  
-40°C  
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-16  
-15.5 -15 -14.5 -14 13 13.5  
14  
14.5  
15  
-6  
-5.5  
-5  
-4.5 -4 3  
3.5  
4
4.5  
5
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
FIGURE 11. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±15V  
FIGURE 12. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±5V  
FN6935.1  
March 17, 2011  
7
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
130  
125  
120  
115  
110  
105  
100  
130  
125  
120  
115  
110  
105  
100  
V
= ±15V  
V = ±5V  
S
S
CHANNEL-B  
CHANNEL-B  
CHANNEL-A  
CHANNEL-A  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 13. CMRR vs TEMPERATURE, VS = ±15V  
FIGURE 14. CMRR vs TEMPERATURE, VS = ±5V  
150  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
PSRR+  
V
= ±5V, ±15V  
= 1  
S
A
V
40  
30  
20  
10  
C
R
= 4pF  
L
V
= ±15V  
S
= 10k  
SIMULATION  
L
PSRR-  
V
= 1V  
P-P  
SOURCE  
0
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M100M 1G  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 15. CMRR vs FREQUENCY, VS = ±15V  
FIGURE 16. PSRR vs FREQUENCY, VS = ±5V & ±15V  
140  
135  
130  
125  
120  
140  
V
= ±15V  
V = ±5V  
S
S
135  
130  
125  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 17. PSRR (DC) vs TEMPERATURE, VS = ±15V  
FIGURE 18. PSRR (DC) vs TEMPERATURE, VS = ±5V  
FN6935.1  
March 17, 2011  
8
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
1
1
V
= ±5V and ±15V  
V
= ±5V and ±15V  
S
S
125°C  
125°C  
0.1  
0.1  
+25°C  
+25°C  
0.01  
0.001  
0.01  
0.001  
-40°C  
-40°C  
0.001  
0.01  
0.1  
LOAD CURRENT (µA)  
1
10  
0.001  
0.01  
0.1  
LOAD CURRENT (µA)  
FIGURE 20. OUTPUT OVERHEAD VOLTAGE LOW vs LOAD CURRENT,  
1
10  
FIGURE 19. OUTPUT OVERHEAD VOLTAGE HIGH vs LOAD CURRENT,  
V
S = ±5V and ±15V  
V
S = ±5V and ±15V  
15  
14  
13  
12  
11  
5
4
3
2
+75°C  
125°C  
125°C  
-40°C  
0°C  
-40°C  
10  
-10  
1
-1  
0°C  
-11  
-12  
-13  
-14  
-15  
V
= ±5V  
= 2  
-2  
-3  
-4  
-5  
+25°C  
V
= ±15V  
= 2  
S
S
+25°C  
A
A
V
+75°C  
V
R
V
= R = 100k  
R
= R = 100k  
= ±7.5V-DC  
F
G
F
G
= ±2.5V-DC  
V
IN  
IN  
0
2
4
6
8
10 12 14 16 18 20 22 24  
I-FORCE (mA)  
0
2
4
6
8
10 12 14 16 18 20 22 24  
I-FORCE (mA)  
FIGURE 21. ISL28208 OUTPUT VOLTAGE SWING vs LOAD CURRENT  
S = ±15V  
FIGURE 22. ISL28208 OUTPUT VOLTAGE SWING vs LOAD CURRENT  
S = ±5V  
V
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
R
= ±15V  
= 10k  
V
= ±5V  
R = 10k  
L
S
S
V
OH (V+ TO VOUT)  
L
VOH (V+ TO VOUT  
)
V
(V  
TO V )  
OUT -  
OL  
V
(V  
TO V )  
-
OL  
OUT  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. VOUT HIGH & LOW vs TEMPERATURE,  
FIGURE 24. VOUT HIGH AND LOW vs TEMPERATURE,  
S = ±5V, RL = 10k  
V
S = ±15V, RL = 10k  
V
FN6935.1  
March 17, 2011  
9
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
R
= ±15V  
= 10k  
V
= ±5V  
R = 10k  
L
S
S
L
I
-SINK  
SC  
I
-SINK  
SC  
I
-SOURCE  
SC  
I
-SOURCE  
SC  
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. SHORT CIRCUIT CURRENT vs TEMPERATURE,  
S = ±15V  
FIGURE 26. SHORT CIRCUIT CURRENT vs TEMPERATURE, VS = ±5V  
V
6
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
V
V
= ±5V  
= ±5.9V  
V
= ±15V  
= 1  
S
S
5
4
A
IN  
V
INPUT  
3
2
1
OUTPUT  
0
-1  
-2  
-3  
-4  
-5  
-6  
6
4
2
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
1k  
10k  
100k  
1M  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 28. NO PHASE REVERSAL  
FIGURE 27. MAX OUTPUT VOLTAGE vs FREQUENCY  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
140  
130  
120  
110  
100  
V
= ± 15V  
S
PHASE  
V
= ±5V  
S
GAIN  
-20  
-40  
-60  
-80  
-100  
V
R
= ±15V  
= 1MΩ  
S
L
SIMULATION  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
FIGURE 30. OPEN-LOOP GAIN, PHASE vs FREQUENCY, VS = ±15V  
FIGURE 29. AVOL vs TEMPERATURE  
FN6935.1  
March 17, 2011  
10  
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
70  
60  
50  
40  
30  
20  
10  
0
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
R
= 10k, R = 10Ω  
G
F
A
= 1001  
CL  
R
= 10k, R = 100Ω  
G
F
V
= ±5V, ±15V  
= 4pF  
= 2k  
S
A
= 101  
= 10  
CL  
CL  
C
R
L
L
V
= 100mV  
OUT  
P-P  
A
R
= 10k, R = 1.1kΩ  
F
G
A
= 1  
CL  
80  
R
= 0, R = ∞  
F
G
-10  
100  
70  
0
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42  
(V)  
1k  
10k  
100k  
1M  
10M  
V
SUPPLY  
FREQUENCY (Hz)  
FIGURE 31. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 32. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
1
0
1
0
-1  
-2  
-3  
-1  
-2  
-3  
R
= OPEN, 100k, 10k  
R
= OPEN, 100k, 10k  
L
L
-4  
-5  
-6  
-7  
-8  
-9  
-4  
-5  
-6  
-7  
-8  
-9  
R
= 1k  
R
= 1k  
L
L
R
= 499  
R
= 499  
V
= ±15V  
= 4pF  
= +1  
V
= ±5V  
= 4pF  
= +1  
L
L
S
S
C
A
C
A
R
= 100  
R
= 100  
L
L
L
L
V
V
R
= 49.9  
R
= 49.9  
L
L
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
p-p  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 34. GAIN vs FREQUENCY vs RL, VS = ±5V  
FIGURE 33. GAIN vs FREQUENCY vs RL, VS = ±15V  
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9-  
V
= ±2.5V  
= ±5V  
S
V
= 10mV  
= 50mV  
V
V
OUT  
P-P  
S
V
= ±15V  
= ±20V  
OUT  
P-P  
S
S
V
= ±5V  
= 4pF  
= +1  
S
C
R
A
= 4pF  
= 10k  
= +1  
L
L
V
= 100mV  
V
C
A
OUT  
P-P  
L
V
V
= 500mV  
OUT P-P  
V
R
= INF  
V
= 100mV  
OUT  
P-P  
L
V
= 1V  
P-P  
OUT  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 35. GAIN vs FREQUENCY vs OUTPUT VOLTAGE  
FIGURE 36. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
FN6935.1  
March 17, 2011  
11  
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
100  
100  
V
= ±15V  
V = ±5V  
S
S
G = 10  
G = 10  
10  
10  
G = 100  
G = 100  
1
1
0.10  
0.01  
0.10  
G = 1  
G = 1  
0.01  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 37. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±15V  
FIGURE 38. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±5V  
100  
10  
100  
10  
100  
10  
100  
10  
1
V = ±5V  
S
V
= ±18V  
S
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
1
1
1
0.1  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
0.01  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 40. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±5V  
FIGURE 39. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±18V  
1000  
1000  
V
= ±18V  
= 10k  
V
= ±5V  
= 10k  
S
S
800  
600  
800  
600  
A
A
V
V
400  
400  
200  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-1000  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
TIME (s)  
FIGURE 42. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±5V  
FIGURE 41. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±18V  
FN6935.1  
March 17, 2011  
12  
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
160  
140  
120  
100  
80  
V
C
= ±15V  
= 4pF  
S
L
V
= 1V  
TX  
P-P  
R _  
= ∞  
TRANSMIT  
L
R _  
= 10k  
RECEIVE  
L
60  
40  
R _  
= 2k  
L
TRANSMIT  
20  
R _  
= 10k  
L
RECEIVE  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 43. ISL28208 CHANNEL SEPARATION vs FREQUENCY, VS = ±5V, ±15V  
200  
160  
120  
80  
20  
16  
12  
8
0
-40  
0
V
= ±15V  
INPUT  
S
A = 100  
V
R = 10k  
L
-4  
-8  
V
= 100mV  
IN  
P-P  
OVERDRIVE = 1V  
-80  
OUTPUT  
OUTPUT  
-120  
-12  
-16  
-20  
V
= ±15V  
S
A = 100  
V
R = 10k  
L
-160  
-200  
40  
4
V
= 100mV  
IN  
P-P  
INPUT  
60  
OVERDRIVE = 1V  
0
0
0
20  
40  
80 100 120 140 160 180 200  
TIME (µs)  
0
20  
40  
60  
80 100 120 140 160 180 200  
TIME (µs)  
FIGURE 45. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
S = ±15V  
FIGURE 44. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
S = ±15V  
V
V
6
5
4
3
2
1
0
60  
50  
40  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
0
V
= ±5V  
= 100  
= 10k  
S
A
V
INPUT  
-1  
-2  
-3  
-4  
-5  
-6  
R
V
L
= 50mV  
IN  
P-P  
OVERDRIVE = 1V  
OUTPUT  
OUTPUT  
V
A
R
V
= ±5V  
= 100  
= 10k  
S
INPUT  
V
L
= 50mV  
IN  
P-P  
OVERDRIVE = 1V  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
TIME (µs)  
TIME (µs)  
FIGURE 46. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
S = ±5V  
FIGURE 47. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
VS = ±5V  
V
FN6935.1  
March 17, 2011  
13  
ISL28108, ISL28208  
Typical Performance Curves  
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
V
= ±15V  
V
= ±5V  
= 100mV  
P-P  
S
S
= 100mV  
V
OUT  
P-P  
OUT  
A
= -1  
V
A
= -1  
V
A = 1  
V
A
= 1  
A
= 10  
V
V
A
= 10  
V
0.001  
0.010  
0.100  
1
10  
100  
0.001  
0.010  
0.100  
1
10  
100  
LOAD CAPACITANCE (nF)  
LOAD CAPACITANCE (nF)  
FIGURE 48. OVERSHOOT vs CAPACITIVE LOAD, VS = ±15V  
FIGURE 49. OVERSHOOT vs CAPACITIVE LOAD, VS = ±5V  
2.4  
6
V
A
R
C
= ±15V  
= 1  
= 2k  
V
= ±5V  
= 1  
= 2k  
S
S
2.0  
1.6  
1.2  
0.8  
A
V
V
4
2
R
C
L
L
L
L
= 4pF  
= 4pF  
0.4  
0
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
-2  
-4  
-6  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
TIME (µs)  
TIME (µs)  
FIGURE 50. LARGE SIGNAL 10V STEP RESPONSE, VS = ±15V  
FIGURE 51. LARGE SIGNAL 4V STEP RESPONSE, VS = ±5V  
100  
80  
V
V
= ±15V  
AND  
= ±5V  
S
60  
S
A
R
C
= 1  
= 2k  
= 4pF  
V
40  
L
L
20  
0
-20  
-40  
-60  
-80  
-100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (µs)  
FIGURE 52. SMALL SIGNAL TRANSIENT RESPONSE VS = ±5V, ±15V  
FN6935.1  
March 17, 2011  
14  
ISL28108, ISL28208  
Applications Information  
R
F
V+  
Functional Description  
The ISL28108 and ISL28208 are single and dual, 1.2MHz, single  
supply rail-to-rail output amplifiers with a common mode input  
voltage range extending to a range of 0.5V below the V- rail. Their  
input stages are optimized for precision sensing of ground  
referenced signals in low voltage, single supply applications. The  
input stage has the capability of handling large input differential  
voltages without phase inversion making them suitable for high  
voltage comparator applications. Their bipolar design features  
high open loop gain and excellent DC input and output  
temperature stability. These op amps feature low quiescent  
current of 165µA, and a maximum low temperature drift of only  
1.1µV/°C for the SOIC package and 1.4µV/°C for the TDFN  
package (see Figures 7 and 8). Both devices are fabricated in a  
new precision 40V complementary bipolar DI process and  
immune from latch-up.  
R
R
-
IN  
-
V
-
IN  
+
IN  
+
V
+
R
IN  
L
R
G
V-  
FIGURE 53. INPUT ESD DIODE CURRENT LIMITING  
Output Drive Capability  
The bipolar rail-to-rail output stage features low saturation levels  
that enable an output voltage swing to less than 10mV when the  
total output load (including feedback resistance) is held below  
50µA (Figures 19 and 20). With ±15V supplies this can be  
achieved by using feedback resistor values >300k. The low input  
bias and offset currents (-43nA and ±3nA +25°C max  
respectively) minimize DC offset errors at these high resistance  
values. For example, a balanced 4 resistor gain circuit (Figure 53)  
with 1Mfeedback resistors (RF, RG) generates a worst case  
input offset error of only ±3mV. Furthermore, the low noise  
current reduces the added noise associated with high feedback  
resistance.  
Operating Voltage Range  
The devices are designed to operate over the 3V (±1.5V) to 40V  
(±20V) range and are fully characterized at ±5V and ±15V. Both DC  
and AC performance remain virtually unchanged over the ±5V to  
±15V operating voltage range. Parameter variation with operating  
voltage is shown in the “Typical Performance Curves” beginning on  
page 6.  
Input Stage Performance  
The output stage can swing at moderate levels of output current  
(Figures 21 and 22) and the output stage is internally current  
limited. Output current limit over-temperature is shown in  
Figures 25 and 26. The amplifiers can withstand a short circuit to  
either rail as long as the power dissipation limits are not  
exceeded. This applies to only 1 amplifier at a time for the dual  
op amp. Continuous operation under these conditions may  
degrade long term reliability.  
The ISL28108 and ISL28208 PNP input stage has a common  
mode input range extending up to 0.5V below ground at +25°C  
(see Figures 11 and 12). Full amplifier performance is guaranteed  
down to ground (V-) over the -40°C to +125°C temperature range.  
For common mode voltages down to -0.5V the amplifiers are fully  
functional, but performance degrades slightly over the full  
temperature range. This feature provides excellent CMRR, AC  
performance and DC accuracy when amplifying low level ground  
referenced signals.  
The amplifiers perform well driving capacitive loads (Figures 48  
and 49). The unity gain, voltage follower (buffer) configuration  
provides the highest bandwidth, but is also the most sensitive to  
ringing produced by load capacitance found in BNC cables. Unity  
gain overshoot is limited to 30% at capacitance values to 0.33nF.  
At gains of 10 and higher, the device is capable of driving more  
than 10nF without significant overshoot.  
The input stage has a maximum input differential voltage equal  
to a diode drop greater than the supply voltage (max 42V) and  
does not contain the back-to-back input protection diodes found  
on many similar amplifiers. This feature enables the device to  
function as a precision comparator by maintaining very high  
input impedance for high voltage differential input comparator  
voltages. The high differential input impedance also enables the  
device to operate reliably in large signal pulse applications  
without the need for anti-parallel clamp diodes required on  
MOSFET and most bipolar input stage op amps. Thus, input  
signal distortion caused by nonlinear clamps under high slew  
rate conditions are avoided.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL28108 and ISL28208 are immune to output  
phase reversal, out to 0.5V beyond the rail (VABS MAX) limit (see  
Figure 28).  
In applications where one or both amplifier input terminals are at  
risk of exposure to voltages beyond the supply rails, current  
limiting resistors may be needed at each input terminal (see  
Figure 53 RIN+, RIN-) to limit current through the power supply  
ESD diodes to 20mA.  
FN6935.1  
March 17, 2011  
15  
ISL28108, ISL28208  
Using Only One Channel  
ISL28108 and ISL28208 SPICE Model  
The ISL28208 is a dual op-amp. If the application only requires  
one channel, the user must configure the unused channel to  
prevent it from oscillating. The unused channel will oscillate if the  
input and output pins are floating. This will result in higher than  
expected supply currents and possible noise injection into the  
channel being used. The proper way to prevent this oscillation, is  
to short the output to the inverting input and ground the positive  
input (as shown in Figure 54).  
Figure 56 shows the SPICE model schematic and Figure 57 shows  
the net list for the SPICE model. The model is a simplified version  
of the actual device and simulates important AC and DC  
parameters. AC parameters incorporated into the model are: 1/f  
and flatband noise voltage, Slew Rate, CMRR, Gain and Phase. The  
DC parameters are IOS, total supply current and output voltage  
swing. The model uses typical parameters given in the “Electrical  
Specifications” Table beginning on page 3. The AVOL is adjusted  
for 122dB with the dominant pole at 1Hz. The CMRR is set 128dB,  
f = 6kHz. The input stage models the actual device to present an  
accurate AC representation. The model is configured for ambient  
temperature of +25°C.  
-
+
Figures 58 through 72 show the characterization vs simulation  
results for the Noise Voltage, Open Loop Gain Phase, Closed Loop  
Gain vs Frequency, Gain vs Frequency vs RL, CMRR, Large Signal  
10V Step Response, Small Signal 0.05V Step and Output Voltage  
Swing ±15V supplies.  
FIGURE 54. PREVENTING OSCILLATIONS IN UNUSED CHANNELS  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (TJMAX) for all applications to determine if power  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
LICENSE STATEMENT  
The information in this SPICE model is protected under the  
United States copyright laws. Intersil Corporation hereby grants  
users of this macro-model hereto referred to as “Licensee”, a  
nonexclusive, nontransferable licence to use this model as long  
as the Licensee abides by the terms of this agreement. Before  
using this macro-model, the Licensee should read this license. If  
the Licensee does not accept these terms, permission to use the  
model is not granted.  
(EQ. 1)  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
JMAX  
where:  
• PDMAXTOTAL is the sum of the maximum power dissipation of  
The Licensee may not sell, loan, rent, or license the macro-  
model, in whole, in part, or in modified form, to anyone outside  
the Licensee’s company. The Licensee may modify the macro-  
model to suit his/her specific applications, and the Licensee may  
make copies of this macro-model for use within their company  
only.  
each amplifier in the package (PDMAX  
)
• PDMAX for each amplifier can be calculated using Equation 2:  
V
OUTMAX  
R
L
------------------------  
(EQ. 2)  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
qMAX  
S
This macro-model is provided “AS IS, WHERE IS, AND WITH NO  
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,  
INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”  
where:  
• TMAX = Maximum ambient temperature  
θJA = Thermal resistance of the package  
• PDMAX = Maximum power dissipation of 1 amplifier  
• VS = Total supply voltage  
In no event will Intersil be liable for special, collateral, incidental,  
or consequential damages in connection with or arising out of  
the use of this macro-model. Intersil reserves the right to make  
changes to the product and the macro-model without prior  
notice.  
• IqMAX = Maximum quiescent supply current of 1 amplifier  
• VOUTMAX = Maximum output voltage swing of the application  
• RL = Load resistance  
FN6935.1  
March 17, 2011  
16  
V++  
V++  
I1  
12e-6  
D3  
G1  
+
-
I2  
I3  
R5  
GAIN = 0.477  
13  
1
6E-6  
6E-6  
Vin-  
9
V1  
14  
-6.74  
0.1  
D1DBREAK  
Q6  
Q7  
7
10  
PNP_LATERAL  
EOS  
Vc  
12  
1
+
Q8  
Q9  
+
R2  
D2DBREAK  
V7  
-
-
E
PNP_LATERAL  
PNP_input  
PNP_input  
Vmid  
D13  
D14  
CinDif  
1.21e-12  
5
GAIN = 1  
0
8
11  
IOS  
3e-9  
V2  
-6.76  
1150  
R1  
5e11  
2
R3  
R4  
15  
0
G2  
-
6250  
6250  
1
R6  
+
Vin+  
6
GAIN = 0.3  
GAIN = 0.477  
D4  
Cin2  
Cin1  
4.19e-12  
V--  
4.19e-12  
V--  
Input Stage  
1st Gain Stage  
V+  
E2  
+
-
+
-
GAIN = 1  
0
V++  
V++  
R19  
3.183e3  
G9  
D5  
16  
R13  
3.183e3  
G13  
+
L1  
1.59E-08  
L3  
1.59E-08  
-
D10  
D11  
G15  
R15  
80  
G3  
+
-
G5  
G7  
+
+
C1  
2.31e-11  
GAIN = 12.5e-3  
+
+
-
-
18  
21  
R7  
-
-
GAIN = 314.15e-6 GAIN = 314.15e-6  
V5  
-0.4  
Vmid  
GAIN = 0.6  
GAIN = 0.6  
D7  
DX  
R9  
1e-3  
7.62e9  
24  
GAIN = 261.74e-6  
C5  
C3  
10e-12  
R11  
1e-3  
V3  
19  
10e-12  
-6.74  
VOUT  
Vg  
28  
23  
Vc  
26  
27  
Vmid  
ISY  
185e-6  
C6  
V6  
-0.4  
D8  
D X  
25  
10e-12  
E4  
+
+
R10  
1e-3  
V4  
R12  
1e-3  
-
-6.76  
Vmid  
-
C4  
GAIN = 0.5  
G16  
+
G10  
-
-
20  
10e-12  
C2  
+
G12  
G4  
-
17  
22  
G11  
2.31e-11  
G6  
-
G8  
-
+
+
R8  
7.62e9  
+
G14  
+
R16  
80  
GAIN = 314.15e-6  
R14  
D12  
GAIN = 314.15e-6  
L4  
1.59E-08  
+
-
-
+
-
L2  
D9 GAIN = 12.5e-3  
V--  
R20  
GAIN = 261.74e-6  
GAIN = 0.6  
GAIN = 12.5e-3  
1.59E-08  
GAIN = 0.6  
3.183e3  
GAIN = 12.5e-3  
3.183e3  
V--  
E3  
V-  
+
+
Common Mode  
Gain Stage  
with Zero  
Output Stage Correction CurrentSources  
-
-
2nd Gain Stage  
Mid Supply ref V  
GAIN = 1  
0
FIGURE 55. SPICE NET LIST  
ISL28108, ISL28208  
*ISL28108_208 Macromodel - covers following  
*products  
*ISL28108  
*ISL28208  
*
*Revision History:  
* Revision A, LaFontaine March 5th 2011  
* Model for Noise, supply currents, CMRR  
*128dB f=6kHz ,AVOL 122dB f=1Hz  
* SR = 0.45V/us, GBWP 1.2MHz.  
*
*
*Input Stage  
G_G9  
G_G10  
R_R13  
R_R14  
C_C3  
C_C4  
*
V++ 23 28 VMID 314.15e-6  
V-- 23 28 VMID 314.15e-6  
23 V++ 3.18319e3  
V-- 23 3.18319e3  
23 V++ 10e-12  
V-- 23 10e-12  
Q_Q6  
Q_Q7  
Q_Q8  
Q_Q9  
I_I1  
11 10 9 PNP_input  
8 7 9 PNP_input  
V-- VIN- 7 PNP_LATERAL  
V-- 12 10 PNP_LATERAL  
V++ 9 DC 12e-6  
V++ 7 DC 6E-6  
V++ 10 DC 6E-6  
6 VIN- DC 3e-9  
7 10 DBREAK  
10 7 DBREAK  
5 6 5e11  
VIN- 5 5e11  
V-- 8 6250  
I_I2  
I_I3  
*Output Stage with Correction Current Sources  
I_IOS  
*D_D1  
*D_D2  
R_R1  
R_R2  
R_R3  
R_R4  
C_Cin1  
C_Cin2  
C_CinDif  
*
G_G11  
G_G12  
G_G13  
G_G14  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
D_D12  
V_V5  
26 V-- VOUT 23 12.5e-3  
27 V-- 23 VOUT 12.5e-3  
VOUT V++ V++ 23 12.5e-3  
V-- VOUT 23 V-- 12.5e-3  
23 24 DX  
25 23 DX  
V-- 26 DY  
V++ 26 DX  
V++ 27 DX  
V-- 27 DY  
24 VOUT -0.4  
VOUT 25 -0.4  
VOUT V++ 80  
V-- VOUT 80  
*Copyright 2011 by Intersil Corporation  
*Refer to data sheet "LICENSE STATEMENT"  
*Use of this model indicates your acceptance  
*with the terms and provisions in the License  
*Statement.  
*
V-- 11 6250  
*Intended use:  
V-- VIN- 4.19e-12  
V-- 6 4.19e-12  
6 VIN- 1.21E-12  
*This Pspice Macromodel is intended to give  
*typical DC and AC performance characteristics  
*under a wide range of external circuit  
*configurations using compatible simulation  
*platforms – such as iSim PE.  
*1st Gain Stage  
V_V6  
R_R15  
R_R16  
*
G_G1  
G_G2  
V_V1  
V_V2  
D_D3  
D_D4  
R_R5  
R_R6  
*
V++ 14 8 11 0.4779867  
*Device performance features supported by this  
*model  
*Typical, room temp., nominal power supply  
*voltages used to produce the following  
*characteristics:  
*Open and closed loop I/O impedances,  
*Open loop gain and phase,  
*Closed loop bandwidth and frequency  
*response,  
*Loading effects on closed loop frequency  
*response,  
*Input noise terms including 1/f effects,  
*Slew rate,  
*Input and Output Headroom limits to I/O  
*voltage swing,  
*Supply current at nominal specified supply  
*voltages.  
V-- 14 8 11 0.4779867  
13 14 -6.74  
14 15 -6.76  
13 V++ DX  
V-- 15 DX  
14 V++ 1  
.model PNP_LATERAL pnp(is=1e-016 bf=250  
va=80  
+ ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1)  
.model PNP_input pnp(is=1e-016 bf=100  
va=80  
+ ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1)  
.model DBREAK D(bv=43 rs=1)  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28108_208  
V-- 14 1  
*2nd Gain Stage  
G_G3  
G_G4  
V_V3  
V_V4  
D_D5  
D_D6  
R_R7  
R_R8  
C_C1  
C_C2  
*
V++ VG 14 VMID 261.748e-6  
V-- VG 14 VMID 261.748e-6  
16 VG -6.74  
VG 17 -6.76  
16 V++ DX  
V-- 17 DX  
VG V++ 7.62283e9  
V-- VG 7.62283e9  
VG V++ 2.31e-11  
V-- VG 2.31e-11  
*
*Device performance features NOT supported  
*by this model:  
*Harmonic distortion effects,  
*Output current limiting (current will limit at  
*40mA),  
*Mid supply Ref  
E_E2  
E_E3  
E_E4  
I_ISY  
*
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
VMID V-- V++ V-- 0.5  
V+ V- DC 185E-6  
*Disable operation (if any),  
*Thermal effects and/or over temperature  
*parameter variation,  
*Limited performance variation vs. supply  
*voltage is modeled,  
*Part to part performance variation due to  
*normal process parameter spread,  
*Any performance difference arising from  
*different packaging source,  
*Load current reflected into the power supply  
*current.  
*Common Mode Gain Stage with Zero  
G_G5  
G_G6  
G_G7  
G_G8  
E_EOS  
L_L1  
L_L2  
L_L3  
L_L4  
R_R9  
R_R10  
R_R11  
R_R12  
*
V++ 19 5 VMID 0.6  
V-- 19 5 VMID 0.6  
V++ VC 19 VMID 0.6  
V-- VC 19 VMID 0.6  
12 6 VC VMID 1  
18 V++ 1.59159E-08  
20 V-- 1.59159E-08  
21 V++ 1.59159E-08  
22 V-- 1.59159E-08  
19 18 1e-3  
*
* Connections:  
+input  
*
*
*
*
*
|
|
|
|
-input  
|
|
|
|
+Vsupply  
|
|
|
-Vsupply  
|
|
output  
|
20 19 1e-3  
VC 21 1e-3  
22 VC 1e-3  
.subckt ISL28108_208 Vin+ Vin-V+ V- VOUT  
* source ISL28118_218_subckt_check_0  
*
*Pole Satge  
G_G15  
*Voltage Noise  
V++ 28 VG VMID 314.15e-6  
V-- 28 VG VMID 314.15e-6  
28 V++ 3.18319e3  
V-- 28 3.18319e3  
28 V++ 10e-12  
V-- 28 10e-12  
E_En  
VIN+ 6 2 0 0.3  
1 2 DN  
1 2 DN  
1 0 0.1  
2 0 1150  
G_G16  
R_R19  
R_R20  
C_C5  
C_C6  
D_D13  
D_D14  
V_V7  
R_R17  
FIGURE 56. SPICE NET LIST  
FN6935.1  
March 17, 2011  
18  
ISL28108, ISL28208  
Characterization vs Simulation Results  
100  
100  
10  
0.1  
10  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 57. CHARACTERIZED INPUT NOISE VOLTAGE  
FIGURE 58. SIMULATED INPUT NOISE VOLTAGE  
200  
150  
100  
50  
200  
180  
160  
PHASE  
PHASE  
140  
120  
100  
80  
60  
40  
20  
GAIN  
0
0
-20  
-40  
-60  
-80  
GAIN  
V
R
= ±15V  
= 1MΩ  
V
R
= ±15V  
= 1MΩ  
SIMULATION  
S
S
-50  
-100  
L
L
SIMULATION  
-100  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
FIGURE 59. CHARACTERIZED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 60. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY  
70  
70  
R
= 10k, R = 10Ω  
G
R
= 10k, R = 10Ω  
G
F
A
= 1001  
= 101  
F
CL  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
R
= 10k, R = 100Ω  
R
= 10k, R = 100Ω  
F
G
F
G
V
= ±5V, ±15V  
= 4pF  
= 2k  
V
= ±5V, ±15V  
S
A
S
CL  
C
R
V
C
R
V
= 4pF  
= 2k  
L
L
L
L
= 100mV  
= 100mV  
OUT  
P-P  
OUT  
P-P  
A
= 10  
CL  
R
= 10k, R = 1.1kΩ  
R
= 10k, R = 1.1kΩ  
G
F
G
F
A
= 1  
CL  
R
= 0, R = ∞  
R
= 0, R = ∞  
F
G
F
G
-10  
100  
-10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 62. SIMULATED CLOSED LOOP GAIN vs FREQUENCY  
FIGURE 61. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY  
FN6935.1  
March 17, 2011  
19  
ISL28108, ISL28208  
Characterization vs Simulation Results(Continued)  
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R = OPEN, 100k, 10k  
L
R
= OPEN, 100k, 10k  
L
R = 1k  
L
R
= 1k  
L
R = 499  
L
R
= 499  
V
= ±15V  
= 4pF  
= +1  
L
V
= ±15V  
= 4pF  
= +1  
S
S
R = 100  
L
C
A
R
= 100  
C
A
L
L
L
R = 49.9  
L
V
V
R
= 49.9  
L
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 63. CHARACTERIZED GAIN vs FREQUENCY vs RL  
FIGURE 64. SIMULATED GAIN vs FREQUENCY vs RL  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
150  
100  
50  
0
40  
30  
20  
10  
0
V
= ±15V  
V
= ±15V  
S
S
SIMULATION  
SIMULATION  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M100M 1G  
FREQUENCY (Hz)  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M100M 1G  
FREQUENCY (Hz)  
FIGURE 65. CHARACTERIZED CMRR vs FREQUENCY  
FIGURE 66. SIMULATED CMRR vs FREQUENCY  
6
4
6
V
A
R
C
= ±15V  
= 1  
= 2k  
V
A
R
C
= ±15V  
= 1  
= 2k  
S
S
V
V
4
2
L
L
L
L
= 4pF  
= 4pF  
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
TIME (µs)  
TIME (µs)  
FIGURE 68. SIMULATED LARGE SIGNAL 10V STEP RESPONSE  
FIGURE 67. CHARACTERIZED LARGE SIGNAL 10V STEP RESPONSE  
FN6935.1  
March 17, 2011  
20  
ISL28108, ISL28208  
Characterization vs Simulation Results(Continued)  
100  
80  
100  
80  
V
= ±15V  
AND  
= ±5V  
= 1  
= 2k  
= 4pF  
V
= ±15V  
AND  
= ±5V  
= 1  
= 2k  
= 4pF  
S
S
V
A
60  
V
A
60  
S
S
V
V
40  
40  
R
C
R
C
L
L
L
L
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TIME (µs)  
TIME (µs)  
FIGURE 70. SIMULATED SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 69. CHARACTERIZED SMALL SIGNAL TRANSIENT  
RESPONSE  
20V  
10V  
0V  
VOH = 14.93V  
-10V  
VOL = -14.94V  
-20V  
0
0.5  
1.0  
TIME (m s)  
1.5  
2.0  
FIGURE 71. SIMULATED OUTPUT VOLTAGE SWING  
FN6935.1  
March 17, 2011  
21  
ISL28108, ISL28208  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN6935.1  
CHANGE  
3/11/11  
On page 1, in the first paragraph - added the following after V-rail: "a rail-to-rail differential input voltage range  
for use as a comparator,…"  
On page 1 in “Features:  
Added bullet - “Rail-to-rail Input Differential Voltage Range for Comparator Applications”  
Changed Low Noise Current from "100fA/sq.root Hz" to "80fA/sq.root Hz"  
On page 2 in “Ordering Information” - Removed "coming soon" from ISL28208FRTZ part since it is releasing.  
On page 3, changed “ESD Tolerance” as follows:  
Human Body Model changed from "3kV" to "6kV"  
Machine Model changed from "300V" to "400V"  
Added JEDEC Test information for all ESD ratings  
On page 3 and page 5, added test conditions for SOIC TCVos specs. Added TCVos specs for TDFN.  
On page 4 changed “Noise Current Density” Typical from "100" to "80"  
On page 15, updated Applications Information Functional Description  
On page 15 Updated Input Stage Performance Section  
On page 15 Updated Output Drive Capability Section  
On page 16 Added ISL28108 AND ISL28208 SPICE MODEL and License Agreement section  
On page 17 Added SPICE NET LIST  
On page 19 Added Characterization vs Simulation Results curves  
Initial Release.  
2/16/11  
FN6935.0  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL28108, ISL28208  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6935.1  
March 17, 2011  
22  
ISL28108, ISL28208  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6935.1  
March 17, 2011  
23  
ISL28108, ISL28208  
Package Outline Drawing  
L8.3x3A  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 4, 2/10  
( 2.30)  
( 1.95)  
3.00  
A
B
( 8X 0.50)  
(1.50)  
6
PIN 1  
INDEX AREA  
( 2.90 )  
(4X)  
0.15  
PIN 1  
TOP VIEW  
(6x 0.65)  
( 8 X 0.30)  
TYPICAL RECOMMENDED LAND PATTERN  
SEE DETAIL "X"  
0.10 C  
2X 1.950  
C
6X 0.65  
0.75 ±0.05  
0.08 C  
1
PIN #1  
INDEX AREA  
6
SIDE VIEW  
1.50 ±0.10  
5
8
C
0 . 2 REF  
4
8X 0.30 ±0.05  
0.10 M C A B  
8X 0.30 ± 0.10  
0 . 02 NOM.  
0 . 05 MAX.  
2.30 ±0.10  
DETAIL "X"  
BOTTOM VIEW  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.20mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.  
7.  
FN6935.1  
March 17, 2011  
24  
ISL28108, ISL28208  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 3, 3/10  
5
3.0±0.05  
A
8
DETAIL "X"  
D
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.10 C  
0.25 - 0.036  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6935.1  
March 17, 2011  
25  

相关型号:

ISL28108FUZ-T

OP-AMP, 330uV OFFSET-MAX, 1.2MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS

ISL28108FUZ-T1

OP-AMP, 330uV OFFSET-MAX, 1.2MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS

ISL28108_1107

40V Precision Single Supply Rail-Rail Output Low Power Operational Amplifiers
INTERSIL

ISL28108_1111

40V Precision Single Supply Rail-Rail Output Low Power Operational Amplifiers
INTERSIL

ISL28110

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FBBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FBBZ-T13

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012, SOIC-8
RENESAS

ISL28110FBBZ-T7A

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012, SOIC-8
RENESAS

ISL28110FBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FBZ-T7A

Precision Low Noise JFET Operational Amplifiers; SOIC8; Temp Range: -40° to 125°C
RENESAS

ISL28110FRTBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FRTBZ-T

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS