ISL28110FBBZ [INTERSIL]

Precision Low Noise JFET Operational Amplifiers; 精密,低噪声JFET运算放大器
ISL28110FBBZ
型号: ISL28110FBBZ
厂家: Intersil    Intersil
描述:

Precision Low Noise JFET Operational Amplifiers
精密,低噪声JFET运算放大器

运算放大器 光电二极管
文件: 总25页 (文件大小:1053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Noise JFET Operational Amplifiers  
ISL28110, ISL28210  
Features  
• Wide Supply Range. . . . . . . . . . . . . . . . .9V to 40V  
• Low Voltage Noise . . . . . . . . . . . . . . . . . . 6nV/Hz  
• Input Bias Current . . . . . . . . . . . . . . . . . . . . . 2pA  
• High Slew Rate. . . . . . . . . . . . . . . . . . . . . .23V/µs  
• High Bandwidth . . . . . . . . . . . . . . . . . . . .12.5MHz  
• Low Input Offset . . . . . . . . . . . . . . . . .300µV, Max  
• Offset Drift . . . . . . . . . . . . . . . . Grade C 10µV/°C  
• Low Current Consumption . . . . . . . . . . . . . 2.55mA  
• Operating Temperature Range . . . -40°C to +125°C  
• Small Package Offerings in Single, and Dual  
The ISL28110, ISL28210, are single and dual JFET  
amplifiers featuring low noise, high slew rate, low input  
bias current and offset voltage, making them the ideal  
choice for high impedance applications where precision  
and low noise are important. The combination of  
precision, low noise, and high speed combined with a  
small footprint provides the user with outstanding value  
and flexibility relative to similar competitive parts.  
Applications for these amplifiers include precision medical  
and analytical instrumentation, sensor conditioning,  
precision power supply controls, industrial controls and  
photodiode amplifiers.  
• Pb-Free (RoHS compliant)  
The ISL28110 single amplifier is available in the 8 Ld  
SOIC, TDFN, and MSOP packages. The ISL28210 dual  
amplifier is available in the 8 Ld SOIC and TDFN  
packages. All devices are offered in standard pin  
configurations and operate over the extended  
temperature range from -40°C to +125°C.  
Applications*(see page 22)  
• Precision Instruments  
• Photodiode Amplifiers  
• High Impedance Buffers  
• Medical Instrumentation  
• Active Filter Blocks  
• Industrial Controls  
Typical Application  
Input Bias Current vs Common  
Mode Input Voltage  
R
F
10  
V
= ±15V  
S
8
6
C
F
4
V
+
2
0
-
PHOTO  
DIODE  
-2  
-4  
-6  
-8  
-10  
R
C
OUTPUT  
SH  
T
+
V
-
-15  
-10  
-5  
0
5
10  
15  
V
(V)  
CM  
BASIC APPLICATION CIRCUIT - PHOTODIODE AMPLIFIER  
December 8, 2010  
FN6639.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2010. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL28110, ISL28210  
Pin Configurations  
ISL28110  
(8 LD TDFN)  
TOP VIEW  
ISL28110  
(8 LD, SOIC, MSOP)  
TOP VIEW  
NC  
-IN A  
+IN A  
1
2
3
4
8
7
6
5
NC  
NC  
NC  
1
2
3
4
8
7
6
V
+
-IN A  
V
+
-
+
- +  
PAD  
V
A
+IN A  
V
A
OUT  
OUT  
V
-
5 NC  
V
-
NC  
ISL28210  
(8 LD TDFN)  
TOP VIEW  
ISL28210  
(8 LD SOIC)  
TOP VIEW  
V
A
V
V
V A  
OUT  
1
2
3
4
8
7
6
5
V
+
1
8
7
6
OUT  
+
-IN A  
+IN A  
B
-IN A  
V
B
2
3
4
- +  
OUT  
OUT  
- +  
-IN B  
+IN A  
-IN B  
+IN B  
-
+
+ -  
PAD  
V
5 +IN B  
-
V
-
Pin Descriptions  
ISL28110  
ISL28110  
(8 Ld SOIC,  
ISL28210  
ISL28210  
PIN  
NAME  
EQUIVALENT  
CIRCUIT  
(8 Ld TDFN) 8 Ld MSOP) (8 Ld TDFN) (8 Ld SOIC)  
DESCRIPTION  
3
2
6
4
3
2
6
4
3
2
1
4
5
6
7
8
3
2
1
4
5
6
7
8
+IN A  
-IN A  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 3  
Amplifier A non-inverting input  
Amplifier A inverting input  
Amplifier A output  
VOUT A  
V-  
Negative power supply  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
+IN B  
-IN B  
VOUT B  
7
7
V+  
Positive power supply  
No connect  
1, 5, 8  
PAD  
1, 5, 8  
PAD  
PAD  
Thermal Pad is electrically  
isolated from active circuitry. Pad  
can float, connect to Ground or to  
a potential source that is free  
from signals or noise sources.  
V
+
V
+
V
+
CAPACITIVELY  
TRIGGERED  
ESD CLAMP  
OUT  
IN-  
IN+  
V
-
V
-
V
-
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN6639.1  
December 8, 2010  
2
ISL28110, ISL28210  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
TCVOS  
(µV/°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
MARKING  
28110 FBZ -C  
28210 FBZ -C  
ISL28110FBZ  
10 (C Grade)  
10 (C Grade)  
8 Ld SOIC  
M8.15E  
ISL28210FBZ  
8 Ld SOIC  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
8 Ld SOIC  
8 Ld SOIC  
8 Ld MSOP  
8 Ld MSOP  
M8.15E  
L8.3x3A  
L8.3x3A  
L8.3x3A  
L8.3x3A  
M8.15E  
M8.15E  
M8.118  
M8.118  
Coming Soon  
ISL28110FRTZ  
-C 8110  
-C 8210  
8110  
10 (C Grade)  
10 (C Grade)  
4 (B Grade)  
4 (B Grade)  
4 (B Grade)  
4 (B Grade)  
4 (B Grade)  
10 (C Grade)  
Coming Soon  
ISL28210FRTZ  
Coming Soon  
ISL28110FRTBZ  
Coming Soon  
ISL28210FRTBZ  
8210  
Coming Soon  
ISL28110FBBZ  
28110 FBZ -C  
28210 FBZ  
8110Z  
Coming Soon  
ISL28210FBBZ  
Coming Soon  
ISL28110FUBZ  
Coming Soon  
ISL28110FUZ  
8110Z  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications..  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28110, ISL28210. For more information on  
MSL please see techbrief TB363.  
FN6639.1  
December 8, 2010  
3
ISL28110, ISL28210  
Absolute Voltage Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Supply Turn On Voltage Slew Rate . . . . . . . .1V/µs  
Maximum Differential Input Voltage . . . . . . . . . . . . . . . 33V  
Min/Max Input Voltage . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
Max/Min Input Current for Input Voltage >V+ or <V- . .±20mA  
Output Short-Circuit Duration  
(1 output at a time) . . . . . . . . . . . . . . . . . . . . Indefinite  
ESD Ratings  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . 4000V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 400V  
Charged Device Model . . . . . . . . . . . . . . . . . . . . . 2000V  
Thermal Resistance (Typical)  
θ
JA (°C/W)  
θ
JC (°C/W)  
8 Ld SOIC (Notes 5, 7)  
ISL28110 . . . . . . . . . . . . . . . . .  
ISL28210 . . . . . . . . . . . . . . . . .  
8 Ld TDFN (Notes 4, 6)  
ISL28110 . . . . . . . . . . . . . . . . .  
ISL28210 . . . . . . . . . . . . . . . . .  
8 Ld MSOP (Notes 5, 7)  
125  
120  
70  
50  
48  
46  
7.8  
4.5  
ISL28110 . . . . . . . . . . . . . . . . .  
158  
60  
Ambient Operating Temperature Range . . . -40°C to +125°C  
Storage Temperature Range. . . . . . . . . . . -65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach”  
features. See Tech Brief TB379.  
5. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
TB379 for details.  
6. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.  
7. For θJC, the “case temp” location is taken at the package top center.  
Electrical Specifications VS = ±5V, VCM = 0, VOUT = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply  
over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
(Note 8) UNITS  
INPUT CHARACTERISTICS  
VOS  
Input Offset Voltage  
-300  
300  
1300  
10  
µV  
µV  
-40°C < TA < +125°C  
-40°C < TA < +125°C  
-1300  
TCVOS  
IB  
Input Offset Voltage  
Temperature Coefficient  
1
µV/C  
Input Bias Current  
ISL28110  
-2  
-5.3  
-36  
±0.3  
2
5.3  
36  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pF  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-235  
-2  
235  
2
Input Bias Current  
ISL28210  
±0.3  
±0.15  
±0.15  
8.3  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-4.5  
-50  
4.5  
50  
-245  
-1  
245  
1
IOS  
Input Offset Current  
ISL28110  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-2.25  
-30  
2.25  
30  
-105  
-1  
105  
1
Input Offset Current  
ISL28210  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-3.5  
-32  
3.5  
32  
-245  
245  
CIN-DIFF  
Differential Input Capacitance  
FN6639.1  
December 8, 2010  
4
ISL28110, ISL28210  
Electrical Specifications VS = ±5V, VCM = 0, VOUT = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply  
over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
(Note 8) UNITS  
CIN-CM  
Common Mode Input  
Capacitance  
11.8  
pF  
RIN-DIFF  
RIN-CM  
VCMIR  
Differential Input Resistance  
530  
560  
GΩ  
GΩ  
Common Mode Input Resistance  
Common Mode Input Voltage  
Range  
Guaranteed by CMRR test  
V- + 1.5  
V+ - 1.5  
V
V- + 2.5  
V+ - 2.5  
V
CMRR  
AVOL  
Common Mode Rejection Ratio  
V
V
CM = -3.5V to +3.5V  
CM = -2.5V to +2.5V  
90  
dB  
dB  
dB  
dB  
88  
104  
103  
100  
108  
Open-loop Gain  
RL = 10kΩ to ground  
O = -3V to +3V  
V
DYNAMIC PERFORMANCE  
GBWP  
SR  
Gain-bandwidth Product  
G = 100, RL = 100kΩ, CL = 4pF  
G = -1, RL = 2kΩ, 4V Step  
11  
12.5  
20  
MHz  
V/µs  
%
Slew Rate, VOUT 20% to 80%  
THD+N  
Total Harmonic Distortion +  
Noise  
G = 1, f = 1kHz, 4VP-P, RL = 2kΩ  
G = 1, f = 1kHz, 4VP-P, RL = 600Ω  
AV = 1, VOUT = 4VP-P, RL = 2kΩ to VCM  
0.0002  
0.0003  
0.4  
%
ts  
Settling Time to 0.1%  
4V Step; 10% to VOUT  
µs  
Settling Time to 0.01%  
4V Step; 10% to VOUT  
AV = 1, VOUT = 4VP-P, RL = 2kΩ to VCM  
1
µs  
NOISE PERFORMANCE  
enP-P Peak-to-Peak Input Voltage  
0.1Hz to 10Hz  
580  
nVP-P  
Noise  
en  
Input Voltage Noise Spectral  
Density  
f = 10Hz  
f = 100Hz  
f = 1kHz  
f = 10kHz  
f = 1kHz  
14  
7
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
6
6
in  
Input Current Noise Spectral  
Density  
9
OUTPUT CHARACTERISTICS  
VOL  
VOH  
ISC  
Output Voltage Low, VOUT to V- RL = 10kΩ  
0.8  
0.9  
0.8  
0.9  
±50  
1.0  
1.1  
1.1  
1.2  
1.0  
1.1  
1.1  
1.2  
V
V
R
L = 2kΩ  
V
V
Output Voltage High, V+ to VOUT RL to GND = 10kΩ  
V
V
R
L to GND = 2kΩ  
V
V
Output Short Circuit Current  
RL = 10Ω to V+. V-  
mA  
POWER SUPPLY  
VSUPPLY  
PSRR  
Supply Voltage Range  
Guaranteed by PSRR  
±4.5  
102  
±20V  
V
Power Supply Rejection Ratio  
Supply Current/Amplifier  
VS = ± 4.5V to ±5V  
115  
2.5  
dB  
dB  
mA  
mA  
100  
IS  
2.9  
3.8  
FN6639.1  
December 8, 2010  
5
ISL28110, ISL28210  
Electrical Specifications VS = ±15V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply  
over the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
(Note 8) UNITS  
INPUT CHARACTERISTICS  
VOS  
Input Offset Voltage  
-300  
300  
1300  
10  
µV  
µV  
-40°C < TA < +125°C  
-40°C < TA < +125°C  
-1300  
TCVOS  
IB  
Input Offset Voltage Temperature  
Coefficient (Grade C)  
1
µV/C  
Input Bias Current  
ISL28110  
4.5  
-25  
±2  
4.5  
25  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pF  
pF  
GΩ  
GΩ  
V
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-85  
85  
-950  
5
950  
5
IB  
Input Bias Current  
ISL28210  
±2  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
-350  
-700  
-3600  
-2.5  
-25  
350  
700  
3600  
2.5  
IOS  
Input Offset Current  
ISL28110  
±0.5  
±0.5  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
25  
-85  
85  
-650  
-2.5  
-285  
-445  
-2000  
650  
2.5  
IOS  
Input Offset Current  
ISL28210  
-40°C < TA < +60°C  
-40°C < TA < +85°C  
-40°C < TA < +125°C  
285  
445  
2000  
CIN-DIFF  
CIN-CM  
RIN-DIFF  
RIN-CM  
VCMIR  
Differential Input Capacitance  
Common Mode Input Capacitance  
Differential Input Resistance  
Common Mode Input Resistance  
8.3  
11.8  
530  
560  
Common Mode Input Voltage Range Guaranteed by CMRR test  
V- + 1.5  
80  
V+ - 1.5  
CMRR  
AVOL  
Common Mode Rejection Ratio  
Open-loop Gain  
VCM = -13.5V to +13.5V  
100  
dB  
dB  
RL = 10kΩ to ground  
107  
109  
V
O = -12.5V to +12.5V  
-40°C < TA < +125°C  
106  
dB  
DYNAMIC PERFORMANCE  
GBWP  
SR  
Gain-bandwidth Product  
G = 100, RL = 100kΩ, CL = 4pF  
G = -1, RL = 2kΩ, 10V Step  
11  
12.5  
20  
MHz  
V/µs  
%
Slew Rate, VOUT 20% to 80%  
THD+N  
Total Harmonic Distortion + Noise  
G = 1, f = 1kHz,  
0.00025  
10VP-P, RL = 2kΩ  
G = 1, f = 1kHz,  
10VP-P, RL = 600Ω  
0.0003  
1.3  
%
µs  
µs  
ts  
Settling Time to 0.1%  
10V Step; 10% to VOUT  
AV = 1, VOUT = 10VP-P, RL = 2k  
to VCM  
Ω
Ω
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = 1, VOUT = 10VP-P, RL = 2k  
to VCM  
1.6  
FN6639.1  
December 8, 2010  
6
ISL28110, ISL28210  
Electrical Specifications VS = ±15V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply  
over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
(Note 8) UNITS  
NOISE PERFORMANCE  
enP-P  
en  
Peak-to-Peak Input Voltage Noise  
0.1Hz to 10Hz  
600  
18  
7.8  
6
nVP-P  
Input Voltage Noise Spectral Density f = 10Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
f = 100Hz  
f = 1kHz  
f = 10kHz  
6
in  
Input Current Noise Spectral Density f = 1kHz  
9
OUTPUT CHARACTERISTICS  
VOL  
VOH  
ISC  
Output Voltage Low,  
OUT to V-  
RL = 10kΩ  
0.8  
0.9  
1.0  
1.1  
1.1  
1.2  
1.0  
1.1  
1.1  
1.2  
V
V
V
RL = 2kΩ  
V
V
Output Voltage High,  
+ to VOUT  
RL to GND = 10kΩ  
RL to GND = 2kΩ  
RL = 10Ω to V+. V-  
0.8  
V
V
V
0.9  
V
V
Output Short Circuit Current  
±50  
115  
2.55  
mA  
POWER SUPPLY  
PSRR  
IS  
Power Supply Rejection Ratio  
VS = ±4.5V to ±20V  
102  
dB  
100  
dB  
Supply Current/Amplifier  
3.1  
mA  
mA  
3.9  
NOTE:  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6639.1  
December 8, 2010  
7
ISL28110, ISL28210  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise  
specified.  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
V
= ±15V  
T
= -40°C TO +125°C  
S
V
= ±15V  
A
S
0
0
-10 -8  
-6  
-4  
-2  
0
2
4
6
8
10  
-150 -100 -50  
0
50  
(µV)  
100  
150  
200  
250  
TCV (µV/C)  
V
OS  
OS  
FIGURE 1. INPUT OFFSET VOLTAGE (VOS  
DISTRIBUTION  
)
FIGURE 2. TCVOS DISTRIBUTION, -40°C to +125°C  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
0
-10  
-20  
V
= ±5V  
S
-30  
-40  
-50  
-60  
-70  
-80  
V
= ±15V  
S
5
6
7
8
9
10  
11  
12  
13  
14  
15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
±V  
(±V)  
TEMPERATURE (°C)  
SUPPLY  
FIGURE 3. INPUT BIAS CURRENT (IB) vs SUPPLY  
VOLTAGE  
FIGURE 4. ISL28110 INPUT BIAS CURRENT (IB) vs  
TEMPERATURE  
100  
0
20  
-100  
-200  
10  
0
V
= ±5V  
S
V
= ±5V  
S
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1100  
V
= ±15V  
S
-10  
-20  
V
= ±15V  
40  
S
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. ISL28210 INPUT BIAS CURRENT (IB) vs  
TEMPERATURE  
FIGURE 6. ISL28110 INPUT OFFSET CURRENT (IOS) vs  
TEMPERATURE  
FN6639.1  
December 8, 2010  
8
ISL28110, ISL28210  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise  
specified. (Continued)  
20  
10  
0
300  
250  
200  
150  
100  
50  
V
= ±15V  
S
V
= ±5V  
S
I
CHA  
CHB  
OS  
I
CHA  
OS  
S
I
O
OS  
-10  
I
CHB  
OS  
0
-20  
-40  
-50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. ISL28210 INPUT OFFSET CURRENT (IOS) vs  
TEMPERATURE, VS = ±5V  
FIGURE 8. ISL28210 INPUT OFFSET CURRENT (IOS) vs  
TEMPERATURE, VS = ±15V  
10  
4.0  
V
= ±5V  
V = ±15V  
S
S
8
6
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4
2
0
-2  
-4  
-6  
-8  
-10  
-0.5  
-1.0  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-15  
-10  
-5  
0
5
10  
15  
V
(V)  
V
(V)  
CM  
CM  
FIGURE 9. NORMALIZED INPUT BIAS CURRENT (IB) vs  
INPUT COMMON MODE VOLTAGE (VCM),  
VS = ±5V  
FIGURE 10. NORMALIZED INPUT BIAS CURRENT (IB)  
vs INPUT COMMON MODE VOLTAGE (VCM),  
VS = ±15V  
500  
500  
V
= ±5V  
V
= ±15V  
S
S
400  
300  
200  
100  
0
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
-15  
-10  
-5  
0
CM  
5
10  
15  
V
(V)  
V
(V)  
CM  
FIGURE 11. NORMALIZED INPUT OFFSET VOLTAGE  
FIGURE 12. NORMALIZED INPUT OFFSET VOLTAGE  
(VOS) vs INPUT COMMON MODE VOLTAGE  
(VCM), VS = ±5V  
(VOS) vs INPUT COMMON MODE VOLTAGE  
(VCM), VS = ±15V  
FN6639.1  
December 8, 2010  
9
ISL28110, ISL28210  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise  
specified. (Continued)  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
V
= ±5V  
V
= ±18V  
S
S
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
1
0.1  
1
1
0.1  
1
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. INPUT NOISE VOLTAGE (en) AND CURRENT  
(in) vs FREQUENCY, VS = ±5V  
FIGURE 14. INPUT NOISE VOLTAGE (en) AND CURRENT  
(in) vs FREQUENCY, VS = ±18V  
1000  
1000  
V
= ±5V  
= 10k  
V
A
= ±18V  
= 10k  
S
S
800  
600  
800  
600  
A
V
V
400  
400  
200  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-1000  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
TIME (s)  
FIGURE 15. 0.1Hz TO 10Hz VP-P NOISE VOLTAGE,  
VS =±5V  
FIGURE 16. 0.1Hz TO 10Hz VP-P NOISE VOLTAGE,  
VS = ±18V  
0.1  
0.1  
V
= ±15V  
= 4pF  
= 600  
= 10V  
C-WEIGHTED  
22Hz to 500kHz  
C-WEIGHTED  
22Hz to 500kHz  
V
= ±15V  
= 4pF  
= 2k  
S
S
C
R
V
C
R
V
L
L
L
L
= 10V  
OUT  
P-P  
OUT  
P-P  
0.01  
0.001  
0.01  
0.001  
-40°C  
-40°C  
+125°C  
+125°C  
+125°C  
+125°C  
+25°C  
+25°C  
+25°C  
+25°C  
A
= 10  
V
A
= 10  
V
-40°C  
100  
-40°C  
A
= 1  
V
A
= 1  
V
0.0001  
0.0001  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FIGURE 17. THD+N vs FREQUENCY vs TEMPERATURE,  
FIGURE 18. THD+N vs FREQUENCY vs TEMPERATURE,  
AV = 1, 10, VOUT = 10VP-P, RL = 600Ω  
VOUT = 10VP-P, RL = 2kΩ  
FN6639.1  
December 8, 2010  
10  
ISL28110, ISL28210  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise  
specified. (Continued)  
1
0.1  
1
A
= 1  
V
C
R
= ±15V  
= 4pF  
= 600  
V = ±15V  
S
A
= 1  
V
S
V
C = 4pF  
L
L
L
R = 2k  
L
f = 1kHz  
f = 1kHz  
0.1  
C-WEIGHTED  
22Hz to 22kHz  
C-WEIGHTED  
22Hz to 22kHz  
0.01  
0.01  
+25°C  
+25°C  
0.001  
0.0001  
0.001  
0.0001  
+125°C  
20  
+125°C  
20  
-40°C  
30  
-40°C  
0
5
10  
15  
(V  
25  
0
5
10  
15  
(V  
25  
30  
V
)
V
)
P-P  
OUT  
P-P  
OUT  
FIGURE 19. THD+N vs OUTPUT VOLTAGE (VOUT) vs  
FIGURE 20. THD+N vs OUTPUT VOLTAGE (VOUT) vs  
TEMPERATURE, AV = 1 f = 1kHz, RL = 600Ω  
TEMPERATURE, AV = 1 f =1kHz, RL = 2kΩ  
60  
50  
40  
30  
20  
10  
0
0
-20  
V
V
= ±15V  
V
C
V
= ±15V  
= 4pF  
S
S
= 100mV  
OUT  
P-P  
L
= 1V  
R -  
= 2k  
CM  
P-P  
L TRANSMIT  
R _  
= 10k  
RECEIVE  
-40  
L
A
= 10  
V
-60  
A
= -1  
V
-80  
R -  
=  
L TRANSMIT  
A
= 1  
V
R _  
= ∞  
RECEIVE  
L
-100  
-120  
-140  
0.001  
0.01  
0.1  
1
10  
100  
1
10  
100  
1k  
10k  
100k 1M  
10M 100M  
FREQUENCY (Hz)  
LOAD CAPACITANCE (nF)  
FIGURE 21. CROSSTALK vs FREQUENCY  
FIGURE 22. SMALL SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE (CL)  
200  
70  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
A
= 1000  
R
= 100k, R = 100Ω  
G
CL  
F
60  
50  
40  
30  
20  
10  
0
PHASE  
R
= 100k, R = 1kΩ  
G
F
A
A
= 100  
= 10  
CL  
V
= ±5V & ±15V  
= 4pF  
= OPEN  
S
C
R
V
L
L
= 100mV  
CL  
OUT  
P-P  
GAIN  
R
A
= 100k, R = 10kΩ  
G
F
= 1  
CL  
V
= ±15V  
S
R =1MΩ  
L
R
= 0, R = ∞  
F
G
-10  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 23. OPEN LOOP GAIN-PHASE vs FREQUENCY  
FIGURE 24. CLOSED LOOP GAIN vs FREQUENCY  
FN6639.1  
December 8, 2010  
11  
ISL28110, ISL28210  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise  
specified. (Continued)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
130  
120  
110  
100  
90  
PSRR-  
80  
70  
60  
50  
V
A
C
R
V
= ±15V  
= 1  
S
40  
V
PSRR+  
30  
= 4pF  
= 10k  
= 1V  
L
L
V
= ±15V  
20  
S
SIMULATION  
CM  
P-P  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 25. POWER SUPPLY REJECTION RATIO (PSRR)  
vs FREQUENCY  
FIGURE 26. COMMON-MODE REJECTION RATIO (CMRR)  
vs FREQUENCY  
5
4
15  
14  
13  
12  
11  
-40°C  
-40°C  
3
125°C  
= ±15V  
25°C  
+125°C  
2
+25°C  
V
S
V
A
R
V
= ±5V  
= 2  
= R = 100k  
S
1
-1  
A = 2  
10  
-10  
V
R
V
V
= R = 100k  
F
G
F
G
= 7.5V  
-11  
-12  
-13  
IN  
P-P  
= 2.5V  
P-P  
-2  
-3  
-4  
-5  
IN  
+85°C  
85°C  
0°C  
60  
-14  
-15  
0°C  
60  
0
10  
20  
30  
40  
50  
70  
0
10  
20  
30  
40  
50  
70  
I-FORCE (mA)  
I-FORCE (mA)  
FIGURE 27. OUTPUT VOLTAGE (VOUT) vs OUTPUT  
CURRENT (IOUT) vs TEMPERATURE,  
VS = ±5V  
FIGURE 28. OUTPUT VOLTAGE (VOUT) vs OUTPUT  
CURRENT (IOUT) vs TEMPERATURE,  
VS = ±15V  
0
200  
20  
0
V
= ±15V  
S
INPUT  
INPUT  
A
R
= 100  
= 10k  
= 100mV  
V
-4  
160  
120  
80  
40  
0
16  
12  
8
-40  
L
V
IN  
P-P  
OVERDRIVE = 1V  
-8  
-80  
OUTPUT  
A
= 1  
-12  
-16  
-20  
V
-120  
V
A
R
V
= ±15V  
= 100  
= 10k  
OUTPUT  
S
V
4
-160  
-200  
L
= 100mV  
IN  
P-P  
OVERDRIVE = 1V  
0
0
2
4
6
8
10  
12  
14 16 18 20  
0
2
4
6
8
10  
TIME (µs)  
12  
14  
16  
18  
20  
TIME (µs)  
FIGURE 29. POSITIVE OUTPUT OVERLOAD RECOVERY  
TIME  
FIGURE 30. NEGATIVE OUTPUT OVERLOAD RECOVERY  
TIME  
FN6639.1  
December 8, 2010  
12  
ISL28110, ISL28210  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise  
specified. (Continued)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
-SR  
-SR  
+SR  
+SR  
V
V
R
C
= ±5V  
V
= ±15V  
S
S
= 4V  
V
= 10V  
OUT-PP  
OUT-PP  
= 2k  
= 4pF  
R
C
= 2k  
= 4pF  
L
L
L
L
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
GAIN  
GAIN  
FIGURE 31. SLEW RATE vs INVERTING CLOSED LOOP  
GAIN, VS = ±5V  
FIGURE 32. SLEW RATE vs INVERTING CLOSED LOOP  
GAIN, VS = ±15V  
30  
25  
30  
-SR  
25  
20  
-SR  
20  
+SR  
15  
15  
+SR  
10  
10  
V
V
= ±5V  
V
= ±15V  
S
S
= 4V  
V
= 10V  
OUT-PP  
OUT-PP  
5
0
5
0
R
C
= 2k  
= 4pF  
R
C
= 2k  
= 4pF  
L
L
L
L
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
GAIN  
GAIN  
FIGURE 33. SLEW RATE vs NON-INVERTING CLOSED  
LOOP GAIN, VS = ±5V  
FIGURE 34. SLEW RATE vs NON-INVERTING CLOSED  
LOOP GAIN, VS = ±15V  
6
0.15  
V
A
R
C
= ±15V  
= 1  
= 2k  
S
V
= ±15V  
A = 1  
V
S
V
4
2
0.10  
0.05  
0
R
C
= 2k  
L
L
L
L
= 4pF  
= 4pF  
0
-2  
-4  
-6  
-0.05  
-0.10  
-0.15  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
TIME (µs)  
1.0  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
FIGURE 35. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 36. LARGE SIGNAL UNITY GAIN TRANSIENT  
RESPONSE  
FN6639.1  
December 8, 2010  
13  
ISL28110, ISL28210  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, T = +25°C, unless otherwise  
specified. (Continued)  
6
4
6
4
V
= ±15V  
= +10  
= 2k  
V
= ±15V  
= -1  
= 2k  
S
S
A
A
V
V
R
C
R
C
L
L
L
L
= 4pF  
= 4pF  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
FIGURE 37. LARGE SIGNAL 10V STEP RESPONSE AV = -1  
FIGURE 38. LARGE SIGNAL 10V STEP RESPONSE  
AV = +10  
100  
1000  
V
= ±15V  
V
V
= ±15V  
S
S
= 10V  
OUT  
P-P  
100  
10  
R
= 2kΩ  
L
G = 10  
0.01%  
10  
1
G = 100  
0.1%  
1
0.1  
G = 1  
1M  
0.1  
0.01  
1
10  
CLOSED LOOP GAIN (V/V)  
100  
10  
100  
1k  
10k  
100k  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 39. SETTLING TIME (tS) vs CLOSED LOOP GAIN  
FIGURE 40. ZOUT vs FREQUENCY  
voltage range of ±33V. Internal ESD protection diodes  
clamp the non-inverting and inverting inputs to one diode  
drop above and below the V+ and V- the power supply  
rails (“Pin Descriptions” on page 2, CIRCUIT 1).  
Applications Information  
Functional Description  
The ISL28110 and ISL28210 are single and dual 12.5  
MHz precision JFET input op amps. These devices are  
fabricated in the PR40 Advanced Silicon-on-Insulator  
(SOI) bipolar-JFET process to ensure latch-free  
operation. The precision JFET input stage provides low  
input offset voltage (300µV max @ +25°C), low input  
voltage noise (6nV/Hz), and input current noise that is  
very low with virtually no 1/f component. A high current  
complementary NPN/PNP emitter-follower output stage  
provides high slew rate and maintains excellent THD+N  
Input ESD Diode Protection  
The JFET gate is a reverse-biased diode with >33V  
reverse breakdown voltage which enables the device to  
function reliably in large signal pulse applications without  
the need for anti-parallel clamp diodes required on  
MOSFET and most bipolar input stage op amps. No  
special input signal restrictions are needed for power  
supply operation up to ±15V, and input signal distortion  
caused by nonlinear clamps under high slew rate  
conditions are avoided. For power supply operation  
greater than ±16V (>32V), the internal ESD clamp  
diodes alone cannot clamp the maximum input  
performance into heavy loads (0.0003% @ 10VP-P  
1kHz into 600Ω).  
@
Operating Voltage Range  
differential signal to the power supply rails without the  
risk of exceeding the 33V breakdown of the JFET gate.  
Under these conditions, differential input voltage limiting  
is necessary to prevent damage to the JFET input stage.  
The devices are designed to operate over the 9V (±4.5V)  
to 40V (±20V) range and are fully characterized at 10V  
(±5V) and 30V (±15V). The JFET input stage maintains  
high impedance over a maximum input differential  
FN6639.1  
December 8, 2010  
14  
ISL28110, ISL28210  
In applications where one or both amplifier input  
Output Drive Capability  
terminals are at risk of exposure to voltages beyond the  
supply rails, current limiting resistors may be needed at  
each input terminal (see Figure 41 RIN+, RIN-) to limit  
current through the power supply ESD diodes to 20mA.  
The complementary bipolar emitter follower output  
stage features low output impedance (Figure 40) and is  
capable of substantial current drive over the full  
temperature range (Figures 27, 28) while driving the  
output voltage close to the supply rails. The output  
current is internally limited to approximately ±50mA at  
+25°C. The amplifiers can withstand a short circuit to  
either rail as long as the power dissipation limits are not  
exceeded. This applies to only 1 amplifier at a time for  
the dual op amp. Continuous operation under these  
conditions may degrade long term reliability.  
V+  
R
-
IN  
-
V
-
IN  
R
IN  
+
V
+
R
IN  
L
Output Phase Reversal  
V-  
Output phase reversal is a change of polarity in the  
amplifier transfer function when the input voltage  
exceeds the supply voltage. The ISL28110 and ISL28210  
are immune to output phase reversal, out to 0.5V  
beyond the rail (VABS MAX) limit. Beyond these limits,  
the device is still immune to reversal to 1V beyond the  
rails but damage to the internal ESD protection diodes  
can result unless these input currents are limited.  
FIGURE 41. INPUT ESD DIODE CURRENT LIMITING  
JFET Input Stage Performance  
The ISL28110, ISL28210 JFET input stage has the linear  
gain characteristics of the MOSFET but can operate at  
high frequency with much lower noise. The reversed-  
biased gate PN gate junction has significantly lower gate  
capacitance than the MOSFET, enabling input slew rates  
that rival op amps using bipolar input stages. The added  
advantage for high impedance, precision amplifiers is  
the lack of a significant 1/f component of current noise  
(Figures 13, 14) as there is virtually no gate current.  
Maximizing Dynamic Signal Range  
The amplifiers maximum undistorted output swing is a  
figure of merit for precision, low distortion applications.  
Audio amplifiers are a good example of amplifiers that  
require low noise and low signal distortion over a wide  
output dynamic range. When these applications operate  
from batteries, raising the amplifier supply voltage to  
overcome poor output voltage swing has the penalty of  
increased power consumption and shorter battery life.  
Amplifiers whose input and output stages can swing  
closest to the power supply rails while providing low  
noise and undistorted performance, will provide  
maximum useful dynamic signal range and longer  
battery life.  
The input stage JFETs are bootstrapped to maintain a  
constant JFET drain to source voltage which keeps the  
JFET gate currents and input stage frequency response  
nearly constant over the common mode input range of  
the device. These enhancements provide excellent  
CMRR, AC performance and very low input distortion  
over a wide temperature range. The common mode  
input performance for offset voltage and bias current is  
shown in Figure 42. Note that the input bias current  
remains low even after the maximum input stage  
common mode voltage is exceeded (as indicated by the  
abrupt change in input offset voltage).  
Rail-to-rail input and output (RRIO) amplifiers have the  
highest dynamic signal range but their added complexity  
degrades input noise and amplifier distortion. Many  
contain two input pairs, one pair operating to each supply  
rail. The trade-offs for these are increased input noise  
and distortion caused by non-linear input bias current  
and capacitance when amplifying high impedance  
sources. Their rail-to-rail output stages swing to within a  
few millivolts of the rail, but output impedances are high  
so that their output swing decreases and distortion  
increases rapidly with increasing load current. At heavy  
load currents the maximum output voltage swing of RRO  
op amps can be lower than a good emitter follower  
output stage.  
10  
8
500  
400  
300  
200  
100  
0
V
= ±15V  
S
INPUT OFFSET VOLTAGE (V  
)
OS  
T = +25°C  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-100  
-200  
-300  
-400  
-500  
INPUT BIAS (I )  
B
The ISL28110 and ISL28210 low noise input stage and  
high performance output stage are optimized for low  
THD+N into moderate loads over the full -40°C to  
+125°C temperature range. Figures 19 and 20 show the  
1kHz THD+N unity gain performance vs output voltage  
swing at load resistances of 2kand 600. Figure 43  
shows the unity-gain THD+N performance driving  
600Ω from ±5V supplies.  
-15  
-10  
-5  
0
5
10  
15  
V
(V)  
CM  
FIGURE 42. INPUT OFFSET VOLTAGE AND BIAS  
CURRENT vs COMMON MODE INPUT  
VOLTAGE  
FN6639.1  
December 8, 2010  
15  
ISL28110, ISL28210  
ISL28110 and ISL28210 SPICE Model  
1
0.1  
V
= ±5V  
= 600Ω  
= 1  
S
Figure 44 shows the SPICE model schematic and  
Figure 45 shows the net list for the SPICE model. The  
model is a simplified version of the actual device and  
simulates important AC and DC parameters. AC  
parameters incorporated into the model are: 1/f and  
flatband noise voltage, Slew Rate, CMRR, Gain and  
Phase. The DC parameters are IOS, total supply current  
and output voltage swing. The model uses typical  
parameters given in the “Electrical Specifications” Table  
beginning on page 4. The AVOL is adjusted for 125dB  
with the dominant pole at 7Hz. The CMRR is set 120dB,  
f = 280kHz. The input stage models the actual device to  
present an accurate AC representation. The model is  
configured for ambient temperature of +25°C.  
R
L
A
V
+125°C  
+85°C  
0.01  
+25°C  
0.001  
0.0001  
0°C  
-40°C  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
P-P  
FIGURE 43. UNITY-GAIN THD+N vs OUTPUT VOLTAGE  
vs TEMPERATURE AT VS = ±5V FOR 600Ω  
LOAD  
Figures 46 through 59 show the characterization vs  
simulation results for the Noise Voltage, Closed Loop  
Gain vs Frequency, Small Signal 0.1V Step, Large Signal  
5V Step Response, Open Loop Gain Phase, CMRR and  
Output Voltage Swing for ±5V and ±15V supplies.  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply  
conditions. It is therefore important to calculate the  
maximum junction temperature (TJMAX) for all  
applications to determine if power supply voltages, load  
conditions, or package type need to be modified to  
remain in the safe operating area. These parameters are  
related using Equation 1:  
LICENSE STATEMENT  
The information in this SPICE model is protected under  
the United States copyright laws. Intersil Corporation  
hereby grants users of this macro-model hereto referred  
to as “Licensee, a nonexclusive, nontransferable licence  
to use this model as long as the Licensee abides by the  
terms of this agreement. Before using this macro-model,  
the Licensee should read this license. If the Licensee  
does not accept these terms, permission to use the  
model is not granted.  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
(EQ. 1)  
JMAX  
where:  
• PDMAXTOTAL is the sum of the maximum power  
The Licensee may not sell, loan, rent, or license the  
macro-model, in whole, in part, or in modified form, to  
anyone outside the Licensee’s company. The Licensee  
may modify the macro-model to suit his/her specific  
applications, and the Licensee may make copies of this  
macro-model for use within their company only.  
dissipation of each amplifier in the package (PDMAX  
)
• PDMAX for each amplifier can be calculated using  
Equation 2:  
V
OUTMAX  
R
L
----------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
(EQ. 2)  
MAX  
S
qMAX  
S
This macro-model is provided “AS IS, WHERE IS, AND  
WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED  
OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR A PARTICULAR PURPOSE.”  
where:  
• TMAX = Maximum ambient temperature  
θJA = Thermal resistance of the package  
• PDMAX = Maximum power dissipation of 1 amplifier  
• VS = Total supply voltage  
In no event will Intersil be liable for special, collateral,  
incidental, or consequential damages in connection with  
or arising out of the use of this macro-model. Intersil  
reserves the right to make changes to the product and  
the macro-model without prior notice.  
• IqMAX = Maximum quiescent supply current of 1  
amplifier  
• VOUTMAX = Maximum output voltage swing of the  
application  
• RL = Load resistance  
FN6639.1  
December 8, 2010  
16  
C3  
6e-12  
V++  
V++  
V++  
V2  
V3  
D9  
0.7Vdc  
I1  
240E-6  
0.7Vdc  
D5  
10  
R5  
5.5k  
21  
R6  
5.5k  
G1  
26  
+
-
G3  
+
C4  
2.5e-12  
C1  
R9  
R13  
200k  
-
G
1
D7  
4e-12  
G
22  
9
20  
R12  
GAIN = 33  
Vmid  
V4  
1e10  
GAIN = 181.819E-6  
PNP_MIRROR  
Q7  
PNP_MIRROR  
11  
1.18  
Vin-  
Q6  
V6  
buffer1  
buffer2  
1.18  
R11  
1k  
+
+
-
+
Vg  
+
23  
25  
Vg  
Vmid  
VC  
-
-
-
D2 DBREAK  
0.4  
E
E
12  
Vmid  
Vc  
19  
EOS  
8
C2  
4e-12  
+
-
+
-
1
V1  
D3 DBREAK  
NPN_CASCODE  
Q5  
R2  
5e11  
Vmid  
13  
E
R8  
NPN_CASCODE  
100  
GAIN = 1  
D1  
3
Q2  
NPN_CASCODE  
Q1  
NPN_CASCODE  
D8  
V7  
E2  
+
0
CinDif  
5.87E-40  
V5  
R4  
Q4  
18  
D4  
1.18  
+
-
IOS  
0.3E-12  
1.18  
DBREAK  
250  
-
110  
R1  
R3  
5e11  
2
E
J2  
R7  
GAIN = 0.5  
16  
17  
Vmid  
G4  
5
J1  
6
14  
C5  
E
En  
0
24  
27  
G2  
5-  
+
R10  
250  
-
pj110_input  
PJ110_INPUT  
1
R14  
200k  
2.5e-12  
Vin+  
4
+
7
15  
J3  
GAIN = 33  
D6  
G
J4  
GAIN = 1  
PJ110_CASCODE  
GAIN = 181.819E-6  
PJ110_CASCODE  
D10  
Cin2  
Cin1  
7.27e-40  
7.27e-40  
V--  
V--  
V--  
VCM  
MID SUPPLY REF V  
INPUT STAGE  
GAIN STAGE  
V+  
E3  
+
-
+
-
E
V++  
0
V++  
V++  
GAIN = 1  
R19  
R21  
318.319274232055  
L1  
L3  
D14  
D15  
G
-
318.319274232055  
+
+
5.30532e-10  
5.30532e-10  
VCM  
G9  
+
G11  
R23  
50  
+
-
G5  
G7  
G15  
GAIN = 20e-3  
Vout  
+
-
G
+
-
28  
R15  
0.001  
31  
R17  
0.001  
-
G
G
G
Vout  
V8  
GAIN = 0.0031415  
Vout  
D11  
GAIN = 0.0031415  
DX  
GAIN = 1  
GAIN = 1  
35  
36  
C6  
C8  
.523  
29  
VOUT  
10e-12  
10e-12  
Vc  
33  
34  
Vg  
Vmid  
37  
38  
ISY  
VC  
2.5E-3  
D12  
D X  
V9  
Vout  
.523  
R16  
R18  
0.001  
0.001  
Vmid  
C7  
C9  
G10  
-
G12  
-
30  
G8  
-
10e-12  
10e-12  
Vout  
Vout  
32  
+
+
G13  
+
G14  
+
G6  
-
D16  
+
GAIN = 0.0031415  
R20  
GAIN = 0.0031415  
R22  
R24  
50  
L4  
G
-
+
-
-
GAIN = 1  
D13  
V--  
+
L2  
G
G
5.30532e-10  
5.30532e-10  
GAIN = 1  
GAIN = 1.11e-2 GAIN = 1.11e-2  
G16  
318.319274232055  
318.319274232055  
GAIN = 20e-3  
V--  
V--  
V--  
V-  
E4  
+
VCM  
+
-
COMMON MODE  
GAIN STAGE  
WITH ZERO  
CORRECTION CURRENT OUTPUT STAGE  
SOURCES  
-
E
GAIN = 1  
0
FIGURE 44. SPICE NET LIST  
ISL28110, ISL28210  
* source ISL28110_210_presubckt_0  
* Revision A, LaFontaine Nov 4th 2010  
* Model for Noise 200nV/rtHz@0.1Hx  
*11nV/rtHz base band, supply current 2.5mA,  
*CMRR 120dB fcm=281kHz ,AVOL 125dB  
*fd=7Hz  
* SR = 20V/us, GBWP 12.6MHz, Output  
*voltage clamp  
*Copyright 2010 by Intersil Corporation  
*Refer to data sheet “LICENSE STATEMENT”  
*Use of this model indicates your acceptance  
*with the terms and provisions in the License  
*Statement.  
G_G1  
V++ 23 19 8 33  
V-- 23 19 8 33  
23 V++ 1  
V-- 23 1  
25 23 1k  
25 VMID DX  
VMID 25 DX  
25 VMID 1e10  
V++ VG 25 VMID 181.819E-6  
V-- VG 25 VMID 181.819E-6  
26 V++ DX  
V-- 27 DX  
26 VG 1.18  
VG 27 1.18  
VG V++ 200k  
V-- VG 200k  
8 VG 6e-12  
VG V++ 2.5e-12  
V-- VG 2.5e-12  
V_V9  
R_R23  
R_R24  
*
*
.model pj110_input pjf  
+ vto=-1.4  
+ beta=0.0025  
+ lambda=0.03  
+ is=2.68e-015  
+ pb=0.73  
+ cgd=8.6e-012  
+ cgs=9.05e-012  
+ fc=0.5 kf=0  
+ af=1  
VOUT 36 -.384  
VOUT V++ 50  
V-- VOUT 50  
G_G2  
R_R9  
R_R10  
R_R11  
D_D7  
D_D8  
R_R12  
G_G3  
G_G4  
D_D9  
D_D10  
V_V6  
V_V7  
R_R13  
R_R14  
C_C3  
C_C4  
C_C5  
*
* Connections:  
*
*
*
*
*
*
+input  
|
|
|
|
|
-input  
| +Vsupply  
|
|
|
+ tnom=35  
*
.model NPN_CASCODE npn  
+ is=5.02e-016  
+ bf=150  
|
|
|
-Vsupply  
| output  
|
|
.subckt ISL28110subckt Vin+ Vin- V+ V- VOUT  
* source ISL28110_210_PRESUBCKT_0  
*
* Mid Supply Reference  
*
+ va=300  
+ ik=0.017  
*Voltage Noise  
*
E_E2  
E_E3  
E_E4  
I_ISY  
*
VMID V-- V++ V-- 0.5  
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
+ rb=0.01  
+ re=0.011  
+ rc=900  
+ cje=2e-013  
+ cjc=1.6e-028  
+ kf=0  
E_En  
V_V1  
D_D1  
R_R1  
*
VIN+ 4 2 0 1  
1 0 0.4  
1 2 DN  
V+ V- DC 2.5E-3  
2 0 110  
*Common Mode Gain Stage 40dB/dec  
*
+ af=1  
*Input Stage  
*
G_G5  
G_G6  
G_G7  
G_G8  
L_L1  
L_L2  
L_L3  
L_L4  
R_R15  
R_R16  
R_R17  
R_R18  
*
V++ 29 3 VMID 1  
V-- 29 3 VMID 1  
V++ VC 29 VMID 1  
V-- VC 29 VMID 1  
28 V++ 5.30532e-11  
30 V-- 5.30532e-11  
31 V++ 5.30532e-11  
32 V-- 5.30532e-11  
29 28 0.001  
*
.model PJ110_CASCODE pjf  
+ vto=-1.4  
+ beta=0.000617  
+ lambda=0.03  
+ is=3.96e-016  
+ pb=0.73  
+ cgd=2.2e-012  
+ cgs=3e-012  
+ fc=0.5  
+ kf=0  
+ af=1  
+ tnom=35  
*
R_R2  
R_R3  
C_CinDif  
C_Cin1  
C_Cin2  
I_IOS  
R_R4  
J_J1  
VIN- 3 5e11  
3 4 5e11  
4 VIN- 5.87E-40  
V-- VIN- 7.27e-40  
V-- 4 7.27e-40  
4 VIN- DC 0.3E-12  
5 VIN- 250  
7 5 6 pj110_input  
30 29 0.001  
VC 31 0.001  
32 VC 0.001  
J_J2  
J_J3  
J_J4  
Q_Q1  
Q_Q2  
Q_Q4  
Q_Q5  
Q_Q6  
Q_Q7  
V_V2  
15 16 14 pj110_input  
V-- 14 15 PJ110_CASCODE  
V-- 6 7 PJ110_CASCODE  
19 13 14 NPN_CASCODE  
12 13 6 NPN_CASCODE  
8 13 6 NPN_CASCODE  
12 13 14 NPN_CASCODE  
19 11 20 PNP_MIRROR  
8 11 9 PNP_MIRROR  
V++ 10 0.7Vdc  
*Second Pole Stage 40dB/dec  
*
.model DBREAK d  
+ bv=43  
+ rs=1  
G_G9  
G_G10  
G_G11  
G_G12  
R_R19  
R_R20  
R_R21  
R_R22  
C_C6  
C_C7  
C_C8  
C_C9  
*
V++ 33 VG VMID 0.0031415  
V-- 33 VG VMID 0.0031415  
V++ 34 33 VMID 0.0031415  
V-- 34 33 VMID 0.0031415  
33 V++ 318.319274232055  
V-- 33 318.319274232055  
34 V++ 318.319274232055  
V-- 34 318.319274232055  
33 V++ 10e-12  
*
.model PNP_MIRROR pnp  
+ is=4e-015  
+ bf=150  
+ va=50  
+ ik=0.138  
+ rb=0.01  
+ re=0.101  
+ rc=180  
+ cje=1.34e-012  
+ cjc=4.4e-013  
+ kf=0  
+ af=1  
*
.model DN D(KF=6.69e-12 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28110subckt  
V_V3  
V++ 21 0.7Vdc  
R_R5  
R_R6  
E_buffer1  
E_buffer2  
D_D2  
D_D3  
9 10 5.5k  
20 21 5.5k  
11 V++ 8 V++ 1  
13 V-- 12 V-- 1  
V-- 33 10e-12  
34 V++ 10e-12  
V-- 34 10e-12  
8 19 DBREAK  
19 8 DBREAK  
I_I1  
V++ 12 DC 240E-6  
19 V++ 4e-12  
V-- 19 4e-12  
C_C1  
C_C2  
R_R7  
E_EOS  
*
* Output Stage  
*
16 17 250  
D_D11  
D_D12  
D_D13  
D_D14  
D_D15  
D_D16  
G_G13  
G_G14  
G_G15  
G_G16  
V_V8  
34 35 DX  
36 34 DX  
V-- 37 DY  
V++ 37 DX  
V++ 38 DX  
V-- 38 DY  
37 V-- VOUT 34 1.11e-2  
38 V-- 34 VOUT 1.11e-2  
VOUT V++ V++ 34 20e-3  
V-- VOUT 34 V-- 20e-3  
35 VOUT -.384  
17 4 VC VMID 1  
*1st Gain Stage  
*
R_R8  
D_D4  
D_D5  
D_D6  
V_V4  
V_V5  
18 V++ 100  
V-- 18 DBREAK  
22 V++ DX  
V-- 24 DX  
22 23 1.18  
23 24 1.18  
FIGURE 45. SPICE NET LIST  
FN6639.1  
December 8, 2010  
18  
ISL28110, ISL28210  
Characterization vs Simulation Results  
1000  
100  
10  
1000  
100  
10  
1000  
V
= ±18V  
S
V
= ±18V  
S
INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE  
100  
1
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 46. CHARACTERIZED INPUT NOISE VOLTAGE  
FIGURE 47. SIMULATED INPUT NOISE VOLTAGE  
70  
70  
A
= 1000  
A
= 1000  
R = 100k, R = 100Ω  
F G  
R
= 100k, R = 100Ω  
CL  
CL  
F
G
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
R
= 100k, R = 1kΩ  
G
R
= 100k, R = 1kΩ  
G
F
F
A
A
= 100  
= 10  
A
A
= 100  
= 10  
CL  
CL  
V
= ±5V & ±15V  
= 4pF  
= OPEN  
V
= ±5V & ±15V  
S
S
C
R
V
C
R
V
= 4pF  
= OPEN  
L
L
L
L
CL  
R
= 100mV  
CL  
= 100mV  
OUT  
P-P  
OUT  
P-P  
= 100k, R = 10kΩ  
R
A
= 100k, R = 10kΩ  
F
G
F
G
A
= 1  
= 1  
CL  
CL  
R
= 0, R = ∞  
R
= 0, R = ∞  
F
G
F
G
-10  
1k  
-10  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 48. CHARACTERIZED CLOSED LOOP GAIN vs  
FREQUENCY  
FIGURE 49. SIMULATED CLOSED LOOP GAIN vs  
FREQUENCY  
0.15  
0.15  
V
= ±15V  
= 1  
= 2k  
V
A
R
C
= ±15V  
= 1  
= 2k  
S
S
A
V
V
0.10  
0.05  
0
0.10  
0.05  
0
R
C
L
L
L
L
= 4pF  
= 4pF  
-0.05  
-0.10  
-0.15  
-0.05  
-0.10  
-0.15  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
TIME (µs)  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
TIME (µs)  
FIGURE 50. CHARACTERIZED SMALL SIGNAL  
FIGURE 51. SIMULATED SMALL SIGNAL TRANSIENT  
RESPONSE vs RL, VS = ±0.9V, ±2.5V  
TRANSIENT RESPONSE vs RL, VS = ±0.9V,  
±2.5V  
FN6639.1  
December 8, 2010  
19  
ISL28110, ISL28210  
Characterization vs Simulation Results(Continued)  
6
6
V
= ±15V  
= 1  
V
= ±15V  
= 1  
S
S
A
A
4
4
V
V
R
C
= 2k  
= 4pF  
R
C
= 2k  
= 4pF  
L
L
L
L
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
TIME (µs)  
TIME (µs)  
FIGURE 52. CHARACTERIZED LARGE SIGNAL  
FIGURE 53. SIMULATED LARGE SIGNAL TRANSIENT  
RESPONSE vs RL, VS = ±0.9V, ±2.5V  
TRANSIENT RESPONSE vs RL, VS = ±0.9V,  
±2.5V  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
200  
180  
160  
PHASE  
PHASE  
140  
120  
100  
80  
60  
40  
20  
0
GAIN  
GAIN  
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
V
= ±15V  
S
V
= ±15V  
S
R =1MΩ  
L
R =1MΩ  
L
-100  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
FIGURE 54. SIMULATED (DESIGN) OPEN-LOOP GAIN,  
PHASE vs FREQUENCY  
FIGURE 55. SIMULATED (SPICE) OPEN-LOOP GAIN,  
PHASE vs FREQUENCY  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
V
= ±15V  
V = ±15V  
S
SIMULATION  
20  
10  
0
20  
10  
0
S
SIMULATION  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 56. SIMULATED (DESIGN) CMRR  
FIGURE 57. SIMULATED (SPICE) CMRR  
FN6639.1  
December 8, 2010  
20  
ISL28110, ISL28210  
Characterization vs Simulation Results(Continued)  
15V  
10V  
5V  
5.0  
0V  
0
-5V  
-10V  
-15V  
V
= ±5V  
S
-5.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
TIME (m s)  
TIME (m s)  
FIGURE 58. SIMULATED OUTPUT VOLTAGE SWING ±5V  
FIGURE 59. SIMULATED OUTPUT VOLTAGE SWING ±15V  
FN6639.1  
December 8, 2010  
21  
ISL28110, ISL28210  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
11/29/10  
11/23/10  
FN6639.1  
Removed label on right side of characterization curve, Figure 46 (Input Noise Current).  
Page 1 Updated Trademark statement  
Page 3 Ordering Information: Removed "coming soon" from ISL28110FBZ  
Page 4 Electrical Specifications: Added ISL28110 IB and IOS specs @ VS=±5V.  
Page 5 Electrical Specifications: Changed AVOL limits fro V/mV to dB  
Page 5 Electrical Specifications, Dynamic Performance, Slew Rate: Added "4V Step" to  
conditions; changed TYP limit from 23V/µs to 20V/µs  
Page 6 Electrical Specifications, Dynamic Performance, Slew Rate:  
Added "10V Step" to conditions; changed TYP limit from 23V/µs to 20V/µs  
Page 6 Electrical Specifications: Added ISL28110 IB and IOS specs @ VS= ±15V.  
Changed AVOL limits from V/mV to dB. Changed ts, settling time to 0.1% from 0.9µs to 1.3µs  
and changed ts, settling time to 0.01% from 1.2µs to 1.6µs.  
Page 7 Replaced Elect Spec table Notes 8 & 9 (Note 8 "Parameters with MIN and/or MAX limits  
are 100% tested at +25°C, unless otherwise specified. Temperature limits established by  
characterization and are not production tested./Note 9 Limits established by characterization  
and are not production tested.)" With: "Compliance to datasheet limits is assured by one or  
more methods: production test, characterization and/or design."  
Page 8 Characteristic Curves: Added ISL28110 IB vs Temperature (Fig 4)  
Page 8 Characteristic Curves: Added ISL28110 IOS vs Temperature (Fig 6)  
Pages 17-21: Added PSPICE model section  
9/13/10  
FN6639.0  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL28110, ISL28210  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6639.1  
December 8, 2010  
22  
ISL28110, ISL28210  
Package Outline Drawing  
L8.3x3A  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 4, 2/10  
( 2.30)  
( 1.95)  
3.00  
A
B
( 8X 0.50)  
(1.50)  
6
PIN 1  
INDEX AREA  
( 2.90 )  
(4X)  
0.15  
PIN 1  
TOP VIEW  
(6x 0.65)  
( 8 X 0.30)  
TYPICAL RECOMMENDED LAND PATTERN  
SEE DETAIL "X"  
0.10 C  
2X 1.950  
C
6X 0.65  
0.75 ±0.05  
0.08 C  
1
PIN #1  
INDEX AREA  
6
SIDE VIEW  
1.50 ±0.10  
5
8
C
0 . 2 REF  
4
8X 0.30 ±0.05  
0.10 M C A B  
8X 0.30 ± 0.10  
0 . 02 NOM.  
0 . 05 MAX.  
2.30 ±0.10  
DETAIL "X"  
BOTTOM VIEW  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.20mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.  
7.  
FN6639.1  
December 8, 2010  
23  
ISL28110, ISL28210  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 3, 3/10  
5
3.0±0.05  
A
8
DETAIL "X"  
D
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.25 - 0.036  
0.10 C  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6639.1  
December 8, 2010  
24  
ISL28110, ISL28210  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6639.1  
December 8, 2010  
25  

相关型号:

ISL28110FBBZ-T13

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012, SOIC-8
RENESAS

ISL28110FBBZ-T7A

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012, SOIC-8
RENESAS

ISL28110FBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FBZ-T7A

Precision Low Noise JFET Operational Amplifiers; SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL28110FRTBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FRTBZ-T

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FRTBZ-T13

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FRTBZ-T7

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FRTZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FRTZ-T7

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEEC-2, TDFN-8
RENESAS

ISL28110FUBZ

Precision Low Noise JFET Operational Amplifiers
INTERSIL

ISL28110FUBZ-T13

OP-AMP, 1300uV OFFSET-MAX, 12.5MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS